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ABSTRACT

Parameter Estimation and Multilevel Clustering with
Mixture and Hierarchical Models

by

Nhat Pham Minh Ho

Chairs: Long Nguyen and Ya’acov Ritov

In the big data era, data are typically collected at massive scales and often carry com-

plex structures, which lead to unprecedented modeling and computational challenges.

In numerous applications of engineering and applied sciences there are indisputable

evidence of the presence of hidden subpopulations in the whole data where each sub-

population has its own features. Due to their great modeling flexibility, mixture

and hierarchical models have been widely utilized by researchers to uncover these

multi-level structures. However, several outstanding problems arise from these mod-

els. Firstly, it has long been observed in practice that convergence behaviors of latent

variables in these models are problematic. Secondly, state of the art hierarchical mod-

els tend to perform unsatisfactorily under large-scale and complex structures settings

of data. Last but not least, in many practical problems mixture and hierarchical

models are strongly affected by outliers or departures from model assumptions.

The overarching themes in the thesis focus on dealing with these challenges. Our

main contributions include the following. We develop a systematic understanding of

statistical efficiency of parameter estimation in finite mixture models. Our studies

xii



make explicit the deep links between model singularities, parameter estimation con-

vergence rates, and the algebraic geometry of the parameter space for mixtures of

continuous distributions. Next, we develop robust estimators of mixing measure in

finite mixture models using the idea of minimum Hellinger distance estimator, model

selection criteria, and super-efficiency phenomenon. Finally, we propose efficient and

scalable joint optimization approaches to cluster a potentially large hierarchically

structured corpus of data, which aim to simultaneously partition data in each group

and discover grouping patterns among groups.
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CHAPTER I

Introduction

In this chapter, we outline several key contributions of the thesis in separate

sections. Background knowledge are included to make each section self-contained

and transparent.

1.1 Statistical efficiency of parameter estimation in finite

mixture models

1.1.1 Mixture models

Mixture models have been a popular modeling tool for making inference about

heterogeneous data [Lindsay, 1995, McLachlan and Basford, 1988]. They have been

used extensively in various application domains arising from biological, physical, and

social sciences. Under mixture modeling, data are viewed as samples from a collec-

tion of unobserved or latent subpopulations, each positing its own distribution and

associated parameters. Learning about subpopulation-specific parameters is essential

to the understanding of the underlying heterogeneity. Statistical efficiency related to

parameter estimation in finite mixture models, however, remain poorly understood

— as noted in a recent textbook [DasGupta, 2008] (pg. 571), “mixture models are

riddled with difficulties such as nonidentifiability”.
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To be more concrete, let us state a specific formulation of mixture models. Assume

that each subpopulation is distributed according to a density function (with respect

to Lebesgue measure on an Euclidean space X ) that belongs to a known density class{
f(x|θ,Σ), θ ∈ Θ ⊂ Rd1 ,Σ ∈ Ω ⊂ S++

d2
, x ∈ X

}
. Here, d1 ≥ 1, d2 ≥ 0, S++

d2
is the set

of all d2 × d2 symmetric positive definite matrices. A finite mixture density with

k mixing components can be defined in terms of f and a discrete mixing measure

G =
∑k

i=1 piδ(θi,Σi) with k support points as follows

pG(x) =

∫
f(x|θ,Σ)dG(θ,Σ) =

k∑
i=1

pif(x|θi,Σi).

The standard goal of learning about subpopulation-specific parameters is to under-

stand behaviors of point estimates of the masses pi and the support points (θi,Σi) of

G according to given sample X1, . . . , Xn from the mixture density pG(x). However,

there are two fundamental challenges which had hindered the attempts of several

researchers. Firstly, for any two discrete probability measures G and G0, typical sim-

ilarity metrics between probability distributions, such as Kullback-Leibler distance,

Hellinger distance, or Total variation distance, are not able to provide meaningful

results when they are used to study the distance between G and G0. Secondly, the

Fisher information matrix with respect to G may be singular, which implies that

the estimation techniques such as the maximum likelihood estimator and standard

Bayesian procedures do not admit root-n parametric rate of convergence. These chal-

lenges necessitate the needs to develop an appropriate similarity distance between two

discrete probability measures, which is summarized in Section 1.1.2, as well as system-

atic methods to understand the complex singularity structures of Fisher information

matrix, which are also the main contributions of Chapter II, Chapter III, and Chapter

IV and are summarized in Section 1.1.3.

2



1.1.2 Wasserstein metric

As shown by Nguyen [2013], the convergence of mixture model parameters can

be measured in terms of a Wassertein distance on the space of mixing measures

G. In particular, let G =
∑k

i=1 piδ(θi,Σi) and G0 =
∑k0

i=1 p
0
i δ(θ0i ,Σ

0
i )

be two discrete

probability measures on parameter space Θ × Ω, which is equipped with metric ρ.

Now, the Wasserstein distance of order r, for a given r ≥ 1 (cf. Villani [2009]), can

be defined as

Wr(G,G0) =

(
inf
q

∑
i,j

qijρ
r((θi,Σi), (θ

0
j ,Σ

0
j))

)1/r

,

where the infimum is taken over all joint probability distributions q on [1, . . . , k]

×[1, . . . , k0] such that, when expressing q as a k×k0 matrix, the marginal constraints

hold:
∑
j

qij = pi and
∑
i

qij = p0
j .

For any sequence of discrete mixing measures Gn, the convergence of mixing mea-

sures Gn in Wasserstein distances can be translated to convergence of Gn’s atoms

and probability masses. In particular, suppose that a sequence of mixing measures

Gn → G0 under Wr metric at a rate ωn = o(1). If all Gn have the same number of

atoms k = k0 as that of G0, then the set of atoms of Gn converge to the k0 atoms

of G0 at the same rate ωn under ρ metric. If Gn have varying kn ∈ [k0, k] number of

atoms, where k is a fixed upper bound, then a subsequence of Gn can be constructed

so that each atom of G0 is a limit point of a certain subset of atoms of Gn — the

convergence to each such limit also happens at rate ωn. Some atoms of Gn may have

limit points that are not among G0’s atoms — the mass associated with those atoms

of Gn must vanish at the generally faster rate ωrn (since r ≥ 1).

3



1.1.3 Statistical efficiency of parameter estimation

To address parameter estimation rates, a natural approach is to study the be-

havior of mixing distributions that arise in the mixture models. This approach is

well-developed in the context of nonparametric deconvolution [Carroll and Hall, 1988,

Zhang, 1990, Fan, 1991], but these results are confined to only a specific type of model

— location mixtures. Beyond location mixtures there have been far fewer results. In

particular, when the parameter space Θ × Ω is univariate, parameter estimation in

over-fitted mixture models, i.e., the settings when the true number of subpopulations

(or equivalently components) is unknown and is bounded by some given number, was

shown to have slow convergence rate n−1/4 under second-order identifiability condi-

tion of kernel density function by [Chen, 1995]. For multi-dimensional parameters,

the (log n/n)1/4 rate of posterior contraction of parameters was established by Nguyen

[2013] under Wasserstein metric of second order. However, the convergence rates of

parameter estimation under general setting of parameters with multiple types, includ-

ing matrix-variate parameters, remain poorly understood. In Chapter II, we provide a

comprehensive understanding of parameter estimation behaviors under that multiple

types setting of parameters when we introduce and utilize first- and second-order iden-

tifiability condition of kernel density function, which are stronger versions of classical

identifiability condition [Teicher, 1961]. In particular, under the first order identifia-

bility of kernel density function and the exact-fitted setting of finite mixture models,

the convergence rates of estimating G is n−1/2 under W1 metric. On the other hand,

under the second order identifiability of kernel density function and the over-fitted

setting of finite mixture models, the convergence rates of parameter estimation is

n−1/4 under W2 metric. However, these convergence rates are not applicable to clas-

sical mixture models such as location-scale Gaussian mixtures or shape-rate Gamma

mixtures, which belong to weakly identifiable models, i.e., those whose kernel density

functions do not satisfy the strong identifiability conditions.

4



Location-scale Gaussian mixtures are widely regarded as one of the most uti-

lized modeling tools in statistics. Problematic convergence behaviors exhibited by

Gaussian mixtures have long been observed in practice, but a concrete understanding

remains largely unavailable. In Chapter III, we demonstrated a remarkably interest-

ing phenomenon in over-fitted Gaussian mixtures: the minimax lower bound and the

MLE convergence rate of parameter estimation are characterized by the solvability

of a system of polynomial equations, which ultimately depends on how much we po-

tentially overfit these models. In particular, the estimation rate is n−1/8 under the

4-th order Wasserstein distance, if overfitting by one extra component; n−1/12 under

the 6-th order Wasserstein distance if overfitting by two extra components. These

results present a cautionary tale about the limitation of Gaussian mixtures, when it

comes to assessing the quality of parameter estimation, but only when the number of

mixing components is unknown. Since a tendency in practice is to ”over-fit” the mix-

ture generously with many more extra mixing components, our theory warns against

this because as we have shown, the convergence rate via standard methods such as

MLE for subpopulation-specific parameters deteriorates rapidly with the number of

redundant components.

Even though the results obtained for Gaussian mixtures contain considerable in-

sights about weak identifiability regarding parameter estimation in finite mixture

models, they only touch upon the surface of a more general phenomenon relating to

the degeneracy of Fisher information matrix. In Chapter IV, we proposed a com-

prehensive framework for analyzing parameter estimation behavior in finite mixture

models, addressing directly the situations where the non-singularity condition of the

Fisher information matrix may not hold. A fundamental notion that we introduced

is called singularity level, a natural or infinite value given to every element in the

parameter space. Fisher information singularities simply correspond to points in the

parameter space whose singularity level is non-zero. Within the set of Fisher in-
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formation singularities, the parameter space can be partitioned into disjoint subsets

determined by different singularity levels. The singularity level describes in a precise

manner the variation of the mixture likelihood with respect to changes in model pa-

rameters. This concept enables us to quantify the varying degrees of identifiablity and

singularity, some of which were implicitly exploited in previous chapters mentioned

above.

The singularity level describes in a precise manner the variation of the mixture

likelihood with respect to changes in model parameters. The statistical implication of

the singularity level is easy to describe: given an i.i.d. n-sample from a (true) mixture

model, a parameter value of singularity level r admits n−1/2(r+1) minimax lower bound

for any estimator tending to the true parameter(s), as well as the same maximum

likelihood estimator’s convergence rate (up to a logarithmic factor and under some

conditions). Thus, singularity level 0 results in root-n convergence rate for parameter

estimation. Fisher singularity corresponds to singularity level 1 or greater than 1,

resulting in convergence rates n−1/4, n−1/6, n−1/8 or so on. The detailed picture of

the distribution of singularity levels, however, can be extremely complex to capture.

Remarkably, there are examples of finite mixtures for which the compact parameter

space can be partitioned into disjoint subsets whose singularity level ranges from 0

to 1 to 2,. . . , up to infinity. This leads us to a story of finite mixtures of skewnormal

distributions, which are rich and increasingly popular models used with asymmetric

data. The singularity structure of the skewnormal mixtures is perhaps one of the more

complex among the parametric mixture models that we have typically encountered

in the literature. We were able to identify subsets with singularity level 0, 1, 2, . . .

all the way up to infinity even in the setting of mixtures with known number of

mixing components. As a result, if we were to vary the true parameter values, we

would encounter a phenomenon akin to that of ”phase transition” on the statistical

efficiency of parameter estimation occurring within the same model class.
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1.2 Robust inference with mixture and hierarchical models

In many practical problems, mixture and hierarchical models are strongly affected

by outliers or (at least) some departures from model assumptions. Therefore, it is

important to develop robust or semi-parametric inference of hierarchical models to

better reflect the instability and complex structure in the data. In finite mixture

models, apart from underlying mixing measures, true kernel density functions of each

subpopulation in the data are, in many scenarios, unknown. One popular way to

overcome such issue is to employ semi-parametric approach [Bickel et al., 1993]. In

particular, we estimate the true kernel function from some classes of functions and

achieve the estimation of mixing measure accordingly. However, parameter identifia-

bility guarantee for such method is very difficult to establish even when the parameter

space is simple [Bordes et al., 2006, Hunter et al., 2007]. Therefore, parameter esti-

mation from semi-parametric approach is usually not reliable.

Perhaps, the most common and simplest approach to avoid the identifiability issue

is to choose some kernel function that we tactically believe the data are generated

from, and utilize that kernel to fit the model to obtain an estimate of the mixing

measure. However, in various scenarios the chosen kernel and the true kernel are

most likely different, i.e., we are under a misspecified kernel setting. Hence, the

estimation of mixing measure under this approach may be highly unstable. The

robustness question is unavoidable. Our principal goal in Chapter V therefore, is the

construction of robust estimators of mixing measure where the estimation of both the

number of components and the values of its parameters are of interest. Moreover,

these estimators should achieve the best possible convergence rates under various

assumptions on both the chosen kernel and the true kernel. When the true number

of components is known, various robust methods had been proposed in the literature,

see for example [Woodward et al., 1984, Donoho and Liu, 1988, Cutler and Cordero-
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Brana, 1996]. However, there has been scarce work for robust estimators when the

true number of components is unknown. Recently, Woo and Sriram [2006] proposed a

robust estimator of the number of components based on the idea of minimum Hellinger

distance estimator [Beran, 1977]. However, their estimator faces certain limitations

as it greatly relies upon the choice of bandwidth. In Chapter V, we propose flexible

robust estimators of the mixing measure that address the limitations of the estimator

in [Woo and Sriram, 2006]. Not only our estimators are computationally feasible and

robust but they also possess various desirable properties, such as the flexible choice

of bandwidth, the consistency of the number of components, and the best possible

convergence rates of the parameters. In particular, our main contributions in Chapter

V can be summarized in three major points. Firstly, we treat the well-specified kernel

setting and misspecified kernel setting separately. Under both settings, we achieve

the consistency of our estimators regarding the true number of components for any

fixed bandwidth. Furthermore, when the bandwidth vanishes to 0 at an appropriate

rate, the consistency of estimating the true number of components is also guaranteed.

Secondly, for any fixed bandwidth, when the true kernel is identifiable in the first

order the convergence rate n−1/2 of parameter estimation is established under the

well-specified kernel setting. Additionally, when that kernel is not identifiable in

the first order, we demonstrate that our estimators still achieve the best possible

convergence rate of parameter estimation. Finally, under the misspecified kernel

setting, we demonstrate that our estimators converge to some mixing measure G∗ that

is closest to the true model under the Hellinger metric for any fixed bandwidth. When

the chosen kernel is first order identifiable and G∗ has finite number of components,

the convergence rate n−1/2 is also established under mild conditions of both chosen

kernel and true kernel. Moreover, when G∗ has infinite number of components, some

analyses about the consistency of our estimators are also discussed.
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1.3 Multi-levels clustering via optimal transport perspective

In numerous applications in engineering and sciences, data are often organized in

a multilevel structure. For instance, a typical structural view of text data in ma-

chine learning is to have words grouped into documents, documents are grouped into

corpora. A prominent strand of modeling and algorithmic works in the past couple

decades has been to discover latent multilevel structures from these hierarchically

structured data. For specific clustering tasks, one may be interested in simultane-

ously partitioning the data in each group (to obtain local clusters) and partitioning

a collection of data groups (to obtain global clusters). Bayesian hierarchical models

provide a powerful approach, exemplified by influential works such as [Blei et al.,

2003, Pritchard et al., 2000, Teh et al., 2006]. More specific to the simultaneous and

multilevel clustering problem, we mention the paper of [Rodriguez et al., 2008]. In

this interesting work, a Bayesian nonparametric model, namely the nested Dirich-

let process (NDP) model, was introduced that enables the inference of clustering

of a collection of probability distributions from which different groups of data are

drawn. With suitable extensions, this modeling framework has been further devel-

oped for simultaneous multilevel clustering, see for instance, [Wulsin et al., 2016,

Nguyen et al., 2014, Huynh et al., 2016]. However, these models generally rely on

MCMC algorithms to compute the posterior distribution of latent variables where the

computational complexity grows exponentially as the data sizes are large.

The main focus of Chapter VI is on the multilevel clustering problem motivated in

the aforementioned modeling works, but we shall take a purely optimization approach

to deal with the computational issues of these works. We aim to formulate optimiza-

tion problems that enable the discovery of multilevel clustering structures hidden in

grouped data. Our technical approach is inspired by the role of optimal transport dis-

tances in hierarchical modeling and clustering problems. The Wasserstein distances
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are intimately connected to the problem of clustering — this relationship goes back

at least to the work of [Pollard, 1982], where it is pointed out that the well-known

K-means clustering algorithm can be directly linked to the quantization problem —

the problem of determining an optimal finite discrete probability measure that min-

imizes its second-order Wasserstein distance from the empirical distribution of given

data [Graf and Luschgy, 2000].

If one is to perform simultaneous K-means clustering for hierarchically grouped

data, both at the global level (among groups), and local level (within each group), then

this can be achieved by a joint optimization problem defined with suitable notions of

Wasserstein distances inserted into the objective function. In particular, multilevel

clustering requires the optimization in the space of probability measures defined in

different levels of abstraction, including the space of measures of measures on the

space of grouped data. In summary, the main contributions of Chapter VI can be

summarized into the following major points. Firstly, we propose a novel optimization

formulation to the multilevel clustering problem using Wasserstein distances defined

on different levels of the hierarchical data structure. Secondly, fast algorithms by

exploiting the connection of our formulation to the Wasserstein barycenter problem

are introduced. Thirdly, we establish consistency theorems for proposed estimates

under very mild condition of data’s distributions. Last but not least, several flexible

alternatives are studied by introducing constraints that encourage the borrowing of

strength among local and global clusters. The demonstration of efficiency and flex-

ibility of our approach is carried out in a number of simulated and real data sets.

As a consequence, our proposed model offers an attractive alternative to popular

model-based approaches such as the nested Dirichlet Process model.

1.4 Thesis organization

The remainder of this thesis is organized as follows.
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Chapter II: On strong identifiability and convergence rates of parame-

ter estimation in finite mixtures This chapter studies several notions of strong

identifiability and convergence behaviors for parameters of multiple types, including

matrix-variate ones, that arise in finite mixtures, and the effects of model fitting with

extra mixing components. .

Chapter III: Convergence rates of parameter estimation for some weakly

identifiable finite mixtures This chapter establishes minimax lower bounds and

maximum likelihood convergence rates of parameter estimation for weakly identifi-

able models, including mean-covariance multivariate Gaussian mixtures, shape-rate

Gamma mixtures, and some variants of finite mixture models.

Chapter IV: Convergence rates of parameter estimation for some weakly

identifiable finite mixtures This chapter proposes a general framework for the

identification of singularity structures of the parameter space of finite mixtures, and

studies the impacts of the singularity levels on minimax lower bounds and rates of

convergence for the maximum likelihood estimator over a compact parameter space.

Chapter V: Robust estimation of mixing measures in finite mixture models

This chapter proposes simple and efficient robust estimators of the mixing measures

in finite mixture models, which are inspired by the combination of minimum Hellinger

distance estimators, model selection criteria, and the superefficiency phenomenon.

Chapter VI: Multilevel clustering via Wasserstein means This chapter in-

troduces novel joint optimization approaches to the problem of multilevel clustering,

which aim to simultaneously partition data in each group and discover grouping pat-

terns among groups in a potentially large hierarchically structured corpus of data.
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Chapter VII: Conclusions and suggestions This chapter summarizes the main

contributions of the thesis and proposes several directions for future research.
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CHAPTER II

On strong identifiability and convergence rates of

parameter estimation in finite mixtures

This chapter studies identifiability and convergence behaviors for parameters of

multiple types, including matrix-variate ones, that arise in finite mixtures, and the

effects of model fitting with extra mixing components. We consider several notions

of strong identifiability in a matrix-variate setting, and use them to establish sharp

inequalities relating the distance of mixture densities to the Wasserstein distances of

the corresponding mixing measures. Characterization of identifiability is given for a

broad range of mixture models commonly employed in practice, including location-

covariance mixtures and location-covariance-shape mixtures, for mixtures of symmet-

ric densities, as well as some asymmetric ones. Minimax lower bounds and rates of

convergence for the maximum likelihood estimates are established for such classes,

which are also confirmed by simulation studies. 1

2.1 Introduction

Mixture models are a popular modeling tool for making inference about heteroge-

neous data [Lindsay, 1995, McLachlan and Basford, 1988]. Under mixture modeling,

1This work has been published in [Ho and Nguyen, 2016c].

13



data are viewed as samples from a collection of unobserved or latent subpopula-

tions, each positing its own distribution and associated parameters. Learning about

subpopulation-specific parameters is essential to the understanding of the underlying

heterogeneity. Theoretical issues related to parameter estimation in mixture models,

however, remain poorly understood — as noted in a recent textbook [DasGupta, 2008]

(pg. 571), “mixture models are riddled with difficulties such as nonidentifiability”.

Research about parameter identifiability for mixture models goes back to the early

work of Teicher [1961, 1963], Yakowitz and Spragins [1968] and others, and continues

to attract much interest [Hall and Zhou, 2003, Hall et al., 2005, Elmore et al., 2005,

Allman et al., 2009]. To address parameter estimation rates, a natural approach is

to study the behavior of mixing distributions that arise in the mixture models. This

approach is well-developed in the context of nonparametric deconvolution [Carroll

and Hall, 1988, Zhang, 1990, Fan, 1991], but these results are confined to only a spe-

cific type of model — location mixtures. Beyond location mixtures there have been

far fewer results. In particular, for finite mixture models, a notable contribution was

made by Chen, who proposed a notion of strong identifiability and established the

convergence of the mixing distribution for a class of over-fitted finite mixtures with

scalar parameters [Chen, 1995]. Over-fitted finite mixtures, as opposed to exact-fitted

ones, are mixtures that allow extra mixing components in their model specification,

when the actual number of mixing components is bounded by a known constant. More

recently, Nguyen showed that the convergence of the mixing distribution is naturally

understood in terms of Wasserstein distance metric [Nguyen, 2013]. He established

rates of convergence of mixing distributions for a number of finite and infinite mix-

ture models with multi-dimensional parameters — the case of finite mixtures can be

viewed as a generalization of Chen’s results. Rousseau and Mengersen studied over-

fitted mixtures in a Bayesian estimation setting [Rousseau and Mengersen, 2011].

They did not study the convergence of all mixing parameters, focusing only on the
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mixing probabilities associated with extra mixing components. Finally, we mention a

related literature in computer science, which focuses almost exclusively on the anal-

ysis of computationally efficient procedures for clustering with exact-fitted Gaussian

mixtures (e.g., [Dasgupta, 1999, Belkin and Sinha, 2010, Kalai et al., 2012]).

Setting The goal of this chapter is to establish rates of convergence for parameters

of multiple types, including matrix-variate parameters, that arise in a variety of finite

mixture models. Assume that each subpopulation is distributed according to a density

function (with respect to Lebesgue measure on an Euclidean space X ) that belongs

to a known density class
{
f(x|θ,Σ), θ ∈ Θ ⊂ Rd1 ,Σ ∈ Ω ⊂ S++

d2
, x ∈ X

}
. Here, d1 ≥

1, d2 ≥ 0, S++
d2

is the set of all d2 × d2 symmetric positive definite matrices. A finite

mixture density with k mixing components can be defined in terms of f and a discrete

mixing measure G =
∑k

i=1 piδ(θi,Σi) with k support points as follows

pG(x) =

∫
f(x|θ,Σ)dG(θ,Σ) =

k∑
i=1

pif(x|θi,Σi).

Examples for f studied in this chapter include the location-covariance family (when

d1 = d2 ≥ 1) under Gaussian or some elliptical families of distributions, the location-

covariance-shape family (when d1 > d2) under the generalized multivariate Gaus-

sian, skew-Gaussian or the exponentially modified Student’s t-distribution, and the

location-rate-shape family (when d1 = 3, d2 = 0) under Gamma or other distribu-

tions.

As shown by Nguyen [2013], the convergence of mixture model parameters can be

measured in terms of a Wassertein distance on the space of mixing measures G. Let

G =
∑k

i=1 piδ(θi,Σi) and G0 =
∑k0

i=1 p
0
i δ(θ0i ,Σ

0
i )

be two discrete probability measures on

Θ× Ω, which is equipped with metric ρ. Recall the Wasserstein distance of order r,
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for a given r ≥ 1 (cf. Villani [2009])

Wr(G,G0) =

(
inf
q

∑
i,j

qijρ
r((θi,Σi), (θ

0
j ,Σ

0
j))

)1/r

,

where the infimum is taken over all joint probability distributions q on [1, . . . , k]

×[1, . . . , k0] such that, when expressing q as a k×k0 matrix, the marginal constraints

hold:
∑
j

qij = pi and
∑
i

qij = p0
j .

To see how convergence of mixing measure Gn in Wasserstein distances is trans-

lated to convergence of Gn’s atoms and probability masses, suppose that a sequence

of mixing measures Gn → G0 under Wr metric at a rate ωn = o(1). If all Gn have the

same number of atoms k = k0 as that of G0, then the set of atoms of Gn converge to

the k0 atoms of G0 at the same rate ωn under ρ metric. If Gn have varying kn ∈ [k0, k]

number of atoms, where k is a fixed upper bound, then a subsequence of Gn can be

constructed so that each atom of G0 is a limit point of a certain subset of atoms of

Gn — the convergence to each such limit also happens at rate ωn. Some atoms of Gn

may have limit points that are not among G0’s atoms — the mass associated with

those atoms of Gn must vanish at the generally faster rate ωrn (since r ≥ 1).

In order to establish the rates of convergence for the mixing measure G, our

strategy is to derive sharp bounds which relate the Wasserstein distance of mixing

measures G,G′ and a distance between corresponding mixture densities pG, pG′ , such

as the variational distance V (pG, pG′). It is relatively simple to obtain upper bounds

for the variational distance of mixing densities (V for short) in terms of the Wasser-

stein distances Wr(G,G
′) (shorthanded by Wr). Establishing (sharp) lower bounds

for V in terms of Wr is the main challenge. Such bounds may not hold, due to a

possible lack of identifiability of the mixing measures: one may have pG = pG′ , so

clearly V = 0 but G 6= G′, so that Wr 6= 0.
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General theory of strong identifiability The classical identifiability condition

requires that pG = pG′ entail G = G′. This amounts to the linear independence of

elements f in the density class [Teicher, 1963]. In order to establish quantitative lower

bounds on a distance of mixture densities, we employ several notions of strong iden-

tifiability, extending from the definitions employed in Chen [1995] and Nguyen [2013]

to handle multiple parameter types, including matrix-variate parameters. There are

two kinds of strong identifiability. One such notion involves taking the first-order

derivatives of function f with respect to all parameters in the model, and insisting

that these quantities be linearly independent in a sense to be precisely defined. This

criterion will be called “strong identifiability in the first order”, or simply first-order

identifiability. When the second-order derivatives are also involved, we obtain the

second-order identifiability criterion. It is worth noting that prior studies on pa-

rameter estimation rates tend to center primarily on the second-order identifiability

condition or something even stronger [Chen, 1995, Liu and Shao, 2004, Rousseau and

Mengersen, 2011, Nguyen, 2013]. We show that for exact-fitted mixtures, the first-

order identifiability condition (along with additional and mild regularity conditions)

suffices for obtaining that

V (pG, pG0) & W1(G,G0), (2.1)

when W1(G,G0) is sufficiently small. Moreover, for a broad range of density classes,

we also have V . W1, for which we actually obtain V (pG, pG0) � W1(G,G0). A

consequence of this fact is that for any estimation procedure that admits the n−1/2

convergence rate for the mixture density under V distance, the mixture model pa-

rameters also converge at the same rate under Euclidean metric.

Turning to the over-fitted setting, second-order identifiability along with mild

regularity conditions would be sufficient for establishing that for any G that has at
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most k support points where k ≥ k0 + 1 and k is fixed,

V (pG, pG0) & W 2
2 (G,G0). (2.2)

when W2(G,G0) is sufficiently small. The lower bound W 2
2 (G,G0) is sharp, i.e.,

we cannot improve the lower bound to W r
1 for any r < 2 (notably, W2 ≥ W1). A

consequence of this result is, take any standard estimation method (such as the MLE)

which yields the n−1/2 convergence rate for pG, the induced rate of convergence for

the mixing measure G is n−1/4 under W2. This means the mixing probability mass

converge at n−1/2 rate (which recovers the result of Rousseau and Mengersen [2011]),

in addition to having that the component parameters converge at n−1/4 rate.

We also show that there is a range of mixture models with varying parameters

of multiple types that satisfies the developed strong identifiability criteria. All such

models exhibit the same kinds of rate for parameter estimation. In particular, the

second-order identifiability criterion (thus the first-order identifiability) is satisfied

by many density families f including the multivariate Student’s t-distribution, the

exponentially modified multivariate Student’s t-distribution. Second-order identifia-

bility also holds for several mixture models with multiple types of (scalar) parameters.

These results are presented in Section 2.3.2.

Convergence of MLE estimators and minimax lower bounds Assuming that

n-iid sample X1, . . . , Xn are generated according to pG0 and let Ĝn be the MLE esti-

mate of the mixing distribution G ranging among all discrete probability distributions

with at most k support points in Θ × Ω under the over-fitted setting or among all

discrete probability distributions with exactly k0 support points in Θ× Ω under the

exact-fitted setting. The inequalities (2.1) and (2.2), along with the fact that these

bounds are sharp enable us to easily establish the convergence rates of the mixing

measures, and obtain minimax lower bounds. Such results are stated in Theorem
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2.4.2, Theorem 2.4.3, and Theorem 2.4.4. In particular, we obtain the minimax lower

bound n−1/δ under W1 distance for the exact-fitted setting for any positive δ < 2.

Under the over-fitted setting, the minimax lower bound is n−1/δ under W2 distance

for any positive δ < 4. The MLE method can be shown to achieve both these rates,

i.e., n−1/2 and n−1/4 up to a logarithm term, under exact-fitted and over-fitted set-

ting, respectively. Note, however, that these are pointwise convergence rates, i.e., the

constants C1 in Theorem 2.4.2 and Theorem 2.4.3 depend on G0. For a fixed G0, we

think that the MLE upper bound n−1/4 for the over-fitted setting is tight, but we do

not have a proof.

Summarizing, the technical contributions of this chapter include the following:

(i) Convergence of parameters of multiple types, including matrix-variate parame-

ters, for finite mixtures, under strong identifiability conditions.

(ii) A minimax lower bound, in the sense of Wasserstein distance W2, for estimating

mixing measures in an over-fitted setting. The maximum likelihood estimation

method is shown to achieve this lower bound, up to a logarithmic term, although

the convergence is pointwise.

(iii) Characterization results showing the applicability of our theory and the con-

vergence rates to a fairly broad range of mixture models with parameters of

multiple types, including matrix-variate ones.

(iv) Another noteworthy aspect of this work is that the settings of exact-fitted and

over-fitted mixtures are treated separately: the first-order identifiability crite-

rion is sufficient in the former setting, which attains convergence in W1; while

the second-order identifiability criterion is sufficient in the latter, which achieves

convergence in W2 metric.

Finally, we note in passing that both the first and second-order identifiability are

in some sense necessary in deriving the MLE convergence rate n−1/2 and n−1/4 as de-
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scribed above. Models such as location-scale Gaussian mixtures, shape-scale Gamma

mixtures and location-scale-shape skew-Gaussian mixtures do not satisfy either or

both strong identifiability conditions — we call such models “weakly identifiable”.

It can be shown that such weakly identifiable models exhibit a much slower conver-

gence behavior than the standard rates established in this chapter. Such a theory

is fundamentally different from the strong identifiability theory, and will be reported

elsewhere.

Chapter organization The rest of the chapter is organized as follows. Section

2.2 provides some preliminary backgrounds and facts. Section 2.3 presents a general

theory of strong identifiability, by addressing the exact-fitted and over-fitted settings

separately before providing a characterization of density classes for which the general

theories are applicable. Section 2.4.1 contains consequences of the theory developed

earlier – this includes minimax lower bounds and convergence rates of maximum

likelihood estimation. The theoretical bounds are illustrated via simulations in Sec-

tion 2.4.2. Self-contained proofs of the key theorems are given in Section 2.5 while

proofs of the remaining results are presented in the Section 2.6.

Notation Given two densities p, q (with respect to Lebesgue measure µ), the vari-

ational distance is given by V (p, q) = (1/2)
∫
|p − q|dµ. The Hellinger distance h is

given by h2(p, q) = (1/2)
∫

(p1/2 − q1/2)2dµ.

As K,L ∈ N, the first derivative of real function g : RK×L → R of matrix Σ is

defined as a K × L matrix whose (i, j) element is ∂g/∂Σij. The second derivative

of g, denoted by
∂2g

∂Σ2
is a K2 × L2 matrix made of KL blocks of K × L matrix,

whose (i, j)-block is given by
∂

∂Σ

(
∂g

∂Σij

)
. Additionally, as N ∈ N, for function

g2 : RN × RK×L → R defined on (θ,Σ), the joint derivative between the vector

component and matrix component
∂2g2

∂θ∂Σ
=

∂2g2

∂Σ∂θ
is a (KN) × L matrix of KL
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blocks for N -columns, whose (i, j)-block is given by
∂

∂θ

(
∂g2

∂Σij

)
.

Throughout this chapter, for any symmetric matrix Σ ∈ Rd×d, λ1(Σ) and λd(Σ)

respectively denote its smallest and largest eigenvalue. Additionally, the expression

”&” will be used to denote the inequality up to a constant multiple where the value

of the constant is fixed within our setting. We write an � bn if both an & bn and

an . bn hold.

2.2 Preliminaries

First of all, we need to define our notion of distances on the space of mixing mea-

sures. In this chapter, we restrict ourselves to the space of discrete mixing measures

with exactly k0 distinct support points on Θ×Ω, denoted by Ek0(Θ×Ω), and the space

of discrete mixing measures with at most k distinct support points on Θ×Ω, denoted

by Ok(Θ×Ω). Consider a mixing measure G =
k∑
i=1

piδ(θi,Σi), where p = (p1, p2, . . . , pk)

denotes the proportion vector. Likewise, let G′ =
∑k′

i=1 p
′
iδ(θ′i,Σ

′
i)

. A coupling between

p and p′ is a joint distribution q on [1 . . . , k] × [1, . . . , k′], which is expressed as a

matrix q = (qij)1≤i≤k,1 ≤j≤k′ ∈ [0, 1]k×k
′

and admits marginal constraints
k∑
i=1

qij = p′j

and
k′∑
j=1

qij = pi for any i = 1, 2, . . . , k and j = 1, 2, . . . , k′. We call q a coupling of p

and p′, and use Q(p,p′) to denote the space of all such couplings.

As in Nguyen [2013], our tool for analyzing the identifiability and convergence

of parameters in a mixture model is by adopting Wasserstein distances, which can

be defined as the optimal cost of moving masses from one probability measure to

another [Villani, 2009]. For any r ≥ 1, the r-th order Wasserstein distance between

G and G′ is given by

Wr(G,G
′) =

(
inf

q∈Q(p,p′)

∑
i,j

qij(‖θi − θ′j‖+ ‖Σi − Σ′j‖)r
)1/r

.
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In both occurrences in the above display, ‖ · ‖ denotes either the l2 norm for elements

in Rd or the entrywise l2 norm for matrices.

The central theme of the chapter is the relationship between the Wasserstein

distances of mixing measures G,G′ and the distances of the corresponding mixture

densities pG, pG′ . Clearly, if G = G′ then pG = pG′ . Intuitively, if W1(G,G′) or

W2(G,G′) is small, so is a distance between pG and pG′ . This can be quantified by

establishing an upper bound for the distance of pG and pG′ in terms of W1(G,G′)

or W2(G,G′). There is a simple and general way to do this, by accounting for the

Lipschitz property of the density class and then appealing to Jensen’s inequality. We

will not go into such details and refer the readers to Nguyen [2013] (Section 2). The

followings are examples of mixture models that carry multiple types of parameter

including the matrix-variate ones, along with the aforementioned upper bounds.

Example 2.2.1. (Multivariate generalized Gaussian distribution [Zhang et al., 2013])

Let f(x|θ,m,Σ) =
mΓ(d/2)

πd/2Γ(d/(2m))|Σ|1/2 exp(−[(x − θ)TΣ−1(x − θ)]m), where θ ∈

Rd,m > 0, and Σ ∈ S++
d . If Θ1 is a bounded subset of Rd, Θ2 = {m ∈ R+ : 1 ≤ m

≤ m ≤ m}, and Ω =
{

Σ ∈ S++
d : λ ≤

√
λ1(Σ) ≤

√
λd(Σ) ≤ λ

}
, where λ, λ > 0,

then for any mixing measures G1, G2, we obtain h2(pG1 , pG2) . W 2
2 (G1, G2) and

V (pG1 , pG2) . W1(G1, G2).

Example 2.2.2. (Multivariate Student’s t-distribution [Peel and McLachlan, 2000])

Let f(x|θ,Σ) =
Cν
|Σ|1/2

(
ν + (x− θ)TΣ−1(x− θ)

)−(ν+d)/2
, where ν is a fixed positive

degree of freedom and Cν =
Γ((ν + d)/2)νν/2

Γ(ν/2)πd/2
. If Θ is a bounded subset of Rd and

Ω =
{

Σ ∈ S++
d : λ ≤

√
λ1(Σ) ≤

√
λd(Σ) ≤ λ

}
, then for any mixing measures G1, G2,

we obtain h2(pG1 , pG2) . W 2
2 (G1, G2) and V (pG1 , pG2) . W1(G1, G2).

Example 2.2.3. (Exponentially modified multivariate Student’s t-distribution)

Let f(x|θ, λ,Σ) be the density of X = Y + Z, where Y follows the multivariate t-

distribution with location parameter θ, covariance matrix Σ, fixed positive degree of
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freedom ν, and Z is distributed by the product of d independent exponential distri-

butions with combined shape parameter λ = (λ1, . . . , λd). If Θ is a bounded subset

of Rd × Rd
+ and Ω =

{
Σ ∈ S++

d : λ ≤
√
λ1(Σ) ≤

√
λd(Σ) ≤ λ

}
, then for any mixing

measures G1, G2, we have h2(pG1 , pG2) . W 2
2 (G1, G2) and V (pG1 , pG2) . W1(G1, G2).

Example 2.2.4. (Modified Gaussian-Gamma distribution)

Let f(x|θ, α, β,Σ) be the density function of X = Y + Z, where Y is distributed by

the multivariate Gaussian distribution with mean θ, covariance matrix Σ, and Z is

distributed by the product of independent Gamma distributions with combined shape

vector α = (α1, . . . , αd) and combined rate vector β = (β1, ..., βd). If Θ is a bounded

subset of Rd×Rd
+×Rd

+, Ω =
{

Σ ∈ S++
d : λ ≤

√
λ1(Σ) ≤

√
λd(Σ) ≤ λ

}
, then for any

mixing measures G1, G2, we have h2(pG1 , pG2) . V (pG1 , pG2) . W1(G1, G2).

2.3 General theory of strong identifiability

The objective of this section is to develop a general theory according to which

a small distance between mixture densities pG and pG′ entails a small Wasserstein

distance between mixing measures G and G′. The classical identifiability criteria

require that pG = pG′ entail G = G′, which is essentially equivalent to a linear

independence requirement for the class of density family {f(x|θ,Σ)|θ ∈ Θ,Σ ∈ Ω}.

To obtain quantitative bounds, we shall need stronger notions of identifiability, ones

which involve higher order derivatives of the density function f , taken with respect to

the mixture model parameters. The strength of this theory is that it holds generally

for a fairly broad range of mixture models, which allows for the same bounds on

the Wasserstein distances. This in turn leads to “standard” rates of convergence for

mixing measures.
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2.3.1 Definitions and general identifiability bounds

Definition 2.3.1. The family {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω} is identifiable in the first-

order if f(x|θ,Σ) is differentiable in (θ,Σ) and the following holds

A1. For any finite k different pairs (θ1,Σ1), ..., (θk,Σk) ∈ Θ × Ω, if we have αi ∈

R, βi ∈ Rd1 and symmetric matrices γi ∈ Rd2×d2 (for all i = 1, . . . , k) such

that for almost all x

k∑
i=1

αif(x|θi,Σi) + βTi
∂f

∂θ
(x|θi,Σi) + tr

(
∂f

∂Σ
(x|θi,Σi)

Tγi

)
= 0,

then, αi = 0, βi = 0 ∈ Rd1 , γi = 0 ∈ Rd2×d2 for i = 1, . . . , k.

Remark The condition that γi is symmetric in Definition 2.3.1 is crucial, without

which the identifiability condition would fail for many classes of density. Indeed,

assume that
∂f

∂Σ
(x|θi,Σi) are symmetric matrices for all i, which clearly holds for

elliptical distributions such as multivariate Gaussian, Student’s t-distribution, and

logistics distribution. Now, if we choose γi to be anti-symmetric matrices with zero

diagonal elements, αi = 0, βi = 0, then the equation in (A1) holds even when γi 6= 0

for all i.

Additionally, we say the family of densities f is uniformly Lipschitz up to the

first order if the following holds: there are positive constants δ1, δ2 such that for any

R1, R2, R3 > 0, γ1 ∈ Rd1 , γ2 ∈ Rd2×d2 , R1 ≤
√
λ1(Σ) ≤

√
λd2(Σ) ≤ R2, ‖θ‖ ≤ R3,

θ1, θ2 ∈ Θ, Σ1,Σ2 ∈ Ω, there are positive constants C(R1, R2) and C(R3) such that

for all x ∈ X

∣∣∣∣γT1 (∂f∂θ (x|θ1,Σ)− ∂f

∂θ
(x|θ2,Σ)

)∣∣∣∣ ≤ C(R1, R2)‖θ1 − θ2‖δ1‖γ1‖, (2.3)

∣∣∣∣∣tr
((

∂f

∂Σ
(x|θ,Σ1)− ∂f

∂Σ
(x|θ,Σ2)

)T
γ2

)∣∣∣∣∣ ≤ C(R3)‖Σ1 − Σ2‖δ2‖γ2‖. (2.4)
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First-order identifiability is sufficient for deriving a lower bound of V (pG, pG0) in

terms of W1(G,G0), under the exact-fitted setting: This is the setting where G0 has

exactly k0 support points lying in the interior of Θ× Ω:

Theorem 2.3.1. (Exact-fitted setting) Suppose that the density family f is iden-

tifiable in the first order and admits a uniform Lipschitz property up to the first order.

Then there are positive constants ε0 and C0, both depending on G0, such that as long as

G ∈ Ek0(Θ×Ω), the set of mixing measures with exact order k0, and W1(G,G0) ≤ ε0,

we have

V (pG, pG0) ≥ C0W1(G,G0).

Although no boundedness condition on Θ or Ω is required, this lower bound is of

a local nature, in the sense that it holds only for those G sufficiently close to G0 by a

Wassertein distance at most ε0, which again varies with G0. It is possible to extend

this type of bound to hold globally over a compact subset of the space of mixing

measures, under a mild regularity condition, as the following corollary asserts:

Corollary 2.3.1. Suppose that all assumptions of Theorem 2.3.1 hold. Furthermore,

there is a positive constant α > 0 such that for any G1, G2 ∈ Ek0(Θ × Ω), we have

V (pG1 , pG2) . Wα
1 (G1, G2). Then, for a fixed compact subset G of Ek0(Θ × Ω), there

is a positive constant C0 = C0(G0) such that

V (pG, pG0) ≥ C0W1(G,G0) for all G ∈ G.

We shall verify in the sequel that the classes of densities f described in Examples

2.2.1, 2.2.2, and 2.2.3 are all identifiable in the first order. Combining with the upper

bounds for V , we arrive at a remarkable fact for these density classes, that

V (pG, pG0) � W1(G,G0).
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Moving to the over-fitted setting, where G0 has exactly k0 support points lying in

the interior of Θ× Ω, but k0 is unknown and only an upper bound for k0 is given, a

stronger identifiability condition is required. This condition generalizes that of Chen

[1995]:

Definition 2.3.2. The family {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω} is identifiable in the second-

order if f(x|θ,Σ) is twice differentiable in (θ,Σ) and the following assumption holds

A2. For any finite k different pairs (θ1,Σ1), ..., (θk,Σk) ∈ Θ × Ω, if we have αi ∈

R, βi, νi ∈ Rd1, γi, ηi symmetric matrices in Rd2×d2 as i = 1, . . . , k such that

for almost all x

k∑
i=1

{
αif(x|θi,Σi) + βTi

∂f

∂θ
(x|θi,Σi) + νTi

∂2f

∂θ2
(x|θi,Σi)νi +

tr

(
∂f

∂Σ
(x|θi,Σi)

Tγi

)
+ 2νTi

[
∂

∂θ

(
tr

(
∂f

∂Σ
(x|θi,Σi)

Tηi

))]
+

tr

(
∂

∂Σ

(
tr

(
∂f

∂Σ
(x|θi,Σi)

Tηi

))T
ηi

)}
= 0,

then, αi = 0, βi = νi = 0 ∈ Rd1 , γi = ηi = 0 ∈ Rd2×d2 for i = 1, . . . , k.

In addition, we say the family of densities f is uniformly Lipschitz up to the

second order if the following holds: there are positive constants δ3, δ4 such that for

any R4, R5, R6 > 0, γ1 ∈ Rd1 , γ2 ∈ Rd2×d2 , R4 ≤
√
λ1(Σ) ≤

√
λd2(Σ) ≤ R5, ‖θ‖ ≤ R6,

θ1, θ2 ∈ Θ, Σ1,Σ2 ∈ Ω, there are positive constants C1 depending on (R4, R5) and C2

depending on R6 such that for all x ∈ X

|γT1 (
∂2f

∂θ2
(x|θ1,Σ)− ∂2f

∂θ2
(x|θ2,Σ))γ1| ≤ C1‖θ1 − θ2‖δ31 ‖γ1‖2

2,
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∣∣∣∣∣tr
([

∂

∂Σ

(
tr

(
∂f

∂Σ
(x|θ,Σ1)Tγ2

))
− ∂

∂Σ

(
tr

(
∂f

∂Σ
(x|θ,Σ2)Tγ2

))]T
γ2

)∣∣∣∣∣ ≤
C2‖Σ1 − Σ2‖δ42 ‖γ2‖2

2.

Let k ≥ 2 and k0 ≥ 1 be fixed positive integers where k ≥ k0 + 1. G0 ∈ Ek0 while

G varies in Ok. Then, we can establish the following results

Theorem 2.3.2. (Over-fitted setting)

(a) Assume the density family f is identifiable in the second order and admits a

uniform Lipschitz property up to the second order. Moreover, Θ is a bounded

subset of Rd1 and Ω is a subset of S++
d2

such that the largest eigenvalues of

elements of Ω are bounded above. Additionally, assume that for each θ ∈ Θ, for

each x ∈ X except a finite number of values in X , we have lim
λ1(Σ)→0

f(x|θ,Σ) = 0.

Then there are positive constants ε0 and C0 depending on G0 such that as long

as G ∈ Ok(Θ× Ω), the set of mixing measures with their orders bounded above

by k, and W2(G,G0) ≤ ε0, we have

V (pG, pG0) ≥ C0W
2
2 (G,G0).

(b) (Optimality of bound for variational distance) Assume f is second-order dif-

ferentiable with respect to θ,Σ and all of its second derivatives are integrable

uniformly for all θ,Σ. Then, for any 1 ≤ r < 2:

lim
ε→0

inf
G∈Ok(Θ×Ω)

{
V (pG, pG0)/W

r
1 (G,G0) : W1(G,G0) ≤ ε

}
= 0.

(c) (Optimality of bound for Hellinger distance) Assume f is second-order differ-
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entiable with respect to θ, Σ and for some sufficiently small c0 > 0,

sup
‖θ−θ′‖+‖ Σ−Σ′‖≤c0

∫
x∈X

(
∂2f

∂θα1∂Σα2
(x|θ,Σ)

)2

/f(x|θ′ ,Σ′)dx <∞

where α1 ∈ Nd1 , α2 ∈ Nd2×d2 in the partial derivative of f take any combination

such that |α1|+ |α2| = 2. Then, for any 1 ≤ r < 2:

lim
ε→0

inf
G∈Ok(Θ×Ω)

{
h(pG, pG0)/W

r
1 (G,G0) : W1(G,G0) ≤ ε

}
= 0.

Here and elsewhere, ratio V/Wr is set to be ∞ if Wr(G,G0) = 0. Some remarks:

(i) A version of part (a) for finite mixtures with multivariate parameters was first

given in Nguyen [2013] (Proposition 1 and Theorem 1). The original statement

of Nguyen’s Theorem 1 contains a mistake, as it claims something unnecessarily

stronger: V (pG1 , pG2)/W
2
2 (G1, G2) is bounded away from 0 as both G1 and G2

are sufficiently close to G0 in the sense of W2. This is not true, unless both G1

and G2 have the same number of support points as G0. 2 This error can be

corrected in the overfitted setting, by fixing G2 to G0, and allowing only G1 ≡ G

to vary near G0. This is precisely our current statement of part (a) stated for

the more general matrix-variate mixture models.

(ii) The condition lim
λ1(Σ)→0

f(x|θ,Σ) = 0 is important for the matrix-variate param-

eter Σ. In particular, it is useful for addressing the scenario when the smallest

eigenvalue of matrix parameter Σ is not bounded away from 0. It is simple to

see that this condition is satisfied for the examples discussed in the previous

section. For instance, for the multivariate generalized Gaussian distribution, it

holds for each θ ∈ Θ, and x 6= θ. Note also that this condition can be removed

2A counterexample was pointed out to the second author by Elisabeth Gassiat, who attributed
it to Jonas Kahn. A similar error is also present in Lemma 2 of Chen [1995], which admits the same
correction described above.
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if we additionally impose that all Σ ∈ Ω are positive definite matrices whose

eigenvalues are bounded away from 0.

(iii) Part (b) demonstrates the sharpness of the bound in part (a). In particular, we

cannot improve the lower bound in part (a) to any quantity W r
1 (G,G0) for any

r < 2. For any estimation method that yields n−1/2 convergence rate under the

Hellinger distance for pG, part (a) induces n−1/4 convergence rate under W2 for

G. A consequence of part (c) is a minimax lower bound n−1/4 for estimating

the mixing measure G. See Section 2.4.1 for formal statements of such results.

(iv) It is also worth mentioning that the boundedness of Θ, as well as the bounded-

ness from above of the eigenvalues of elements of Ω are both necessary conditions

for the conclusion of part (a) to hold. Indeed, it is possible to show that if one

of these two conditions is not met, we are not able to obtain the lower bound of

V (pG, pG0) as established, because the distance h ≥ V can vanish much faster

than the distance Wr(G,G0), as can be seen by:

Proposition 2.3.1. Let Θ be a subset of Rd1 and Ω = S++
d2

. Then for any r ≥ 1 and

β > 0 we have

lim
ε→0

inf
G∈Ok(Θ×Ω)

{
exp

(
1

W β
r (G,G0)

)
h(pG, pG0) : Wr(G,G0) ≤ ε

}
= 0.

Finally, as in the exact-fitted setting, to establish the bound V & W 2
2 in a global

manner, we simply add a compactness condition on the subset within which G varies:

Corollary 2.3.2. Suppose that all assumptions of Theorem 2.3.2 (part (a)) hold.

Furthermore, there is a positive constant α ≤ 2 such that for any G1, G2 ∈ Ok(Θ×Ω),

we have V (pG1 , pG2) . Wα
2 (G1, G2). Then, for a fixed compact subset O of Ok(Θ×Ω)

there is a positive constant C0 = C0(G0) such that

V (pG, pG0) ≥ C0W
2
2 (G,G0) for all G ∈ O.
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A consequence of this result is, take any standard estimation method such as the

MLE, which yields the n−1/2 convergence rate for pG, the induced rate of convergence

for the mixing measure G is n−1/4 under W2. This also entails that the mixing

probability masses converge at the n−1/2 rate (which recovers the result of Rousseau

and Mengersen [2011]), in addition to having that the component parameters converge

at the n−1/4 rate.

2.3.2 Characterization of strong identifiability

In this subsection we identify a fairly broad range of density classes for which the

strong identifiability conditions developed previously hold either in the first or the sec-

ond order. Then we also present general results which show how strong identifiablity

conditions continue to be preserved under certain transformations with respect to the

parameter space. First, we consider univariate density functions with parameters of

multiple types:

Theorem 2.3.3. (Densities with multiple scalar parameters)

(a) Generalized univariate logistic densities: Let f(x|θ, σ) :=
1

σ
f ((x− θ)/σ), where

f(x) =
Γ(p+ q)

Γ(p)Γ(q)

exp(px)

(1 + exp(x))p+q
, and p, q are fixed in N+. Then the family

{f(x|θ, σ), θ ∈ R, σ ∈ R+} is identifiable in the second order.

(b) Generalized Gumbel densities: Let f(x|θ, σ, λ) :=
1

σ
f((x−θ)/σ, λ), where f(x, λ) =

λλ

Γ(λ)
exp(−λ(x+ exp(−x))) as λ > 0. Then we have the family {f(x|θ, σ, λ),

θ ∈ R, σ ∈ R+, λ ∈ R+} is identifiable in the second order.

(c) Weibull densities: Let f(x|ν, λ) =
ν

λ

(x
λ

)ν−1

exp
(
−
(x
λ

)ν)
, for x ≥ 0, where

ν, λ > 0 are shape and scale parameters, respectively. Then the family {f(x|ν, λ),

ν ∈ R+, λ ∈ R+} is identifiable in the second order.

(d) Von Mises densities [Hsu et al., 1981, Kent, 1983, Mardia, 1975]: Let f(x|µ, κ) =
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1

2πI0(κ)
exp(κ cos(x − µ)).1{x∈[0,2π)}, where µ ∈ [0, 2π), κ > 0, and I0(κ) is the

modified Bessel function of order 0. Then the family {f(x|µ, κ), µ ∈ [0, 2π), κ ∈ R+}

is identifiable in the second order.

Next, we turn to the density function classes with matrix-variate parameter spaces,

as introduced in Section 2.2:

Theorem 2.3.4. (Densities with matrix-variate parameters)

(a) The family
{
f(x|θ,Σ,m), θ ∈ Rd,Σ ∈ S++

d ,m ≥ 1
}

of multivariate generalized

Gaussian distribution is identifiable in the first order.

(b) The family
{
f(x|θ,Σ), θ ∈ Rd,Σ ∈ S++

d

}
of multivariate t-distribution with fixed

odd degree of freedom is identifiable in the second order.

(c) The family
{
f(x|θ,Σ, λ), θ ∈ Rd,Σ ∈ S++

d , λ ∈ Rd
+

}
of exponentially modified

multivariate t-distribution with fixed odd degree of freedom is identifiable in the

second order.

(d) The family
{
f(x|θ,Σ, a, b), θ ∈ Rd,Σ ∈ S++

d , a ∈ Rd
+, b ∈ Rd

+

}
of modified

Gaussian-Gamma distribution is not identifiable in the first order.

These theorems are the matrix-variate or multiple parameter-type counterparts of

results proven for density classes with a single scalar parameter [Chen, 1995]. As the

proofs of these results are technically involved, we present only the proof of Theorem

2.3.4 in the Section 2.6. A useful insight one can draw from these proofs is that the

strong identifiability of these density classes are established by exploiting how the

corresponding characteristic functions and moment generating functions behave at

infinity. Thus it can be concluded that the common feature in establishing strong

identifiability hinges on the smoothness of the density f in question.

Some additional details: regarding part (a), as the class of multivariate Gaussian

distribution (m = 1) is not identifiable in the second order, the conclusion of this
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part only holds for the first-order identifiability. However, if we impose the constraint

m > 1, the class of multivariate generalized Gaussian distributions is identifiable in

the second order. The condition odd degree of freedom in part (b) and (c) of Theorem

2.3.4 is mainly due to our proof technique. We believe both (b) and (c) hold for any

fixed positive degree of freedom, but do not have a proof. Finally, the conclusion of

part (d) is due to the fact that family of Gamma distribution is not identifiable in

the first order.

The results of Theorem 2.3.4 shed light on which classes of distribution satisfy

the inequality being established in Theorem 2.3.1 and Theorem 2.3.2. A consequence

is the following: take any standard estimation method (such that the MLE) which

yields the n−1/2 convergence rate for pG, the induced rate of convergence for the mixing

measure G is n−1/2 under W1 for the exact-fitted setting or n−1/4 under W2 for the

over-fitted setting. From the definition of Wasserstein distances, under the MLE,

the mixing probabilities’ estimate converge at the n−1/2 rate; while the component

parameters converge at the rate n−1/2 for the exact-fitted setting, and n−1/4 for the

over-fitted setting.

Before ending this section, we state a result in response to a question posed by

Xuming He on strong identifiability in transformed parameter spaces. The follow-

ing theorem asserts that the first-order identifiability with respect to a transformed

parameter space is preserved under some regularity conditions of the transformation

operator. Let T be a bijective mapping from Θ∗ × Ω∗ to Θ× Ω such that

T (η,Λ) = (T1(η,Λ), T2(η,Λ)) = (θ,Σ)

for all (η,Λ) ∈ Θ∗ × Ω∗, where Θ∗ ⊂ Rd1 , Ω∗ ⊂ S++
d2

. Define the class of density

functions {g(x|η,Λ), η ∈ Θ∗,Λ ∈ Ω∗} by

g(x|η,Λ) := f(x|T (η,Λ)).
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Additionally, for any (η,Λ) ∈ Θ∗ × Ω∗, let J(η,Λ) ∈ R(d1+d22)×(d1+d22) be the modified

Jacobian matrix of T (η,Λ), i.e. the usual Jacobian matrix when (η,Λ) is taken as a

d1 + d2
2 vector.

Theorem 2.3.5. Assume that {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω} is identifiable in the first

order. Then the class of density functions {g(x|η,Λ), η ∈ Θ∗,Λ ∈ Ω∗} is identifiable

in the first order if and only if the modified Jacobian matrix J(η,Λ) is non-singular

for all (η,Λ) ∈ Θ∗ × Ω∗.

The conclusion of Theorem 2.3.5 still holds if we replace the first-order identifia-

bility by the second-order identifiability. This type of results allows us to construct

more examples of strongly identifiable density classes.

As we have seen previously, strong identifiablity (either in the first or second

order) yields sharp lower bounds of V (pG, pG0) in terms of Wasserstein distances

Wr(G,G0). It is useful to know that in the transformed parameter space, one may

still enjoy the same inequality. Specifically, for any discrete probability measure

Q =
k0∑
i=1

piδ(ηi,Λi) ∈ Ek0(Θ∗ × Ω∗), denote

p′Q(x) =

∫
g(x|η,Λ)dQ(η,Λ) =

k0∑
i=1

pig(x|ηi,Λi).

Let Q0 to be a fixed discrete probability measure on Ek0(Θ∗ × Ω∗), while probability

measure Q varies in Ek0(Θ∗ × Ω∗).

Corollary 2.3.3. Assume that the conditions of Theorem 2.3.5 hold. Further, sup-

pose that the first derivative of f in terms of θ,Σ and the first derivative of T in terms

of η,Λ are α-Hölder continuous and bounded where α > 0. Then there are positive

constants ε0 := ε0(Q0) and C0 := C0(Q0) such that as long as Q ∈ Ek0(Θ∗ × Ω∗) and

W1(Q,Q0) ≤ ε0, we have

V (p′Q, p
′
Q0

) ≥ C0W1(Q,Q0).
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Remark. If Θ and Ω are bounded sets, the condition on the boundedness of the

first derivative of f in terms of θ,Σ and the first derivative of g in terms of η,Λ can be

left out. Additionally, the restriction that these derivatives be α-Hölder continuous

can be relaxed to only that the first derivative of f and the first derivative of g are

α1-Hölder continuous and α2-Hölder continuous where α1, α2 > 0 can be different.

Finally, the conclusion of Corollary 2.3.3 still holds for the lower bound W 2
2 (Q,Q0)

if we impose the second-order identifiability on the kernel density f as well as the

additional structures on the second derivative of T .

2.4 Minimax lower bounds, MLE rates and illustrations

2.4.1 Minimax lower bounds and MLE rates of convergence

Given n-iid sample X1, X2, ..., Xn distributed according to the mixture density pG0 ,

where G0 is an unknown true mixing distribution with exactly k0 support points, and

the class of densities {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω} is assumed known. Given k ∈ N such

that k ≥ k0 +1. The support points of G0 lie in Θ×Ω. In this section we shall assume

that Θ is a compact subset of Rd1 and Ω =
{

Σ ∈ S++
d2

: λ ≤
√
λ1(Σ) ≤

√
λd2(Σ) ≤

λ
}

, where 0 < λ, λ are known and d1 ≥ 1, d2 ≥ 0. We denote Θ∗ = Θ × Ω. The

maximum likelihood estimator for G0 in the over-fitted mixture setting is given by

Ĝn = arg max
G∈Ok(Θ×Ω)

n∑
i=1

log(pG(Xi)).

For the exact-fitted mixture setting, Ok is replaced by Ek0 .

The inequalities established by Theorem 2.3.1 and Theorem 2.3.2 allow us to

translate existing results on convergence rates (under Hellinger distance) of maxi-

mum likelihood density estimation to that of the mixing measure (under Wasserstein

distance metrics). Under standard assumptions, the convergence rate for density

estimation using finite mixture densities is (log n/n)1/2. Then it follows that the con-
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vergence rate for the mixing measure under W1 distance in the exact-fitted setting

is also (log n/n)1/2. For the over-fitted setting, the rate is (log n/n)1/4 under W2

distance.

To state such results formally, we need to introduce several standard notions,

which will allow us to appeal to a general convergence theorem for the MLE (e.g., [van de

Geer, 2000]). For any positive integer number k1, define several classes of mixture

densities Pk1(Θ∗) = {pG : G ∈ Ok1(Θ∗)}, Pk1(Θ∗) =
{
pG+G0

2
: G ∈ Ok1(Θ∗)

}
, and

P1/2

k1
(Θ∗) =

{(
pG+G0

2

)1/2

: G ∈ Ok1(Θ∗)
}

. For any δ > 0, define the intersection

with a Hellinger ball centered at pG0 via

P1/2

k1
(Θ∗, δ) =

{(
pG+G0

2

)1/2

∈ P1/2

k1
: h(pG+G0

2
, pG0) ≤ δ

}
.

The size of this set is captured by the entropy integral:

JB(δ,P1/2

k1
(Θ∗, δ), µ) =

δ∫
δ2/213

H
1/2
B (u,P1/2

k1
(Θ∗, u), µ)du ∨ δ,

where HB denotes the bracketing entropy of P1/2

k1
(Θ∗) under L2 distance (cf. van de

Geer [2000] for a definition of the bracket entropy).

Before arriving at the main results in this section, we state the result of Theorem

7.4 of van de Geer [2000] with the adaption of notations as those in our paper

Theorem 2.4.1. Take Ψ(δ) ≥ JB(δ,P1/2

k (Θ∗, δ), µ) in such a way that Ψ(δ)/δ2 is a

non-increasing function of δ. Then, for a universal constant c and for

√
nδ2

n ≥ cΨ(δn),
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we have for all δ ≥ δn

P (h(pGn , pG0) > δ) ≤ c exp

[
−nδ

2

c2

]
.

Now, we are ready to state a general result on the MLE under the exact-fitted

mixture setting:

Theorem 2.4.2. (Exact-fitted mixtures) Assume that f satisfies the conditions

of Theorem 2.3.1. Take Ψ(δ) ≥ JB(δ,P1/2

k0
(Θ∗, δ), µ0) in such a way that

Ψ(δ)

δ2
is a

non-increasing function of δ. Then for a universal constant c, constant C1 = C1(Θ∗),

a non-negative sequence {δn} such that

√
nδ2

n ≥ cΨ(δn),

and for all δ ≥ δn√
C1

, we have

P (W1(Ĝn, G0) > δ) ≤ c exp

(
−nC

2
1δ

2

c2

)
.

Proof. By Theorem 2.3.1,

C1(Θ∗)W 2
1 (G,G0) ≤ V 2(pG, pG0) ≤ 2h2(pG, pG0) for all G ∈ Ek0(Θ∗), (2.5)

where C1(Θ∗) is a positive constant depending only on Θ∗ and G0. Now, invoking

Theorem 2.4.1, as δ ≥ δn, there is a universal constant c > 0 such that

P (h(pĜn , pG0) > δ) ≤ c exp

(
−nδ

2

c2

)
. (2.6)

Combining (2.5) and (2.6), we readily achieve the conclusion of our theorem.

Using the same argument we arrive at a general convergence rate result of the
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MLE under the over-fitted setting:

Theorem 2.4.3. (Over-fitted mixtures) Assume that f satisfies the conditions in

part (a) of Theorem 2.3.2. Take Ψ(δ) ≥ JB(δ,P1/2

k (Θ∗, δ), µ0) in such a way that

Ψ(δ)

δ2
is a non-increasing function of δ. Then for a universal constant c, constant

C1 = C1(Θ∗), {δn} is a non-negative sequence such that

√
nδ2

n ≥ cΨ(δn),

and for all δ ≥ δn√
C1

, we have

P (W2(Ĝn, G0) > δ1/2) ≤ c exp

(
−nC

2
1δ

2

c2

)
.

To derive the concrete rates δn, one simply need to verify the conditions on the

bracket entropy integral JB for a given model class. As a concrete example, the

following results are concerned with the finite mixtures of multivariate generalized

Gaussian distributions.

Corollary 2.4.1. (Mixtures of multivariate generalized Gaussian distribu-

tions) Given Θ = [−an, an]d × [m,m] where an ≤ L(log(n))γ as L is some pos-

itive constant, γ > 0, and 1 < m ≤ m are two known positive numbers. Let

{f(x|θ,m,Σ)|(θ,m) ∈ Θ,Σ

∈ Ω} to be the class of multivariate generalized Gaussian distributions.

(a) (Exact-fitted case) There holds P (W1(Ĝn, G0) > δn) . exp(−c log(n)), where

δn is a sufficiently large multiple of (log(n)/n)1/2 and c is positive constant

depending only on L, γ,m,m, λ, λ.

(b) (Over-fitted case) There holds P (W2(Ĝn, G0) > δ′n) . exp(−c log(n)), where

δ′n is a sufficiently large multiple of (log(n)/n)1/4 and c is positive constant

depending only on L, γ,m,m, λ, λ.
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Remark (i) The condition m > 1 can be relaxed to m ≥ 1 under the exact-fitted

setting; however, it is crucial under the over-fitted setting that m > 1. In fact, the

location-covariance Gaussian mixtures (which correspond to m = 1) have to be ex-

cluded from the class of generalized Gaussian mixtures for the above results to hold.

This is a consequence of the fact that the (sub)class of location-covariance multivari-

ate Gaussian distributions is not identifiable in the second order. In fact, the failure to

satisfy the second-order identifiability leads to very slow convergence rate of the MLE

under the over-fitted location-scale Gaussian mixture setting, as we noted briefly in

the introduction. (ii) The conclusions of this corollary also hold for mixtures of mul-

tivariate Student’s t-distribution as well as all the classes of distributions considered

in Theorem 2.3.3 with suitable boundedness conditions on the parameter spaces.

Finally, we shall show that the convergence rates n−1/2 and n−1/4 for the exact-

fitted and over-fitted finite mixtures, respectively, are in fact minimax lower bounds.

Under the exact-fitted finite mixture setting, it is simple to establish the standard

n−1/2 minimax lower bound:

inf
Ĝn∈Ek0

sup
G0∈Ek0

EpG0
W1(Ĝn, G0) & n−1/2,

where the infimum is taken over all possible sequences of estimate Ĝn based on n-

samples. Perhaps more interesting is the following minimax lower bound result for

the over-fitted mixture setting.

Theorem 2.4.4. (Minimax lower bound for over-fitted mixtures) If the class

of densities f satisfies condition (c) of Theorem 2.3.2, then for any positive r < 4

and any n ≥ 1,

inf
Ĝn∈Ok

sup
G0∈Ok\Ok0−1

EpG0
W1(Ĝn, G0) & n−1/r.

Proof. The proof is almost immediate following a standard argument for establishing
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minimax lower bounds. Fix a G0 ∈ Ek0 and r ∈ [1, 2). Let C0 > 0 be any fixed

constant. According to Theorem 2.3.2, part (c), for any sufficiently small ε > 0, there

exists G′0 ∈ Ok such that W1(G0, G
′
0) = 2ε and h(pG0 , pG′0) ≤ C0ε

r. Applying Lemma

1 from Yu [1997], for any sequence of estimates Ĝn ranging in Ok, we obtain that

sup
G∈{G0,G′0}

EpGW1(Ĝn, G) ≥ ε
(

1− V (pnG0
, pnG′0)

)
,

where pnG0
denotes the density of the n-iid sample X1, . . . , Xn. Now,

V (pnG0
, pnG′0) ≤ h(pnG0

, pnG′0)

=
√

1−
(
1− h2(pG0 , pG′0)

)n
≤

√
1− (1− C2

0ε
2r)

n
.

As a consequence, we obtain

sup
G∈{G0,G′0}

EpGW1(Ĝn, G) ≥ ε

(
1−

√
1− (1− C2

0ε
2r)

n

)
.

By choosing ε2r =
1

C2
0n

, the right hand side of the above inequality is bounded below

by C1ε � n−1/2r for any r < 2 where C1 is some positive constant. We achieve the

conclusion of our theorem. Noting that G0, G
′
0 ∈ Ok \Ok0−1, this concludes the proof

of our theorem.

2.4.2 Illustrations

For the remainder of this section, we shall illustrate via simulations the strong

identifiability bounds established in Section 2.3 for several classes of distributions

with matrix-variate parameter space for which strong identifiability conditions in

both the first and second order hold. In addition, we also present some simulations
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Figure 2.1: Mixture of Student’s t-distributions. Left: Exact-fitted setting. Right:
Over-fitted setting.
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Figure 2.2: Mixture of multivariate generalized Gaussian distributions. Left:
Exact-fitted setting. Right: Over-fitted setting.

for the well-known location-scale Gaussian finite mixtures, which satisfy the first-

order identifiability but not the second-order identifiability.

Strong identifiability bounds The inequalities V & W1 for exact-fitted mixtures

and V & W 2
2 for over-fitted mixtures are illustrated for the class of Student’s t-

distributions and the class of multivariate generalized Gaussian distributions, both

of which satisfy first and second-order identifiability. See Figure 2.1 and Figure 2.2.

Here we plot h against W1 and W 2
2 , but note the relation h ≥ V ≥ h2. The upper

bounds of V and h in terms of W1 were given in Section 2.2.

For details, we choose Θ = [−10, 10]2 for Student’s t-distribution (Gaussian distri-

bution) or Θ = [−10, 10]2× [1.5, 5] for multivariate generalized Gaussian distribution,

Ω =
{

Σ ∈ S++
2 :

√
2 ≤

√
λ1(Σ) ≤

√
λd(Σ) ≤ 2

}
. Note that closed interval [1.5, 5] is

chosen for m to exclude Gaussian distributions, which corresponds to m = 1. Now,

the true mixing probability measure G0 has exactly k0 = 2 support points with loca-
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tions θ0
1 = (−2, 2), θ0

2 = (−4, 4), covariances Σ0
1 =

9/4 1/5

1/5 13/6

, Σ0
2 =

5/2 2/5

2/5 7/3

,

m0
1 = 2, m0

2 = 3 (for the setting of multivariate generalized Gaussian distribu-

tion), and p0
1 = 1/3, p0

2 = 2/3. 10000 random samples of discrete mixing measures

G ∈ E2(Θ× Ω), 10000 samples of G ∈ O3(Θ× Ω) were generated to construct these

plots. Note that, since we focus on obtaining the lower bound of Hellinger distance in

terms of small Wasserstein distances, we generate G by making small perturbations

of G0 (that is, adding small random noise ε to the mixing coefficients and support

points of G0).

It can be observed that both lower bounds and upper bounds match exactly that of

our theorems for strongly identifiable classes of distributions such as the t-distribution

and the generalized Gaussian distribution. Turning to mixtures of location-covariance

Gaussian distributions (Figure 3.1), the bounds
√
W1 & h & W1 continue to hold

under the exact-fitted setting, but under the over-fitted setting it can be observed

that the lower bound h & W 2
2 no longer holds. In fact, if the Gaussian mixture

is over-fitted by one extra component, it can be shown that h & W 4
4 ≥ W 4

2 (see

illustrations in the middle and right panels), and that this bound is sharp. This has a

drastic consequence on the convergence rate of the mixing measure, which we discuss

next.

Convergence rates of MLE First, we generate n-iid samples from a bivari-

ate location-covariance Gaussian mixture with three components with an arbitrar-

ily fixed choice of G0. The true parameters for the mixing measure G0 are: θ0
1 =

(0, 3), θ0
2 = (1,−4), θ0

3 = (5, 2), Σ0
1 =

4.2824 1.7324

1.7324 0.81759

, Σ0
2 =

 1.75 −1.25

−1.25 1.75

,

Σ0
3 =

1 0

0 4

, and p0
1 = 0.3, p0

2 = 0.4, p0
3 = 0.3. The parameter spaces Θ,Ω are iden-
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tical to those of multivariate Student’s t-distribution setting. MLE Ĝn is obtained by

the EM algorithm as we assume that the data come from a mixture of k Gaussians

where k ≥ k0 = 3. See Figure 3.2 where the Wasserstein distances between Ĝn and

G0 are plotted against increasing sample size n (n ≤ 30000). The error bars were

obtained by running the experiment 7 times for each n. The simulation results under

the exact-fitted case match quite well with the standard n−1/2 rate. If we fit the data

to a mixture of k = k0 + 1 = 4 Gaussian distributions, however, we observe empiri-

cally that the convergence rate of W4(Ĝn, G0) (thus W2 distance) is almost n−1/8 up

to a logarithmic term. This result is much slower than the “standard” convergence

rate n−1/4 under W2, should second-identifiability condition holds. A rigorous theory

for weakly identifiable mixture models such as location-covariance Gaussian mixtures

will be reported elsewhere.
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Figure 2.3: Mixture of location-scale Gaussian distributions, which satisfy
first-order identifiablity but not second-order identifiability condition. Left panel:

Exact-fitted setting. Middle and right panels are for over-fitted setting by one extra
component. Right panel shows that h & W 2

2 no longer holds as h→ 0.

2.5 Proofs of key theorems

In this section, we present self-contained proofs for two key theorems: Theo-

rem 2.3.1 for strongly identifiable mixtures in the exact-fitted setting and Theorem

2.3.2 for strongly identifiable mixtures in the over-fitted setting. These moderately

long proofs carry useful insights underlying the theory — they are organized in a
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Figure 2.4: MLE rates for location-covariance mixtures of Gaussians. Left:
Exact-fitted — W1 � n−1/2. Right: Over-fitted by one — W4 � n−1/8.

sequence of steps to help the reader. The proofs of the remaining results are deferred

to Section 2.6.

2.5.1 Strong identifiability in exact-fitted mixtures

PROOF OF THEOREM 2.3.1 It suffices to show that

lim
ε→0

inf

{
V (pG, pG0)/W1(G,G0)|W1(G,G0) ≤ ε

}
> 0, (2.7)

where the infimum is taken over all G ∈ Ek0(Θ× Ω).

Step 1 Suppose that (2.7) does not hold, which implies that we have a sequence

of Gn =
k0∑
i=1

pni δ(θni ,Σ
n
i ) ∈ Ek0(Θ × Ω) converging to G0 in the W1 distance such that

V (pGn , pG0)/W1(Gn, G0) → 0 as n → ∞. As W1(Gn, G0) → 0, the support points of

Gn must converge to that of G0. By permutation of the labels i, it suffices to assume

that for each i = 1, . . . , k0, (θni ,Σ
n
i ) → (θ0

i ,Σ
0
i ). For each pair (Gn, G0), let {qnij}

denote the corresponding probabilities of the optimal coupling for the pair (Gn, G0),

so we can write:

W1(Gn, G0) =
∑

1≤i,j≤k0

qnij(‖θni − θ0
j‖+ ‖Σn

i − Σ0
j‖).
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Since (θni ,Σ
n
i )→ (θ0

i ,Σ
0
i ) and Gn and G0 have the same number of support points,

it is an easy observation that for sufficiently large n, qnii = min(pni , p
0
i ). And so,∑

i 6=j q
n
ij =

∑k0
i=1 |pni − p0

i |. Adopting the notations that ∆θni := θni − θ0
i , ∆Σn

i :=

Σn
i − Σ0

i , and ∆pni := pni − p0
i for all 1 ≤ i ≤ k0, we have

W1(Gn, G0) =

k0∑
i=1

qnii(‖∆θni ‖+ ‖∆Σn
i ‖) +

∑
i 6=j

qnij(‖θni − θ0
j‖+ ‖Σn

i − Σ0
j‖)

.
k0∑
i=1

pni (‖∆θni ‖+ ‖∆Σn
i ‖) + |∆pni | =: d(Gn, G0).

The inequality in the above display is due to qnii ≤ pni , and the observation that

‖θni − θ0
j‖, ‖Σn

i − Σ0
j‖ are bounded for all 1 ≤ i, j ≤ k0 for sufficiently large n. Thus,

we have V (pGn , pG0)/d(Gn, G0)→ 0.

Step 2 Now, consider the following important identity:

pGn(x)− pG0(x) =

k0∑
i=1

∆pni f(x|θ0
i ,Σ

0
i ) +

k0∑
i=1

pni (f(x|θni ,Σn
i )− f(x|θ0

i ,Σ
0
i )).

For each x, applying Taylor expansion to function f to the first order to obtain

k0∑
i=1

pni (f(x|θni ,Σn
i )− f(x|θ0

i ,Σ
0
i ) =

k0∑
i=1

pni

{
(∆θni )T

∂f

∂θ
(x|θ0

i ,Σ
0
i ) +

tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
T∆Σn

i

)}
+Rn(x),

where Rn(x) = O

(
k0∑
i=1

pni (‖∆θni ‖1+δ1 + ‖∆Σn
i ‖1+δ2)

)
, where the appearance of δ1 and

δ2 are due the assumed Lipschitz conditions, and the big-O constant does not depend

on x. It is clear that supx |Rn(x)/d(Gn, G0)| → 0 as n→∞.

DenoteAn(x) =
k0∑
i=1

pni

[
(∆θni )T

∂f

∂θ
(x|θ0

i ,Σ
0
i ) + tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
T∆Σn

i

)]
, Bn(x) =
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k∑
i=1

∆pni f(x|θ0
i ,Σ

0
i ). Then, we can rewrite

(pGn(x)− pG0(x))/d(Gn, G0) = (An(x) +Bn(x) +Rn(x))/d(Gn, G0).

Step 3 We see that An(x)/d(Gn, G0) and Bn(x)/d(Gn, G0) are linear combinations

of the scalar elements of f(x|θ,Σ),
∂f

∂θ
(x|θ,Σ) and

∂f

∂Σ
(x|θ,Σ) such that the coef-

ficients do not depend on x. We shall argue that not all such coefficients in the

linear combination converge to 0 as n→∞. Indeed, if the opposite is true, then the

summation of the absolute values of these coefficients must also tend to 0:

{ k0∑
i=1

|∆pni |+ pni (‖∆θni ‖1 + ‖∆Σn
i ‖1)

}
/d(Gn, G)→ 0.

Since we have the entrywise `1 and `2 norms are equivalent, the above entails

{ k0∑
i=1

|∆pni |+ pni (‖∆θni ‖+ ‖∆Σn
i ‖)
}
/d(Gn, G0)→ 0,

which contradicts with the definition of d(Gn, G0). As a consequence, we can find at

least one coefficient of the elements of An(x)/d(Gn, G0) or Bn(x)/d(Gn, G0) that does

not vanish as n→∞.

Step 4 Let mn be the maximum of the absolute value of the scalar coefficients of

An(x)/d(Gn, G0), Bn(x)/d(Gn, G0) and dn = 1/mn, then dn is uniformly bounded

from above for all n. Thus, as n→∞,

dnAn(x)/d(Gn, G0) →
k0∑
i=1

βTi
∂f

∂θ
(x|θ0

i ,Σ
0
i ) + tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
Tγi

)
,

dnBn(x)/d(Gn, G0) →
k0∑
i=1

αif(x|θ0
i ,Σ

0
i ),
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such that not all scalar elements of αi, βi and γi vanish. Moreover, γi are symmetric

matrices because Σn
i are symmetric matrices for all n, i. Note that

dnV (pGn , pG0)/d(Gn, G0) =

∫
dn|pGn(x)− pG0(x)|/d(Gn, G0)

=

∫
dn|An(x) +Bn(x) +Rn(x)|/d(Gn, G0) dx→ 0.

By Fatou’s lemma, the integrand in the above display vanishes for almost all x. Thus,

for almost all x

k0∑
i=1

αif(x|θ0
i ,Σ

0
i ) + βTi

∂f

∂θ
(x|θ0

i ,Σ
0
i ) + tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
Tγi

)
= 0.

By the first-order identifiability criteria of f , we have αi = 0, βi = 0 ∈ Rd1 , and

γi = 0 ∈ Rd2×d2 for all i = 1, 2, ..., k, which is a contradiction. Hence, (2.7) is proved.

2.5.2 Strong identifiability in over-fitted mixtures

PROOF OF THEOREM 2.3.2 (a) We only need to establish that

lim
ε→0

inf
G∈Ok(Θ)

{
sup
x∈X
|pG(x)− pG0(x)|/W 2

2 (G,G0) : W2(G,G0) ≤ ε

}
> 0. (2.8)

The conclusion of the theorem follows from an application of Fatou’s lemma in the

same manner as Step 4 in the proof of Theorem 2.3.1.

Step 1 Suppose that (2.8) does not hold, then we can find a sequence Gn ∈ Ok(Θ)

tending to G0 in W2 distance and sup
x∈X
|pGn(x)− pG0(x)|/W 2

2 (Gn, G0)→ 0 as n→∞.

Since k is finite, there is some k∗ ∈ [k0, k] such that there exists a subsequence of Gn

having exactly k∗ support points. We cannot have k∗ = k0, due to Theorem 2.3.1

and the fact that W 2
2 (Gn, G0) . W1(Gn, G0) for all n. Thus, k0 + 1 ≤ k∗ ≤ k.

Write Gn =
k∗∑
i=1

pni δ(θni ,Σ
n
i ) and G0 =

k0∑
i=1

p0
i δ(θ0i ,Σ

0
i )

. Since W2(Gn, G0) → 0, there
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exists a subsequence of Gn such that each support point (θ0
i ,Σ

0
i ) of G0 is the limit of

a subset of si ≥ 1 support points of Gn. There may also a subset of support points

of Gn whose limits are not among the support points of G0 — we assume there are

m ≥ 0 such limit points. To avoid notational cluttering, we replace the subsequence

of Gn by the whole sequence {Gn}. By re-labeling the support points, Gn can be

expressed by

Gn =

k0+m∑
i=1

si∑
j=1

pnijδ(θnij ,Σ
n
ij)

W2−→ G0 =

k0+m∑
i=1

p0
i δ(θ0i ,Σ

0
i )

where (θnij,Σ
n
ij) → (θ0

i ,Σ
0
i ) for each i = 1, . . . , k0 + m, j = 1, . . . , si, p

0
i = 0 for

i < k0, and we have that pni· :=
∑si

j=1 p
n
ij → p0

i for all i. Moreover, the constraint

k0 + 1 ≤∑k0+m
i=1 si ≤ k must hold.

We note that if matrix Σ is (strictly) positive definite whose maximum eigenvalue

is bounded (from above) by constant M , then Σ is also bounded under the entrywise

`2 norm. However if Σ is only positive semidefinite, it can be singular and its `2 norm

potentially unbounded. In our context, for i ≥ k0 + 1 it is possible that the limiting

matrices Σ0
i can be singular. It comes from the fact that the some eigenvalues of

Σn
ij can go to 0 as n → ∞, which implies det(Σn

ij) → 0 and hence det(Σ0
i ) = 0.

By re-labeling the support points, we may assume without loss of generality that

Σ0
k0+1, . . . ,Σ

0
k0+m1

are (strictly) positive definite matrices and Σ0
k0+m1+1, . . . ,Σ

0
k0+m

are singular and positive semidefinite matrices for some m1 ∈ [0,m]. For those

singular matrices, we shall make use of the assumption that for each θ ∈ Θ, except

a finite number of values of x ∈ X , we have lim
λ1(Σ)→0

f(x|θ,Σ) = 0 and the fact that

θnij as k0 + m1 + 1 ≤ i ≤ k0 + m will converge to at most m − m1 ≤ k − k0 limit

points: accordingly, for all x except a finite number of values in X , f(x|θnij,Σn
ij)→ 0

as n→∞ for all k0+m1+1 ≤ i ≤ k0+m, 1 ≤ j ≤ si. Here, we denote f(x|θ0
i ,Σ

0
i ) = 0

for all k0 +m1 + 1 ≤ i ≤ k0 +m.
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Step 2 Using shorthand notations ∆θnij := θnij − θ0
i , ∆Σn

ij := Σn
ij − Σ0

i for i =

1, . . . , k0 +m1 and j = 1, . . . , si, it is simple to see that

W 2
2 (Gn, G0) . d(Gn, G0) :=

k0+m1∑
i=1

si∑
j=1

pnij(‖∆θnij‖2 + ‖∆Σn
ij‖2) +

k0+m∑
i=1

∣∣pni. − p0
i

∣∣,
because W 2

2 (Gn, G0) is the optimal transport cost with respect to `2
2, while d(Gn, G0)

corresponds to a multiple of the cost of a possibly non-optimal transport plan, which

is achieved by coupling the atoms (θnij,Σ
n
ij) for j = 1, . . . , si with (θ0

i ,Σ
0
i ) by mass

min(pni·, p
0
i ), while the remaining masses are coupled arbitrarily. From the assump-

tion, sup
x∈X
|pGn(x)− pG0(x)|/W 2

2 (Gn, G0) vanishes in the limit, it also implies that

sup
x∈X
|pGn(x)− pG0(x)|/d(Gn, G0)→ 0.

For each x, we make use of the key identity:

pGn(x)− pG0(x) =

k0+m1∑
i=1

si∑
j=1

pnij(f(x|θnij,Σn
ij)− f(x|θ0

i ,Σ
0
i ))

+

k0+m1∑
i=1

(pni. − p0
i )f(x|θ0

i ,Σ
0
i )

+

k0+m∑
i=k0+m1+1

si∑
j=1

pnijf(x|θnij,Σn
ij)

:= An(x) +Bn(x) + Cn(x). (2.9)

Step 3 By means of Taylor expansion up to the second order:

An(x) =

k0+m1∑
i=1

si∑
j=1

pnij(f(x|θnij,Σn
ij)− f(x|θ0

i ,Σ
0
i )) =

k0+m1∑
i=1

∑
α

Anα1,α2
(θ0
i ,Σ

0
i )

+Rn(x),
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where α = (α1, α2) such that α1 + α2 ∈ {1, 2}. Specifically,

An1,0(θ0
i ,Σ

0
i ) =

si∑
j=1

pnij(∆θ
n
ij)

T ∂f

∂θ
(x|θ0

i ,Σ
0
i ),

An0,1(θ0
i ,Σ

0
i ) =

si∑
j=1

pnij tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
T∆Σn

ij

)
,

An2,0(θ0
i ,Σ

0
i ) =

1

2

si∑
j=1

pnij(∆θ
n
ij)

T ∂
2f

∂θ2
(x|θ0

i ,Σ
0
i )∆θ

n
ij,

An0,2(θ0
i ,Σ

0
i ) =

1

2

si∑
j=1

pnij tr

(
∂

∂Σ

(
tr

(
∂

∂Σ
(x|θ0

i ,Σ
0
i )
T∆Σn

ij

))T
∆Σn

ij

)
,

An1,1(θ0
i ,Σ

0
i ) = 2

si∑
j=1

(∆θnij)
T

[
∂

∂θ

(
tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
T∆Σn

ij

))]
.

In addition, Rn(x) = O

(∑k0+m1

i=1

∑si
j=1 p

n
ij(‖∆θnij‖2+δ+‖∆Σn

ij‖2+δ)

)
due to the second-

order Lipschitz condition. It is clear that supx |Rn(x)|/d(Gn, G0)→ 0 as n→∞.

Step 4 Write Dn := d(Gn, G0) for short. Note that (pGn(x)−pG0(x))/Dn is a linear

combination of the scalar elements of f(x|θ,Σ) and its derivatives taken with respect

to θ and Σ up to the second order, and evaluated at the distinct pairs (θ0
i ,Σ

0
i ) for

i = 1, . . . , k0 +m. (To be specific, the elements of f(x|θ,Σ),
∂f

∂θ
(x|θ,Σ),

∂f

∂Σ
(x|θ,Σ),

∂2f

∂θ2
(x|θ,Σ),

∂2f

∂θ2
(x|θ,Σ),

∂2f

∂Σ2
(x|θ,Σ), and

∂2f

∂θ∂Σ
(x|θ,Σ)). In addition, the coeffi-

cients associated with these elements do not depend on x. As in the proof of Theo-

rem 2.3.1, we shall argue that not all such coefficients vanish as n → ∞. Indeed, if

this is not true, then by taking the summation of all the absolute value of the coeffi-

cients associated with the elements of
∂2f

∂θ2
l

as 1 ≤ l ≤ d1 and
∂2f

∂Σ2
uv

for 1 ≤ u, v ≤ d2,

we obtain

k0+m1∑
i=1

si∑
j=1

pnij(‖∆θnij‖2 + ‖∆Σij‖2)/Dn → 0.
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Therefore,
k0+m∑
i=1

|pni. − p0
i |/Dn → 1 as n → ∞. It implies that we should have at

least one coefficient associated with an element of f(x|θ,Σ) (appearing in Bn(x)/Dn,

Cn(x)/Dn) not converging to 0 as n→∞, which is a contradiction. As a consequence,

not all the coefficients vanish to 0.

Step 5 Let mn be the maximum of the absolute value of the aforementioned co-

efficients. and set dn = 1/mn. Then, dn is uniformly bounded above when n is

sufficiently large. Therefore, as n→∞, we obtain

dnBn(x)/Dn →
k0+m1∑
i=1

αif(x|θ0
i ,Σ

0
i ),

dn

k0+m1∑
i=1

An1,0(θ0
i ,Σ

0)/Dn →
k0+m1∑
i=1

βTi
∂f

∂θ
(x|θ0

i ,Σ
0
i ),

dn

k0+m1∑
i=1

An0,1(θ0
i ,Σ

0
i )/Dn →

k0+m1∑
i=1

tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
Tγi

)
,

dn

k0+m1∑
i=1

An2,0(θ0
i ,Σ

0
i )/Dn →

k0+m1∑
i=1

si∑
j=1

νTij
∂2f

∂θ2
(x|θ0

i ,Σ
0
i )νij,

dn

k0+m1∑
i=1

An1,1(θ0
i ,Σ

0
i )/Dn →

k0+m1∑
i=1

si∑
j=1

νTij

[
∂

∂θ

(
tr

(
∂

∂Σ
(x|θ0

i ,Σ
0
i )
Tηij

))]
,

dn

k0+m1∑
i=1

An0,2(θ0
i ,Σ

0
i )/Dn →

k0+m1∑
i=1

si∑
j=1

tr

(
∂

∂Σ

(
tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
Tηij

))T
×

×ηij
)
,

where αi ∈ R, βi, νi1, . . . , νisi ∈ Rd1 , γi, ηi1, . . . , ηisi are symmetric matrices in Rd2×d2

for all 1 ≤ i ≤ k0 +m1, 1 ≤ j ≤ si. Additionally,

dnCn(x)/Dn = D−1
n

k0+m∑
i=k0+m1+1

si∑
j=1

dnp
n
ijf(x|θnij,Σn

ij)→ 0
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due to the fact that for almost all x, f(x|θnij,Σn
ij) → 0 for all k0 + m1 + 1 ≤ i ≤

k0 + m, 1 ≤ j ≤ si and the fact that dnp
n
ij/Dn ≤ 1 for all k0 + m1 + 1 ≤ i ≤ k0 + m,

1 ≤ j ≤ si. As a consequence, we obtain for almost all x that

k0+m1∑
i=1

{
αif(x|θ0

i ,Σ
0
i ) + βTi

∂f

∂θ
(x|θ0

i ,Σ
0
i ) +

si∑
j=1

νTij
∂2f

∂θ2
(x|θ0

i ,Σ
0
i )νij +

tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
Tγi

)
+ 2

si∑
j=1

νTij

[
∂

∂θ

(
tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
Tηij

))]
+

si∑
j=1

tr

(
∂

∂Σ

(
tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
Tηij

))T
ηij

)}
= 0. (2.10)

Now, in this paragraph we will argue that not all coefficients in (2.10) go to

0 as n → ∞. There are two scenarios. Case 1: If mn, the maximum of all the

coefficients considered in Step 4, does not lie in the set
{
pnij/Dn

}
as k0 + m1 + 1 ≤

i ≤ k0 + m, 1 ≤ j ≤ si for infinitely many n. Then, it indicates that at least one

coefficient in (2.10) should be 1. Our observation is proved. Case 2: Otherwise, mn

lies in the set
{
pnij/Dn

}
as k0 +m1 + 1 ≤ i ≤ k0 +m, 1 ≤ j ≤ si for infinitely many n.

This means that we can find two indices i∗ ∈ [k0 + m1 + 1, k0 + m], j∗ ∈ [1, si∗ ] such

that mn = pni∗j∗/Dn. Assume now that all of the coefficents in (2.10) vanish to 0.

Therefore, dn|pni.−p0
i |/Dn = |pni.−p0

i |/pni∗j∗ → 0 for all 1 ≤ i ≤ k0 +m1. Since we have

pni∗j∗ ≤
k0+m∑

i=k0+m1+1

si∑
j=1

pnij ≤
k0+m1∑
i=1

|pni. − p0
i |, this leads to |pni. − p0

i |/
k0+m1∑
i=1

|pni. − p0
i | → 0

for all 1 ≤ i ≤ k0 + m1 as n → ∞, which is a contradiction. Our observation is

proved.

Therefore, at least one coefficient in (2.10) is different from 0. However, from the

second-order identifiability of {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω}, we obtain αi = 0, βi = νi1 =

. . . = νisi = 0 ∈ Rd1 , γi = ηi1 = . . . = ηisi = 0 ∈ Rd2×d2 for all 1 ≤ i ≤ k0 +m1, which

is a contradiction. This concludes the proof of Eq. (2.8) and that of the theorem.

(b) Recall G0 =
k0∑
i=1

p0
i δ(θ0i ,Σ

0
i )

. Construct a sequence of probability measures Gn
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having exactly k0 + 1 support points as follows: Gn =
k0+1∑
i=1

pni δ(θni ,Σ
n
i ), where θn1 =

θ0
1 −

1

n
1d1 , θ

n
2 = θ0

1 +
1

n
1d1 ,Σ

n
1 = Σ0

1 −
1

n
Id2 and Σn

2 = Σ0
1 +

1

n
Id2 . Here, Id2 denotes

the identity matrix in Rd2×d2 and 1n a vector with all elements being equal to 1.

In addition, (θni+1,Σ
n
i+1) = (θ0

i ,Σ
0
i ) for all i = 2, . . . , k0. Also, pn1 = pn2 =

p0
1

2
and

pni+1 = p0
i for all i = 2, . . . , k0. It is simple to verify that En := W r

1 (Gn, G0) =

(p0
1)r

2r
(‖θn1 − θ0

1‖+‖θn2 − θ0
2‖+‖Σn

1 −Σ0
1‖+‖Σn

2 −Σ0
1‖)r =

(p0
1)r

2r
(
√
d1 +
√
d2)r

1

nr
� 1

nr
.

By means of Taylor’s expansion up to the first order, we get that as n→∞

V (pGn , pG0) �
∫
x∈X

∣∣∣∣ 2∑
i=1

∑
α1,α2

(∆θn1i)
α1(∆Σn

1i)
α2

∂f

∂θα1∂Σα2
(x|θ0

1,Σ
0
1)+

+R1(x)

∣∣∣∣ dx

=

∫
x∈X

|R1(x)| dx,

where α1 ∈ Nd1 , α2 ∈ Nd2×d2 in the sum such that |α1| + |α2| = 1, R1(x) is Tay-

lor expansion’s remainder. The second equality in the above equation is due to
2∑
i=1

(∆θn1i)
α1(∆Σn

1i)
α2 = 0 for each α1, α2 such that |α1|+ |α2| = 1. Since f is second-

order differentiable with respect to θ,Σ, R1(x) takes the form

R1(x) =
2∑
i=1

∑
|α|=2

2

α!
(∆θn1i)

α1(∆Σn
1i)

α2 ×

×
1∫

0

(1− t) ∂2f

∂θα1∂Σα2
(x|θ0

1 + t∆θn1i,Σ
0
1 + t∆Σn

1i)dt,

where α = (α1, α2). Note that,
2∑
i=1

|∆n
1i|α1|∆Σn

1i|α2 = O(n−2). Additionally, from

the hypothesis, sup
t∈[0,1]

∫
x∈X

∣∣∣∣ ∂2f

∂θα1∂Σα2
(x|θ0

1 + t∆θn1i,Σ
0
1 + t∆Σn

1i)

∣∣∣∣dx < ∞. It follows

that
∫
|R1(x)| dx = O(n−2). So for any r < 2, V (pGn , pG0) = o(W r

1 (Gn, G0)). This

concludes the proof.
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(c) Continuing with the same sequence Gn constructed in part (b), we have

h2(pGn , pG0) ≤
1

2p0
1

∫
x∈X

(pGn(x)− pG0(x))2

f(x|θ0
1,Σ

0
1)

dx .
∫
x∈X

R2
1(x)

f(x|θ0
1,Σ

0
1)

dx.

where first inequality is due to
√
pGn(x) +

√
pG0(x) >

√
pG0(x) >

√
p0

1f(x|θ0
1,Σ

0
1)

and the second inequality is because of Taylor expansion taken to the first order.

The proof proceeds in the same manner as that of part (b).

2.6 Proofs of other results

2.6.1 Extension to the whole domain in exact-fitted mixtures

PROOF OF COROLLARY 2.3.1 By Theorem 2.3.1, there are positive constants

ε = ε(G0) and C0 = C0(G0) such that V (pG, pG0) ≥ C0W1(G,G0) when W1(G,G0) ≤

ε. It remains to show that inf
G∈G:W1(G,G0)>ε

V (pG, pG0)/W1(G,G0) > 0. Assume the

contrary, then we can find a sequence of Gn ∈ G and W1(Gn, G0) > ε such that

V (pGn , pG0)

W1(Gn, G0)
→ 0 as n → ∞. Since G is a compact set, we can find G′ ∈ G and

W1(G′, G0) > ε such that Gn → G′ under W1 metric. It implies that W1(Gn, G0) →

W1(G′, G0) as n→∞. As G′ 6≡ G0, we have lim
n→∞

W1(Gn, G0) > 0. As a consequence,

V (pGn , pG0)→ 0 as n→∞.

From the hypothesis, V (pGn , pG′) ≤ C(Θ,Ω)Wα
1 (Gn, G

′), so V (pGn , pG′) → 0 as

W1(Gn, G
′)→ 0. Thus, V (pG′ , pG0) = 0 or equivalently pG0 = pG′ almost surely. From

the first-order identifiability of {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω}, it implies that G′ ≡ G0,

which is a contradiction. This completes the proof.

2.6.2 The importance of boundedness conditions in the over-fitted setting

PROOF OF PROPOSITION 2.3.1 We choose Gn =
k0+1∑
i=1

pni δ(θni ,Σ
n
i ) ∈ Ok(Θ×Ω)

such that (θni ,Σ
n
i ) = (θ0

i ,Σ
0
i ) for i = 1, . . . , k0, θnk0+1 = θ0

1, Σn
k0+1 = Σ0

1 +
exp(n/r)

nα
Id2
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where α =
1

2β
. Additionally, pn1 = p0

1 − exp(−n), pni = p0
i for all 2 ≤ i ≤ k0, and

pnk0+1 = exp(−n). With this construction, we can check that W β
r (G,G0) = d

β/2
2 /
√
n.

Now, as h2(pGn , pG0) . V (pGn , pG0), we have

exp

(
2

W β
r (Gn, G0)

)
h2(pG, pG0) . exp

(
−n+

2
√
n

d
β/2
2

)
×∫

x∈X

|f(x|θ0
1,Σ

n
k0+1)− f(x|θ0

1,Σ
0
1)|dx,

which converges to 0 as n→∞. The conclusion of our proposition is proved.

2.6.3 Characterization of strong identifiability

PROOF OF THEOREM 2.3.4 Here, we only present the proof for part (a) and

part (b). The proofs for part (c) and (d) are somewhat similar and omitted.

(a) Assume that for given k ≥ 1 and k different pairs (θ1,Σ1,m1), . . . , (θk,Σk,mk), we

can find αj ∈ R, βj ∈ Rd, symmetric matrices γj ∈ Rd×d, and ηj ∈ R, for j = 1, . . . , k

such that:

k∑
j=1

αjf(x|θj,Σj,mj) + βTj
∂f

∂θ
(x|θj,Σj,mj) + tr

(
∂f

∂Σ
(x|θj,Σj,mj)

Tγj

)
+ηj

∂f

∂m
(x|θj,Σj,mj) = 0,

Substituting the first derivatives of f to get

k∑
j=1

{
α′j+

(
(β′j)

T (x− θj) + (x− θj)Tγ′j(x− θj)
)
×

[
(x− θj)TΣ−1

j (x− θj)
]mj−1

+ η′j log[(x− θj)TΣ−1
j (x− θj)]

}
×

exp

(
−
[
(x− θj)TΣ−1

j (x− θj)
]mj)

= 0, (2.11)

where
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α′j =

2αjmjΓ(d/2)−mjΓ(d/2) tr(Σ−1
j γj) + 2ηjΓ(d/2)

(
1− d

2mj

ψ

(
d

2mj

))
2πd/2Γ(d/(2mj))|Σj|1/2

,

β′j =
2m2

jΓ(d/2)

πd/2Γ(d/(2mj))|Σj|1/2
Σ−1
j βj, γ

′
j =

m2
jΓ(d/2)

πd/2Γ(d/(2mj))|Σj|1/2
Σ−1
j γjΣ

−1
j , and

η′j =
−mjηjΓ(d/2)

πd/2Γ(d/(2mj))|Σj|1/2
.

Without loss of generality, assume m1 ≤ m2 ≤ . . . ≤ mk. Let i ∈ [1, k] be the

maximum index such that m1 = mi. As the tuples (θi,Σi,mi) are distinct, so are the

pairs (θ1,Σ1), . . . , (θi,Σi). In what follows, we denote x = x1x
′ where x1 is scalar and

x′ ∈ Rd. Define

ai = (x′)Tγ′ix
′, bi =

[
(β′i)

T − 2θTi γ
′
i

]
x′, ci = θTi γ

′
iθi − (β′i)

T θi,

di = (x′)TΣ−1
i x′, ei = −2(x′)TΣ−1

i θi, fi = θTi Σ−1
i θi.

Borrowing a technique from Yakowitz and Spragins [1968], since (θ1,Σ1), . . . , (θi,Σi)

are distinct, we have two possibilities:

Possibility 1 If Σj are the same for all 1 ≤ j ≤ i, then θ1, . . . , θi are distinct. For

any i < j, denote ∆ij = θi− θj. Now, if x′ /∈
⋃

1≤i<j≤i

{
u ∈ Rd : uT∆ij = 0

}
, which is a

finite union of hyperplanes, then (x′)T θ1, . . . , (x
′)T θi are distinct. Hence, if we choose

x′ ∈ Rd lying outside this union of hyperplanes, we will have ((x′)T θ1, (x
′)TΣ1x

′), . . . ,

((x′)T θi, (x
′)TΣix

′) are distinct.

Possibility 2 If Σj are not the same for all 1 ≤ j ≤ i, then we assume with-

out loss of generality that Σ1, . . . ,Σm are the only distinct matrices from Σ1, . . . ,Σi,

where m ≤ i. Denote δij = Σi − Σj as 1 ≤ i < j ≤ m, then as x′ does not belong

to
⋃

1≤i<j≤m

{
u ∈ Rd : uT δiju = 0}, we will have (x′)TΣ1x

′, . . . , (x′)TΣmx
′ are distinct.

Therefore, if x′ does not belong to
⋃

1≤i<j≤m

{
u ∈ Rd : uT δiju = 0

}
, which is a finite
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union of conics, then we have ((x′)T θ1, (x
′)TΣ1x

′), . . . , ((x′)T θm,

(x′)TΣmx
′) are distinct. Additionally, for any θj where m+ 1 ≤ j ≤ i that shares the

same Σi where 1 ≤ i ≤ m, using the argument in the first case, we can choose x′ out-

side a finite hyperplane such that these (x′)T θj are again distinct. Hence, for x′ lying

outside a finite union of conics and hyperplanes, we have that ((x′)T θ1, (x
′)TΣ1x

′), . . . ,

((x′)T θi, (x
′)TΣix

′) are all different.

From these two cases, we can find a set D, which is a finite union of conics

and hyperplanes, such that as x′ /∈ D, ((x′)T θ1, (x
′)TΣ1x

′), . . . ((x′)T θi, (x
′)TΣix

′) are

distinct. Thus, (di, ei) are different as 1 ≤ i ≤ i.

Choose di1 = min
1≤i≤i

{di}. Denote J =
{

1 ≤ i ≤ i : di = di1
}

. Choose 1 ≤ i2 ≤ i

such that ei2 = max
i∈J
{ei}. Now, we define for all 1 ≤ i ≤ k that

Ai(x1) = α′i + (aix
2
1 + bix1 + ci)(dix

2
1 + eix1 + fi)

mi−1 +

η′i log(dix
2
1 + eix1 + fi).

Multiplying both sides of (2.11) with exp−(di2x
2
1 + ei2x1 + fi2)

mi2 , we get

Ai2(x1) +
∑
j 6=i2

Aj(x1) exp

[
(di2x

2
1 + ei2x1 + fi2)

mi2 −

(djx
2
1 + ejx1 + fj)

mj

]
= 0. (2.12)

Note that if j ∈ J\{i2}, dj = di2 , mj = mi2 , and ej > ei2 . So,

(di2x
2
1 + ei2x1 + fi2)

mi2 − (djx
2
1 + ejx1 + fj)

mj . −x1 as x1 is large enough.
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This implies that when x1 →∞,

B1(x1) :=
∑

j 6=J\{i2}

Aj(x1) exp

[
(di2x

2
1 + ei2x1 + fi2)

mi2 −

(djx
2
1 + ejx1 + fj)

mj

]
→ 0.

On the other hand, if j /∈ J and 1 ≤ j ≤ i, then dj > di2 and mi2 = mj. So,

(di2x
2
1 + ei2x1 + fi2)

mi2 − (djx
2
1 + ejx1 + fj)

mj . −x2mi2
1 as x1 is large.

This implies that when x1 →∞,

B2(x1) :=
∑
j /∈J,

1≤j≤i

Aj(x1) exp

[
(di2x

2
1 + ei2x1 + fi2)

mi2 −

(djx
2
1 + ejx1 + fj)

mj

]
→ 0.

Otherwise, if j > i, then mj > mi2 . So,

(di2x
2
1 + ei2x1 + fi2)

mi2 − (djx
2
1 + ejx1 + fj)

mj . −x2mj
1 .

As a result,

B3(x1) :=
∑
j>i

Aj(x1) exp

[
(di2x

2
1 + ei2x1 + fi2)

mi2 −

(djx
2
1 + ejx1 + fj)

mj

]
→ 0.
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Now, by letting x1 →∞,

∑
j 6=i2

Aj(x1) exp

[
(di2x

2
1 + ei2x1 + fi2)

mi2 − (djx
2
1 + ejx1 + fj)

mj

]
=

A1(x) + A2(x) + A3(x) → 0. (2.13)

Combining (2.12) and (2.13), we obtain that as x1 → ∞, Ai2(x1) → 0. The only

possibility for this result to happen is ai2 = bi2 = η′i2 = 0. Or, equivalently,

(x′)Tγ′i2x
′ =

[
(β′i)

T − 2θTi2γ
′
i2

]
x′ = 0. If γ′i2 6= 0, we can choose the element x′ /∈ D

lying outside the hyperplane
{
u ∈ Rd : uTγ′i2u = 0

}
. It means that (x′)Tγ′i2x

′ 6= 0,

which is a contradiction. Therefore, γ′i2 = 0. It implies that (β′i2)
Tx′ = 0. If β′i2 6= 0,

we can choose x′ /∈ D such that (β′i2)
Tx′ 6= 0. Hence, β′i2 = 0. With these results,

α′i2 = 0. Overall, we obtain α′i2 = β′i2 = γ′i2 = η′i2 = 0. Repeating the same argument

to the remaining parameters α′j, β
′
j, γ
′
j, η
′
j, we get α′j = β′j = γ′j = η′j = 0 for 1 ≤ j ≤ k.

It is also equivalent that αj = βj = γj = ηj = 0 for all 1 ≤ j ≤ k. This concludes the

proof of part (a) of our theorem.

(b) Consider that for given k ≥ 1 and k different pairs (θ1,Σ1), ..., (θk,Σk), where

θj ∈ Rd, Σj ∈ S++
d for all 1 ≤ j ≤ k, we can find αj ∈ R, βj ∈ Rd, and symmetric

matrices γj ∈ Rd×d such that:

k∑
j=1

αjf(x|θj,Σj) + βTj
∂f

∂θ
(x|θj,Σj) + tr(

∂f

∂Σ
(x|θj,Σj)

Tγj) = 0. (2.14)

Multiplying both sides with exp(itTx) and taking the integral in Rd, after direct
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calculations, the above equation can be rewritten as

k∑
j=1

[ ∫
Rd

(
α′j exp(i(Σ

1/2
j t)Tx)

(ν + ‖x‖2)(ν+d)/2
+

exp(i(Σ
1/2
j t)Tx)(β′j)

Tx

(ν + ‖x‖2)(ν+d+2)/2
+

exp(i(Σ
1/2
j t)Tx)xTMjx

(ν + ‖x‖2)(ν+d+2)/2

)
dx

]
exp(itT θj) = 0, (2.15)

where α′j = αj −
tr(Σ−1

j γj)

2
, β′j =

(ν + d)

2
Σ−1/2βj, and Mj =

ν + d

2
Σ
−1/2
j γjΣ

−1/2
j .

To simplify the left hand side of equation (2.15), it is sufficient to calculate the

following quantities A =

∫
Rd

exp(itTx)

(ν + ‖x‖2)(ν+d)/2
dx, B =

∫
Rd

exp(itTx)(β′)Tx

(ν + ‖x‖2)(ν+d+2)/2
dx, and

C =

∫
Rd

exp(itTx)xTMx

(ν + ‖x‖2)(ν+d+2)/2
dx, where β′ ∈ Rd and M = (Mij) ∈ Rd×d.

In fact, by using an orthogonal transformation x = O.z, where O ∈ Rd×d and its first

column to be (
t1
‖t‖ , ...,

td
‖t‖)T , we can verify that exp(itTx) = exp(i‖t‖z1), ‖x‖2 = ‖z‖2,

and dx = | det(O)|dz = dz and then we obtain the following results:

A =

∫
Rd

exp(i‖t‖z1)

(ν + ‖z‖2)(ν+d)/2
dz

=

∫
R

exp(i‖t‖z1)

∫
R

...

∫
R

1

(ν + ‖z‖2)(ν+d)/2
dzddzd−1...dz1

= C1A1(‖t‖),

where C1 =
d∏
j=2

∫
R

1

(1 + z2)(ν+j)/2
dz and A1(t′) =

∫
R

exp(i|t′|z)

(v + z2)(ν+1)/2
dz for any t′ ∈ R.

Hence, for all 1 ≤ j ≤ k

∫
Rd

exp(i(Σ
1/2
j t)Tx)

(ν + ‖x‖2)(ν+d)/2
dx = C1A1(‖Σ1/2

j t‖). (2.16)

59



Turning to B and C, by the same line of calculations we obtain

B =

(
d∑
j=1

Oj1β
′
j

)∫
Rd

exp(ittz1)z1

(ν + ‖z‖2)(ν+d+2)/2
dz

=

(
d∑
j=1

Oj1β
′
j

)
C2A2(‖t‖)

=
C2(β′)T tA2(‖t‖)

‖t‖ .

where C2 =
d∏
j=2

∫
R

1

(1 + z2)(ν+2+j)/2
dz and A2(t′) =

∫
R

exp(i|t′|z)z

(ν + z2)(ν+3)/2
dz for

any t′ ∈ R.

C = C3(
d∑
j=1

Mjj)A1(‖t‖) + (
∑
jl

MjlOj1Ol1)(C2A3(‖t‖)− C3A1(‖t‖))

= C3(
d∑
j=1

Mjj)A1(‖t‖) +
1

‖t‖2
(
∑
j,l

Mjltjtl)(C2A3(‖t‖)− C3A1(‖t‖)).

where we can define C3 =

∫
R

z2

(1 + z2)(ν+4)/2
dz

k∏
j=3

∫
R

1

(1 + z2)(ν+2+j)/2
dz and

A3(t′) =

∫
R

exp(i|t′|z)z2

(ν + z2)(ν+3)/2
dz for any t′ ∈ R. Thus, for all 1 ≤ j ≤ d

∫
Rd

exp(i(Σ
1/2
j t)Tx)(β′j)

Tx

(ν + ‖x‖2)(ν+d+2)/2
dx =

C2(β′j)
TΣ

1/2
j tA2(‖Σ1/2

j t‖)
‖t‖ . (2.17)

∫
Rd

exp(i(Σ
1/2
j t)Tx)xTMjx

(ν + ‖x‖2)(ν+d+2)/2
dx =

1

‖Σ1/2
j t‖2

(
∑
u,v

M j
uv[Σ

1/2
j t]u[Σ

1/2
j t]v)×

×(C2A3(‖Σ1/2
j t‖)− C3A1(‖Σ1/2

j t‖)) + C3(
d∑
l=1

M j
ll)A1(‖Σ1/2

j t‖), (2.18)

where M j
uv indicates the element at u-th row and v-th column of Mj and [Σ

1/2
j t]u
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simply means the u-th component of Σ
1/2
j t.

As a consequence, by combining (2.16),(2.17), and (2.18), we can rewrite (2.15) as:

k∑
j=1

[
α′jA1(‖Σ1/2

j t‖) + C2

(Σ
1/2
j t)Tβ′j

‖Σ1/2
j t‖

A2(‖Σ1/2
j t‖) +

C3(
d∑
l=1

M j
ll)A1(‖Σ1/2

j t‖) +

(∑
u,v

M j
uv

[Σ
1/2
j t]u[Σ

1/2
j t]v

‖Σ1/2
j t‖2

)
(C2A3(‖Σ1/2

j t‖) −

C3A1(‖Σ1/2
j t‖))

]
exp(itT θj) = 0.

Define t = t1t
′, where t1 ∈ R and t′ ∈ Rd. By using the same argument as

in the case of the multivariate generalized Gaussian distribution, we can find D

to be the finite union of conics and hyperplanes such that as t′ /∈ D, we have

((t′)T θ1, (t
′)TΣ1t

′), ...((t′)T θk, (t
′)TΣkt

′) are pairwise distinct. By denoting θ′j = (t′)T θj,

σj = (t′)TΣjt
′, we can rewrite the above equation as:

k∑
j=1

[
α′jA1(σj|t1|) + C2

t1(Σ
1/2
j t′)Tβ′j
|t1|σj

A2(σj|t1|) + C3(
d∑
l=1

M j
ll)A1(σj|t1|) +

(∑
u,v

M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

)
(C2A3(σj|t1|)− C3A1(σj|t1|)

]
exp(iθ′jt1) = 0.

Since A2(σj|t1|) = (i|t1|)A1(σj|t1|), the above equation can be rewritten as:

k∑
j=1

[(
α′j + C3(

d∑
l=1

M j
ll)− C3

(∑
u,v

M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

))
| ×

×A1(σj|t1|) + C2

(∑
u,v

M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

)
A3(σj|t1|) +

C2(it1)
(Σ

1/2
j t′)Tβ′j
σj

A1(σj|t1|)
]

exp(iθ′jt1) = 0. (2.19)

As ν is an odd number, we assume ν = 2l− 1. By using a classical result in complex
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analysis, we obtain for any m ∈ N that

+∞∫
−∞

exp(i|t1|z)

(z2 + ν)m
dz =

2π exp(−|t1|
√

2l − 1)

(2
√

2l − 1)2m−1

[
m∑
j=1

(
2m− 1− j
m− j

)
(2|t1|

√
2l − 1)j−1

(j − 1)!

]
.

It means that we can write A1(t1) = C4 exp(−|t1|
√

2l − 1)
l−1∑
u=0

au|t1|u, where C4 =

2π

(2
√

2l − 1)2l−1
, au =

(
2l − u− 2

l − u− 1

)
(2
√

2l − 1)u

u!
.

Simultaneously, as A3(t1) = A1(t1)− ν
∫
R

exp(i|t1|z)

(ν + z2)(ν+3)/2
dz, we can write

A3(t1) = C4 exp(−|t1|
√

2l − 1)
l∑

u=0

bu|t1|u,

where bu =

[(
2l − u− 2

l − u− 1

)
− 1

4

(
2l − u
l − u

)]
(2
√

2l − 1)u

u!
as 0 ≤ u ≤ l − 1, and bl =

−1

4

(2
√

2l − 1)l

l!
. It is not hard to notice that a0, al−1, bl 6= 0.

Now, for all t1 ∈ R, equation (2.19) can be rewritten as:

k∑
j=1

[(
α
′′

j + β
′′

j (it1)
) l−1∑
u=0

auσ
u
j |t1|u + γ

′′

j

l∑
u=0

buσ
u
j |t1|u

]
×

exp
(
itθ′j − σj

√
2l − 1|t1|

)
= 0,

where we have α
′′
j = α′j+C3(

d∑
l=1

M j
ll)−C3(

∑
u,v

M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

), β
′′
j = C2

(Σ
1/2
j t′)Tβ′j
σj

,

and γ
′′
j = C2(

∑
u,v

M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

). The above equation yields that for all t1 ≥ 0

k∑
j=1

[(
α
′′

j + β
′′

j (it1)
) l−1∑
u=0

auσ
u
j t
u
1 + γ

′′

j

l∑
u=0

buσ
u
j t
u
1

]
×

exp
(
it1θ

′
j − σj

√
2l − 1t1

)
= 0. (2.20)
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Using the Laplace transformation on both sides of (2.20) and denoting cj = σj
√

2l − 1−

iθ′j as 1 ≤ j ≤ k, we obtain that as Re(s) > max
1≤j≤k

{
−σj
√

2l − 1
}

k∑
j=1

α
′′

j

l−1∑
u=0

u!auσ
u
j

(s+ cj)u+1
+ iβ

′′

j

l∑
u=1

u!au−1σ
u−1
j

(s+ cj)u+1
+

γ
′′

j

l∑
u=0

u!buσ
u
j

(s+ cj)u+1
= 0. (2.21)

Without loss of generality, we assume that σ1 ≤ σ2 ≤ ... ≤ σk. It demonstrates

that −σ1

√
2l − 1 = max

1≤j≤k

{
−σj
√

2l − 1
}

. Denote aju = auσ
u
j and bju = buσ

u
j for all

u. By multiplying both sides of (2.21) with (s + c1)l+1, as Re(s) > −σ1

√
2l − 1 and

s → −c1, we obtain |iβ ′′1 l!a1
l−1 + γ

′′
1 bll!b

1
l | = 0 or equivalently β

′′
1 = γ

′′
1 = 0 since

a1
l−1, b

1
l 6= 0. Likewise, multiply both sides of (2.21) with (s+ c1)l and using the same

argument, as s → −c1, we obtain α
′′
1 = 0. Overall, we obtain α

′′
1 = β

′′
1 = γ

′′
1 = 0.

Continue in this fashion until we get α
′′
j = β

′′
j = γ

′′
j = 0 for all 1 ≤ j ≤ k or

equivalently αj = βj = γj = 0 for all 1 ≤ j ≤ k.

As a consequence, for all 1 ≤ j ≤ k, we have

α′j + C3(
d∑
l=1

M j
ll)− C3(

∑
u,v

M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

) = 0,
(Σ

1/2
j t′)Tβ′j
σj

= 0,

and
∑
u,v

M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

= 0. Since we have

∑
u,v

M j
uv[Σ

1/2
j t′]u[Σ

1/2
j t′]v = (t′)TΣ

1/2
j MjΣ

1/2
j t′ = (t′)Tγjt

′,

it is equivalent that

α′j + C3(
d∑
l=1

M j
ll) = 0, (t′)TΣ

1/2
j β′j = 0, and (t′)Tγjt

′ = 0.
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By the same argument as that of part (a), we readily obtain that α′j = 0, β′j =

0 ∈ Rd, and γj = 0 ∈ Rd×d. From the formation of α′j, β
′
j, it follows that αj = 0,

βj = 0 ∈ Rd, and γj = 0 ∈ Rd×d for all 1 ≤ j ≤ k. We achieve the conclusion of part

(b) of our theorem.
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CHAPTER III

Convergence rates of parameter estimation for

some weakly identifiable finite mixtures

We establish minimax lower bounds and maximum likelihood convergence rates

of parameter estimation for mean-covariance multivariate Gaussian mixtures, shape-

rate Gamma mixtures, and some variants of finite mixture models, including the

setting where the number of mixing components is bounded but unknown. These

models belong to what we call ”weakly identifiable” classes, which exhibit specific

interactions among mixing parameters driven by the algebraic structures of the class

of kernel densities and their partial derivatives. Accordingly both the minimax bounds

and the maximum likelihood parameter estimation rates in these models, obtained

under some compactness conditions on the parameter space, are shown to be typically

much slower than the usual n−1/2 or n−1/4 rates of convergence.1

3.1 Introduction

Location-scale Gaussian mixtures are one of the most widely utilized modeling

tools in statistics. Shape-rate Gamma mixtures are also a useful modeling choice

for non-negative valued data. Yet convergence behaviors of the parameters arising

1This work has been published in [Ho and Nguyen, 2016a].
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in these model classes remain largely open questions [Lindsay, 1995, McLachlan and

Basford, 1988, DasGupta, 2008]. We seek to address these questions in this chapter.

For finite mixtures of Gaussians, some facts are known when only one type of

parameter varies (such as the mean/location or the variance/scale but not both).

Specifically, if the number of mixing components generating the data is given, then

the optimal rate of parameter estimation is the standard n−1/2, where n is the sam-

ple size. If the number of mixing components is unknown but bounded by a known

constant, then the convergence rate n−1/4 for estimating the mixing distribution is

achieved by a procedure established by [Chen, 1995]. For multi-dimensional parame-

ters, the (log n/n)1/4 rate of posterior concentration of the mixing distribution was es-

tablished by [Nguyen, 2013], under Wasserstein distance W2. [Ho and Nguyen, 2016c]

extended the results of Chen [1995] and Nguyen [2013] to a broader range of strongly

identifiable models, which admit general rates for the mixing measure under maxi-

mum likelihood estimation (MLE): (log n/n)1/2 for exact-fitted mixtures under W1

metric, and (log n/n)1/4 for over-fitted finite mixtures under W2 metric.

Strong identifiablity and related notions, as studied by Chen [1995], Nguyen [2013]

and several others (e.g., [Liu and Shao, 2004, Rousseau and Mengersen, 2011]), refers

to a linear independence condition on the class of kernel density functions and their

first and second-order partial derivatives with respect to the parameters. It is fruit-

ful to delineate this condition further: first-order identifiability requires linear in-

dependence of the density functions and their first-order derivatives; second-order

identifiability requires linear independence of the density functions and their partial

derivatives up to the second order [Ho and Nguyen, 2016c]. The classical identifiabil-

ity condition — linear independence of the class of density functions — corresponds

to zero-order identifiability. Gaussian mixtures with both the mean and covariance

parameters varying are identifiable up to the first order, but not in the second-order.

Gamma mixtures are not identifiable even in the first-order, despite being identifiable
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in the classical sense. In each of these examples, the violation of such identifiability

conditions is due to a specific interaction among different parameters being present

in the model class. Such interactions are driven by specific algebraic structures of the

class of kernel densities and their partial derivatives. They can be succinctly expressed

by certain partial differential equations satisfied by the kernel density function.

We shall informally refer to those finite mixture models weakly identifiable if they

fail either the first or second-order identifiability condition, but otherwise are iden-

tifiable in the classical sense. Most relevant existing works on the asymptotics of

parameter estimation (e.g., Chen [1995], Nguyen [2013], Ho and Nguyen [2016c]) con-

cern only the settings of strong identifiability, and thus quite inapplicable to weakly

identifiable classes. In fact, for such model classes the standard rates of convergence

n−1/2 and n−1/4 (modulo a logarithmic term) no longer hold in general — the rates

that we establish in this chapter are non-standard, and new. For instance, we shall

show that for a location-scale Gaussian mixture where the number of mixing com-

ponents is unknown and bounded by a constant, a minimax lower bound and the

MLE convergence rate for estimating the mixing measure depend on how much we

potentially overfit the model: the estimation rate is n−1/8 under the 4th order Wasser-

stein distance W4, if overfitting by one extra component; n−1/12 under the 6th order

Wasserstein distance W6 if overfitting by two extra components. All these rates occur

while the MLE convergence rate of the mixture density remains to be n−1/2. Remark-

ably, for Gamma and some other mixtures, the minimax lower bound for estimating

the mixing measure is shown to be worse than any polynomial rate of the form n−1/r

even when the number of mixing components is known.

In the special case of overfitting location-scale Gaussian mixtures by one extra

component, the poor convergence rate for parameter estimation has been noted before

by several authors. Most notably, Chen and Chen [2003] established the convergence

rate n−1/8 of the mixing distribution under a hypothesis testing for homogeneity.
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Kasahara and Shimotsu [Kasahara and Shimotsu, 2014b] also achieved the rate n−1/8

of MLE of finite normal regression mixtures (overfitted by one more component) when

parameters are reparameterized and mixing proportions are restricted to be bounded

away from zero. We are not aware of existing work on Gamma mixtures.

3.1.1 Main results for Gaussian mixtures

Given an n-iid sample X1, . . . , Xn generated according to a Gaussian mixture den-

sity pG0(x) =

∫
f(x|θ,Σ)G0(dθ, dΣ), whereG0 =

k0∑
i=1

p0
i δ(θ0i ,Σ

0
i )

has k0 ≥ 1 distinct sup-

port points. The class of Gaussian densities is denoted by
{
f(x|θ,Σ), θ ∈ Θ ⊂ Rd,Σ ∈

Ω ⊂ S++
d

}
, where S++

d indicates the set of all symmetric positive definite matrices

on Rd×d and d ≥ 1. Throughout this chapter, Θ and Ω shall be restricted to be

compact subsets where their precise formations are given in our main theorems. (We

note that without these compactness conditions, the MLE of G0 may not exist or

be inconsistent.) Now, we shall fit a mixture of k Gaussian distributions using the

n-sample, where k ≥ k0 + 1. Denote by Ok := Ok(Θ × Ω) the set of probability

measures on Θ × Ω with at most k support points, Ek0 := Ek0(Θ × Ω) the set of

probability measures on Θ × Ω with exactly k0 support points. In addition, given

c0 ∈ [0, 1), define a subset of Ok,

Ok,c0 :=

{
G =

k∗∑
i=1

piδ(θi,Σi) ∈ Ok : pi ≥ c0 ∀ 1 ≤ i ≤ k∗

}
.

Let Ĝn be an estimate of G0. We seek to derive the rate of convergence of Ĝn to

G0 under a number of settings. For evaluating the convergence of mixing measures,

Wasserstein distances have proved to be a natural choice [Nguyen, 2013, 2016]. Given

two discrete probability measures G =
k∑
i=1

piδ(θi,Σi) and G′ =
k′∑
i=1

p′iδ(θ′i,Σ
′
i)

on Θ × Ω,

recall that the s-th (s ≥ 1) order Wasserstein distance between G and G′ takes the

68



form [Villani, 2009]:

Ws(G,G
′) =

(
inf
∑
i,j

qij(‖θi − θ′j‖+ ‖Σi − Σ′j‖)s
)1/s

,

where the infimum is taken over all couplings q between p and p′, i.e., q = (qij)ij ∈

[0, 1]k×k
′

such that
k∑
i=1

qij = p′j and
k′∑
j=1

qij = pi for any i = 1, . . . , k and j = 1, . . . , k′.

In addition, ‖.‖ denotes either the `2 norm for elements in Rd or the entrywise `2

norm for matrices.

To see how a convergence rate in Wasserstein distance Ws is translated to that of

the parameters, suppose that a sequence of mixing measures Gn tending to G0 under

Ws metric at a rate ωn = o(1). If all Gn have the same number of atoms k = k0

as that of G0, then the set of atoms of Gn converge to the k0 atoms of G0, up to a

permutation of the atoms, at the same rate ωn under ‖ · ‖ metric. If Gn have varying

kn ∈ [k0, k] number of atoms, where k is a fixed upper bound, then a subsequence of

Gn can be constructed so that each atom of G0 is a limit point of a certain subset

of atoms of Gn — the convergence to each such limit also happens at rate ωn. Some

atoms of Gn may have limit points that are not among G0’s atoms — the total mass

associated with those “redundant” atoms of Gn must vanish at the generally faster

rate ωsn.

For over-fitted Gaussian mixtures with both mean and variance varying, a main

result of this chapter is to show that the rate of convergence of the mixing measure

is determined by the order of a set of polynomial equations, which we now describe

precisely. Denote by r ≥ 1 the minimum value of r ≥ 1 such that the following

system of polynomial equations

k−k0+1∑
j=1

∑
n1,n2

c2
ja
n1
j b

n2
j

n1!n2!
= 0 for each α = 1, . . . , r (3.1)
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does not have any non-trivial solution for the unknowns (aj, bj, cj)
k−k0+1
j=1 . The ranges

of n1, n2 in the second sum are all natural pairs satisfying n1 + 2n2 = α. A solution

is considered non-trivial if all of cjs are non-zeros, while at least one of the ajs is

non-zero.

Theorem 3.1.1. (Gaussian mixtures) Let L, γ, λ < λ be fixed positive numbers.

Given Θ = [−an, an]d where an ≤ L(log n)γ, and Ω be a subset of S++
d whose eigen-

values are bounded in an interval [λ, λ].

(a) (Minimax lower bound) For any r < 2r,

inf
Ĝn∈Ok

sup
G∈Ok\Ok0

EpG W1(Ĝn, G) ≥ c1n
−1/r.

Here, the infimum is taken over all sequences of estimates Ĝn ranging in Ok,

EpG denotes the expectation taken with respect to product measure with mixture

density pnG, c1 is a universal positive constant.

(b) (Maximum likelihood estimation) Let c0 = 0 if k − k0 = 1 or 2, and c0 > 0

otherwise. Assume that G0 ∈ Ok,c0 and let Ĝn be the MLE ranging in Ok,c0.

Then,

P(Wr(Ĝn, G0) > C(log n/n)1/2r) . exp (−c log n) .

Here, probability P is taken with respect to pG0. C, c are positive constants

depending only on d, L, γ, λ, λ, c0 and G0.

Part (a) of Theorem 3.1.1 establishes a minimax lower bound for estimating mixing

measure G under W1 distance. Noting the general inequality Wr ≥ W1, this lower

bound obviously also holds for Wr. In words, when the number of mixing components

is unknown except that it lies in the interval [k0, k], then there is no method for

estimating G at a rate better than n−1/(2r), uniformly for all G ∈ Ok \Ok0 . The proof

actually obtains something stronger: the lower bound holds uniformly for any fixed or
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suitably shrinking W1 neighborhood in Ok of any G0 ∈ Ek0 . Part (b) of Theorem 3.1.1

establishes that, under the compactness of the parameter spaces Θ,Ω, the rate n−1/(2r)

can be achieved, up to a logarithmic term log n, by maximum likelihood estimation.

We wish to emphasize that this is a pointwise convergence rate, i.e., constant C

depends on G0. For a fixed G0, we do not know if the upper bound n−1/(2r) of the

convergence rate for the MLE may still be improved without additional assumptions

or not. As a consequence of part (a), the upper bound n−1/(2r) is sharp in the sense

that it cannot be improved uniformly for any W1 neighborhood for G0.

The link of the estimation rate for location-scale Gaussian mixtures to the solv-

ability of the system of polynomial equations (4.24) established by the above theorem

is rather striking, as it describes precisely the hardness of parameter estimation in

over-fitted situations. Determining the solvability of a system of polynomial equa-

tions is a basic question in (computational) algebraic geometry. For system (4.24),

there does not seem to be an obvious answer as to the general value of r. Since the

number of variables in this system is 3(k − k0 + 1), one expects that r keeps increas-

ing as k − k0 increases. Using a standard method of Groebner bases [Buchberger,

1965], we can show that for k − k0 = 1 and 2, r = 4 and 6, respectively. In addition

if k − k0 ≥ 3, then r ≥ 7. Thus, the convergence rate of the mixing measure for

Gaussian mixtures deteriorates rapidly as more extra components are included in the

model. We expect, but do not have a proof, that the value r in the rate n−1/2r tends

to infinity as the number of redundant Gaussian components increases to infinity. We

note several recent results at the other end of the rate spectrum: when the number of

mixing components is unbounded (infinite), the convergence rate of the mixing mea-

sure under W2 is shown to be (log n)−1/2 for the location Gaussian mixtures [Caillerie

et al., 2011, Nguyen, 2013]. This rate may also resonate with some classical results

in the deconvolution literature (e.g. [Zhang, 1990, Fan, 1991]), but one should be

reminded that these classical results are applicable to only location mixtures carry-
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ing smooth mixing densities. Interestingly, although the convergence rate of mixing

measures in over-fitted finite mixtures may be poor, if one is interested in mixing pro-

portions only, it follows from the previous discussion of Wasserstein distance Wr that

the rate (n−1/(2r))r = n−1/2 is still achieved by the MLE. This rate is also obtained

by a Bayesian estimation procedure studied by [Rousseau and Mengersen, 2011].

3.1.2 Results for other weakly identifiable classes

We now briefly describe other model classes studied in this chapter. Gamma

densities represent an interesting instance: the Gamma density f(x|a, b) has two

positive parameters, a for shape and b for rate. This family is not identifiable in the

first order. Moreover, we will show that there are particular combinations of the true

parameter values which prevent the Gamma class from enjoying strong convergence

properties. One the other hand, by excluding the measure-zero set of pathological

cases of true mixing measures, the Gamma density class in fact can be shown to be

strongly identifiable in both orders. Thus, this class is almost strongly identifiable,

using the terminology of [Allman et al., 2009]. The generic/pathological dichotomy in

the convergence behavior within the Gamma class is quite interesting: in the generic

case of true mixing measures, the mixing measure can be estimated at the standard

rate (i.e., n−1/2 under W1 for exact-fitted and n−1/4 under W2 for over-fitted mixtures).

The pathological cases are very unforgiving: even for exact-fitted mixtures, one can

do no better than a logarithmic rate of convergence in a minimax sense.

Let some readers wonder whether this unusually slow rate for the exact-fitted

mixture setting can happen only in the measurably negligible (pathological) cases,

we also introduce a location-extension of the exponential distribution, the location-

exponential class: f(x|θ, σ) := 1
σ

exp(−x−θ
σ

)1(x > θ). We show that the minimax

lower bound for estimating the mixing measure in an location-exponentials is no

faster than a logarithmic rate, even when the number of mixing component is known.
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Practical implications In theory, mixture models enjoy strong asymptotic proper-

ties as a black-box modeling device for density estimation, see Genovese and Wasser-

man [2000], Ghosal and van der Vaart [2001], Rousseau [2010], Kruijer et al. [2010]

and the references therein. In practice, the parameters specific to each mixing com-

ponents may carry useful information about the heterogeneity among the underlying

(latent) subpopulations. Thus, understanding the statistical efficiency of parameter

estimation in mixture modeling is also relevant from a practical standpoint. Prob-

lematic convergence behaviors exhibited by widely utilized models such as Gaussian

mixtures may have long been observed in practice, but a concrete theory has been

largely unavailable. The results established in this chapter present a cautionary tale

about the limitation of Gaussian mixtures, when it comes to assessing the quality of

parameter estimation, but only when the number of mixing components is unknown.

Since a tendency in practice is to ”over-fit” the mixture generously with many more

extra mixing components, our theory warns against this because as we have shown, the

convergence rate via standard methods such as MLE for subpopulation-specific pa-

rameters deteriorates rapidly with the number of redundant components. For Gamma

and location-exponential distribution, our theory also paints wildly varied convergence

behaviors within each model class and thus a similarly extreme caution. We hope

that the theoretical results obtained may hint at practically useful ways for determin-

ing benign scenarios and imposing helpful constraints when the mixture models enjoy

strong identifiability properties and favorable convergence rates, and for identifying

pathological scenarios where the practioners would do well by avoiding them.

Chapter organization Section 3.2 is devoted to the proof of the results for Gaus-

sian mixture models. Section 3.3 investigates Gamma mixtures and a location exten-

sion of exponential distribution. The theoretical bounds are illustrated via simulations

in Section 3.4. Remaining proofs are given in Section 3.5.
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Notation In addition to Wasserstein distances for mixing measures, we also utilize

several familiar notions of distance for mixture densities, with respect to Lebesgue

measure. They are total variation distance V (pG, pG′) =
1

2

∫
|pG(x)− pG′(x)|dµ(x)

and Hellinger distance h2(pG, pG′) =
1

2

∫ (√
pG(x)−

√
pG′(x)

)2

dµ(x).

3.2 Proof of main results for Gaussian mixtures

This section is devoted to proving Theorem (3.1.1). This theorem addresses only

over-fitted Gaussian mixtures, i.e., when the true number of mixing components is

bounded but otherwise unknown. If the number of mixing Gaussian components is

known, it was already shown that the rate of estimating the mixing measure G is the

standard rate n−1/2 under W1 metric [Ho and Nguyen, 2016c]. This is due to the fact

that the class of Gaussian densities with both mean and covariance parameters varying

is identifiable in the first order. However, the Gaussian family is not identifiable in the

second order — that is to say that the collection of Gaussian density functions and

their partial derivatives up to the second order taken with respect to the mean and

covariance parameters are not linearly independent. This can be seen by the following

identity, which represents a partial differential equation satisfied by Gaussian density

f(x|θ,Σ):

∂2f

∂θ2
(x|θ,Σ) = 2

∂f

∂Σ
(x|θ,Σ). (3.2)

This identity, also noted previously by Chen and Chen [2003], Kasahara and Shimotsu

[2014b], will play a fundamental role in our proof of Theorem (3.1.1).

3.2.1 On the order r

Before proceeding to the proof of the theorem, let us briefly discuss some properties

of r as defined in (4.24). This is a system of r polynomial equations with 3(k−k0 +1)

unknowns. The condition c1, . . . , ck−k0+1 6= 0 is important. In fact, if c1 = 0, then by
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choosing a1 6= 0, ai = 0 for all i = 2, . . . , k−k0+1 and bj = 0 for all j = 1, . . . , k−k0+1,

we can check that system (4.24) is satisfied for all α ≥ 1. Therefore, without this

condition, r does not exist.

To illustrate the possible values of r, let us consider the case k = k0 + 1, and let

r = 3. System (4.24) reduces to the equations:

c2
1a1 + c2

2a2 = 0

1

2
(c2

1a
2
1 + c2

2a
2
2) + c2

1b1 + c2
2b2 = 0

1

3!
(c2

1a
3
1 + c2

2a
3
2) + c2

1a1b1 + c2
2a2b2 = 0.

It is simple to see that a non-trivial solution exists, by choosing c2 = c1 6= 0, a1 =

1, a2 = −1, b1 = b2 = −1/2. Hence, r ≥ 4. For r = 4, the system consists of the three

equations given above, plus

1

4!
(c2

1a
4
1 + c2

2a
4
2) +

1

2!
(c2

1a
2
1b1 + c2

2a
2
2b2) +

1

2!
(c2

1b
2
1 + c2

2b
2
2) = 0.

It will be shown in the sequel that this system has no non-trivial solution. Therefore

for k = k0 + 1, we have r = 4.

Determining the exact value of r in the general case appears quite challenging.

For the specific value of k − k0, one can find r — there are well-developed methods

in computational algebra for dealing with this type of polynomial equations, such

as Groebner bases [Buchberger, 1965] and resultants [Sturmfels, 2002]. Using the

Groebner bases method, we shall show in Section 3.5 that

Proposition 3.2.1. r = 4 if k = k0 + 1, r = 6 if k = k0 + 2. If k ≥ k0 + 3, then

r ≥ 7.
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3.2.2 Discussion of conditions in Theorem 3.1.1

The main conditions in the statement of Theorem 3.1.1 are concerned with com-

pactness and boundedness of the mixture model’s parameters, including the param-

eters of mixing components, and the parameters for mixing probabilities.

The parameters of mixing components lie in Ω and Θ. Compactness conditions

for Ω and Θ are required for three reasons. First, the compactness of Ω is impor-

tant in guaranteeing that the likelihood function is bounded. Indeed, if the smallest

eigenvalue of the covariance parameter is not bounded below or the largest eigen-

value of the covariance parameter is not bounded above, the likelihood function will

become unbounded [Day, 1969, Hathaway, 1985, Chen and Li, 2009]. Second, the

compactness of Θ and Ω are also crucial in obtaining upper bounds of the (bracket)

entropies that we need for Lemma 3.2.1. Such bounds yield convergence rate n−1/2,

up to logarithmic factor, for the convergence of mixture density pG under Hellinger

distance. Third, and most importantly, these compactness assumptions are required

in establishing the lower bounds of Hellinger distance of mixture densities in terms of

Wasserstein distance of mixing measures (cf. Proposition 3.2.2), thereby allowing us

to translate the convergence rate of the mixture density into that of the correspond-

ing mixing measure. Our proof technique hinges upon the compactness conditions.

As pointed out by the referees, one may be able to relax somewhat the compactness

assumptions by penalizing the likelihood function appropriately [Chen et al., 2008,

Chen and Tan, 2009]. While the first two issues discussed above may still be ad-

dressed, the third issue will require a substantially new proof technique; moreover,

the rate of convergence will be likely different.

It is required in part (b) of the theorem that Ĝn range in Ok,c0 , where c0 > 0

when k − k0 ≥ 3. This requirement is sufficient for establishing the bound in part

(b) of Proposition 3.2.2. A consequence of this requirement is that it prevents the

Fisher matrix at the masses from being degenerate [Chen and Li, 2009, Chen et al.,
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2012, Kasahara and Shimotsu, 2014b]. As such, this condition is also crucial in

obtaining the asymptotic distribution of parameter estimates. We note, however,

that this requirement may not be necessary for the purpose of establishing rates of

parameter estimation. In fact, when the Gaussian mixture is overfitted by at most

two components, i.e., 1 ≤ k−k0 ≤ 2, it will be demonstrated by Proposition 3.2.3 that

this requirement can be removed (by letting c0 = 0) without affecting the conclusion

of the theorem.

3.2.3 Sharp identifiability bounds

A central ingredient in the proof of Theorem 3.1.1 are sharp inequalities which re-

late the distance of two Gaussian mixture densities to a Wasserstein distance between

corresponding mixing measures. Let V (pG, pG0) denote the variational distance, and

h(pG, pG0) the Hellinger distance of pG and pG0 . The order r enters the following

bounds in an essential way:

Proposition 3.2.2. Let r be defined as above, and G0 ∈ Ek0 ∩Ok0,c0 for some c0 > 0.

(a) For any 1 ≤ r < r, there holds:

lim
ε→0

inf
G∈Ok

{
h(pG, pG0)/W

r
1 (G,G0) : W1(G,G0) ≤ ε

}
= 0.

(b) For any G ∈ Ok,c0 such that Wr(G,G0) is sufficiently small, there holds:

h(pG, pG0) ≥ V (pG, pG0) & W r
r (G,G0) ≥ W r

1 (G,G0).

The proof of this proposition is deferred to Section 3.5. We make several remarks.

(i) In part (a) the ratio h/W r
1 is set to ∞ if W1 = 0. In part (b), the multilying

constant in & bound depends only on G0.
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(ii) Part (a) and part (b) together show that W r
r (G,G0) is the sharp lower bound

for the distance of mixture densities V (pG, pG0). In particular, we cannot have

V & W r
1 for any r < r.

(iii) In part (b), G is restricted to a subset of Ok, i.e., set Ok,c0 , which places a lower

bound constraint on the mixing probability mass. This restriction seems to be

an artifact of our proof technique. It can be removed completely with some

extra hard work, at least for the case k − k0 ≤ 2, as follows:

Proposition 3.2.3. Let k − k0 = 1 or 2. Fix G0 ∈ Ek0. For any G ∈ Ok such that

Wr(G,G0) is sufficiently small, we have V (pG, pG0) & W r
r (G,G0).

The proof of Proposition 3.2.3 is deferred to Section 3.5.3. Given the two propositions

above, we can now complete the proof of Theorem 3.1.1.

3.2.4 Proof of Theorem 3.1.1

(a) The proof of this part follows from the same argument as that of Lemma

1 of Yu [1997] for establishing minimax lower bounds. Fix r < r and G0 ∈ Ek0 .

Let C0 > 0 be any fixed constant. According to part (a) of Proposition 3.2.2, for

any sufficiently small ε > 0, there exists G′0 ∈ Ok such that W1(G0, G
′
0) = 2ε and

h(pG0 , pG′0) ≤ C0ε
r. Take any sequence of estimates Ĝn ranging in Ok, we have

2 max
G∈{G0,G′0}

EpG W1(Ĝn, G) ≥ EpG0
W1(Ĝn, G0) + EpG′0

W1(Ĝn, G
′
0),

where EpG0
(resp. EpG′0

) denotes the expectation taken with respect to the product

measure with density pnG0
(pnG′0

). By the triangle inequality, W1(Ĝn, G0)+W1(Ĝn, G
′
0) ≥

W1(G0, G
′
0) = 2ε. Thus,

EpG0
W1(Ĝn, G0) + EpG′0

W1(Ĝn, G
′
0) ≥ 2ε inf

f1,f2

(
EpG0

f1 + EpG′0
f2

)
,
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where the infimum is taken over all measurable nonnegative functions f1 and f2

defined in terms of n arguments X1, . . . , Xn, subject to the constraint that f1 + f2 =

1. From the definition of the variational distance, the infimum value in the above

expression is equal to (1− V (pnG0
, pnG′0

)). Hence,

max
G∈{G0,G′0}

EpG W1(Ĝn, G) ≥ ε
(

1− V (pnG0
, pnG′0)

)
.

Now, due to the general relationship between variational distance and Hellinger dis-

tance, i.e., V ≤ h, and by our construction that h(pG0 , pG′0
) ≤ C0ε

r, we have

V (pnG0
, pnG′0) ≤ h(pnG0

, pnG′0)

=
√

1−
(
1− h2(pG0 , pG′0)

)n
≤

√
1− (1− C2

0ε
2r)

n
.

As a result,

max
G∈{G0,G′0}

EpG W1(Ĝn, G) ≥ ε

(
1−

√
1− (1− C2

0ε
2r)

n

)
.

By choosing ε2r =
1

C2
0n

, the right hand side of the above inequality is bounded below

by c1ε � n−1/2r for any r < r where c1 is some positive universal constant. Noting

that G0, G
′
0 ∈ Ok \ Ok0−1, this concludes the proof for part (a).

(b) The proof follows from combining the result of part (b) of Proposition 3.2.2

with a standard result on convergence of density estimation via MLE, from [van de

Geer, 2000]. To draw from the later, we first recall some additional standard notation

from the empirical process theory literature (which after this proof will unfortunately

not be needed for the rest of the chapter). Let Θ∗ = Θ×Ω, Pk(Θ∗) = {pG|G ∈ Ok}.

Let N(ε,Pk(Θ∗), ‖ · ‖∞) denote the covering number of the metric space (Pk(Θ∗), ‖ ·

‖∞), and HB(ε,Pk(Θ∗), h) the bracketing entropy of Pk(Θ∗) under Hellinger distance
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metric h. Put P k(Θ
∗) =

{
pG+G0

2
: G ∈ Ok

}
and P1/2

k (Θ∗) =
{
f 1/2|f ∈ Pk(Θ∗)

}
. For

any δ > 0, denote the intersection of a Hellinger ball centered at pG0 and P1/2

k (Θ∗)

as:

P1/2

k (Θ∗, δ) =
{
f 1/2 ∈ P1/2

k (Θ∗)|h(f, pG0) ≤ δ
}
.

The size of this set is captured by the entropy integral:

JB(δ,P1/2

k (Θ∗, δ), µ) =

δ∫
δ2/213

H
1/2
B (u,P1/2

k (Θ∗, u), µ)du ∨ δ,

where µ denotes Lebesgue measure. Since P1/2

k (Θ∗, u) ⊂ P1/2

k (Θ∗), for any u > 0,

HB(u,P1/2

k (Θ∗, u), L2(µ)) ≤ HB(u,P1/2

k (Θ∗), L2(µ)) (3.3)

= HB(u/
√

2,Pk(Θ∗), h),

where the identity is immediate from relationship between the Hellinger distance

metric and L2(µ).

Note that for any two mixing measures G1, G0, p(G1+G0)/2 = (pG1 + pG0)/2. Note

also the fact that for any probability densities f0, f1, f2 defined on the same space,

h2((f1 + f0)/2, (f2 + f0)/2) ≤ h2(f1, f2)/2 (cf. Lemma 4.2 van de Geer [2000]). So,

for any two mixing measures G1, G2 ∈ Ok, we have

h2(pG1+G0
2

, pG2+G0
2

) ≤ h2(pG1 , pG2)/2.

This inequality yields HB(u/
√

2,Pk(Θ∗), h) ≤ HB(u,Pk(Θ∗), h). Combining with

Eq. (3.3) to obtain

HB(u,P1/2

k (Θ∗, u), L2(µ)) ≤ HB(u,Pk(Θ∗), h).
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This inequality allows us to obtain an upper bound of the LHS in terms of a bound

on the RHS. Specifically, we need the following

Lemma 3.2.1. Suppose that Θ∗ = [−a, a]d × Ω, where Ω is a subset of S++
d whose

eigenvalues are bounded in an interval [λ, λ], a ≤ L(log(1/ε))γ, γ ≥ 1/2, L > 0. Then

for 0 < ε < 1/2,

logN(ε,Pk(Θ∗), ‖.‖∞) . log(1/ε), (3.4)

HB(ε,Pk(Θ∗), h) . log(1/ε). (3.5)

The proof of this lemma is an extension of the arguments in Ghosal and van der

Vaart [2001] to multivariate setting, and is deferred to Section 3.5.3. Now, we choose

L > 0 and γ1 = max {1/2, γ} ≥ 1/2 such that an ≤ L(log(n))γ1 . From Lemma 3.2.1,

as long as 0 < u < 1/2, we have

HB(u,P1/2

k (Θ∗, u), L2(µ)) ≤ HB(u,Pk(Θ∗), h) . log(1/u). (3.6)

Now, we state the result of Theorem 7.4 of van de Geer [2000] adapted to the notation

used in our chapter

Theorem 3.2.1. Take Ψ(δ) ≥ JB(δ,P1/2

k (Θ∗, δ), µ) in such a way that Ψ(δ)/δ2 is a

non-increasing function of δ. Then, for a universal constant c and for

√
nδ2

n ≥ cΨ(δn),

we have for all δ ≥ δn

P (h(pĜn , pG0) > δ) ≤ c exp

[
−nδ

2

c2

]
.

Based on the bracket entropy bound in (3.6), we can choose Ψ(δ) = δ[log(1/δ)]1/2
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for δ > 0. Therefore, by choosing δn = O(log n/n)1/2, we obtain P (h(pĜn , pG0) >

δn) . exp(−c log(n)), where constant c > 0 depends only on L, γ, λ, λ. Combining

this probability bound with part (b) of Proposition 3.2.2 concludes the proof.

3.3 Gamma mixtures and location extensions

The Gamma family of densities takes the form f(x|a, b) :=
ba

Γ(a)
xa−1 exp(−bx) for

x > 0, and 0 otherwise, where a, b are positive shape and rate parameters, respectively.

The Gamma family is not identifiable in the first order when both shape and rate

parameters vary— this is to say that the collection of Gamma density functions and

their partial derivatives up to the first order taken with respect to the shape and rate

parameters are not linearly independent. This can be seen by the following identity:

∂f

∂b
(x|a, b) =

a

b
f(x|a, b)− a

b
f(x|a+ 1, b). (3.7)

Examining the identity in the above display shows that the violation of linear inde-

pendence of the collection of Gamma density functions and its derivatives is due to

certain combinations of the Gamma parameter values. This suggests that outside of

these value combinations the Gamma densities may well be identifiable in the first

order and even the second order. This observation leads to a remarkable consequence

for Gamma mixtures, which display wildly distinct behaviors in two disjoint categories

of the parameter values, which we call “generic cases” and “pathological cases”.

Fix G0 =
k0∑
i=1

p0
i δ(a0i ,b

0
i )
∈ Ek0 := Ek0(Θ) where k0 ≥ 2 and Θ ⊂ R2

+. Assume that

a0
i ≥ 1 for all 1 ≤ i ≤ k0. To delineate the structure underying parameter values of

G0, we define

(A.1) Generic cases:
{
|a0
i − a0

j |, |b0
i − b0

j |
}
6= {1, 0} for all 1 ≤ i, j ≤ k0.

(A.2) Pathological cases:
{
|a0
i − a0

j |, |b0
i − b0

j |
}

= {1, 0} for some 1 ≤ i, j ≤ k0.
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We have the following result under the exact-fitted setting of Gamma mixtures. Let

Ĝn ∈ Ek0 denote the MLE estimate of G0.

Theorem 3.3.1. (Exact-fitted Gamma mixtures) Given Θ = [a, a]× [b, b] where

a ≥ 1, a, b, b are given positive numbers.

(a) Generic cases If the support points of G0 satisfy assumption (A.1), then

P(W1(Ĝn, G0) > δn) . exp(−c log n),

where δn is sufficiently large multiple of (log n/n)1/2 and c is positive constant

depending only on a, a, b, b.

(b) Pathological cases For any r ≥ 2,

inf
Ĝn∈Ek0

sup
G∈Ek0

EpGWr(Ĝn, G) & n−1/r.

While the result of part (a) may seem “obvious” due to the standard rate (log n/n)1/2,

this should be put in the context of the minimax lower bound of part (b), which

shows that one cannot estimate the Gamma parameters efficiently uniformly over a

W1 neighborhood of G0, when we do not know whether G0 is pathological or not. As

can be seen in the proof, the poor rate is due to the difficulty of distinguishing between

the pathological and generic instances — no polynomial rate estimation method is

possible.

Turning to the over-fitted Gamma mixture setting, as before let G0 ∈ Ek0 , while

G varies in a larger subset of Ok := Ok(Θ) for some given k ≥ k0 + 1. We have the

following categories regarding the true G0:

(A.3) Generic cases:
{
|a0
i − a0

j |, |b0
i − b0

j |
}
6∈
{
{1, 0} , {2, 0}

}
for all 1 ≤ i, j ≤ k0.
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(A.4) Pathological cases:
{
|a0
i − a0

j |, |b0
i − b0

j |
}
∈
{
{1, 0} , {2, 0}

}
for some 1 ≤ i, j ≤

k0.

Additionally, for any c0 > 0 and l ≥ 1, define the following constrained set of Ol

Ol,c0 =

{
G =

k
′∑

i=1

piδ(ai,bi)

∣∣∣∣k′ ≤ k and |ai − a0
j | 6∈ [1− c0, 1 + c0]

∪[2− c0, 2 + c0]∀ (i, j)

}
.

Theorem 3.3.2. (Over-fitted Gamma mixtures) Assume the same conditions

on Θ as that of Theorem 3.3.1.

(a) Generic cases If G0 ∈ Ok,c0 and let Ĝn ∈ Ok,c0 be the MLE estimation of G0,

then P(W2(Ĝn, G0) > δn) . exp(−c log n), where δn is sufficiently large multiple

of (log n/n)1/4 and c is positive constant depending only on c0, a, a, b, b.

Moreover, the following minimax bound holds, for any 2 ≤ r < 4,

inf
Ĝn∈Ok,c0

sup
G∈Ok,c0\Ok0−1

EpG Wr(Ĝn, G) & n−1/r.

(b) Pathological cases For any r ≥ 2,

inf
Ĝn∈Ok

sup
G∈Ok\Ok0−1

EpG Wr(Ĝn, G) & n−1/r.

Part (a) shows that in the over-fitted setting, if the true G0 falls in the generic

cases, then the standard MLE method restricted to a suitable subset of Ok still yields

the (log n/n)1/4 rate of convergence for the mixing measure. Outside of this category,

however, one cannot hope to estimate G at any polynomial rate of convergence.

Not all is bad news for Gamma mixtures: since the pathological cases represent
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a Lebesgue measure zero set, Gamma mixtures can be viewed as almost strongly

identifiable with the strong convergence properties for the parameter estimation.

Exponential location extension Let the reader think that pathological cases are

rare, we introduce a location extension of the exponential distribution, for which there

is no such generic/pathological dichotomy. With this family, the convergence behavior

of the mixing parameters is always slow, even when the number of mixing components

is known. The class of location-exponential distribution {f(x|θ, σ), θ ∈ R, σ ∈ R+} is

defined as f(x|θ, σ) =
1

σ
exp

(
−x− θ

σ

)
.1{x>θ} for x ∈ R. Direct calculation yields

that

∂f

∂θ
(x|θ, σ) =

1

σ
f(x|θ, σ) when x 6= θ. (3.8)

Since this identity holds in general, the linear independence of the kernel densities f

and their partial derivatives is clearly violated regardless of the true values of G0. We

shall state a result for the exact-fitted setting only. Let Θ = [−a, a] and Ω = [σ, σ]

where a, σ, σ are fixed positive constants.

Theorem 3.3.3. (Exact-fitted location-exponential mixtures) For any r ≥ 2,

inf
Ĝn∈Ek0

sup
G∈Ek0

EpGW1(Ĝn, G) & n−1/r.

This is quite a surprising bound, especially considering this is a finite mixture

model with the known number of mixing components k0. Yet, one cannot hope to

achieve a polynomial estimation rate uniformly over a neighborhood (in W1) of any

mixing measure G0. As in the pathological cases of Gamma mixtures, the poor

convergence behavior of parameter estimation is due to the interaction of mixing

parameters θ and σ, which is induced by the algebraic structures of f and its partial

derivatives. As can be observed from the proof, the algebraic structure makes it
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difficult to distinguish between mixing measures G carrying similar mixture densities.

3.4 Simulations

We illustrate via simulations the rich spectrum of convergence behaviors for weak

identifiable classes. Both identifiability bounds h ≥ V & W r
r , and the convergence

behavior of the MLE are examined.
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Figure 3.1: Location-scale Gaussian mixtures. From left to right: (1) Exact-fitted
setting; (2) Over-fitted by one component; (3) Over-fitted by one component; (4)

Over-fitted by two components.

Weak identifiability bounds We experiment with classes of Gaussian densities.

The results for mixtures of location-scale Gaussian distributions are given in Fig-

ure 3.1. Simulation details are as follows. The true mixing measure G0 has exactly

k0 = 2 support points with locations θ0
1 = −2, θ0

2 = 4, scales σ0
1 = 1, σ0

2 = 2, and

p0
1 = 1/3, p0

2 = 2/3. 5000 random samples of discrete mixing measures G ∈ E2, 5000

samples of G ∈ O3 and another 5000 for G ∈ O4, where the support points are uni-

formly generated in Θ = [−10, 10] and Ω = [0.5, 5]. Additionally, to illustrate the

best lower bound W 4
4 when we overfit by one point, we also generate sequence G in

accordance with the construction of sequence G in the proof of part (a) of Proposition

3.2.2. The ratios h/W 2
2 and h/W 4

4 are plotted in the third panel of Figure 3.1 to verify

that h & W 4
4 holds, but h & W 2

2 does not. It can be observed that both the lower

bounds and upper bounds are in agreement with the theorems established earlier.
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Convergence rates of MLE First, we generate n-iid samples from a bivarite

location-covariance Gaussian mixture with three components with an arbitrarily fixed

choice of G0. The true parameters for the mixing measure G0 are: θ0
1 = (0, 3), θ0

2 =

(1,−4), θ0
3 = (5, 2), Σ0

1 =

4.2824 1.7324

1.7324 0.81759

, Σ0
2 =

 1.75 −1.25

−1.25 1.75

, Σ0
3 =

1 0

0 4

,

and p0
1 = 0.3, p0

2 = 0.4, p0
3 = 0.3. MLE Ĝn are obtained by the EM algorithm as we

assume that the data come from a mixture of k Gaussians where k ≥ k0 = 3. See

Figure 3.2 for a fixed choice of G0. Wasserstein distances between Ĝn and G0 are

plotted against increasing sample size n. The error bars were obtained by running

the experiment 7 times for each n. These simulation results match quite well with

the established rates and highlight that convergence slows down rapidly as k − k0

increases.
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Figure 3.2: MLE rates for location-covariance mixtures of Gaussians. L to R: (1)
Exact-fitted: W1 � n−1/2. (2) Over-fitted by one: W4 � n−1/8. (3) Over-fitted by

two: W6 � n−1/12.
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Figure 3.3: MLE rates for shape-rate mixtures of Gamma distributions. L to R: (1)

Generic/Exact-fitted: W1(Ĝn, G0) � n−1/2. (2) Generic/Over-fitted: W2 � n−1/4.
(3) Pathological/Exact-fitted: W1 ≈ 1/(log n)1/2. (4) Pathological/Over-fitted:

W1 ≈ 1/(log n)1/2.
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We turn to mixtures of Gamma distributions. For generic cases, we generate n-

iid samples from a Gamma mixture model that has exactly two mixing components.

The true parameters for the mixing measure G0 are: a0
1 = 8, a0

2 = 2, b0
1 = 3, b0

2 = 4,

p0
1 = 1/3, p0

2 = 2/3. For pathological cases, everything else remains the same, except

for our choice of G0, for which we choose a0
1 = 8, a0

2 = 7, b0
1 = 3, b0

2 = 3, p0
1 = 1/3,

p0
2 = 2/3.

It is remarkable to see the wild swing in behaviors within this same class. See

Figure 3.3. Even for exact-fitted finite mixtures of Gamma, one can achieve very fast

convergence rate of n−1/2 in the generic case, or appear to be stagnant at a logarithmic

rate if the true mixing measure G0 belongs to the pathological category.

3.5 Proofs of other propositions and theorems

3.5.1 Proofs for over-fitted Gaussian mixtures

PROOF OF PROPOSITION 3.2.2 For the ease of exposition, we consider the

setting of univariate location-scale Gaussian distributions, i.e., both θ and Σ = σ2

are scalars. The proof for general d ≥ 1 is similar and omitted. Put v = σ2, so we

write G0 =
k0∑
i=1

p0
i δ(θ0i ,v

0
i ).

Step 1 For any sequence Gn ∈ Ok, since k is finite, there is some k∗ ∈ [k0, k]

such that there exists a subsequence of Gn having exactly k∗ support points. Denote

Gn =
k∗∑
i=1

pni δ(θni ,v
n
i ) (here, without loss of generality, we replace the whole sequence by

its subsequence). Now if Gn → G0 in Wr, there exists a subsequence of Gn such that

each support point (θ0
i , σ

0
i ) of G0 is the limit of a subset of si ≥ 1 support points of

Gn. In general there may also a subset of support points of Gn whose limits are not

among the support points of G0.

Note that with part (a), we shall construct one sequence of Gn to prove its con-

clusion. In our construction there are no constraints placed on pni for all i. On the
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other hand, regarding part (b), we shall impose the constraint that pni ≥ c0 for all i.

Under this constraint, all the limit points of support points of Gn will be only those

of G0. To avoid notational cluttering, we replace the subsequence of Gn by the whole

sequence {Gn}. By re-labeling the support points, Gn can be expressed by

Gn =

k0∑
i=1

si∑
j=1

pnijδ(θnij ,v
n
ij)
, (3.9)

where (θnij, v
n
ij) → (θ0

i , v
0
i ) ,

si∑
l=1

pnil → p0
i for all i = 1, . . . , k0 and j = 1, . . . , si, where

s1, . . . , sk0 are some natural constants less than k. All Gn have exactly the same

k∗ =
∑
si ≤ k number of support points. This is the representation for Gn that we

shall utilize in the proof of both part (a) and part (b).

Step 2 For any x ∈ R,

pGn(x)− pG0(x) =

k0∑
i=1

si∑
j=1

pnij(f(x|θnij, vnij)− f(x|θ0
i , v

0
i )) +

k0∑
i=1

(pni. − p0
i )f(x|θ0

i , v
0
i ),

where pni· :=
si∑
j=1

pnij. For any r ≥ 1, integer N ≥ r and x ∈ R, by means of Taylor

expansion up to the order N , we obtain

pGn(x)− pG0(x) =

k0∑
i=1

si∑
j=1

pnij

N∑
|α|=1

(∆θnij)
α1(∆vnij)

α2
D|α|f(x|θ0

i , v
0
i )

α!
+

A1(x) +R1(x). (3.10)

Here, α = (α1, α2), |α| = α1 + α2, α! = α1!α2!, ∆θnij = θnij − θ0
i ,∆v

n
ij = vnij − v0

i .

Additionally, A1(x) =
k0∑
i=1

(pni· − p0
i )f(x|θ0

i , v
0
i ), and R1(x) = O

(
k0∑
i=1

si∑
j=1

pnij(|∆θnij|N+δ

+|∆vnij|N+δ)

)
for some positive constant δ > 0.
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Step 3 Enter the key identity (3.2):
∂2f

∂θ2
(x|θ, v) = 2

∂f

∂v
(x|θ, v) for all x. This

entails, for any natural orders n1, n2, that
∂n1+n2f

∂θn1∂vn2
(x|θ, v) =

1

2n2

∂n1+2n2f

∂θn1+2n2
(x|θ, v).

Thus, by converting all derivatives to those taken with respect to only θ, we may

rewrite (3.10) as

pGn(x)− pG0(x) =

k0∑
i=1

si∑
j=1

pnij
∑
α≥1

∑
n1,n2

(∆θnij)
n1(∆vnij)

n2

2n2n1!n2!

∂αf

∂θα
(x|θ0

i , v
0
i )

+ A1(x) +R1(x)

:= A1(x) +B1(x) +R1(x), (3.11)

where n1, n2 in the sum satisfy n1 + 2n2 = α, n1 + n2 ≤ N .

Step 4 We proceed to proving part (a) of the proposition. From the definition of r,

by setting r = r − 1, there exist non-trivial solutions (c∗i , a
∗
i , b
∗
i )
k−k0+1
i=1 for the system

of equations (4.24). Construct a sequence of probability measures Gn ∈ Ok under the

representation given by Eq. (3.9) as follows:

θn1j = θ0
1 +

a∗j
n
, vn1j = v0

1 +
2b∗j
n2
, pn1j =

p0
1(c∗j)

2

k−k0+1∑
j=1

(c∗j)
2

, for all j = 1, . . . , k − k0 + 1,

and θni1 = θ0
i , v

n
i1 = v0

i , p
n
i1 = p0

i for all i = 2, . . . , k0. (That is, we set k∗ = k,

s1 = k − k0 + 1, si = 1 for all 2 ≤ i ≤ k0). Note that b∗j may be negative, but

we are guaranteed that vn1j > 0 for sufficiently large n. It is easy to verify that

W1(Gn, G0) =
k−k0+1∑
i=1

pn1i

( |a∗i |
n

+
2|b∗i |
n2

)
� 1

n
, because at least one of the a∗i is non-

zero.
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Step 5 Select N = r in Eq. (3.11). By our construction of Gn, clearly A1(x) = 0.

Moreover,

B1(x) =

k−k0+1∑
i=1

pn1i

r−1∑
α=1

∑
n1,n2

(∆θn1i)
n1(∆vn1i)

n2

2n2n1!n2!

∂αf

∂θα
(x|θ0

1, v
0
1)

+

k−k0+1∑
i=1

pn1i

2r∑
α=r

∑
n1,n2

(∆θn1i)
n1(∆vn1i)

n2

2n2n1!n2!

∂αf

∂θα
(x|θ0

1, v
0
1)

:=
r−1∑
α=1

Bαn
∂αf

∂θα
(x|θ0

1, v
0
1) +

∑
α≥r

Cαn
∂αf

∂θα
(x|θ0

1, v
0
1).

In the above display, for each α ≥ r, observe that Cαn = O(n−α). Moreover, for each

1 ≤ α ≤ r − 1,

Bαn =
1

nα
k−k0+1∑
i=1

(c∗i )
2

k−k0+1∑
i=1

(c∗i )
2
∑

n1+2n2=α

(a∗i )
n1(b∗i )

n2

n1!n2!
= 0,

because (c∗i , a
∗
i , b
∗
i )
k−k0+1
i=1 form a non-trivial solution to system (4.24).

Step 6 We arrive at an upper bound for the Hellinger distance of mixture densities.

h2(pGn , pG0) ≤
1

2p0
1

∫
R

(pGn(x)− pG0(x))2

f(x|θ0
1, v

0
1)

dx

.
∫
R

2r∑
α=r

C2
αn

(
∂αf

∂θα
(x|θ0

1, v
0
1)

)2

+R2
1(x)

f(x|θ0
1, v

0
1)

dx,

For Gaussian densities, it can be verified that

(
∂αf

∂θα
(x|θ0

1, v
0
1)

)2

/f(x|θ0
1, v

0
1) is in-

tegrable for all 1 ≤ α ≤ 2r. So, h2(pGn , pG0) ≤ O(n−2r) +

∫
R2

1(x)/f(x|θ0
1, v

0
1) dx.
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Turning to the Taylor remainder R1(x), note that

|R1(x)| .
k−k0+1∑
i=1

∑
|β|=r+1

(r + 1)

β!
|∆θn1i|β1|∆vn1i|β2 ×

×
1∫

0

(1− t)r
∣∣∣∣ ∂r+1f

∂θβ1∂vβ2
(x|θ0

1 + t∆θn1i, v
0
1 + t∆vn1i)

∣∣∣∣ dt.

Now, (∆θn1i)
β1(∆vn1i)

β2 � n−β1−2β2 = o(n−2r). In addition, as n is sufficiently large,

we have for all |β| = r + 1 that

sup
t∈[0,1]

∫
x∈R

(
∂r+1f

∂θβ1∂vβ2
(x|θ0

1 + t∆θn1i, v
0
1 + t∆vn1i)

)2

/f(x|θ0
1, v

0
1)dx <∞.

It follows that h(pGn , pG0) = O(n−r). As noted above, W1(Gn, G0) � n−1, so the

claim of part (a) is established.

Step 7 Turning to part (b) of Proposition 3.2.2, it suffices to show that

lim
ε→0

inf
G∈Ok,c0

{
sup
x∈X
|pG(x)− pG0(x)|/W r

r (G,G0) :

Wr(G,G0) ≤ ε

}
> 0. (3.12)

Then one can arrive at the proposition’s claim by passing through an argument using

Fatou’s lemma (cf. proof of Theorem 1 of Nguyen [2013] or step 4 in the proof of

Theorem 3.1 of Ho and Nguyen [2016c]). Suppose that (3.12) does not hold. Then

we can find a sequence of probability measures Gn ∈ Ok,c0 that are represented by

Eq. (3.9), such that W r
r (Gn, G0) → 0 and supx |pGn(x) − pG0(x)|/W r

r (Gn, G0) → 0.

Define

Dn := d(Gn, G0) :=

k0∑
i=1

si∑
j=1

pnij(|∆θnij|r + |∆vnij|r) +

k0∑
i=1

|pni· − p0
i |.
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It is easy to see that W r
r (Gn, G0) . Dn, since Dn is the multiple of the W r

r cost of

moving mass from Gn to G0 by a (possibly) non-optimal coupling. So, for all x ∈ R,

(pGn(x)− pG0(x))/Dn → 0. Combining this fact with (3.11), where N = r, we obtain

(A1(x) +B1(x) +R1(x))/Dn → 0. (3.13)

We have R1(x)/Dn = o(1) as n→∞.

Step 8 A1(x)/Dn andB1(x)/Dn are the linear combination of elements of
∂αf

∂θα
(x|θ, v)

where α = n1 + 2n2 and n1 + n2 ≤ r. Note that the natural order α ranges in [0, 2r].

Let Eα(θ, v) denote the corresponding coefficient of
∂αf

∂θα
(x|θ, v). Extracting from

(3.11), for α = 0, E0(θ0
i , v

0
i ) = (pni· − p0

i )/Dn. For α ≥ 1,

Eα(θ0
i , v

0
i ) =

 si∑
j=1

pnij
∑

n1+2n2=α
n1+n2≤r

(∆θnij)
n1(∆vnij)

n2

2n2n1!n2!

 /Dn.

In the remainder of this proof step, we shall show that as n → ∞, at least

one of the coefficients Eα(θ0
i , v

0
i ) must not vanish. Suppose this is not the case,

i.e., Eα(θ0
i , v

0
i ) → 0 for all i = 1, . . . , k0 and 0 ≤ α ≤ 2r as n → ∞. By taking

the summation of all |E0(θ0
i , v

0
i )|, we get

k0∑
i=1

|pni. − p0
i |/Dn → 0 as n → ∞. As a

consequence, we obtain

k0∑
i=1

si∑
j=1

pnij(|∆θnij|r + |∆vnij|r)/Dn → 1 as n→∞.

Hence, we can find an index i∗ ∈ {1, 2, . . . , k0} such that as n→∞

si∗∑
j=1

pni∗j(|∆θni∗j|r + |∆vni∗j)|r)/Dn 6→ 0.
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Without loss of generality, we assume that i∗ = 1. Accordingly,

Fα(θ0
1, v

0
1) :=

DnEα(θ0
1, σ

0
1)

s1∑
j=1

pn1j(|∆θn1j|r + |∆vn1j)|r)

=

s1∑
j=1

pn1j
∑

n1+2n2=α
n1+n2≤r

(∆θn1j)
n1(∆vn1j)

n2

2n2n1!n2!

s1∑
j=1

pn1j(|∆θn1j|r + |∆vn1j)|r)
→ 0.

If s1 = 1 then F1(θ0
1, ν

0
1) and F2r(θ

0
1, ν

0
1) yield

|∆θn11|r/(|∆θn11|r + |∆vn11|r), |∆vn11|r/(|∆θn11|r + |∆vn11|r)→ 0,

which is a contradiction. As a consequence, s1 ≥ 2.

Denote pn = max
1≤j≤s1

{
pn1j
}

, Mn = max

{
|∆θn11|, . . . , |∆θn1s1 |, |∆vn11|1/2, . . . ,

|∆vn1s1|1/2
}

. Since 0 < pn1j/pn ≤ 1 for all 1 ≤ j ≤ s1, by a subsequence argu-

ment, there exist c2
j := lim

n→∞
pn1j/pn for all j = 1, . . . , s1. Similarly, define aj :=

lim
n→∞

∆θn1j/Mn, and 2bj := lim
n→∞

∆vn1j/M
2

n for each j = 1, . . . , s1. By the constraints

of Ok,c0 , pn1j ≥ c0, so all of c2
j differ from 0 and at least one of them equals to 1. Like-

wise, at least one element of (aj, bj)
s1
j=1 equal to -1 or 1. Now, for each α = 1, . . . , r,

divide both the numerator and denominator of Fα(θ0
1, v

0
1) by pn and then M

α

n and let

n→∞, we obtain the following system of polynomial equations

s1∑
j=1

∑
n1+2n2=α

c2
ja
n1
j b

n2
j

n1!n2!
= 0 for each α = 1, . . . , r.

Since s1 ≥ 2, we get r ≥ 4. If ai = 0 for all 1 ≤ i ≤ s1 then by choosing α = 4,

we obtain
s1∑
j=1

c2
jb

2
j = 0. However, it demonstrates that bi = 0 for all 1 ≤ i ≤ s1 —

a contradiction to the fact that at least one element of (ai, bi)
s1
i=1 is different from 0.

Therefore, at least one element of (ai)
s1
i=1 is not equal to 0. Observe that si ≤ k−k0+1
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(because the number of distinct atoms of Gn is
∑k0

i=1 si ≤ k and all si ≥ 1). Thus,

the existence of non-trivial solutions for the system of equations given in the above

display entails the existence of non-trivial solutions for system of equations (4.24).

This contradicts with the definition of r. Therefore, our hypothesis that all coefficients

Eα(θ0
i , v

0
i ) vanish does not hold — there must be at least one coefficient which does

not converge to 0 as n→∞.

Step 9 Let mn be the maximum of the absolute values of Eα(θ0
i , v

0
i ) where 0 ≤ α ≤

2r, 1 ≤ i ≤ k0 and dn = 1/mn. Since mn 6→ 0 as n → ∞, dn is uniformly bounded

above for all n. As dn|Eα(θ0
i , v

0
i )| ≤ 1, we have dnEα(θ0

i , v
0
i )→ βiα for all 0 ≤ α ≤ 2r,

1 ≤ i ≤ k0 where at least one of βiα differs from 0. Incorporating these limits to

Eq.(3.13), we obtain that for all x ∈ R,

(pGn(x)− pG0(x))/Dn →
k0∑
i=1

2r∑
α=0

βiα
∂αf

∂θα
(x|θ0

i , v
0
i ) = 0.

By direct calculation, we can rewrite the above equation as

k0∑
i=1

(
2r+1∑
j=1

γij(x− θ0
i )
j−1

)
exp

(
−(x− θ0

i )
2

2v0
i

)
= 0 for all x ∈ R, (3.14)

where γij for odd j are linear combinations of βi(2l1), for (j − 1)/2 ≤ l1 ≤ r, such

that all of the coefficients are functions of v0
i differing from 0. For even j, γij are

linear combinations of βi(2l2+1), for j/2 ≤ l2 ≤ r, such that all of the coefficients

are functions of v0
i differing from 0. Now, without loss of generality, we assume that

v0
1 ≤ v0

2 ≤ . . . ≤ v0
k0

. Denote i ∈ [1, k0] to be the minimum index i such that v0
i = v0

k0
.

It implies that v0
i

= v0
i+1

= . . . = v0
k0

. Therefore, θ0
i are pairwise different as i ≤ i ≤ k0.

Now, let call i = arg max
i≤i≤k0

θ0
i . Multiply both sides of (3.14) with exp[(x − θ0

i )
2/2v0

i ]
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and let x→ +∞, then we can check that

2r+1∑
j=1

γij(x− θ0
i )
j−1 → 0,

which only happens when γij = 0 for all 1 ≤ j ≤ 2r+1. Employing the same argument

to the remained indices, we obtain γij = 0 for all i = 1, . . . , k0, j = 1, . . . , 2r+1. This

entails that βiα = 0 for all i = 1, . . . , k0, α = 0, . . . , 2r — a contradiction. Thus we

achieve the conclusion of (3.12).

PROOF OF PROPOSITION 3.2.1 Our proof is based on Groebner bases method

for determining solutions for a system of polynomial equations. (i) For the case

k − k0 = 1, the system (4.24) when r = 4 can be written as

c2
1a1 + c2

2a2 = 0 (3.15)

1

2
(c2

1a
2
1 + c2

2a
2
2) + c2

1b1 + c2
2b2 = 0 (3.16)

1

3!
(c2

1a
3
1 + c2

2a
3
2) + c2

1a1b1 + c2
2a2b2 = 0 (3.17)

1

4!
(c2

1a
4
1 + c2

2a
4
2) +

1

2!
(c2

1a
2
1b1 + c2

2a
2
2b2) +

1

2!
(c2

1b
2
1 + c2

2b
2
2) = 0 (3.18)

Suppose that the above system has a non-trivial solution. If c1a1 = 0, then equation

(3.15) implies c2a2 = 0. Since c1, c2 6= 0, we have a1 = a2 = 0. This violates the

constraint that one of a1, a2 is non-zero. Hence, c1a1, c2a2 6= 0. Divide both sides of

(3.15),(3.16),(3.17),(3.18) by c2
1a1, c2

1a
2
1, c2

1a
3
1, c2

1a
4
1 respectively, we obtain the following
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system of polynomial equations

1 + x2a = 0

1 + x2a2 + 2(b+ x2c) = 0

1 + x2a3 + 6(b+ x2ac) = 0

1 + x2a4 + 12(b+ x2a2c) + 12(b2 + x2c2) = 0

where x = c2/c1, a = a2/a1, b = b1/a1, c = b2/a1. By taking the lexicographical order

a � b � c � x, the Groebner basis of the above system contains x6 +2x4 +2x2 +1 > 0

for all x ∈ R. Therefore, the above system of polynomial equations does not have real

solutions. As a consequence, the original system of polynomial equations does not

have non-trivial solution, which means that r ≤ 4. However, we have already shown

that as r = 3, Eq.(4.24) has non-trivial solution. Therefore, r = 4.

(ii) The case k − k0 = 2. System (4.24) when r = 6 takes the form:

3∑
i=1

c2
i ai = 0 (3.19)

1

2

3∑
i=1

c2
i a

2
i +

3∑
i=1

c2
i bi = 0 (3.20)

1

6

3∑
i=1

c2
i a

3
i +

1

2

3∑
i=1

c2
i aibi = 0 (3.21)

1

24

3∑
i=1

c2
i a

4
i +

1

2

3∑
i=1

c2
i a

2
i bi +

1

2

3∑
i=1

c2
i b

2
i = 0 (3.22)

1

120

3∑
i=1

c2
i a

5
i +

1

6

3∑
i=1

c2
i a

3
i bi +

1

2

3∑
i=1

c2
i aib

2
i = 0 (3.23)

1

720

3∑
i=1

c2
i a

6
i +

1

24

3∑
i=1

c2
i a

4
i bi +

1

4

3∑
i=1

c2
i a

2
i b

2
i +

1

6

3∑
i=1

c2
i b

3
i = 0 (3.24)

Non-trivial solution constraints require that c1, c2, c3 6= 0 and without loss of gener-
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ality, a1 6= 0. Dividing both sides of of the six equations above by c2
1a1, c

2
1a

2
1, c

2
1a

3
1,

c2
1a

4
1, c

2
1a

5
1, c

2
1a

6
1, respectively, we obtain

1 + x2a+ y2b = 0

1

2
(1 + x2a2 + y2b2) + c+ x2d+ y2e = 0

1

3
(1 + x2a3 + y2b3) + c+ x2ad+ y2be = 0

1

12
(1 + x2a4 + y2b4) + c+ x2a2d+ y2b2e+ c2 + x2d2 + y2e2 = 0

1

60
(1 + x2a5 + y2b5) +

1

3
(c+ x2a3d+ y2b3e) + c2 + x2ad2 + y2be2 = 0

1

360
(1 + x2a6 + y2b6) +

1

12
(c+ x2a4d+ y2b4e) +

1

2
(c2 + x2a3d+ y2b3e)

+
1

3
(c3 + x2d3 + y2e3) = 0

where x = c2/c1, y = c3/c1, a = a2/a1, b = a3/a1, c = b1/a
2
1, d = b2/a

2
1, e = b3/a

2
1.

By taking the lexicographical order a � b � c � d � x � y, we can verify that the

Groebner bases of the above system of polynomial equations contains a polynomial

in terms of x2, y2 with all of the positive coefficient numbers, which cannot be 0 when

x, y ∈ R. Therefore, the original system of polynomial equations does not have a

non-trivial solution. It follows that r ≤ 6.

When r = 5, we retain the first five equations in the system described in the above

display. By choosing x = y = 1, under lexicographical order a � b � c � d � e, we

can verify that the Groebner bases contains a polynomial of e with roots e = ±
√

2/3

or e = (−3±
√

2)/6 while a, b, c, d can be uniquely determined by e. Thus, system of

polynomial equations (4.24) has a non-trivial solution. It follows that r = 6.

(iii) For the case k − k0 ≥ 3, we choose c1 = c2 = . . . = ck−k0+1 = 1, ai = bi = 0

for all 4 ≤ i ≤ k − k0 + 1. Additionally, take a1 = a2 = 1. Now, by choosing r = 6

in system (4.24), we can check by Groebner bases that this system of polynomial

equations has a non-trivial solution. As a result, r ≥ 7.
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3.5.2 Mixture of Gamma distributions and location-exponential distribu-

tions

PROOF OF THEOREM 3.3.1 The proof of this theorem proceeds in the same

manner as that of Theorem 3.1.1. Therefore, it suffices to prove the following.

Proposition 3.5.1. (Bounds for exact-fitted Gamma mixtures)

(a) (Generic cases) Assume that the support points of G0 satisfy assumption (A.1).

Then for G ∈ Ek0 and W1(G,G0) sufficiently small, we have

V (pG, pG0) & W1(G,G0).

(b) (Pathological cases) If the support points of G0 satisfy assumption (A.2), then

for any r ≥ 1

lim
ε→0

inf
G∈Ek0

{
V (pG, pG0)/W

r
r (G,G0) : Wr(G,G0) ≤ ε

}
= 0.

Proof. (a) For the range of generic parameter values of G0, we shall show that the

first-order identifiability still holds for Gamma mixtures, so that the conclusion can

be drawn immediately from Theorem 3.1 of Ho and Nguyen [2016c]. It suffices to

show that for any αij ∈ R (1 ≤ i ≤ 3, 1 ≤ j ≤ k0) such that for almost sure x > 0

k0∑
i=1

α1if(x|a0
i , b

0
i ) + α2i

∂f

∂a
(x|a0

i , b
0
i ) + α3i

∂f

∂b
(x|a0

i , b
0
i ) = 0 (3.25)

then αij = 0 for all i, j. Equation (3.25) is rewritten as

k0∑
i=1

(
β1ix

a0i−1 + β2i(log x)xa
0
i−1 + β3ix

a0i

)
exp(−b0

ix) = 0, (3.26)
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where β1i = α1i
(b0
i )
a0i

Γ(a0
i )

+ α2i
(b0
i )
a0i (log(b0

i )− ψ(a0
i ))

Γ(a0
i )

+ α3i
a0
i (b

0
i )
a0i−1

Γ(a0
i )

, β2i = α2i
(b0
i )
a0i

Γ(a0
i )

,

and β3i = −α3i
(b0
i )
a0i

Γ(a0
i )

. Without loss of generality, we assume that b0
1 ≤ b0

2 ≤ . . . ≤ b0
k0

.

Denote i to be the maximum index i such that b0
i = b0

1. Then we have that a0
1, . . . , a

0
i

are pairwise different. Multiply both sides of (3.26) with exp(b0
i
x) and let x→ +∞,

we obtain

i∑
i=1

β1ix
a0i−1 + β2i(log x)xa

0
i−1 + β3ix

a0i → 0.

Since |a0
i − a0

j | 6= 1 and a0
i ≥ 1 for all 1 ≤ i, j ≤ i, the above result implies that

β1i = β2i = β3i = 0 for all 1 ≤ i ≤ i or equivalently α1i = α2i = α3i for all 1 ≤ i ≤ i.

Repeat the same argument for the remained indices, we obtain α1i = α2i = α3i = 0

for all 1 ≤ i ≤ k0. This concludes the proof.

(b) Without loss of generality, we assume that {|a0
2 − a0

1|, |b0
2 − b0

1|} = {1, 0}. In

particular, b0
1 = b0

2 and assume a0
2 = a0

1 − 1. We construct the following sequence

of measures Gn =
k0∑
i=1

pni δ(ani ,b
n
i ), where ani = a0

i for all 1 ≤ i ≤ k0, bn1 = b0
1, b

n
2 =

b0
1

(
1 +

1

a0
2(np0

2 − 1)

)
, bni = b0

i for all 3 ≤ i ≤ k0, pn1 = p0
1 +1/n, pn2 = p0

2−1/n, pni = p0
i

for all 3 ≤ i ≤ k0. We can check that W r
r (Gn, G0) � 1/n+ (p0

2− 1/n)|bn2 − b0
1|r � n−1

as n → ∞. For any natural order r ≥ 1, by applying Taylor’s expansion up to the

([r] + 1)th-order, we obtain:

pGn(x)− pG0(x) =

k0∑
i=1

pni (f(x|ani , bni )− f(x|a0
i , b

0
i )) + (pni − p0

i )f(x|a0
i , b

0
i )

= (pn1 − p0
1)f(x|a0

1, b
0
1) + (pn2 − p0

2)f(x|a0
2, b

0
2) +

[r]+1∑
j=1

pn2
(bn2 − b0

2)j

j!

∂jf

∂bj
(x|a0

2, b
0
2) +Rn(x). (3.27)

The Taylor expansion remainder |Rn(x)| = O(pn2 |bn2 − b0
2|[r]+1+δ) for some δ > 0 due

to a0
2 ≥ 1. Therefore, Rn(x) = o(W r

r (Gn, G0)) as n→∞. For the choice of pn2 , b
n
2 , we
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can check that as j ≥ 2, pn2 (bn2 − b0
2)j = o(W r

r (Gn, G0)). Now, we can rewrite (3.27)

as

pGn(x)− pG0(x) = Anx
a02 exp(−b0

1x) +Bnx
a02−1 exp(−b0

1x) +
[r]+1∑
j=2

pn2
(bn2 − b0

2)j

j!

∂jf

∂bj
(x|a0

2, b
0
2) +Rn(x),

where we have An =
(b0

1)a
0
1

Γ(a0
1)

(pn1 − p0
1) − (b0

1)a
0
2

Γ(a0
2)
pn2 (bn2 − b0

1) = 0 and similarly Bn =

(b1)a
0
2

Γ(a0
2)

(pn2 − p0
2) +

a0
2(b0

1)a
0
2−1

Γ(a0
2)

pn2 (bn2 − b0
1) = 0 for all n. Since a0

2 ≥ 1,

∣∣∣∣∂jf∂bj (x|a0
2, b

0
2)

∣∣∣∣ is

bounded for all 2 ≤ j ≤ r + 1. It follows that supx>0 |pGn(x) − pG0(x)| = O(n−2).

Observe that

V (pGn , pG0) = 2

∫
pGn (x)<pG0

(x)

(pG0(x)− pGn(x)) d(x)

≤ 2

∫
x∈(0,a02/b

0
1)

|pGn(x)− pG0(x)|dx.

As a consequence V (pGn , pG0) = O(n−1/2) so for any r ≥ 1, V (pGn , pG0) = o(W r
r (Gn, G0))

as n→∞.

PROOF OF THEOREM 3.3.2 As in the proof of Theorem 3.3.1, it is sufficient

to prove the following.

Proposition 3.5.2. (Bounds for over-fitted Gamma mixtures)

(a) (Generic cases) Assume that we have G0 ∈ Ok,c0. Then, for G ∈ Ok,c0 and

W2(G,G0) sufficiently small, we obtain

V (pG, pG0) & W 2
2 (G,G0).

(b) (Pathological cases) Assume that the support points of G0 satisfy assumption

101



(A.4), then for any r ≥ 1,

lim
ε→0

inf
G∈Ok

{
V (pG, pG0)/W

r
r (G,G0) : Wr(G,G0) ≤ ε

}
= 0.

Proof. (a) As in step 7 in the proof of Proposition 3.2.2, it suffices to show that

lim
ε→0

inf
G∈Ok,c0

{
sup
x∈X
|pG(x)− pG0(x)|/W 2

2 (G,G0) :

W2(G,G0) ≤ ε

}
> 0. (3.28)

Suppose this does not hold, by repeating the arguments of step 1 of Proposition

3.2.2, there is a sequence Gn =
k0+m∑
i=1

si∑
j=1

pnijδ(anij ,b
n
ij)
→ G0 =

k0+m∑
i=1

p0
i δ(a0i ,b

0
i )

such that

(anij, b
n
ij) → (a0

i , b
0
i ) for all 1 ≤ i ≤ k0 + m where (a0

i , b
0
i ) are limit points that lie

outside the support points of G0 as k0 + 1 ≤ i ≤ k0 + m. Additionally, p0
i = 0

as k0 + 1 ≤ i ≤ k0 + m. Invoke the Taylor expansion up to the second order and

assume that all of the coefficients corresponding to the first and second derivatives

with respect to the parameters go to 0. Use the same argument as that of step

8 in Proposition 3.2.2, by summing up all the coefficients of second derivative, we

obtain the contradiction. Now, by proceeding in the same way as that of step 9 in

Proposition 3.2.2 , as we let n→∞, we have for almost every x,

pGn(x)− pG0(x)

d(Gn, G0)
→

k0+m∑
i=1

{
α1if(x|a0

i , b
0
i ) + α2i

∂f

∂a
(x|a0

i , b
0
i ) + α3i

∂f

∂b
(x|a0

i , b
0
i ) +

si∑
j=1

α2
4ij

∂2f

∂a2
(x|a0

i , b
0
i ) +

si∑
j=1

α2
5ij

∂2f

∂b2
(x|a0

i , b
0
i ) + 2

si∑
j=1

α4ijα5ij
∂2f

∂a∂b
(x|a0

i , b
0
i )

}
= 0,

where at least one of α1i, α2i, α3i,
si∑
j=1

α2
4ij,

si∑
j=1

α2
5ij, 2

si∑
j=1

α4ijα5ij is non-zero. We can
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rewrite the above equation as

k0+m∑
i=1

{
β1ix

a0i−1 + β2ix
a0i + β3ix

a0i+1 + β4i(log x)xa
0
i−1 + (3.29)

β5i(log x)2xa
0
i−1 + β6i(log x)xa

0
i

}
e−b

0
i x = 0,

where β1i = α1i
b0
i

Γ(a0
i )

+ β0
i

∂

∂a

(
(b0
i )
a0i

Γ(a0
i )

)
+ α3i

a0
i (b

0
i )
a0i−1

Γ(a0
i )

+
si∑
j=1

α2
4ij

∂

∂a2

(
(b0
i )
a0i

Γ(a0
i )

)
+

si∑
j=1

α2
5ij

a0
i (a

0
i − 1)(b0

i )
a0i−2

Γ(a0
i )

+ 2
si∑
j=1

α4ijα5ij
∂

∂a

(
a0
i (b

0
i )
a0i−1

Γ(a0
i )

)
, β2i = −α3i

(b0
i )
a0i

Γ(a0
i )

+

2
si∑
j=1

α2
5ij

a0
i (b

0
i )
a0i−1

Γ(a0
i )

+ 2
si∑
j=1

α4ijα5ij
∂

∂a

(
(b0
i )
a0i

Γ(a0
i )

)
, β3i =

si∑
j=1

α2
5ij

(b0
i )
a0i

Γ(a0
i )

,

β4i = α2i
(b0
i )

Γ(a0
i )

+ 2
si∑
j=1

α2
4ij

∂

∂a

(
(b0
i )
a0i

Γ(a0
i )

)
+ 2

si∑
j=1

α4ijα5ij
a0
i (b

0
i )
a0i−1

Γ(a0
i )

, β5i =
si∑
j=1

α2
4ij

(b0
i )
a0i

Γ(a0
i )

,

and β6i = −2
si∑
j=1

α4ijα5ij
(b0
i )
a0i

Γ(a0
i )

. Using the same argument as that of the proof of

part (a) of Proposition 3.5.1, by multiplying both sides of the above equation with

exp(b0
i
x) and let x→ +∞, we obtain

i∑
i=1

{
β1ix

a0i−1 + β2ix
a0i + β3ix

a0i+1 + β4i(log x)xa
0
i−1 +

β5i(log x)2xa
0
i−1 + β6i(log x)xa

0
i

}
→ 0.

By the constraints of Ok,c0 , we have |a0
i − a0

j | 6∈ {1, 2} for all 1 ≤ i, j ≤ k0 + m.

Therefore, this limit yields β1i = β2i = β3i = β4i = β5i = β6i = 0 for all 1 ≤ i ≤ i

or equivalently α1ij = α2ij = α3ij = α4ij = α5ij = 0 for all 1 ≤ i ≤ i, 1 ≤ j ≤ si.

The same argument for remained indicies yields α1ij = α2ij = α3ij = α4ij = α5ij = 0

for all 1 ≤ i ≤ k0 + m, 1 ≤ j ≤ si, which leads to contradiction. This concludes the

proof.

(b) If there exists (i, j) such that
{
|a0
i − a0

j |, |b0
i − b0

j |
}
≡ {1, 0}, then we can use

the same way of construction as that of part (b) of Proposition 3.5.1. Now, the only
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case of interest is when we have some (i, j) such that
{
|a0
i − a0

j |, |b0
j − b0

j |
}
≡ {2, 0}.

Without loss of generality, assume that a0
2 = a0

1 − 2. We construct the sequence

Gn =
k0+1∑
i=1

pni δ(ani ,b
n
i ) as an1 = a0

1, a
n
2 = an3 = a0

2, a
n
i = a0

i−1 for all 4 ≤ i ≤ k0 + 1,

bn1 = b0
1, b

n
2 − b0

1 = b0
1 − bn3 =

b0
1

a0
2n

, bni = b0
i−1 for all 4 ≤ i ≤ k0 + 1, pn1 = p0

1 − cn,

pn2 =
p0

2

2
+

1

2

(
cn +

1

n

)
, pn3 =

p0
2

2
+

1

2

(
cn −

1

n

)
, pni = p0

i−1 for all 4 ≤ i ≤ k0 +1 where

cn =
(a0

2 + 1)p0
2

(2n2 − 1)a0
2 − 1

. Now, we can check that for any r ≥ 1, W r
r (Gn, G0) & cn +

1

nr
.

As r ≥ 2, by means of Taylor expansions up to the ([r] + 1)-th order, we obtain

pGn(x)− pG0(x) = (pn1 − p0
1)f(x|a0

1, b
0
1) + (

3∑
i=2

pni − p0
2)f(x|a0

2, b
0
2)

+

[r]+1∑
j=1

3∑
i=2

pni (bni − b0
i )
j

j!

∂jf

∂bj
(x|a0

2, b
0
2) +Rn(x), (3.30)

where Rn(x) is the remainder term and therefore |Rn(x)|/W r
r (Gn, G0) → 0. We can

check that as j ≥ 3,
3∑
i=2

pni (bni − b0
i )
j/W r

r (Gn, G0)→ 0 as n→∞. Additionally, direct

computation demonstrates that

(pn1 − p0
1)f(x|a0

1, b
0
1) + (

3∑
i=2

pni − p0
2)f(x|a0

2, b
0
2) +

2∑
j=1

3∑
i=2

pni (bni − b0
i )
j

j!

∂jf

∂bj
(x|a0

2, b
0
2) = 0.

The rest of the proof proceeds in the same way as that of Proposition 3.5.1 part

(b).

PROOF OF THEOREM 3.3.3 It suffices to demonstrate the following bound:
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Proposition 3.5.3. (Location-exponential mixtures) For any r ≥ 1,

lim
ε→0

inf
G∈Ek0

{
V (pG, pG0)/W

r
1 (G,G0) : W1(G,G0) ≤ ε

}
= 0.

Proof. Choose the sequence Gn =
k0∑
i=1

pni δ(θni ,σ
n
i ) such that σni = σ0

i for all 1 ≤ i ≤

k0, (pni , θ
n
i ) = (p0

i , θ
0
i ) for all 3 ≤ i ≤ k0. The parameters pn1 , p

n
2 , θ

n
1 , θ

n
2 are to be

determined. With this construction of Gn, we obtain W1(Gn, G0) � |pn1 − p0
1|+ |pn2 −

p0
2| + p0

1|θn1 − θ0
1| + p0

2|θn2 − θ0
2|. Now, for any x 6∈ {θ0

1, θ
0
2} and for any r ≥ 1, taking

the Taylor expansion with respect to θ up to the ([r] + 1)-th order, we obtain

pGn(x)− pG0(x) =
2∑
i=1

p0
i (f(x|θni , σ0

i )− f(x|θ0
i , σ

0
i )) + (pni − p0

i )f(x|θni , σ0
i )

=
2∑
i=1

(pni − p0
i )f(x|θni , σ0

i )− p0
i

[r]+1∑
j=1

(θ0
i − θni )j

j!

∂jf

∂θj
(x|θni , σ0

i )


+ R(x)

=
2∑
i=1

(pni − p0
i )− p0

i

[r]+1∑
j=1

(θ0
i − θni )j

j!(σ0
i )
j

 f(x|θni , σ0
i ) +R(x),

where the last inequality is due to the identity (3.8) and R(x) is the remainder of

Taylor expansion. Note that

sup
x6∈{θ01 ,θ02}

|R(x)|/W r
1 (Gn, G0) ≤

2∑
i=1

O(|θni − θ0
i |[r]+1+δ)/|θni − θ0

i |r → 0.

Now, we choose pn1 = p0
1 + 1/n, pn2 = p0

2 − 1/n, which means pn1 + pn2 = p0
1 + p0

2 and

pn1 → p0
1, p

n
2 → p0

2. As p0
i /j!(σ

0
i )
j are fixed positive constants for all 1 ≤ j ≤ [r] + 1.

It is clear that there exists sequences θn1 and θn2 such that for both i = 1 and i = 2,

θni −θ0
i → 0, the identity p0

i

[r]+1∑
j=1

(θ0
i − θni )j

j!(σ0
i )
j

= pni −p0
i holds for all n (sufficiently large).
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With these choices of pn1 , p
n
2 , θ

n
1 , θ

n
2 , we have

sup
x 6∈{θ01 ,θ02}

|pGn(x)− pG0(x)|/W r
1 (Gn, G0) = sup

x 6∈{θ01 ,θ02}
|R(x)|/W r

1 (Gn, G0)→ 0.

The rest of the proof proceeds in the same way as that of Prop. 3.5.1 part (b).

3.5.3 Proofs for remaining results

PROOF OF LEMMA 3.2.1 For any setM, a setMε is called an ε-net overM

if any element of M is within ε distance of some metrics from an element of Mε. It

is a known fact that we can choose an ε-net S1 over the k-dimensional simplex for

the l1 norm such that |S1| ≤
(

5

ε

)k
, where |.| denotes the cardinality of a set (e.g see

Lemma A.4 of Ghosal and van der Vaart [2001]). Additionaly, if we denote S2 to be

2dε-net of Ω under metric ‖.‖, then we can verify that |S2| ≤
(

2dλ

ε

)d(d+1)/2

.

Now, denote S3 to be the set of all pG ∈ Pk(Θ∗) such that G is supported on

((±l1ε,±l2ε, . . . ,±ldε),Σ), where Σ ∈ S2, 0 ≤ li ≤
a

ε
for all 1 ≤ i ≤ d, with weights

come from S1 only. For each pG in Pk(Θ∗), we firstly move the support points of G

to their closest support points in ((±l1ε,±l2ε, . . . ,±ldε),Σ) to form G̃ and then we

move the masses of G̃ to their closest masses in S1 to form G∗. By means of triangle

inequality, we obtain

‖pG − pG∗‖∞ ≤ ‖pG − pG̃‖∞ + ‖pG̃ − pG∗‖∞.

Due to the boundness of kernel density function f(x|θ,Σ), it is not hard to verify

that ‖pG̃ − pG∗‖∞ . ε. Additionally, denote G =
k1∑
i=1

piδ{θi,Σi} where k1 ≤ k. Then,

G̃ =
k1∑
i=1

piδ{θ̃i,Σ̃i} where (θ̃i, Σ̃i) has the form ((±l1ε,±l2ε, . . . ,±ldε),Σ) and Σ ∈ S2.
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By means of triangle inequality, we obtain

‖pG − pG̃‖∞ ≤
k1∑
i=1

pi

(
‖f(x|θi,Σi)− f(x|θ̃i,Σi)‖∞ + ‖f(x|θ̃i,Σi)− f(x|θ̃i, Σ̃i)‖∞

)
.

As |Σ̃i| is bounded for all 1 ≤ i ≤ k1, by means of mean value theorem, we achieve

‖f(x|θi,Σi) − f(x|θ̃i,Σi)‖∞ . ‖θi − θ̃i‖ . ε. Similarly, by means of Taylor expan-

sion up to the first order regarding Σi, Σ̃i and Cauchy-Schwarz’s inequality, we have

‖f(x|θ̃i,Σi) − f(x|θ̃i, Σ̃i)‖∞ . ‖Σi − Σ̃i‖ . ε. Therefore, ‖pG − pG∗‖∞ . ε. As a

consequence, the cardinality of S3 is bounded as

|S3| ≤
(

2dλ

ε

)d(d+1)k/2

×
(

2a

ε

)dk
×
(

5

ε

)k
.

Hence, for some constants c1 and c2,

logN(c1ε,F , ‖.‖∞) ≤ log |S3| . log(1/ε),

which proves (3.4).

To establish (3.5), let η ≤ ε to be chosen later. From the assumption, it also

indicates that a . (log(1/η))γ. Denote f1, f2, . . . , fN to be an η-net for ‖.‖∞ over

Pk(Θ∗). Notice that as Σ ∈ Ω, |Σ| ≥ λ2d and as ‖x‖ ≥ 2
√
da,

(x− θ)TΣ−1(x− θ) ≥ ‖x− θ‖
2

λd(Σ)
≥ ‖x− θ‖

2

λ
2 ≥ (‖x‖ − ‖θ‖)2

λ
2 ≥ ‖x‖

2

4λ
2 .

Therefore, by defining

H(x) =


1

(2π)d/2λd
exp

(
−‖x‖

2

8λ
2

)
, if ‖x‖ ≥ 2

√
da

1

(2π)d/2λd
, otherwise,

.
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we obtain H(x) is an envelope for Pk(Θ∗). We construct the brackets [pLi , p
U
i ] as

follows

pLi (x) = max {fi(x)− η, 0}, pUi (x) = min {fi(x) + η,H(x)}.

It is clear that Pk(Θ∗) ⊂
N⋃
i=1

[pLi , p
U
i ]. Additionally, pUi (x) − pLi (x) ≤ min {2η,H(x)}.

As a consequence, for any B ≥ 2
√
da, we have

∫
Rd

(
pUi (x)− pLi (x)

)
dx ≤

∫
‖x‖<B

2ηdx+

∫
‖x‖≥B

H(x)dx.

By means of spherical coordinates, we obtain

∫
‖x‖≥B

H(x)dx . Bd−1 exp

(
− B

2

8λ
2

)
. Ad-

ditionally, we also have

∫
‖x‖≤B

2ηdx . η

B∫
0

Rd−1dR . ηBd.

By choosing B = max
{

2
√
dL,
√

8.λ
}

(log(1/η))γ, then it is clear that

Bd−1 exp

(
− B

2

8λ
2

)
. η (log(1/η))(d−1)γ , ηBd . η (log(1/η))dγ .

Thus,

∫
Rd

(
pUi (x)− pLi (x)

)
dx . η (log(1/η))dγ .

With this result and that of (3.4), they imply that for some positive constant c

HB

(
cη (log(1/η))dγ ,Pk(Θ∗), ‖.‖1

)
≤ N . log(1/η).
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By choosing ε = cη (log(1/η))dγ, note that log(1/η) ∼ log(1/ε). Therefore,

HB(ε,Pk(Θ∗), ‖.‖1) . log(1/ε).

As we have h2 ≤ ‖.‖1, the above result implies that HB(
√
ε,Pk(Θ∗), h) . log(1/ε).

Therefore,

HB(ε,Pk(Θ∗), h) . log(1/ε),

which proves (3.5).

PROOF OF PROPOSITION 3.2.3 We only consider the case k − k0 = 1 (the

proof for the case k−k0 = 2 is rather similar, therefore it is omitted). Since k−k0 = 1,

from Proposition 3.2.1, we have r = 4. As in the proof of Proposition 3.2.2, it suffices

to show for d = 1 that

lim
ε→0

inf
G∈Ok

{
sup
x∈X
|pG(x)− pG0(x)|/W r

r (G,G0) :

Wr(G,G0) ≤ ε

}
> 0. (3.31)

Denote v = σ2. Assume that the above result does not hold, i.e we can find a

sequence of Gn =
k0+m∑
i=1

si∑
j=1

pnijδ(θnij ,v
n
ij)
→ G0 in Wr where (pnij, θ

n
ij, v

n
ij)→ (p0

i , θ
0
i , v

0
i ) for

all 1 ≤ i ≤ k0 + m, 1 ≤ j ≤ si and p0
i = 0 as k0 + 1 ≤ i ≤ k0 + m. As k − k0 = 1,

we have 0 ≤ m ≤ 1. Note that since we do not have the constraints on the masses of

mixing measures Gn as those in part (b) of Proposition 3.2.2, there are some atoms

of Gn that may converge to some limit points outside the set of atoms of G0. That is

the reason why we define the possible additional atom (p0
k0+1, θ

0
k0+1, v

0
k0+1). Repeating

the same arguments as the proof of Proposition 3.2.2 up to step 8 when we have the

assumption that Eα(θ0
i , v

0
i ) → 0 for all 1 ≤ i ≤ k0 + m and 0 ≤ α ≤ 2r as n → ∞.
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Now, we can find an index i∗ ∈ {1, 2, . . . , k0 +m} such that as n→∞

si∗∑
j=1

pni∗j(|∆θni∗j|r + |∆vni∗j|r)/Dn 6→ 0.

where Dn =
k0+m∑
i=1

si∑
j=1

pnij(|∆θnij|r + |∆vnij|r) +
k0+m∑
i=1

|pni. − p0
i |. Since E2r(θ

0
i∗ , v

0
i∗)→ 0 for

all 1 ≤ i ≤ k0 +m, it implies that
si∗∑
j=1

pni∗j|∆vni∗j|r/Dn → 0. Therefore, we obtain

si∗∑
j=1

pni∗j|∆vni∗j|r/
si∗∑
j=1

pni∗j(|∆θni∗j|r + |∆vni∗j|r)→ 0.

It implies that

si∗∑
j=1

pni∗j|∆θni∗j|r/
si∗∑
j=1

pni∗j(|∆θni∗j|r + |∆vni∗j|r)→ 1.

As a consequence,

F ′α(θ0
i∗ , v

0
i∗) =

si∗∑
j=1

pni∗j(|∆θni∗j|r + |∆vni∗j|r)
si∗∑
j=1

pni∗j|∆θni∗j|r
Fα(θ0

i∗ , v
0
i∗)

=

si∗∑
j=1

pni∗j
∑
n1,n2

(∆θni∗j)
n1(∆vni∗j)

n2

n1!n2!
si∗∑
j=1

pni∗j|∆θni∗j|4
→ 0, (3.32)

where n1 + 2n2 = α and 1 ≤ α ≤ 4. As i∗ ∈ {1, 2, . . . , k0 +m}, we have i∗ ∈

{1, . . . , k0} or i∗ ∈ {k0 + 1, . . . , k0 +m}. Firstly, we assume that i∗ ∈ {1, . . . , k0}.

Without loss of generality, let i∗ = 1. Since s1 ≤ k − k0 + 1 = 2, there are two

possibilities.

Case 1 If s1 = 1, then F ′1(θ0
1, v

0
1) = ∆θn11/|∆θn11|4 6→ 0, which is a contradiction.
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Case 2 If s1 = 2, without loss of generality, we assume that pn11|∆θn11| ≤ pn12|∆θn12|

for infinitely many n, which we can assume to hold for all n (by choosing the subse-

quence). Since pn11(∆θn11)4 + pn12(∆θn12)4 > 0, we obtain θn12 6= 0 for all n. If ∆θn11 = 0

for infinitely many n, then F ′1(θ0
1, v

0
1) = ∆θn12/(∆θ

n
12)4 6→ 0, which is a contradiction.

Therefore, we may assume θn11 6= 0 for all n. Let a := lim
n→∞

pn11∆θn11/p
n
12∆θn12 ∈ [−1, 1].

Dividing both the numerator and denominator of F ′1(θ0
1, v

0
1) by pn12∆θn12 and letting

n→∞, we obtain a = −1. Consider the following scenarios regarding pn11/p
n
12:

(i) If pn11/p
n
12 → ∞, then ∆θn11/∆θ

n
12 → 0. Since ∆θn11,∆θ

n
12 6= 0, denote ∆vn11 =

kn1 (∆θn11)2, ∆vn12 = kn2 (∆θn12)2 for all n. Now, by dividing the numerator and denom-

inator of F ′2(θ0
1, v

0
1), F ′3(θ0

1, v
0
1), F ′4(θ0

1, v
0
1) by pn12(∆θn12)2, pn12(∆θn12)3, and pn12(∆θn12)4

respectively, we obtain

Mn,1 =
1

2
+ kn2 + kn1

pn11(∆θn11)2

pn12(∆θn12)2
→ 0,

Mn,2 =
1

3!
+ kn2 + kn1

pn11(∆θn11)3

pn12(∆θn12)3
→ 0,

Mn,3 =
1

4!
+
kn2
2

+
(kn2 )2

2
+

(
kn1
2

+
(kn1 )2

2

)
pn11(∆θn11)4

pn12(∆θn12)4
→ 0.

If |kn1 |, |kn2 | → ∞ then Mn,3 >
1

4!
for sufficiently large n, which is a contradiction.

Therefore, at least one of |kn1 |, |kn2 | does not converge to∞. If |kn1 | → ∞ and |kn2 | 6→ ∞

then Mn,1 implies that |kn1
pn11(∆θn11)2

pn12(∆θn12)2
| 6→ ∞. Therefore, |kn1

pn11(∆θn11)3

pn12(∆θn12)3
| → 0 as

∆θn11/∆θ
n
12 → 0 and kn1

(∆θn11)2

(∆θn12)2
→ 0 as pn11/p

n
12 → ∞. Combining these results with

Mn,3,Mn,4, we get kn2 +
1

3!
→ 0 and

1

4!
+
kn2
2

+
(kn2 )2

2
→ 0, which cannot happen. If

|kn1 | 6→ ∞, then Mn,1 and Mn,2 implies that kn2 + 1/2 → 0 and kn2 + 1/6 → 0, which

cannot happen either. As a consequence, pn11/p
n
12 6→ ∞.

(ii) If pn11/p
n
12 → 0 then pn12/p

n
11 → ∞. Since pn11∆θn11/p

n
12∆θn12 → −1, we have

|∆θn11/∆θ
n
12| → ∞ or equivalently ∆θn12/∆θ

n
11 → 0. From here, using the same argu-
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ment as that above, we are also led to a contradiction. So, pn11/p
n
12 6→ 0.

(iii) If pn11/p
n
12 → b 6∈ {0,∞}. It also means that ∆θn11/∆θ

n
12 → −1/b. There-

fore, by dividing the numerator and denominator of F ′2(θ0
1, v

0
1), F ′3(θ0

1, v
0
1), F ′4(θ0

1, v
0
1)

by pn12(∆θn12)2, pn12(∆θn12)3, and pn12(∆θn12)4 and let n → ∞, we arrive at the scaling

system of equations (4.24) when r = 4 for which we already know that non-trivial

solution does not exist. Hence, the case s1 = 2 cannot happen.

As a consequence, i∗ 6∈ {1, . . . , k0}. However, since m ≤ 1, we have i∗ = k0 + 1.

This implies that sk0+1 = 1, which we already know from Case 1 that (3.32) cannot

hold. Therefore, our hypothesis that all coefficients Eα(θ0
i , v

0
i ) vanish does not hold

— there must be at least one coefficient which does not converge to 0 as n → ∞.

Repeating the same argument as step 9 in the proof of Proposition 3.2.2, we achieve

the conclusion of our result.
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CHAPTER IV

Singularity structures and impacts on parameter

estimation in finite mixtures of distributions

Singularities of a statistical model are the elements of the model’s parameter space

which make the corresponding Fisher information matrix degenerate. These are the

points for which estimation techniques such as the maximum likelihood estimator and

standard Bayesian procedures do not admit the root-n parametric rate of convergence.

We propose a general framework for the identification of singularity structures of

the parameter space of finite mixtures, and study the impacts of the singularity

levels on minimax lower bounds and rates of convergence for the maximum likelihood

estimator over a compact parameter space. Our study makes explicit the deep links

between model singularities, parameter estimation convergence rates and minimax

lower bounds, and the algebraic geometry of the parameter space for mixtures of

continuous distributions. The theory is applied to establish concrete convergence rates

of parameter estimation for finite mixture of skewnormal distributions. This rich and

increasingly popular mixture model is shown to exhibit a remarkably complex range

of asymptotic behaviors which have not been hitherto reported in the literature. 1

1This chaper has been published in [Ho and Nguyen, 2016d].
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4.1 Introduction

In the standard asymptotic theory of parametric estimation, a customary regu-

larity assumption is the non-singularity of the Fisher information matrix defined by

the statistical model (see, for example, Lehmann and Casella [1998] (pg. 124); or

van der Vaart [1998], Sec. 5.5). This condition leads to the cherished root-n consis-

tency, and in many cases the asymptotic normality of parameter estimates. When the

non-singularity condition fails to hold, that is, when the true parameters represent

a singular point in the statistical model, very little is known about the asymptotic

behavior of their estimates.

The singularity situation might have been brushed aside as idiosyncratic by some

parametric statistical modelers in the past. As complex and high-dimensional models

are increasingly embraced by statisticians and practitioners alike, singularities are

no longer a rarity — they start to take a highly visible place in modern statistics.

For example, the many zeros present in a high-dimensional linear regression problem

represent a type of singularities of the underlying model, points corresponding to

rank-deficient Fisher information matrices [Hastie et al., 2015]. In another example,

the zero skewness in the family of skewed distributions represents a singular point

[Chiogna, 2005]. In both examples, singularity points are quite easy to spot out

— it is the impacts of their presence on improved parameter estimation procedures

and the asymptotic properties such procedures entail that are nontrivial matters

occupying the best efforts of many researchers in the past decade. The textbooks

by Bühlmann and van de Geer [2011], Hastie et al. [2015], for instance, address such

issues for high-dimensional regression problems, while the recent papers by Ley and

Paindaveine [2010], Hallin and Ley [2012, 2014] investigate statistical inference in

the skewed families for distribution. By contrast, with finite mixture models — a

popular and rich class of modeling tools for density estimation and heterogeneity
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inference [Lindsay, 1995] and a subject of this chapter, the singularity phenomenon

is not quite well understood, to the best our knowledge, except for specific instances.

One of the simplest instances is the singularity of Fisher information matrix in

an (overfitted) finite mixture that includes a homogeneous distribution. Lee and

Chesher [1986] analyzed a test of heterogeneity based on finite mixtures, address-

ing the challenge arising from the aforementioned singularity. Recent works on the

related topic include Chen and Chen [2003], Kasahara and Shimotsu [2014b]. Rot-

nitzky et al. [2000] investigated likelihood-based parameter estimation in a somewhat

general parametric modeling framework, subject to the constraint that the Fisher

information matrix is one rank deficient. For overfitted finite mixtures, Chen [1995]

showed that under a condition of strong identifiability, there are estimators which

achieve the generic convergence rate n−1/4 for parameter estimation. Recent works

also established generic behaviors of estimation under somewhat broader settings

of overfitted finite mixture models with both maximum likelihood estimation and

Bayesian estimation [Rousseau and Mengersen, 2011, Nguyen, 2013, Ho and Nguyen,

2016c].

The family of mixture models is far too rich to submit to a uniform kind of behavior

of parameter estimation. In fact, it was shown only recently that even classical models

such as the location-scale Gaussian mixtures, and the shape-rate Gamma mixtures,

do not admit such a generic rate of convergence for an estimation method such as

MLE [Ho and Nguyen, 2016a]. For instance, singularities arise in the finite mixtures

of Gamma distributions, even when the number of mixing components is known —

this phenomenon results in an extremely slow convergence behavior for the model

parameters lying in the vicinity of singular points, eventhough such parameters are

(perfectly) identifiable. Finite mixtures of Gaussian distributions, though identifiable,

exhibit both minimax lowerbounds and maximum likelihood estimation rates that

are directly linked to the solvability of a system of real polynomial equations, rates

115



which deteriorate quickly with the increasing number of extra mixing components.

The results obtained for such specific instances contain considerable insights about

parameter estimation in finite mixture models, but they only touch upon the surface

of a more general phenomenon. Indeed, as we shall see there is a much richer spectrum

of asymptotic behavior in which regular (non-singular) mixtures, strongly identifiable

mixtures, and weakly identifiable mixture models (such as the one studied by Ho and

Nguyen [2016a]) occupy but a small spot.

Objectives and main results In this chapter we propose a theoretical framework

for analyzing parameter estimation behavior in finite mixture models, addressing di-

rectly the situations where the non-singularity condition of the Fisher information

matrix may not hold. Our approach is to take on a systematic investigation of the

singularity structure of a compact and multi-dimensional parameter space of mix-

ture models, and then study the impacts of the presence of singularities on parameter

estimation. It is no longer sufficient to speak of the standard notion of Fisher informa-

tion singularities. A more fundamential notion that we introduce is called singularity

level, a natural or infinite value given to every element in the parameter space. Fisher

information singularities simply correspond to points in the parameter space whose

singularity level is non-zero. Within the set of Fisher information singularities the

parameter space can be partitioned into disjoint subsets determined by different sin-

gularity levels. The singularity level describes in a precise manner the variation of

the mixture likelihood with respect to changes in model parameters. This concept

enables us to quantify the varying degrees of identifiablity and singularity, some of

which were implicitly exploited in previous works mentioned above.

The statistical implication of the singularity level is easy to describe: given an

i.i.d. n-sample from a (true) mixture model, a parameter value of singularity level r

admits n−1/2(r+1) minimax lower bound for any estimator tending to the true param-
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eter(s), as well as the same maximum likelihood estimator’s convergence rate (up to

a logarithmic factor and under some conditions). Thus, singularity level 0 results in

root-n convergence rate for parameter estimation. Fisher singularity corresponds to

singularity level 1 or greater than 1, resulting in convergence rates n−1/4, n−1/6, n−1/8

or so on. The detailed picture of the distribution of singularity levels, however, can

be extremely complex to capture. Remarkably, there are examples of finite mixtures

for which the compact parameter space can be partitioned into disjoint subsets whose

singularity level ranges from 0 to 1 to 2,. . . , up to infinity. As a result, if we were

to vary the true parameter values, we would encounter a phenomenon akin to that

of “phase transition” on the statistical efficiency of parameter estimation occuring

within the same model class.

Techniques A major component of our general framework is a procedure for char-

acterizing subsets of points carrying the same singularity level. It will be shown that

these points are in fact a subset of a real affine variety. A real affine variety is a

set of solutions to a system of real polynomial equations. The polynomial equations

can be derived explicitly by the kernel density functions that define a given mixture

distribution. The study of the solutions of polynomial equations is a central subject

of algebraic geometry [Sturmfels, 2002, Cox et al., 2007]. The connections between

statistical models and algebraic geometry have been studied for discrete Markov ran-

dom fields [Drton et al., 2009], as well as finite mixtures of categorical data [Allman

et al., 2009]. For finite mixtures of continuous distributions, the link to algebraic

geometry is distilled from a new source of algebraic structure, in addition to the pres-

ence of mixing measures: it is traced to the partial differential equations satisfied by

the mixture model’s kernel density function. For Gaussian mixtures, it is the relation

captured by Eq. (4.3) for the Gaussian kernel. The partial differential equations can

be nonlinear, with coefficients given by rational functions defined in terms of model
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parameters. It is this relation that is primarily responsible for the complexity of the

singularity structure. A quintessential example of such a relation is given by Eq. (4.2)

for the skewnormal kernel densities.

Although our method for the analysis of singularity structure and the asymptotic

theory for parameter estimation can be used to re-derive old and existing results such

as those of Chen [1995], Ho and Nguyen [2016a], a substantial outcome is to establish

new results on mixture models for which no asymptotic theory have hitherto been

achieved. This leads us to a story of finite mixtures of skewnormal distributions. The

skewnormal distribution was originally proposed in Azzalini [1986], Azzalini and Valle

[1996], Azzalini and Capitanio [1999]. The skewnormal generalizes normal (Gaussian)

distribution, which is enhanced by the capability of handling asymmetric (skewed)

data distributions. Due to its more realistic modeling capability for multi-modality

and asymmetric components, skewnormal mixtures are increasingly adopted in recent

years for model based inference of heterogeneity by many researchers [Lin et al., 2007,

Arellano-Valle et al., 2008, 2009, Lin, 2009, Schnatter and Pyne, 2009, Ghosal and

Roy, 2011, Lee and McLachlan, 2013, Prates et al., 2013, Canale and Scarpa, 2015,

Zeller et al., 2015]. Due to its usefulness, a thorough understanding of the asymptotic

behavior of parameter estimation for skewnormal mixtures is also of interest in its

own right.

The singularity structure of the skewnormal mixtures is perhaps one of the more

complex among the parametric mixture models that we have typically encountered in

the literature. By comparison, strongly identifiable models admit the same singularity

level (1, to be precise) for all parameter values residing in a compact space, resulting

in n−1/4 convergence rate for the MLE. Most mixture models whose kernel density

function has only one type of parameter, such as location mixtures or scale mixtures,

are in this category. Location-scale Gaussian mixtures are a step up in the complexity,

in that all their parameter values carry the same singularity level, which depends only
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on the number of extra mixing components. Yet this is not the picture of skewnormal

mixtures. We will be able to identify subsets with singularity level 0, 1, 2,. . . all the

way up to infinity. Even in the setting of mixtures with known number of mixing

components, the singularity structure is remarkably complex. Thus, the results for

skewnormal mixtures present an useful illustration for the full power of the general

theory for finite mixtures of continuous distributions.

The source of complexity of skewnormal mixtures is the structure of the skewnor-

mal kernel density. The evidence for the latter was already made clear by Chiogna

[2005], Ley and Paindaveine [2010], Hallin and Ley [2012, 2014], whose works pro-

vided a thorough picture of the singularities for the class of skewnormal densities,

and their impacts on the non-standard rates of convergence of MLE. Not only can

we recover the results of Hallin and Ley [2012, 2014] in terms of rates of convergence,

which correspond to a trivial “mixture” that has exactly one skewnormal component,

an entirely new set of results are established for mixtures of two or more compo-

nents. It is in this setting that new types of singularities arise out of the interactions

between distinct skewnormal components. These interactions define the subset of sin-

gular points of a given level that can be characterized by a system of real polynomial

equations. This algebraic geometric characteration allows us to establish either the

precise singularity level or an upper bound for the mixture model’s entire parameter

space.

The plan for the remainder of our chapter is as follows. Section 4.2 lays out

the notations and relevant concepts such as parameter spaces and the underlying

geometries. Section 4.3 presents the general framework of analysis of singularity

structure, and the impact on convergence rates of parameter estimation for singular

points of a given singularity level. Section 4.4 and Section 4.5 illustrate the theory on

the finite mixture of skewnormal distributions, by giving concrete minimax bounds

and MLE convergence rates for this class of models for the first time. We conclude
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with a discussion in Section 6.6. Further details of the proofs and some additional

results are given in the Appendices.

4.2 Background

A finite mixture of continuous distributions admits density of the form pG(x) =∫
f(x|η)dG(η) with respect to Lebesgue measure on an Euclidean space for x, where

f(x|η) denotes a probability density kernel, η is a multi-dimensional parameter taking

values in a subset of an Euclidean space Θ, G denotes a discrete mixing distribution on

Θ. The number of support points of G represents the number of mixing components

in mixture model. Suppose that G =
∑k

i=1 piδηi , then pG(x) =
∑k

i=1 pif(x|ηi).

4.2.1 Parameter spaces and geometries

There are different kinds of parameter space and geometries that they carry which

are relevant to our work. We proceed to describe them in the following.

Natural parameter space The customarily defined parameter space of the k-

mixture of distributions is that of the mixing component parameters ηi, and mixing

probabilities pi. Throughout this chapter, it is assumed that ηi ∈ Θ, which is a

compact subset of Rd for some d ≥ 1, for i = 1, . . . , k. The mixing probability vector

p = (p1, . . . , pk) ∈ ∆k−1, the (k − 1)-probability simplex. To simplify the theory we

will further assume (in Section 4.4) that all pi ≥ c0 for some small positive constant

c0. For the remainder of the chapter, we also use Ω to denote the compact subset of

the Euclidean space for parameters (p,η).

Example 4.2.1. The skewnormal density kernel on the real line has three param-

eters η = (θ, σ,m) ∈ R × R+ × R, namely, the location, scale and skewness (shape)
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parameters. It is given by, for x ∈ R,

f(x|θ, σ,m) :=
2

σ
f

(
x− θ
σ

)
Φ(m(x− θ)/σ),

where f(x) is the standard normal density and Φ(x) =

∫
f(t)1(t ≤ x) dt. This gen-

eralizes the Gaussian density kernel, which corresponds to fixing m = 0. The pa-

rameter space for the k-mixture of skewnormals is therefore a subset of an Euclidean

space for the mixing probabilities pi and mixing component parameters ηi = (θi, vi =

σ2
i ,mi) ∈ R3. For each i = 1, . . . , k, θi, σi,mi are restricted to reside in compact

subsets Θ1 ⊂ R,Θ2 ⊂ R+,Θ3 ⊂ R respectively, i.e., Θ = Θ1 ×Θ2 ×Θ3.

Semialgebraic sets The singularity structure of the parameter space carries a

different geometry. It will be described in terms of the zero sets (sets of solutions)

of systems of real polynomial equations. The zero set of a system of real polynomial

equations is called a (real) affine variety [Cox et al., 2007]. In fact, the sets which

describe the singularity structure of finite mixtures are not affine varieties per se. We

will see that they are the intersection between real affine varieties – the real-valued

solutions of a finite collection of equations of the form P (p,η) = 0, and the set of

parameter values satisfying Q(p,η) > 0, for some real polynomials P and Q. The

intersection of these sets is also referred to as semialgebraic sets.

Example 4.2.2. Continuing on the example of skewnormal mixtures, we will see

that first two types of singularities that arise from the mixture of skewnormals are

solutions of the following polynomial equations

(i) Type A: P1(η) =
∏k

j=1mj.

(ii) Type B: P2(η) =
∏

1≤i 6=j≤k

{
(θi − θj)2+

[
σ2
i (1 +m2

j)− σ2
j (1 +m2

i )

]2}
.

These are just two among many more polynomials and types of singularities that

we will be able to enumerate in the sequel. We quickly note that Type A refers to
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the one (and only) kind of singularity intrinsic to the skewnormal kernel: P1 = 0 if

either one of the mj = 0 — one of the skewnormal components is actually normal

(symmetric). This type of singularity has received in-depth treatments by a number

of authors [Chiogna, 2005, Ley and Paindaveine, 2010, Hallin and Ley, 2012, 2014].

One the other hand, Type B refers to something intrinsic to a mixture model, as it

describes the relation of parameters of distinct mixing components i and j.

Space of mixing measures and transportation distance As described in the

Introduction, a goal of this work is to turn the knowledge about the nature of sin-

gularities of parameter space Ω into the statistical efficiency of parameter estimation

procedures. For this purpose, the convergence of parameters in a mixture model is

most naturally analyzed in terms of the convergence in the space of mixing measures

endowed by transportation distance (Wasserstein distance) metrics [Nguyen, 2013].

This is because the role played by parameters p,η in the mixture model is via mixing

measure G. It is mixing measure G that determines the mixture density pG according

to which the data are drawn from. Since the map (p,η) 7→ G(p,η) = G =
∑
piδηi is

many-to-one, we shall treat a pair of parameter vectors (p,η) = (p1, . . . , pk; η1, . . . , ηk)

and (p′,η′) = (p′1, . . . , p
′
k′ ; η

′
1, . . . , η

′
k′) to be equivalent if the corresponding mixing

measures are equal, G(p,η) = G(p′,η′).

For r ≥ 1, the Wasserstein distance of order r between G(p,η) and G(p′,η′) takes

the form (cf. Villani [2003]),

Wr(G(p,η), G(p′,η′)) =

(
inf
∑
i,j

qij‖ηi − η′j‖rr
)1/r

,

where ‖ · ‖r is the `r norm endowed by the natural parameter space, the infimum is

taken over all couplings q between p and p′, i.e., q = (qij)ij ∈ [0, 1]k×k
′

such that
k′∑
i=1

qij = pj and
k∑
j=1

qij = p′i for any i = 1, . . . , k and j = 1, . . . , k′. (For the example

of skewnormal mixtures, if η = (θ, v,m) and η′ = (θ′, v′,m′), then ‖η − η′‖rr :=
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|θ − θ′|r + |v − v′|r + |m−m′|r).

Suppose that a sequence of probability measures Gn =
∑

i p
n
i δηni tending to G0

under Wr metric at a rate ωn = o(1). If all Gn have the same number of atoms

kn = k0 as that of G0, then the set of atoms of Gn converge to the k0 atoms of G0, up

to a permutation of the atoms, at the same rate ωn under ‖·‖. If Gn have the varying

kn ∈ [k0, k] number of atoms, where k is a fixed upper bound, then a subsequence of

Gn can be constructed so that each atom of G0 is a limit point of a certain subset

of atoms of Gn — the convergence to each such limit also happens at rate ωn. Some

atoms of Gn may have limit points that are not among G0’s atoms — the total mass

associated with those “redundant” atoms of Gn must vanish at the generally faster

rate ωrn.

4.2.2 Estimation settings

The impact of singularities on parameter estimation behavior is dependent on

whether the mixture model is fitted with a known number of mixing components, or

if only an upper bound on the number of mixing components is known. The former

model fitting setting is called “e-mixtures” for short, while the latter “o-mixtures”

(“e” for exact-fitted and “o” for over-fitted).

Specifically, given an i.i.d. n-sample X1, X2, . . . , Xn according to the mixture

density pG0(x) =
∫
f(x|η)G0(dη), where G0 = G(p0,η0) =

∑k0
i=1 p

0
i δη0i is unknown

mixing measure with exactly k0 distinct support points. We are interested in fitting

a mixture of k mixing components, where k ≥ k0, using the n-sample X1, . . . , Xn. In

the e-mixture setting, k = k0 is known, so an estimate Gn (such as the maximum

likelihood estimate) is drawn from ambient space Ek0 , the set of probability measures

G = G(p,η) with exactly k0 support points, where (p,η) ∈ Ω. In the o-mixture

setting, Ĝn is drawn from ambient space Ok, the set of probability measures G =

G(p,η) with at most k support points, where (p,η) ∈ Ω.
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Assumption Throughout this chapter, several conditions on the kernel density

f(x|η) are assumed to hold. Firstly, the collection of kernel densities f as η varies is

linearly independent. It follows that the mixture model is identifiable, i.e., pG(x) =

pG0(x) for almost all x entails G = G0. Secondly, we say f(x|η) satisfies a uniform

Lipschitz condition of order r, for some r ≥ 1, if f as a function of η is differentiable

up to order r, and that the partial derivatives with respect to η, namely ∂|κ|f/∂ηκ,

for any κ = (κ1, . . . , κd) ∈ Nd such that |κ| := κ1 + . . .+ κd = r satisfy the following:

for any γ ∈ Rd,

∑
|κ|=r

∣∣∣∣(∂|κ|f∂ηκ
(x|η1)− ∂|κ|f

∂ηκ
(x|η2)

)∣∣∣∣γκ ≤ C‖η1 − η2‖δr‖γ‖rr

for some positive constants δ and C independent of x and η1, η2 ∈ Θ. It is simple to

verify that most kernel densities used in mixture modeling, including the skewnormal

kernel, satisfy the uniform Lipschitz property over compact domain Θ, for any finite

r ≥ 1.

Notation We utilize several familiar notions of distance for mixture densities, with

respect to Lebesgue measure µ. They include the total variation distance V (pG, pG0) =

1

2

∫
|pG(x)− pG0(x)|dµ(x) and the Hellinger distance with formulation h2(pG, pG0) =

1

2

∫ (√
pG(x)−

√
pG0(x)

)2

dµ(x).

4.3 Singularity structure in finite mixture models

4.3.1 Beyond Fisher information

Given a mixture model

{
pG(x)

∣∣∣∣G = G(p,η) =
k∑
i=1

piδηi , (p,η) ∈ Ω

}
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from some given finite k and f a given kernel density (e.g., skewnormal), let lG denote

the score vector, that is, the column vector made of the partial derivatives of the log-

likelihood function log pG(x) with respect to each of the model parameters represented

by (p,η). The Fisher information matrix is then given by I(G) = E(lGl
>
G), where the

expectation is taken with respect to pG. We say that the parameter vector (p,η) (and

the corresponding mixing measure G = G(p,η)) is a singular point in the parameter

space (resp., ambient space of mixing measures), if I(G) is degenerate. Otherwise,

(p,η) (resp., G) is a non-singular point.

According to the standard asymptotic theory, if the true mixing measure G0 is

non-singular, and the number of mixing components k0 = k (that is, we are in the

e-mixture setting), then basic estimators such as the MLE or Bayesian estimator

yield the optimal root-n rate of convergence. Although the standard theory remains

silent when I(G0) is degenerate, it is clear that the root-n rate may no longer hold.

Moreover, there may be a richer range of behaviors for parameter estimation, requiring

us to look into the deep structure of the zeros of I(G0). This will be our story for

both settings of e-mixtures and o-mixtures. In fact, the Fisher information matrix

I(G0) is no longer sufficient in assessing parameter estimation behaviors.

Example 4.3.1. To illustrate in the context of skewnormal mixtures, where param-

eter η = (θ, v,m), observe that the mixture density structure allows the following

characterization: I(G) is degenerate if and only if the collection of partial derivatives

{
∂pG(x)

∂pj
,
∂pG(x)

∂ηj

}
:=

{
∂pG(x)

∂pj
,
∂pG(x)

∂θj
,
∂pG(x)

∂vj
,
∂pG(x)

∂mj

∣∣∣∣j = 1, . . . , k

}

as functions of x are not linearly independent. This is equivalent to having that for

some coefficients (αij), i = 1, . . . , 4 and j = 1, . . . , k, not all of which are zeros, there
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holds

k∑
j=1

α1jf(x|ηj) + α2j
∂f

∂θ
(x|ηj) + α3j

∂f

∂v
(x|ηj) + α4j

∂f

∂m
(x|ηj) = 0, (4.1)

for almost all x ∈ R. Lemma 4.4.1 later shows that the (Fisher information matrix’s)

singular points are the zeros of some polynomial equations.

We have seen that for the e-mixtures G is non-singular if the collection of density

kernel functions f(x|η) and their first partial derivatives with respect to each model

parameter are linearly independent. This condition is also known as the first-order

identifiability. For o-mixtures, the relevant notion is the second-order identifiability

[Chen, 1995, Nguyen, 2013, Ho and Nguyen, 2016c]: the condition that the collec-

tion of kernel density functions f(x|η), their first and second partial derivatives, are

linearly independent. This condition fails to hold for skewnormal kernel densities,

whose first and second partial derivatives are linked by the following nonlinear par-

tial differential equations:


∂2f

∂θ2
− 2

∂f

∂v
+
m3 +m

v

∂f

∂m
= 0.

2m
∂f

∂m
+ (m2 + 1)

∂2f

∂m2
+ 2vm

∂2f

∂v∂m
= 0.

(4.2)

The proof of these identities can be found in Lemma 4.8.1 in Appendix B. Note that

if m = 0, the skewnormal kernel becomes normal kernel, which admits a (simpler)

linear relationship:

∂2f

∂θ2
= 2

∂f

∂v
. (4.3)

This relation plays a fundamental role in the analysis of finite mixtures of location-

scale normal distributions [Ho and Nguyen, 2016a]. Compared to Gaussian density

kernel, the nonlinear relationship exhibited by skewnormal density kernel results in

a much richer behavior. Analyzing this requires the development of a more general
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theory that we now embark on.

4.3.2 Behavior of likelihood in a Wasserstein neighborhood

Instead of dwelling on the Fisher information matrix, we shall employ a direct

approach which studies the behavior of the likelihood function pG(x) as G varies in a

Wasserstein neighborhood of a mixing measure G0 =
∑k0

i=1 p
0
i δη0i .

Fix r ≥ 1, and consider a sequence of Gn ∈ Ok, such that Wr(G0, Gn) → 0. Let

kn ≤ k be the number of distinct support points of Gn. Then each supporting atom

η0
i as i ∈ {1, . . . , k0} of G0 will have at least one atom of Gn that converges to. By

relabelling the support points of Gn, we can express it as

Gn =

k0∑
i=1

sni∑
j=1

pnijδηnij , (4.4)

where ηnij → η0
i for all i = 1, . . . , k0, j = 1, . . . , sni . Additionally,

k0∑
i=1

sni = kn. There

exists a subsequence of Gn according to which kn and all sni are constant in n. (Note

that for the setting of e-mixtures, the sequence of elements Gn is restricted to Ek0 ,

so kn = k0 for all n. It follows that sni = 1 for all i = 1, . . . , k0. For o-mixtures,

to simplify the presentation, we have omitted the cases where some Gn may have

atoms that do not converge to the atoms of G0 ). Thus, from here on we replace

the sequence of Gn by this subsequence. To simplify the notation, n will be dropped

from the superscript when the context is clear. In addition, we use the notation

∆ηij := ηij−η0
i for i = 1, . . . , k0, j = 1, . . . , si. Also, pi. :=

si∑
j=1

pij, and ∆pi. := pi.−p0
i ,

for i = 1, . . . , k0. (For e-mixtures, since si = 1 for all i, the notation is simplified

further: let ∆ηi := ∆ηi1 = ηi − η0
i ,∆pi = ∆pi. = pi − p0

i for all i = 1, . . . , k0.) The

following lemma relates Wasserstein distance metric to a semipolynomial of degree r

(a semipolynomial is a polynomial of the absolute value of some variables).
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Lemma 4.3.1. Fix r ≥ 1. For any element G represented by Eq. (4.4), define

Dr(G0, G) :=

k0∑
i=1

si∑
j=1

pij‖∆ηij‖rr +

k0∑
i=1

|∆pi.|.

We have that W r
r (G,G0) � Dr(G0, G), as Wr(G0, G) ↓ 0.

To investigate the behavior of likelihood function pG(x) as G tends to G0 in

Wasserstein distance Wr, by representation (4.4), we can express

pG(x)− pG0(x) =

k0∑
i=1

si∑
j=1

pij(f(x|ηij)− f(x|η0
i )) +

k0∑
i=1

∆pi.f(x|η0
i ). (4.5)

By Taylor expansion up to order r, we obtain

pG(x)− pG0(x) =

k0∑
i=1

si∑
j=1

pij

r∑
|κ|=1

(∆ηij)
κ

κ!

∂|κ|f

∂ηκ
(x|η0

i ) +

k0∑
i=1

∆pi.f(x|η0
i ) +Rr(x),(4.6)

where Rr(x) is the Taylor remainder. Moreover, it can be verified that

sup
x
|Rr(x)/W r

r (G,G0)| → 0

since f is uniform Lipschitz up to order r. We arrive at the following formulae, which

measures the speed of change of the likelihood function as G varies in the Wasserstein

neighborhood of G0:

pG(x)− pG0(x)

W r
r (G,G0)

=
r∑
|κ|=1

k0∑
i=1

si∑
j=1

(
pij(∆ηij)

κ/κ!

W r
r (G0, G)

)
∂|κ|f

∂ηκ
(x|η0

i )+

k0∑
i=1

∆pi.
W r
r (G0, G)

f(x|η0
i )+o(1).

(4.7)

The right hand side of Eq. (4.7) is a linear combination of the partial derivatives

of f evaluated at G0. In addition, by Lemma 4.3.1, the coefficients of this linear

representation is asymptotically equivalent to the ratio of two semipolynomials.

Equation (4.7) highlights the distinct roles of model parameters and the kernel
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density function in the formation of a mixture model’s likelihood. The former appear

only in the coefficients, while the latter provides the partial derivatives which appear

as if basis functions for the linear combination. We wrote “as if”, because the partial

derivatives of kernel f may not be linearly independent functions (recall the examples

in Section 4.3.1). When a partial derivative of f can be represented as a linear

combination of other partial derivatives, it can be eliminated from the expression

in the right hand side. This reduction process may be repeatedly applied until all

partial derivatives that remain are linearly independent functions. This motivates the

following.

Definition 4.3.1. The following representation is called r-minimal form of the mix-

ture likelihood for a sequence of mixing measures G tending to G0 in Wr metric:

pG(x)− pG0(x)

W r
r (G,G0)

=
Tr∑
l=1

(
ξ

(r)
l (G)

W r
r (G0, G)

)
H

(r)
l (x) + o(1), (4.8)

which holds for all x, with the index l ranging from 1 to a finite Tr, if

(1) H
(r)
l (x) for all l are linearly independent functions of x, and

(2) coefficients ξ
(r)
l (G) are polynomials of the components of ∆ηij, and ∆pi., pij.

It is sufficient, but not necessary, to select functions H
(r)
l from the collection of

partial derivatives ∂|κ|f/∂ηκ evaluated at particular atoms η0
i of G0, where |κ| ≤ r, by

adopting the elimination technique. The precise formulation of ξ
(r)
l (G) and H

(r)
l (x)

will be determined explicitly by the specific G0. The r-minimal form for each G0 is

not unique, but they play a fundamential role in our notion of the singularity level of

G0 relative to a class of mixing distributions G.

Definition 4.3.2. Fix r ≥ 1 and let G be a class of discrete probability measures

which has a bounded number of support points in Θ. We say G0 is r-singular relative
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to G, if G0 admits a r-minimal form given by Eq. (4.8), according to which there

exists a sequence of G ∈ G tending to G0 under Wr such that

ξ
(r)
l (G)/W r

r (G,G0)→ 0 for all l = 1, . . . , Tr.

We now verify that the r-singularity notion is well-defined, in that it does not

depend on any specific choice of the r-minimal form. This invariant property is

confirmed by part (a) of the following lemma. Part (b) establishes a crucial monotonic

property.

Lemma 4.3.2. (a) (Invariance) The existence of the sequence of G in the statement

of Definition 4.3.2 holds for all r-minimal forms once it holds for at least one r-

minimal form.

(b) (Monotonicity) If G0 is r-singular for some r > 1, then G0 is (r−1)-singular.

Proof. (a) The existence of the sequence of G described in the definition of a r-

minimal form implies for that sequence, (pG(x) − pG0(x))/W r
r (G,G0) → 0 holds for

any x. Now take any r-minimal form (4.8) given by the same sequence. Let C(G) =

maxTrl=1
ξ
(r)
l (G)

W r
r (G0,G)

. If lim inf C(G) = 0, we are done. If not, we have lim inf C(G) > 0.

It follows that
Tr∑
l=1

(
ξ

(r)
l (G)

C(G)W r
r (G,G0)

)
H

(r)
l (x)→ 0.

Moreover, all the coefficients in the above display are bounded from above by 1, one

of which is in fact 1. There exists a subsequence of G by which these coefficients have

limits, one of which is 1. This is also a contradiction due to the linear independence

of functions H
(r)
l (x).

(b) Let G be an element in the sequence that admits a r-minimal form such that

ξ
(r)
l (G)/W r

r (G0, G)

→ 0 for all l = 1, . . . , Tr. It suffices to assume that the basis functions H
(r)
l are

selected from the collection of partial derivatives of f . We will show that the same
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sequence of G and the elimination procedure for the r-minimal form can be used to

construct a r − 1-minimal form by which

ξ
(r−1)
l (G)/W r−1

r−1 (G0, G)→ 0

for all l = 1, . . . , Tr−1. There are two possibilities to consider.

First, suppose that each of the r-th partial derivatives of density kernel f (i.e.,

∂κf/∂ηκ, where |κ| = r) is not in the linear span of the collection of partial derivatives

of f at order r − 1 or less. Then, for each l = 1, . . . , Tr−1, ξ
(r−1)
l (G) = ξ

(r)
l′ (G) for

some l′ ∈ [1, Tr]. Since W r−1
r−1 (G,G0) & W r

r (G,G0), due to the fact that the support

points of G and G0 are in a bounded set, we have that

ξ
(r−1)
l (G)/W r−1

r−1 (G0, G) . ξ
(r)
l′ (G)/W r

r (G0, G)

which vanishes by the hypothesis.

Second, suppose that some of the r-th partial derivatives, say, ∂|κ|f/∂ηκ where

|κ| = r, can be eliminated because they can be represented by a linear combination of

a subset of other partial derivatives H
(r−1)
l (in addition to possibly a subset of other

partial derivatives H
(r)
l ) with corresponding finite coefficients ακ,i,l. It follows that

for each l = 1, . . . , Tr−1, the coefficient ξ
(r−1)
l (G) that defines the r − 1-minimal form

is transformed into a coefficient in the r-minimal form by

ξ
(r)
l′ (G) := ξ

(r−1)
l (G) +

∑
κ;|κ|=r

k0∑
i=1

ακ,i,l

si∑
j=1

pij(∆ηij)
κ/κ!.

Since ξ
(r)
l′ (G)/W r

r (G,G0) tends to 0, so does ξ
(r)
l′ (G)/W r−1

r−1 (G,G0). By Lemma 4.3.1

for each κ such that |κ| = r, we have

k0∑
i=1

si∑
j=1

pij(∆ηij)
κ/κ! = o(Dr−1(G0, G)) = o(W r−1

r−1 (G,G0)).
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It follows that ξ
(r−1)
l (G)/W r−1

r−1 (G,G0) tends to 0, for each l = 1, . . . , Tr−1. This

completes the proof.

The monotonicity of r-singularity naturally leads to the notion of singularity level

of a mixing measure G0 (and the corresponding parameters) relative to an ambient

space G.

Definition 4.3.3. The singularity level of G0 relative to a given class G, denoted by

`(G0|G), is

0, if G0 is not r-singular for any r ≥ 1;

∞, if G0 is r-singular for all r ≥ 1;

otherwise, the largest natural number r ≥ 1 for which G0 is r-singular.

The role of the ambient space G is critical in determining the singularity level of

G0 ∈ G. Clearly, if G ⊂ G ′ are both subsets of probability measures that contain G0,

r-singularity relative to G entails r-singularity relative to G ′. This means `(G0|G) ≤

`(G0|G ′). Let us look at the following examples.

• Take G = Ek0 , i.e., the setting of e-mixtures. It is easy to verify that if the

collection of {∂κf/∂ηκ(x|ηj)|j = 1, . . . , k0; |κ| ≤ 1} evaluated at G0 is linearly

independent, then G0 is not 1-singular relative to Ek0 . It follows that `(G0|G) =

0.

• On the other hand, if G = Ok for any k > k0, i.e., the setting of o-mixtures.

Then it can be shown that G0 is always 1-singular relative to Ok for any k > k0.

Thus, `(G0|G) ≥ 1. Now, if the collection of {∂κf/∂ηκ(x|ηj)|j = 1, . . . , k0; |κ| ≤

2} evaluated at G0 is linearly independent, then it can be observed that G0 is

not 2-singular relative to Ok. Thus, `(G0|G) = 1.
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In fact, the conditions described in the two examples above are referred to as strong

identifiability conditions studied by Chen [1995], Nguyen [2013], Ho and Nguyen

[2016c]. Our concept of singularity level generalizes such strong identifiability condi-

tions, by allowing us to consider situations where such conditions fail to hold. This

is when `(G0|G) = 2, 3, . . . ,∞. The significance of this concept can be appreciated

by the following theorem.

Theorem 4.3.1. Let G be a class of probability measures on Θ that have a bounded

number of support points, and fix G0 ∈ G. Suppose that `(G0|G) = r, for some

0 ≤ r ≤ ∞.

(i) If r <∞, then inf
G∈G

‖pG − pG0‖∞
W s
s (G,G0)

> 0 for any s ≥ r + 1.

(ii) If r <∞, then inf
G∈G

V (pG, pG0)

W s
s (G,G0)

> 0 for any s ≥ r + 1.

(iii) If 1 ≤ r <∞ and in addition,

(a) f is (r + 1)-order differentiable with respect to η and for some constant

c0 > 0,

sup
‖η−η′‖≤c0

∫
x∈X

(
∂r+1f

∂ηα
(x|η)

)2

/f(x|η′)dx <∞ (4.9)

for any |α| = r + 1.

(b) There is a sequence G ∈ G tending to G0 in Wasserstein metric Wr and

the coefficients of the r-minimal form ξ
(r)
l (G) = 0 for all l = 1, . . . , Tr.

Then, for any 1 ≤ s < r + 1,

lim inf
G∈G:W1(G,G0)→0

h(pG, pG0)

W s
1 (G,G0)

= 0.
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(iv) If r =∞ and the conditions (a), (b) in part (iii) hold for any l ∈ N (here, the

parameter r in these conditions is replaced by l), then the conclusion of part

(iii) holds for any s ≥ 1.

We make a few remarks.

• Part (i) and part (ii) show how the singularity level of G0 relative to an ambient

space G may be used to translate the convergence of mixture densities (under

the sup-norm and the total variation distance) into the convergence of mixing

measures under a Wasserstein metric. Part (iii) shows a sufficient condition

under which the power r+1 in the bounds from part (i) and (ii) is in fact tight.

• In part (iii) the condition regarding the integrand of the partial derivative of

f (cf. Eq. (4.9) can be easily checked to be satisfied by many kernels, such as

Gaussian kernel, Gamma kernel, Student t’s kernel, and skewnormal kernel.

• Condition (b) regarding the sequence of G appears somewhat opaque in general,

but it will be seen in specific examples for skewnormal mixtures in the sequel. It

is sufficient, but not necessary, for verifying the r-singularity of G0 to construct

the sequence ofG so that ξ
(r)
l (G) = 0 for all 1 ≤ l ≤ Tr, provided such a sequence

exists. This requires finding an appropriate parameterization of a sequence of

G tending toward G0 that satisfy a number of polynomial equations defined in

terms of the parameter perturbations.

Proof. Here, we provide the proof for part (i) and (ii) of the theorem. The proof for

part (iii) and (iv) is deferred to the Appendix.

(i) It suffices to prove the first inequality for s = r+1. Firstly, we will demonstrate

that

lim inf
G∈G:Ws(G,G0)→0

‖pG − pG0‖∞/W s
s (G,G0) > 0.
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If this is not true, then there exists a sequence of G such that Ws(G,G0) → 0, and

for any x, (pG(x)− pG0(x))/W s
s (G,G0)→ 0. Take any s-minimal form for this ratio,

we have

pG(x)− pG0(x)

W s
s (G,G0)

=
Ts∑
l=1

(
ξ

(s)
l (G)

W s
s (G,G0)

)
H

(s)
l (x) + o(1)→ 0.

For each G in the sequence, let C(G) = maxl
ξ

(s)
l (G)

W s
s (G0, G)

. If lim inf C(G) = 0, then

this means G0 is s-singular, so `(G0|G) ≥ s. This violates the given assumption. So

we have lim inf C(G) > 0. It follows that

Ts∑
l=1

(
ξ

(s)
l (G)

C(G)W s
s (G,G0)

)
H

(s)
l (x)→ 0.

Moreover, all coefficients in the above display are bounded from above by 1, one of

which is in fact 1. There exists a subsequence of G by which these coefficients have a

limit, one of which is 1. This is also a contradiction due to the linear independence

of functions H
(s)
l .

Therefore, we can find a positive number ε0 such that ‖pG − pG0‖∞ & W s
s (G,G0)

for any Ws(G,G0) ≤ ε0. Now, to obtain the conclusion of part (i), it suffices to

demonstrate that

inf
G∈G:Ws(G,G0)>ε0

‖pG − pG0‖∞/W s
s (G,G0) > 0.

If this is not the case, there is a sequence G′ such that Ws(G
′, G0) > ε0 and ‖pG′ −

pG0‖∞/W s
s (G′, G0)

→ 0. Since Θ is compact and G contains only probability measures with bounded

number of support points in Θ, we can find G∗ ∈ G such that Ws(G
′, G∗) → 0 and

Ws(G
∗, G0) ≥ ε0. As Ws(G

′, G0)→ Ws(G
∗, G0) > 0, we have ‖pG′−pG0‖∞ → 0. Now,

due to the first order uniform Lipschitz condition of f , we obtain pG′(x)→ pG∗(x) for

all x ∈ X . Thus, pG∗(x) = pG0(x) for almost all x ∈ X , which entails that G∗ = G0,
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a contradiction. This completes the proof.

(ii) Turning to the second inequality, we also firstly demonstrate that

lim inf
G∈G:Ws(G,G0)→0

V (pG, pG0)/W
s
s (G,G0) > 0.

If it is not true, then we have a sequence of G such that Ws(G,G0) → 0 and

V (pG, pG0)/W
s
s (G,G0)→ 0. By Fatou’s lemma

0 = lim inf
V (pG, pG0)

C(G)W s
s (G,G0)

≥
∫

lim inf
G

∣∣∣∣ ξ
(s)
l (G)

C(G)W s
s (G,G0)

H
(s)
l (x)

∣∣∣∣dx.
The integrand must be zero for almost all x, leading to a contradiction as before.

Hence, to obtain the conclusion of part (ii), we only need to show that

inf
G∈G:Ws(G,G0)>ε0

V (pG, pG0)/W
s
s (G,G0) > 0.

where ε0 > 0 such that V (pG, pG0) & W s
s (G,G0) for any Ws(G,G0) ≤ ε0. If it is not

true, by using the same argument as that of part (i), there is a sequence of G′ such

that Ws(G
′, G∗) → 0, V (pG′ , pG0) → 0, while Ws(G

∗, G0) ≥ ε0 and pG′(x) → pG∗(x)

for all x ∈ X . By Fatou’s lemma,

0 = lim inf V (pG′ , pG0) ≥
∫

lim inf |pG′(x)− pG0(x)|dx = V (pG∗ , pG0),

which leads to G∗ = G0, a contradiction. We obtain the conclusion of this part.

We are ready to state the impact of the singularity level of mixing measure G0

relative to an ambient space G on the rate of convergence for an estimate of G0, where

G = Ek0 in e-mixtures, and G = Ok in o-mixtures. Let G be structured into a sieve of

subsets defined by the maximum singularity level relative to G.
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G =
∞⋃
r=1

Gr, where Gr :=

{
G ∈ G

∣∣∣∣`(G|G) ≤ r

}
, r = 0, 1, . . . ,∞.

The first part of the following theorem gives a minimax lower bound for the

estimation of the mixing measure G0, given that the singularity level of G0 is known

up to a constant r ≥ 1. The second part gives a quick result on the convergence rate

of a point estimate such as the MLE.

Theorem 4.3.2. (a) Fix r ≥ 1. Assume that for any G0 ∈ Gr, the conclusion

of part (iii) of Theorem 4.3.1 holds for Gr (i.e., G is replaced by Gr in that

theorem). Then, for any s ∈ [1, r + 1) there holds

inf
Ĝn∈Gr

sup
G0∈Gr

EpG0
Ws(Ĝn, G0) & n−1/2s.

Here, the infimum is taken over all sequences of estimates Ĝn ∈ Gr and EpG0
de-

notes the expectation taken with respect to product measure with mixture density

pnG0
.

(b) Let G0 ∈ Gr for some fixed r ≥ 1. Let Ĝn ∈ Gr be a point estimate for G0,

which is obtained from an n-sample of i.i.d. observations drawn from pG0. As

long as h(pĜn , pG0) = OP (n−1/2), we have

Wr+1(Ĝn, G0) = OP (n−1/2(r+1)).

Proof. Part (a) of this theorem is a consequence of the conclusion of Theorem 4.3.1,

part (iii). The proof of this fact is quite standard, and similar to that of Theorem 1.1.

of [Ho and Nguyen, 2016a] and is omitted. Part (b) follows immediately from part

(ii) of Theorem 4.3.1, as we have h(pĜn , pG0) ≥ V (pĜn , pG0) & W r+1
r+1 (Ĝn, G0).
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We conclude this section with some comments. It is well-known that many den-

sity estimation methods, such as MLE and Bayesian estimation applied to a compact

parameter space for parametric mixture models, guarantee a root-n rate (up to a loga-

rithmic term) of convergence under Hellinger distance metric on the density functions

(cf. [van de Geer, 2000, Ghosal and van der Vaart, 2001, DasGupta, 2008]). It follows

that, as far as we are concerned, the remaining work in establishing the convergence

behavior of parameter estimation (as opposed to density estimation) lies in the cal-

culation of the singularity levels, i.e., the identification of sets Gr. For skewnormal

mixtures, such calculations will be carried out in Section 4.4 and Section 4.5. For the

settings of G0 where we are able to obtain the exact singularity levels, we can also

construct the sequence of G required by part (iii) of Theorem 4.3.1. Whenever the

exact singularity level is obtained, we automatically obtain a minimax lower bound

and a matching upper bound for MLE convergence rate under a Wasserstein distance

metric, thanks to the above theorem. In some cases, however, the singularity level of

G0 may be not determined exactly, but only an upper bound is given. In such cases,

only an upper bound to the convergence rate of the MLE can be obtained, while

minimax lower bounds may be unknown.

4.3.3 Construction of r-minimal forms

As we mentioned above, a simple way of constructing an r-minimal form is to select

a subset of partial derivatives of f taken up to order r such that all these functions

are linearly independent. A simple procedure is to start from the smallest order r = 1

and then move up to r = 2, 3, . . . and so on. For each r, assume that we have obtained

a linearly independent subset of partial derivatives up to order r−1. Now, going over

the ordered list of r-th partial derivatives: {∂|κ|f/∂ηκ|κ ∈ Nd, |κ| = r}. For each κ

such that |κ| = r, if the partial derivative of f of order κ can be expressed as a linear

combination of other partial derivatives already selected, then this one is eliminated.
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The process goes on until we exhaust the list of the partial derivatives.

Example 4.3.2. Continuing from Example 4.3.1, suppose that G0 satisfies Eq. (4.1).

According to the proof of Lemma 4.4.1, we can choose α4k 6= 0, so the partial deriva-

tive may be eliminated via the reduction:

∂f(x|η0
k)

∂m
= −

k∑
j=1

α1j

α4k

f(x|η0
j ) +

α2j

α4k

∂f(x|η0
j )

∂θ
+
α3j

α4k

∂f(x|η0
j )

∂v
−

k−1∑
j=1

α4j

α4k

∂f(x|η0
j )

∂m

Note that this elimination step is valid only for a subset of G0 = G(p0,η0) for which

Eq. (4.1) holds. That is, only if P1(η0) = 0 or P2(η0) = 0.

Example 4.3.3. If f(x|η) = f(x|θ, v,m) where m = 0, the skewnormal kernel

becomes the Gaussian kernel. Due to (4.3), all partial derivatives with respect to

both θ and v can be eliminated via the following reduction: for any κ1, κ2 ∈ N, for

any j = 1, . . . , k0,
∂κ1+κ2f(x|η0

j )

∂θκ1vκ2
=

1

2κ2

∂κ1+2κ2f(x|η0
j )

∂θκ1+2κ2
.

Thus, this elimination is valid for all parameter values (p0,η0), and r-minimal forms

for all orders.

Example 4.3.4. For the skewnormal kernel density f(x|η) = f(x|θ, v,m), Eq. (4.2)

yields the following reductions: for any j = 1, . . . , k0, any η = (θ, v,m) = η0
j =

(θ0
j , v

0
j ,m

0
j) such that m 6= 0

∂2f

∂θ2
= 2

∂f

∂v
− m3 +m

v

∂f

∂m
, (4.10)

∂2f

∂v∂m
= −1

v

∂f

∂m
− m2 + 1

2vm

∂2f

∂m2
. (4.11)

This results in a ripple effect on subsequent eliminations at higher orders. For exam-

ples, partial derivatives up to the third order of f evaluated at η = η0
j = (θ0

j , v
0
j ,m

0
j)
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for any j = 1, . . . , k0 where m0
j 6= 0 can be expressed as follows:

∂3f

∂θ3
= 2

∂2f

∂θ∂v
− m3 +m

v

∂2f

∂θ∂m
,

∂3f

∂θ2∂v
= 2

∂2f

∂v2
+
m3 +m

v2

∂f

∂m
− m3 +m

v

∂2f

∂v∂m
,

∂3f

∂θ2∂m
= 2

∂2f

∂v∂m
− 3m2 + 1

v

∂f

∂m
− m3 +m

v

∂2f

∂m2
,

∂3f

∂v∂m2
= −m

2 + 1

2vm

∂3f

∂m3
− 3m2 − 1

2vm2

∂2f

∂m2
,

∂3f

∂v2∂m
= −2

v

∂2f

∂v∂m
− m2 + 1

2vm

∂3f

∂v∂m2

=
(m2 + 1)2

4v2m2

∂3f

∂m3
+

(m2 + 1)(7m2 − 1)

4m3v2

∂2f

∂m2
+

2

v2

∂f

∂m
,

∂3f

∂θ∂v∂m
= −m

2 + 1

2vm

∂3f

∂θ∂m2
− 1

v

∂2f

∂θ∂m
. (4.12)

All three examples above demonstrate how the dependence among partial deriva-

tives of kernel density f , among different orders κ, and among those evaluated at

different component i, has a deep impact on the representation of r-minimal forms.

In general, the r-minimal form (4.8) may be expressed somewhat more explicitly

as follows

pG(x)− pG0(x)

W r
r (G,G0)

=
∑

(i,κ)∈I,K

ξ
(r)
i,κ (G)

W r
r (G0, G)

H
(r)
i,κ (x|G0) +

k0∑
i=1

ζ
(r)
i (G)

W r
r (G0, G)

f(x|η0
i ) + o(1).

where I ⊂ {1, . . . , k0} and K ⊂ Nd of elements κ such that |κ| ≤ r. It is emphasized

that the sets I and K are specific to a particular r-minimal form under consideration.

H
(r)
i,κ are a collection of linearly independent partial derivatives of f that are also

independent of all functions f(x|η0
i ). H

(r)
i,κ are taken from the collection of partial

derivatives with order at most r. We also observe that ξ
(r)
i,κ and ζ

(r)
i take the following
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polynomial forms:

ξ
(r)
i,κ (G) =

si∑
j=1

pij(∆ηij)
κ

κ!
+
∑
i′,κ′

βi,κ,i′,κ′(G0)

si′∑
j=1

pij(∆ηij)
κ′

κ′!
, (4.13)

ζ
(r)
i (G) = ∆pi. +

∑
i′,κ′

γi,i′,κ′(G0)

si′∑
j=1

pij(∆ηij)
κ′

κ′!
. (4.14)

In the right hand side of each of the last two equations, i′ is taken from a subset of

{1, . . . , k0} and κ′ is from a subset of Nd such that |κ| ≤ |κ′| ≤ r. The actual detail

of these subsets depend on the specific elimination scheme leading to the r-minimal

form. Likewise, the non-zero coefficients βi,κ,i′,κ′(G0) and γi,κ,i′,κ′(G0) arise from the

specific elimination scheme. We include argument G0 in these coefficients to highlight

the fact that they may be dependent on the atoms of G0 (cf. Example 4.3.2 and 4.3.4).

By the definition of r-singularity for any r ≥ 1, G0 is r-singular relative to G if

there exists a sequence of G tending to G0 in the ambient space G such that the se-

quences of semipolynomial fractions, namely, ξ
(r)
i,κ (G)/W r

r (G,G0) and ζ
(r)
i (G)/W r

r (G,G0)

(whose numerators are given by Eq. (4.13) and Eq. (4.14)), must vanish. As a con-

sequence, the question of r-singularity for a given element G0 is determined by the

limiting behavior of a finite collection of infinite sequences of semipolynomial frac-

tions.

4.3.4 Polynomial limits of r-minimal form coefficients

It is worth noting that the limiting behavior of semipolynomial fractions described

above is independent of a particular choice of the r-minimal form, in a sense that we

now explain. In part (a) of Lemma 4.3.2, we established an invariance property of the

r-singularity, which does not depend on a specific form of the r-minimal form. Let us

restrict the basis functions to be members of the collection of all partial derivatives

of f up to order r. In the proof of part (b) of Lemma 4.3.2 it was shown that the

coefficients ξ
(r)
l (G) have to be elements of a set of polynomials of ∆ηij, ∆pi., and pij,
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which are closed under linear combinations of its elements. Let us denote this set by

P(G,G0), which is invariant with respect to any specific choice of the basis functions

(from the collection of partial derivatives) for the r-minimal form. Moreover, G0 is

r-singular if and only if a sequence of G tending to G0 in Wr can be constructed

such that for any element ξ
(r)
l (G) ∈ P(G,G0), we have ξ

(r)
l (G)/W r

r (G,G0) → 0.

Equivalently,

ξ
(r)
l (G)/Dr(G,G0)→ 0 for all ξrl (G) ∈ P(G,G0). (4.15)

Extracting the limits of a single multivariate semipolynomial fraction (a.k.a. ra-

tional semipolynomial functions) is quite challenging in general, due to the interaction

among multiple variables involved [Xiao and Zeng, 2014]. Analyzing the limits of not

one but a collection of multivariate rational semipolynomials is considerably more

difficult. To obtain meaningful and concrete results, we need to consider specific

systems of multivariate rational semipolynomials that arise from the r-minimal form.

In the remainder of this chapter we will proceed to do just that. By working with

a specific choice of kernel density f (the skewnormal), it will be shown that under

the compactness of the parameter spaces, one can extract a subset of limits from the

system of rational semipolynomials ξ
(r)
l (G)/Dr(G,G0). These limits are expressed

as a system of polynomials admitting non-trivial solutions. For a given r ≥ 1, if

the extracted system of polynomial limits does not contain admissible solutions, then

it means that there does not exist any sequence of mixing measures G for which a

valid r-minimal form can be constructed, because (4.15) is not fullfilled. This would

entail the upper bound `(G0|G) < r. On the other hand, if the extracted system of

polynomial limits does contain at least one admissible solution, this is a hint that

the r-singularity level of G0 relative to the ambient space G might hold. Whether

this is actually the case or not requires an explicit construction of a sequence of

G ∈ G (often building upon the admissible solutions of the polynomial limits) and

then the verification that condition (4.15) indeed holds. For the verification purpose,
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it is sufficient (and simpler) to work with a specific choice of r-minimal form, as

Definition 4.3.2 allows.

The foregoing description, along with the presentation in the previous subsection

on the construction of r-minimal forms, provides the outline of a general procedure

which links the determination of the singularity level to the solvability of a system

of polynomial limits. This procedure will be illustrated in the next sections for the

remarkable world of mixtures of skewnormal distributions.

4.4 O-mixtures of skewnormal distributions

In this section, we focus on the o-mixture setting of skewnormal distributions. To

avoid a heavy dose of technicality, we study the singularity level of G0 ∈ Ek0 relative

to ambient space Ok,c0 for some k > k0 and small constant c0 > 0, where Ok,c0 ⊂ Ok
contains only (discrete) probability measures whose point masses are bounded from

below by c0. Moreover, we will analyze the singularity level of G0 ∈ S0, a subset to be

defined shortly by (4.16). This case is interesting in that it illustrates the full power of

the general method of analysis that was described in Section 4.3 in a concrete fashion.

Due to the complex nature and space constraints, we will not report any result on

the case where G0 is in the complement of S0. 2 Instead, in Section 4.5 we study the

singularity level of G0 relative to the smaller ambient space Ek0 (that is, e-mixture

setting), for which a more complete picture of the singularity structure is achieved.

Lemma 4.4.1. For skewnormal density kernel f(x|η), the collection of {∂κf/∂ηκ(x|ηj)

|j = 1, . . . , k0; 0 ≤ |κ| ≤ 1} is not linearly independent if and only if η = (η1, . . . , ηk)

are the zeros of either polynomial P1 or P2, which are defined as follows:

Type A: P1(η) =
k0∏
j=1

mj.

2Interested readers may consult Section 6 in technical report [Ho and Nguyen, 2016d] for such
results.
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Type B: P2(η) =
∏

1≤i 6=j≤k0

{
(θi − θj)2+

[
σ2
i (1 +m2

j)− σ2
j (1 +m2

i )

]2}
.

This lemma leads us to consider

S0 =

{
G = G(p,η)

∣∣∣∣(p,η) ∈ Ω, P1(η) 6= 0, P2(η) 6= 0

}
. (4.16)

In the o-mixture setting, we will see that `(G0|Ok,c0) may grow with k − k0, the

number of extra mixing components. The main excercise is to arrive at a suitable

r-minimal form, for which the vanishing behavior of its coefficients can be analyzed.

Section 4.3.3 describes a general strategy for the construction of r-minimal form based

on the partial derivatives of the density kernel f with respect to the parameters

η = (θ, v,m) up to order r.

For skewnormal kernel density f , the following lemma provides an explicit form

for reducing a partial derivative of f to other partial derivatives of lower orders.

Lemma 4.4.2. For any r ≥ 1, denote

Ar1 = {(α1, α2, α3) : α1 ≤ 1, α3 = 0, and |α| ≤ r} .

Ar2 = {(α1, α2, α3) : α1 ≤ 1, α2 = 0, α3 ≥ 1, and |α| ≤ r} .

Fr = Ar1 ∪ Ar2.

Let f(x|η) = f(x|θ, v,m) denote the skewnormal kernel. Then, for any α = (α1, α2, α3)

∈ N3 and m 6= 0, there holds

∂|α|f

∂θα1∂vα2∂mα3
=

∑
κ∈F|α|

P κ1,κ2,κ3
α1,α2,α3

(m)

Hκ1,κ2,κ3
α1,α2,α3(m)Qκ1,κ2,κ3

α1,α2,α3(v)

∂|κ|f

∂θκ1∂vκ2∂mκ3
,

where, P κ1,κ2,κ3
α1,α2,α3

(m), Hκ1,κ2,κ3
α1,α2,α3

(m), and Qκ1,κ2,κ3
α1,α2,α3

(v) are polynomials in terms of m, v

respectively.

Next, we show that the partial derivatives on the RHS of the above identity are

144



∂f

∂θ

∂f

∂v

∂f

∂m

∂2f

∂θ2

∂2f

∂v2

∂2f

θm2

∂2f

∂θ∂v

∂2f

∂θ∂m

∂2f

∂vθm

∂3f

∂θ3

∂3f

∂v3

∂3f

θm3

∂3f

∂θ2∂v

∂3f

∂θ2∂m

∂3f

∂v2∂m

∂3f

∂θ∂v2

∂3f

∂θ∂m2

∂3f

∂v∂m2

∂3f

∂θ∂v∂m

Figure 4.1: The illustration of the elimination steps from a complete collection of
derivatives of f up to the order 3 to a reduced system of linearly independent partial
derivatives, cf. Lemma 4.4.3. The circled derivatives are eliminated from the partial
derivatives present in the 3-minimal form. A → B means that B is involved in the
representation of A under the reduction.

in fact linearly independent, under additional assumptions on G0.

Lemma 4.4.3. Recall the notation from Lemma 4.4.2. If G0 ∈ S0, then for any

r ≥ 1, the collection of partial derivatives of the skewnormal density kernel f(x|η),

namely {
∂|κ|f(x|η)

θκ1vκ2mκ3

∣∣∣∣ κ = (κ1, κ2, κ3) ∈ Fr, η = η0
1, . . . , η

0
k0

}
is linearly independent.

Figure 4.1 gives an illustration of Lemma 4.4.3 when r = 3. Armed with the

foregoing lemmas we can easily obtain a suitable r-minimal form for the mixture

densities of skewnormals.

4.4.1 Special cases

To illustrate our techniques and results, consider a special case in which G0 has

exactly one atom, and k = k0 +1 = 2. The general results will be presented in Section

4.4.2.
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G0 is 1-singular G0 ∈ S0 implies that all first order derivatives of f are linearly

independent. Hence, from Eq. (4.8), the 1-minimal form takes the form:

pG(x)− pG0(x)

W1(G,G0)
� 1

W1(G,G0)

(
∆p1.f(x|η0

1) +
2∑
i=1

p1i∆θ1i
∂f

∂θ
(x|η0

1)

+
2∑
i=1

p1i∆v1i
∂f

∂v
(x|η0

1) +
2∑
i=1

p1i∆m1i
∂f

∂m
(x|η0

1)

)
+ o(1). (4.17)

Since k = 2 and k0 = 1, we have ∆p1. = 0. A sequence of G can be chosen so that
2∑
i=1

p1i∆θ1i = 0,
2∑
i=1

p1i∆v1i = 0,
2∑
i=1

p1i∆m1i = 0. Clearly, all of the coefficients in

(4.8) are 0. Hence G0 is 1-singular relative to O2,c0 .

G0 is 2-singular Using the method of elimination described in Example 4.3.4 we

obtain the following 2-minimal form:

1

W 2
2 (G,G0)

(∑
κ∈F2

ξ(2)
κ1,κ2,κ3

∂|α|f

∂θκ1∂vκ2∂mκ3
(x|η0

1)

)
+ o(1), (4.18)

where ξ
(2)
κ1,κ2,κ3 are given by

ξ
(2)
1,0,0 =

2∑
i=1

p1i∆θ1i, ξ
(2)
0,1,0 =

2∑
i=1

p1i∆v1i +
2∑
i=1

p1i(∆θ1i)
2,

ξ
(2)
0,0,1 = −(m0

1)3 +m0
1

2v0
1

2∑
i=1

p1i(∆θ1i)
2 − 1

v0
1

2∑
i=1

p1i∆v1i∆m1i +
2∑
i=1

p1i∆m1i,

ξ
(2)
0,2,0 =

2∑
i=1

p1i(∆v1i)
2, ξ

(2)
0,0,2 = −(m0

1)2 + 1

2v0
1m

0
1

2∑
i=1

p1i∆v1i∆m1i +
2∑
i=1

p1i∆(m1i)
2,

ξ
(2)
1,1,0 =

2∑
i=1

p1i∆θ1i∆v1i, ξ
(2)
1,0,1 =

2∑
i=1

p1i∆θ1i∆m1i.

Note in particular the formulas for ξ
(2)
0,1,0, ξ

(2)
0,0,1 and ξ

(2)
0,0,2 are the results of reduction

equation (4.10). It remains to construct a sequence of G tending to G0 so that
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ξ
(2)
κ /W 2

2 (G,G0) vanish for all κ = (κ1, κ2, κ3) ∈ F2. Define

M = max
{
|∆θ11|, |∆θ12|, |∆v11|1/2, |∆v12|1/2, |∆m11|1/2, |∆m12|1/2

}
.

Then, it can be observed that W 2
2 (G,G0) & M

2
and ξ

(2)
κ1,κ2,κ3 = O(M

κ1+2κ2+2κ3
). So,

for any κ ∈ F2 such that κ1 + 2κ2 + 2κ3 ≥ 3, as ξ
(2)
κ1,κ2,κ3 = O(M

s
) where s ≥ 3, it

implies that ξ
(2)
κ1,κ2,κ3/W

2
2 (G,G0) → 0. So we only need to consider the coefficients

where κ1 + 2κ2 + 2κ3 ≤ 2 and κ1 ≤ 1. They are ξ
(2)
1,0,0/W

2
2 (G,G0), ξ

(2)
0,1,0/W

2
2 (G,G0),

and ξ
(2)
0,0,1/W

2
2 (G,G0). Now, by dividing both the numerator and numerator of each

of these coefficients by M , M
2
, and M

2
, respectively, we extract the following system

of polynomial limits:

d2
1a1 + d2

2a2 = 0,

d2
1a

2
1 + d2

2a
2
2 + d2

1b1 + d2
2b2 = 0,

−(m0
1)3 +m0

1

2v0
1

(d2
1a

2
1 + d2

2a
2
2) + d2

1c1 + d2
2c2 = 0, (4.19)

where ∆θ1i/M → ai, ∆v1i/M
2 → bi, ∆m1i/M

2 → ci, p1i → d2
i for all 1 ≤ i ≤ 2.

One solution to the above system of polynomial equations is d1 = d2, a1 = −a2,

b1 = b2 = a2
1/2, c1 = c2 = (−(m0

1)3 + m0
1)/2v0

1. It follows that if we choose the

sequence of G so that p11 = p12 = 1/2, ∆θ11 = −∆θ12, ∆v11 = ∆v12 = (∆θ11)2/2,

and ∆m11 = ∆m12 = (∆θ11)2(−(m0
1)3+m0

1)/2v0
1, then all coefficients of the 2-minimal

form vanish. Hence, G0 is 2-singular relative to O2,c0 .

G0 is 3-singular The proof for this is similar. A 3-minimal form can be obtained

by applying the reductions (4.12), which eliminate all third order partial derivatives

in terms of lower order ones that are in fact linearly independent by the condition

that G0 ∈ S0. As in the foregoing paragraphs, we can obtain a system of polynomials

that turn out to share the same solution as the one described. This leads to the same
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choice of sequence for G according to which all coefficients of the 3-minimal form

vanish. Thus, G0 is 3-singular relatively to Ok,c0 .

G0 is not 4-singular Applying the same approach to obtain a 4-minimal form and

their rational semipolynomial coefficients, from which we extract the following system

of real polynomial limits:

d2
1a1 + d2

2a2 = 0,

d2
1a

2
1 + d2

2a
2
2 + d2

1b1 + d2
2b2 = 0,

−(m0
1)3 +m0

1

2v0
1

(d2
1a

2
1 + d2

2a
2
2) + d2

1c1 + d2
2c2 = 0,

1

3
(d2

1a
3
1 + d2

2a
3
2) + d2

1a1b1 + d2
2a2b2 = 0,

−(m0
1)3 +m0

1

6v0
1

(d2
1a

3
1 + d2

2a
3
2) + d2

1a1c1 + d2
2a2c2 = 0,

1

6
(d2

1a
4
1 + d2

2a
4
2) + d2

1a
2
1b1 + d2

2a
2
2b2 +

1

2
(d2

1b
2
1 + d2

2b
2
2) = 0,

((m0
1)3 +m0

1)2

12(v0
1)2

(d2
1a

4
1 + d2

2a
4
2)− (m0

1)3 +m0
1

v0
1

(d2
1a

2
1c1 + d2

2a
2
2c2)−

(m0
1)2 + 1

v0
1m

0
1

(d2
1b1c1 + d2

2b2c2) + d2
1c

2
1 + d2

2c
2
2 = 0, (4.20)

such that at least one among a1, a2, b1, b2, c1, c2 is non-zero and d1, d2 6= 0. At the first

glance, the behavior of this system may be dependent on the specific value of v0
1,m

0
1.

However, if we remove the third, fifth and eighth equations, we obtain a system of

real polynomials that does not depend on the specific value of G0. In fact, it can be

verified that this system does not admit any non-trivial real solution. Thus, there

does not exist any sequence of G ∈ O2,c0 according to which all coefficients of the

4-minimal form vanish. So, G0 is not 4-singular. We conclude that `(G0|O2,c0) = 3.

We end this illustrative exercise with a remark. The fact that there exists a

subset of the limiting polynomials of the coefficients of r-minimal forms that do not

depend on specific value of G0 is very useful, because it allows us to provide an upper
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bound on the singularity level the holds uniformly for all G0 ∈ S0. It is interesting

to note that this subset of polynomials also arises from the same analysis applied to

the Gaussian kernels studied by [Ho and Nguyen, 2016a]. This observation can be

partially explained by the fact that Gaussian kernels are a special case of skewnormal

kernels with zero skewness. A highly nontrivial consequence from this observation is

that the singularity level in a skewnormal mixture is always bounded from above that

the singularity level in a Gaussian mixture. Thanks to Theorem 4.3.2 we arrive at

a somewhat surprising conclusion that the MLE and minimax bounds for parameter

estimation in skewnormal o-mixtures are generally faster than that of Gaussian o-

mixtures. Now we are ready for results for the general setting of G0 ∈ S0, which also

articulates this remark more precisely.

4.4.2 General results

In this section we shall present results on `(G0|Ok,c0) for the general case k > k0.

To do so, we shall define the system of the limiting polynomials that characterizes

the singularity level of G0.

Recall the notation introduced by the statement of Lemma 4.4.2. For given r ≥

1, for each i = 1, . . . , k0, the system is given by the equations of real unknowns

(aj, bj, cj, dj)
k−k0+1
j=1 :

{ k−k0+1∑
j=1

∑
α

P β1,β2,β3
α1,α2,α3

(m0
i )

Hβ1,β2,β3
α1,α2,α3(m

0
i )Q

β1,β2,β3
α1,α2,α3(v

0
i )

d2
ja
α1
j b

α2
j c

α3
j

α1!α2!α3!
= 0

∣∣∣∣
β ∈ Fr ∩ {β1 + 2β2 + 2β3 ≤ r}

}
(4.21)

where the range of α = (α1, α2, α3) ∈ N3 in the above sum satisfies α1 + 2α2 + 2α3 =

β1 + 2β2 + 2β3.

Note that the above system of polynomial equations is the general version of

the systems of polynomial equations described in the previous section. There are
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2r − 1 equations in the above system of 4(k − k0 + 1) unknowns. A solution of

(4.21) is considered non-trivial if all of dj are non-zeros while at least one among

a1, . . . , ai, b1, . . . , bi, c1, . . . , ci is non-zero. We say that system (4.21) is unsolvable if

it does not have any non-trivial (or admissible) solution. The main result of this

section is the following.

Theorem 4.4.1. For each i = 1, . . . , k0, let ρ(v0
i ,m

0
i , k − k0) be the minimum r for

which system of polynomial equations (4.21) is unsolvable. Define

R(G0, k) = max
1≤i≤k0

ρ(v0
i ,m

0
i , k − k0). (4.22)

If G0 ∈ S0, then `(G0|Ok,c0) ≤ R(G0, k)− 1.

Remark: We make the following comments regarding the results of Theorem 4.4.1.

(i) If k − k0 = 1, we can obtain R(G0, k) = 4 from the examples given in Section

4.4.1 (although in the examples we only worked out the case that k0 = 1, for

general k0 ≥ 1 the techniques are the same). Since G0 is in fact 3-singular, the

bound is tight.

(ii) In order to determine R(G0, k), we need to find the value of ρ(v0
i ,m

0
i , k − k0)

for all 1 ≤ i ≤ k0. One may ask whether the value of ρ(v0
i ,m

0
i , k − k0) depends

on the specific values of v0
i ,m

0
i . The structure of ρ(v0

i ,m
0
i , k−k0) will be looked

at in more detail in the next subsection.

Proof. The strategy is clear: First, we shall obtain a valid r-minimal form for G0,

cf. Eq. (4.8). This requires a method for obtaining linearly independent basis func-

tions Hl(x) out of the partial derivatives of kernel density f . Second, we obtain the

polynomial limits of collection of coefficients of the r-minimal form. Third, we obtain

bounds on r according to which this system of limiting polynomials does not admit

non-trivial real solutions. This provides upper bounds on the singularity level of G0.
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Step 1: Construction of r-minimal form It follows from Lemma 4.4.2 and

Lemma 4.4.3 that a r-th minimal form for G0 can be obtained as

pG(x)− pG0(x)

W r
r (G,G0)

� A1(x) +B1(x)

W r
r (G,G0)

,

where A1(x) and B1(x) are given as follows

A1(x) =

k0∑
i=1

∑
β∈Fr

( si∑
j=1

∑
|α|≤r

P β1,β2,β3
α1,α2,α3

(m0
i )

Hβ1,β2,β3
α1,α2,α3(m

0
i )Q

β1,β2,β3
α1,α2,α3(v

0
i )

pij(∆θij)
α1(∆vij)

α2(∆mij)
α3

α1!α2!α3!

)

× ∂|β|f

∂θβ1∂vβ2∂mβ3
(x|θ0

i , σ
0
i ,m

0
i ),

B1(x) =

k0∑
i=1

∆pi.f(x|θ0
i , σ

0
i ,m

0
i ).

Suppose that there exists a sequence of G tending to G0 under Wr such that all the

coefficients of A1(x)/W r
r (G,G0) and B1(x)/W r

r (G,G0) vanish. Then for all 1 ≤ i ≤

k0, we obtain that ∆pi./W
r
r (G,G0)→ 0 and

Eβ1,β2,β3(θ
0
i , v

0
i ,m

0
i ) :=

si∑
j=1

∑
|α|≤r

P β1,β2,β3
α1,α2,α3

(m0
i )

Hβ1,β2,β3
α1,α2,α3(m

0
i )Q

β1,β2,β3
α1,α2,α3(v

0
i )

pij(∆θij)
α1(∆vij)

α2(∆mij)
α3

α1!α2!α3!

W r
r (G,G0)

→ 0,

as β ∈ Fr. According to Lemma 4.3.1,

W r
r (G,G0) � Dr(G0, G).

So,
k0∑
i=1

|∆pi.|/Dr(G0, G)→ 0. It follows that

k0∑
i=1

si∑
j=1

pij(|∆θij|r + |∆vij|r + |∆mij|r)/Dr(G0, G)→ 1.
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This means there exists some index i∗ ∈ {1, . . . , k0} such that

si∗∑
j=1

pi∗j(|∆θi∗j|r + |∆vi∗j|r + |∆mi∗j|r)/Dr(G0, G) 6→ 0.

By multiplying the inverse of the above term with Eβ1,β2,β3(θ
0
i∗ , v

0
i∗ ,m

0
i∗) as β ∈ Fr

and using the fact that W r
r (G,G0) � Dr(G0, G), we obtain

Fβ1,β2,β3(θ
0
i∗ , v

0
i∗ ,m

0
i∗) :=

s1∑
j=1

∑
|α|≤r

P β1,β2,β3
α1,α2,α3

(m0
i∗)

Hβ1,β2,β3
α1,α2,α3(m

0
i∗)Q

β1,β2,β3
α1,α2,α3(v

0
i∗)

pi∗j(∆θi∗j)
α1(∆vi∗j)

α2(∆mi∗j)
α3

α1!α2!α3!
s1∑
j=1

pi∗j(|∆θi∗j|r + |∆vi∗j|r + |∆mi∗j|r)
→ 0,

Step 2: Greedy extraction of polynomial limits We proceed to extract poly-

nomial limits of all Fβ1,β2,β3(θ
0
i∗ , v

0
i∗ ,m

0
i∗). This technique has been demonstrated in

Section 4.4.1 for specific cases. Note that the numerators of the Fβ1,β2,β3(θ
0
i∗ , v

0
i∗ ,m

0
i∗)

are inhomogeneous polynomials in general. Let

M g = max

{
|∆θi∗1|, . . . , |∆θi∗si∗ |, |∆vi∗1|1/2, . . . , |∆vi∗si∗ |1/2,

|∆mi∗1|1/2, . . . , |∆mi∗si∗ |1/2
}
.

Denote the limits for the relevant subsequences, which exist due to the boundedness:

∆θi∗j/M g → aj, ∆vi∗j/M
2

g → bj, and ∆mi∗j/M
2

g → cj, and pi∗j → d2
j for each j =

1, . . . , si∗ . Here, at least one element of (aj, bj, cj)
si∗
j=1 equals to -1 or 1. For any index

vector β = (β1, β2, β3) such that β ∈ Fr, the lowest order of M g in the numerator of

Fβ1,β2,β3(θ
0
i∗ , v

0
i∗ ,m

0
i∗) is M

β1+2β2+2β3
g . Since

s1∑
j=1

pi∗j(|∆θi∗j|r + |∆vi∗j|r + |∆mo∗j|r) �

M
r

g, it is clear that Fβ1,β2,β3(θ
0
i∗ , v

0
i∗ ,m

0
i∗) vanishes as long as β1 + 2β2 + 2β3 ≥ r + 1.

Thus, we only need to concern with Fβ1,β2,β3(θ
0
i∗ , v

0
i∗ ,m

0
i∗) when β ∈ Fr and β1 +2β2 +

2β3 ≤ r.
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For any β = (β1, β2, β3) such that β ∈ Fr and β1 + 2β2 + 2β3 ≤ r, by dividing

the numerator and denominator of Fβ1,β2,β3(θ
0
i∗ , v

0
i∗ ,m

0
i∗) by M

β1+2β2+2β3
g (i.e the lowest

order of M g in the numerator of Fβ1,β2,β3(θ
0
i∗ , v

0
i∗ ,m

0
i∗)), we obtain the following system

of equations

si∗∑
j=1

∑
α

P β1,β2,β3
α1,α2,α3

(m0
i∗)

Hβ1,β2,β3
α1,α2,α3(m

0
i∗)Q

β1,β2,β3
α1,α2,α3(v

0
i∗)

d2
ja
α1
j b

α2
j c

α3
j

α1!α2!α3!
= 0, (4.23)

where the range of α = (α1, α2, α3) in the above sum satisfies α1 + 2α2 + 2α3 =

β1 + 2β2 + 2β3. The above system of polynomial equations is the general version of

the systems of polynomial equations (4.19) and (4.20) that we considered in Section

4.4.1. Now, one of the elements of ajs, bjs, cjs is non-zero. Since G ∈ Ok,c0 and
si∗∑
j=1

pi∗j → p0
i∗ , we have the constraints d2

j > 0 and
si∗∑
j=1

d2
j = p0

i∗ . However, we can

remove the constraint on the summation of d2
j by putting d2

j = p0
i∗(d

′
j)

2)/
si∑
j=1

(d
′
j)

2)

where we the only constraint on d
′
js is d

′
j 6= 0 for all 1 ≤ j ≤ si∗ . As a consequence,

when we talk about system of polynomial equations (4.23), we can consider only the

constraint d2
j 6= 0 for any 1 ≤ j ≤ si∗ . By Definition 4.3.2, G0 is not r-singular

relative to Ok,c0 as long as the system (4.23) does not admit any non-trivial solution

for the unknowns (aj, bj, cj, dj)
si∗
j=1.

Step 3: Deriving an upper bound There are two distinct features of system

of polynomial equations (4.23). First, i∗ varies in {1, 2, . . . , k0} as G ∈ Ok,c0 tends

to G0. Second, the value of si∗ of the subsequence of G is subject to the constraint

that si∗ ≤ k − k0 + 1. (This constraint arises due to number of distinct atoms of

G,
k0∑
j=1

sj ≤ k
′ ≤ k and all sj ≥ 1 for all 1 ≤ j ≤ k0). It follows from these two

observations that the system (4.23) admits a non-trivial solution only if the system

(4.21) also admits a non-trivial solution. This cannot be the case if r ≥ R(G0, k), by

the definition given in Eq. (4.22). This concludes our proof.
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4.4.3 Properties of the system of limiting polynomial equations

The goal of this subsection is the present additional results on the structure of

function ρ(v,m, k − k0), which is a fundamental quantity in Theorem 4.4.1 (Here,

v0
i ,m

0
i are replaced by v,m). It is difficult to obtain explicit values for ρ(v,m, k− k0)

in general. Nonetheless, we can obtain a nontrivial upper bound for ρ. Now, let

Ξ1 := {(v,m) ∈ Θ2 ×Θ3 : m 6= 0}. Recall that ρ(v,m, l), where l = k − k0 ≥ 1,

is the minimum value according to which system (4.21) does not admit non-trivial

real-solution.

Proposition 4.4.1. Let r(l) the minimal value of s > 0 such that the following

system of polynomial equations

l∑
j=1

∑
n1+2n2=α
n1,n2≥0

x2
jy
n1
j z

n2
j

n1!n2!
= 0 for each α = 1, . . . , s (4.24)

does not have any solution for (x1, . . . , xl, y1, . . . , yl, z1, . . . , zl) such that x1, . . . , xl are

non-zeros, and at least one of y1, . . . , yl is non-zero. For all l = 1, 2, . . ., there holds

sup
(v,m)∈Ξ1

ρ(v,m, l) ≤ r(l).

Remarks (i) The proof of this proposition is given in Appendix B, which proceeds

by verifying that system (4.24) forms a subset of equations that define system (4.21).

Combining with the statement of Theorem 4.4.1, we obtain

`(G0|Ok,c0) ≤ r(l)− 1.

(ii) A remarkable fact is that r(l) is nothing but the singularity level of G0 relative to

Ok,c0 in the context of location-scale Gaussian mixture. This statement can be proved
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directly using the same method of proof described in the previous section for the

skewnormal mixtures. The proof for the Gaussian mixture is much simpler, because

the r-minimal form for Gaussian mixtures can be obtained via the relatively simpler

elimination steps given by Example 4.3.3. The fact that the coefficients involved in

this elimination are constant with respect to the model parameters is the fundamental

reason why the singularity level of G0 for the Gaussian mixtures is uniform over the

entire space of parameters. See also Theorem 1.1 of Ho and Nguyen [2016a].

(iii) Combining the above remark with the results established by Theorem 4.3.2 leads

us to conclude this: it is statistically more efficient to estimate location-scale-shape

parameters of skewnormal o-mixtures than to estimate location-scale parameters of

Gaussian o-mixtures that carry the same number of extra mixing components.

Dependence of ρ on (v,m) To understand the role of parameter value (v,m) on

singularity levels, we shall construct a partition of the parameter space for (v,m)

based on the value of function ρ. For each l, r ≥ 1, define an “inverse” function

ρ−1
l (r) = {(v,m) ∈ Ξ1 : ρ(v,m, l) = r} .

Additionally, take

ρ(l) = min
{
r : ρ−1

l (r) 6= ∅
}
, ρ(l) = max

{
r : ρ−1

l (r) 6= ∅
}
.

It follows from Proposition4.4.1 that ρ(l) ≤ r(l). In addition, ρ−1
l (r) are mutually

disjoint for different values of r. So, for each fixed l ≥ 1,

Ξ1 =

ρ(l)⋃
r=ρ(l)

ρ−1
l (r).

Proposition 4.4.2. For each l ≥ 1, r ≥ 1, ρ−1
l (r) is a semialgebraic set.
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Proof. For each r ≥ 1, let Ar be the collection of all (v,m) ∈ Ξ1 such that the sys-

tem of polynomial equations (4.21) contains admissible solutions. Furthermore, Br

denotes the collection of all solutions (v,m, {ai}li=1 , {bi}
l
i=1 , {ci}

l
i=1 , {di}

l
i=1) of sys-

tem of polynomial equations (4.21), i.e., we treat v,m as two additional unknowns of

the system. Since P β1,β2,β3
α1,α2,α3

(m), Hβ1,β2,β3
α1,α2,α3

(m), and Qβ1,β2,β3
α1,α2,α3

(v) are polynomial func-

tions of m, v for all α, β, by definition Br is a semialgebraic set for all r ≥ 1. By

Tarski-Seidenberg theorem [Basu et al., 2006], since Ar is the projection of Br from

dimension (4l + 2) to dimension 2, Ar is a semialgebraic set for all r ≥ 1. It follows

that Ac
r is semialgebraic for all r ≥ 1. Since ρ−1

l (r) = Ac
r ∩ Ar−1 for all r ≥ 1, the

conclusion of the proposition follows.

The following result gives us some exact values of ρ(l) and ρ(l) in specific cases.

Proposition 4.4.3. (a) If l = k − k0 = 1, then ρ(l) = ρ(l) = 4.

(b) If l = k − k0 = 2, then ρ(l) = 5 and ρ(l) = 6. Thus, Ξ1 is partitioned into

two subsets, both of which are non-empty because {(1,−2), (1, 2)} ⊂ ρ−1
l (5), and

(1,
1

10
) ∈ ρ−1

l (6).

From the definition of R(G0, k), we can write

R(G0, k) = max

{
r

∣∣∣∣there is i = 1, . . . , k0 such that(v0
i ,m

0
i ) ∈ ρ−1

k−k0(r)

}
.

According to the Proposition 4.4.3, if k − k0 = 1, we have R(G0, k) = 4 (see also our

earlier remark). If k − k0 = 2, we may have either R(G0, k) = 5 or 6, depending on

the value of parameters (v,m) that provide the support for G0.

We end this subsection by noting that we have just provided specific examples

in which R(G0, k) − 1 may vary with the actual parameter values that define G0.

Although this is an upper bound of the singularity level, we have not actually proved

that the singularity level of G0 may generally vary with its parameter values. We will
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be able to do so in the sequel, when we work with the e-mixture setting.

4.5 E-mixtures of skewnormal distributions

E-mixtures are the setting in which the number of mixing components is known

k = k0. In this section, we study the singularity structure of mixing measure G0

relative to the ambient space Ek0 , where k0 is the number of supporting atoms for G0.

Recall from the previous section the definition of S0, the subset S0 ⊂ Ek0 of

measure G0 = G0(p0,η0) such that (p0,η0) satisfy P1(η0)P2(η0) 6= 0. P1 and P2 are

polynomials given in the statement of Lemma 4.4.1. It is simple to verify that for

any G0 ∈ S0, as a consequence of this lemma, the Fisher information matrix I(G0) is

non-singular. It follows that

Theorem 4.5.1. If G0 ∈ S0, then `(G0|Ek0) = 0.

We turn our attention to the singularity structure of set Ek0 \ S0. For any G0 ∈

Ek0 \S0, the parameters of G0 satisfy P1(η0)P2(η0) = 0. Accordingly, for each pair of

(i, j) = 1, . . . , k0 the two components indexed by i and j are said to be homologous

if

(θ0
i − θ0

j )
2 + [v0

i (1 + (m0
j)

2)− v0
j (1 + (m0

i )
2)]2 = 0.

Moreover, for each 1 ≤ i ≤ k0, let Ii denote the set of all components homologous

to (component) i. By definition, it is clear that if i and j are homologous, Ii ≡ Ij.

Therefore, these homologous sets form equivalence classes. From here on, when we say

a homologous set I, we implicitly mean that it is the representation of the equivalent

classes.

Now, the homologous set consists of the indices of skewnormal components that

share the same location and a rescaled version of the scale parameter. A non-empty

homologous set I is said to be conformant if for any i 6= j ∈ I, m0
im

0
j > 0. A

non-empty homologous set I is said to be nonconformant if we can find two indices
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Ek0

P1 6= 0 P1 = 0

0 P2 6= 0 P2 = 0 P2 = 0

1 C

2 P2 6= 0 C

level ∈ [1,∞] NC NC

S0 S1 S3 S2 S2 S3

Figure 4.2: The singularity level of G0 relative to Ek0 is determined by partition
based on zeros of polynomials P1, P2 into subsets S0,S1,S2,S3. Here, ”NC” stands
for nonconformant.

i, j ∈ I such that m0
im

0
j < 0. Additionally, G0 is said to be conformant if all the

homologous sets are conformant or nonconformant (NC) if at least one homologous

set is nonconformant. Now, we define a partition of Ek0 \S0 as follows Ek0 = S0∪S1∪

S2 ∪ S3, where


S1 = {G = G(p,η) ∈ Ek0| P1(η) 6= 0, P2(η) = 0, G is conformant}

S2 = {G = G(p,η) ∈ Ek0 | P1(η) = 0, if P2(η) = 0 then G is conformant}

S3 = {G = G(p,η) ∈ Ek0 | P2(η) = 0 and G is nonconformant} .

Figure 4.2 summarizes singularity levels of elements residing in Ek0 , except for S3.

4.5.1 Singularity level of G0 ∈ S1 ∪ S2

The main results of this subsection are the following two theorems

Theorem 4.5.2. If G0 ∈ S1, then `(G0|Ek0) = 1.

Theorem 4.5.3. If G0 ∈ S2, then `(G0|Ek0) = 2.
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The complete proofs of both theorems are given in in Appendix. In the following,

we shall present the proof for a simple setting of G0 ∈ S1, which illustrates the

complete proofs, and also helps to explain why the partition of according to S1, i.e.,

the notion of conformant, arises in the first place.

Proof. (of a simplified setting) The simplified setting is that all components of G0 are

homologous to one another. By definition all components of G0 are non-Gaussian (be-

cause P1(η0) 6= 0). Thus, we have θ0
1 = . . . = θ0

k0
and

v0
1

1 + (m0
1)2

= . . . =
v0
k0

1 + (m0
k0

)2
.

Additionally, m0
i 6= 0 for all 1 ≤ i ≤ k0. Since G0 is conformant, m0

i share the same

sign for all 1 ≤ i ≤ k0. Without loss of generality, we assume m0
i > 0. We need to

show that G0 is 1-singular, but not 2-singular.

G0 is 1-singular Given constraints on the parameters of G0, it is simple to arrive

at the following 1-minimal form (cf. Eq. (4.8)):

1

W1(G,G0)

{ k0∑
i=1

[
β

(1)
1i + β

(1)
2i (x− θ0

1) + β
(1)
3i (x− θ0

1)2)

]
f

(
x− θ0

1

σ0
i

)
Φ

(
m0
i (x− θ0

1)

σ0
i

)
+

[
γ

(1)
1 + γ

(1)
2 (x− θ0

1)

]
exp

(
−(m0

1)2 + 1

2v0
1

(x− θ0
1)2

)}
+ o(1), (4.25)

where coefficients β
(1)
1i , β

(1)
2i , β

(1)
3i , γ

(1)
1 , γ

(1)
2 are the polynomials of ∆θj, ∆vj, ∆mj, and

∆pj:

β
(1)
1i =

2∆pi
σ0
i

− pi∆vi
(σ0

i )
3
, β

(1)
2i =

2pi∆θi
(σ0

i )
3
, β

(1)
3i =

pi∆vi
(σ0

i )
5
,

γ
(1)
1 =

k0∑
j=1

−pjm
0
j∆θj

π(σ0
j )

2
, γ

(1)
2 =

k0∑
j=1

−pjm
0
j∆vj

2π(σ0
j )

4
+
pj∆mj

π(σ0
j )

2
.

Note that, the conditions m0
i 6= 0 for all 1 ≤ i ≤ k0 allow us to have the following

terms f

(
x− θ0

1

σ0
i

)
Φ

(
m0
i (x− θ0

1)

σ0
i

)
and exp

(
−(m0

1)2 + 1

2v0
1

(x− θ0
1)2

)
are linearly in-

dependent. It is clear that if a sequence of G (represented by Eq. (4.4)) is chosen
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such that ∆θi = ∆vi = ∆pi = 0 for all 1 ≤ i ≤ k0, and
k0∑
i=1

pi∆mi/v
0
i = 0, then

we obtain β
(1)
1i /W1(G,G0) = β

(1)
2i /W1(G,G0) = β

(1)
3i /W1(G,G0) = γ

(1)
1 /W1(G,G0) =

γ
(1)
2 /W1(G,G0) = 0. Hence, G0 is 1-singular relative to Ek0 .

G0 is not 2-singular Indeed, suppose that this is not true. Then from Definition

4.3.2, for any sequence of G that tends to G0 under W2, all coefficients of the 2-

minimal form must vanish. A 2-minimal form is given as follows:

1

W 2
2 (G,G0)

[ k0∑
i=1

( 5∑
j=1

β
(2)
ji (x− θ0

1)j−1

)
f

(
x− θ0

1

σ0
i

)
Φ

(
m0
i (x− θ0

1)

σ0
i

)

+

( 4∑
j=1

γ
(2)
j (x− θ0

1)j−1

)
exp

(
−(m0

1)2 + 1

2v0
1

(x− θ0
1)2

)]
+ o(1), (4.26)

where β
(2)
ji , γ

(2)
j are polynomials of ∆θl, ∆vl, ∆ml, and ∆pl for l = 1, . . . , k0:

β
(2)
1i =

2∆pi
σ0
i

− pi∆vi
(σ0

i )
3
− pi(∆θi)

2

(σ0
i )

3
+

3pi(∆vi)
2

4(σ0
i )

5
, β

(2)
2i =

2pi∆θi
(σ0

i )
3
− 6pi∆θi∆vi

(σ0
i )

5
,

β
(2)
3i =

pi∆vi
(σ0

i )
5

+
pi(∆θi)

2

(σ0
i )

5
− 3pi(∆vi)

2

2(σ0
i )

7
, β

(2)
4i =

2pi∆θi∆vi
(σ0

i )
7

, β
(2)
5i =

pi(∆vi)
2

4(σ0
i )

9
,

γ
(2)
1 =

k0∑
j=1

−pjm
0
j∆θj

π(σ0
j )

2
+

2pjm
0
j(∆θj)(∆vj)

π(σ0
j )

4
− 2pj∆θj∆mj

π(σ0
j )

2
,

γ
(2)
2 =

k0∑
j=1

−pjm
0
j∆vj

2π(σ0
j )

4
− pj((m

0
j)

3 + 2m0
j)(∆θj)

2

2π(σ0
j )

4
+
pj∆mj

π(σ0
j )

2
+

5pjm
0
j(∆vj)

2

8π(σ0
j )

6
− pj∆vj∆mj

π(σ0
j )

4
,

γ
(2)
3 =

k0∑
j=1

pj(2(m0
j)

2 + 2)∆θj∆mj

π(σ0
j )

4
− pj((m

0
j)

3 + 2m0
j)∆θj∆vj

2π(σ0
j )

6
,

γ
(2)
4 =

k0∑
j=1

−pj((m
0
j)

3 + 2m0
j)(∆vj)

2

8π(σ0
j )

8
− pjm

0
j(∆mj)

2

2π(σ0
j )

4
+
pj((m

0
j)

2 + 1)∆vj∆mj

π(σ0
j )

6
.

Now, β
(2)
ji /W

2
2 (G,G0)→ 0 leads to ∆pi/W

2
2 (G,G0),∆θi/W

2
2 (G,G0),∆vi/W

2
2 (G,G0)→

0 for all 1 ≤ i ≤ k0 (The rigorous argument for that result is in Step 1.1 of the full
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P1 = 0

NC

≤ max {s(G0), 2} P3 6= 0 P3 = 0

level ≥ 3 P4 6= 0

level =∞ P4 = 0

S31 S32 S33

Figure 4.3: The level of singularity structure of G0 ∈ S3 when P1(η0) = 0. Here,
”NC” stands for nonconformant. The term s(G0) is defined in (4.37).

proof of this theorem in Appendix B). Combining with Lemma 4.3.1, we obtain

k0∑
i=1

pi|∆mi|2/W 2
2 (G,G0) 6→ 0. (4.27)

Additionally, the vanishing of coefficients γ
(2)
j /W 2

2 (G,G0) for 1 ≤ j ≤ 4 entails

( k0∑
i=1

pi∆mi/v
0
i

)
/W 2

2 (G,G0)→ 0,

( k0∑
i=1

pim
0
i (∆mi)

2/(v0
i )

2

)
/W 2

2 (G,G0)→ 0. (4.28)

Combining (4.27) and (4.28), it follows that

( k0∑
i=1

pim
0
i (∆mi)

2/(v0
i )

2

)
/

k0∑
i=1

pi|∆mi|2 → 0,

which is a contradiction due to m0
i > 0 for all 1 ≤ i ≤ k0. Hence, G0 is not 2-singular

relative to Ek0 . We conclude that `(G0|Ek0) = 1.
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P1 6= 0

NC

≤ s(G0) P3 6= 0 P3 = 0

level ≥ 3 P4 6= 0

level =∞ P4 = 0

S31 S32 S33

Figure 4.4: The level of singularity structure of G0 ∈ S3 when P1(η0) 6= 0. Here,
”NC” stands for nonconformant. The term s(G0) is defined in (4.37).

4.5.2 Singularity levels of G0 ∈ S3: a summary

The singularity structure of S3 is much more complex than those of previous

settings of G0. S3 does not admit an uniform level of singularity for all its elements

— it needs to be partitioned into many subsets via intersections with additional

semialgebraic sets of the parameter space. In addition, we can establish the existence

of subsets that correspond to the infinite level of singularity. In most cases when the

singularity level is finite, we may only be able to provide some bounds rather than an

exact values. As in o-mixtures, the unifying theme of such bounds is their connection

to the solvability of a system of real polynomial equations.

IfG0 = G0(p0,η0) ∈ S3, then its corresponding parameters satisfy P2(η0) = 0, i.e.,

there is at least one homologous set of G0. Moreover, at least one such homologous set

is nonconformant. For any G0 ∈ S3, let I1, . . . , It be all nonconformant homologous

sets of G0. The singularity structures of S3 arise from the zeros of the following

polynomials:

• Type C(1): P3(p0,η0) :=
t∏
i=1

( ∏
S⊆Ii,|S|≥2

( ∑
j∈S

p0
j

∏
l 6=j
m0
l

))
.
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• Type C(2): P4(p0,η0) :=
∏

1≤i 6=j≤k0

[
u2
ij + (m0

iσ
0
j +m0

jσ
0
i )

2 + (p0
iσ

0
j − p0

jσ
0
i )

2

]
,

where u2
ij = (θ0

i − θ0
j )

2 +
(
v0
i (1 + (m0

j)
2)− v0

j (1 + (m0
i )

2)
)2

.

Type C singularities, including both C(1) and C(2), are distinguished from Type A

and Type B singularities by the fact that the Type C polynomials are defined by

not only component parameters η0, but also mixing probability parameters p0. Note

that C(1) singularity implies that there is some homologous set Ii of G0 such that∏
S⊆Ii,|S|≥2

( ∑
j∈S

p0
j

∏
l 6=j
m0
l

)
= 0. A homologous set of G0 having the above property is

said to contain type C(1) singularity locally. Similarly, type C(2) singularity implies

that there is some pair 1 ≤ i 6= j ≤ k0 such that u2
ij+(m0

iσ
0
j+m0

jσ
0
i )

2+(p0
iσ

0
j−p0

jσ
0
i )

2 =

0. A homologous set of G0 having this pair is said to contain type C(2) singularity

locally. It can be easily checked that a homologous set containing type C(2) singularity

must also contain type C(1) singularity, since P4(p0,η0) = 0 entails P3(p0,η0) = 0.

Now, we define the following partition of S3 according to the definition of type C(1)

and C(2) singularity: S3 = S31 ∪ S32 ∪ S33, where


S31 = {G = G(p,η) ∈ S3 | P3(p,η) 6= 0}

S32 = {G = G(p,η) ∈ S3 | P3(p,η) = 0, P4(p,η) 6= 0}

S33 = {G = G(p,η) ∈ S3 | P3(p,η) = 0, P4(p,η) = 0} .

Due to the highly technical nature of our analysis of the singularity structure of S3,

we defer such details to Section 4.7.1 in Appendix A. Here, we only provide a summary

of such results. Figure 4.3 and 4.4 provide additional illustrations. Specifically, when

G0 ∈ S31, it is shown that `(G0|Ek0) ≤ max{2, s(G0)}, where s(G0) is defined by a

system of polynomial equations that we obtain via a method of greedy extraction of

polynomial limits, see Section 4.7.1.1. In some specific cases, the precise singularity

level of G0 ∈ S31 will be given. If G0 ∈ S32, we need a more sophisticated method of

extraction for polynomial limits; our technique is illustrated on on a specific example
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of G0 in Section 4.7.1.2. Finally, if G0 ∈ S33, it is shown that `(G0|Ek0) = ∞ in

Section 4.7.1.3.

4.6 Discussion and concluding remarks

Understanding the behavior of parameter estimates of mixture models is useful

because the mixing parameters represent explicitly the heterogeneity of the underlying

data population that mixture models are most suitable for. In this chapter, a general

framework for the identification of singularity structure arising from finite mixture

models is proposed. It is shown that the singularity levels of the model’s parameter

space directly determine minimax lower bounds and maximum likelihood estimation

convergence rates, under conditions on the compactness of the parameter space.

The systematic identification of singularity levels and the implications on parame-

ter estimation is a crucial step toward the development of more efficient model-based

inference procedures. It is our view that such procedures must account for the pres-

ence of singular points residing in the parameter space of the model. As a matter

of fact, there are quite a few examples of such efforts applied to specific statistical

models, even if the picture of the singularity structure associating with those models

might not have been discussed explicitly. This raises a question of whether or not it

is possible to extend and generalize such techniques in order to address the presence

of singularities in a direct fashion. We give several examples:

(1) For overfitted mixture models, methods based on likelihood-based penalization

techniques were shown to be quite effective (e.g., [Toussile and Gassiat, 2009,

Chen, 2016]). Our work shows that parameter values residing in the vicinity of

regions of high singularity levels should be hard to estimate efficiently. Can a

penalization technique be generalized to regularize the estimates toward subsets

containing singularity points of smaller levels?
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(2) Suitable choices of Bayesian prior have been proposed to induce favorable poste-

rior contraction behavior for overfitted finite mixtures [Rousseau and Mengersen,

2011]. Can we develop an appropriate prior for the mixture model parameters,

given our knowledge of singular points residing in the parameter space?

(3) Reparametrization is an effective technique that can be employed to combat

singularities present in the class of skewed distributions [Hallin and Ley, 2014].

It would be interesting to study if such reparameterization technique can be

systematically developed for the mixture models as well.

We also expect that the theory of singularity structures carries important con-

sequences on the computational complexity of parameter estimation procedures, in-

cluding both optimization and sampling based methods. The non-uniform nature of

the singularity levels reveals a complex structure of the likelihood function: regions in

parameter space that carry low singularity levels may observe a relatively high curva-

ture of the likelihood surface, while high singularity levels imply a “flatter” likelihood

surface along a certain subspace of the parameters. Such a subspace is manifested

by our construction of sequences of mixing measures that attest to the condition of

r-singularity. It is of interest to exploit the explicit knowledge of singularity levels

obtained for a given mixture model class, so as to improve upon the computational

efficiency of the optimization and sampling procedures that operate on the model’s

parameter space.
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4.7 Appendix A

This Appendix contains additional results on the singularity structure of e-mixtures

of skewnormal distributions.

4.7.1 Singularity structure of S3: detailed analysis

To develop intuition and obtain bounds for singularity level for G0 ∈ S3, we start

by considering a simple case similar to the exposition of subsection 4.5.1. That is,

G0 has only one homologous set of size k0. G0 ∈ S3 means that m0
i do not share the

same signs for all i = 1, . . . , k0. To investigate the singularity level for G0, we first

obtain an r-minimal form, for r ≥ 2, of (pG(x)− pG0(x))/W r
r (G,G0) by

1

W r
r (G,G0)

[ k0∑
i=1

( 2r+1∑
j=1

β
(r)
ji (x− θ0

1)j−1

)
f

(
x− θ0

1

σ0
i

)
Φ

(
m0
i (x− θ0

1)

σ0
i

)

+

( 2r∑
j=1

γ
(r)
j (x− θ0

1)j−1

)
exp

(
−(m0

1)2 + 1

2v0
1

(x− θ0
1)2

)]
+ o(1), (4.29)

where β
(r)
ji , γ

(r)
j are polynomials of ∆θl, ∆vl, ∆ml, and ∆pl as 1 ≤ i, l ≤ k0 and

1 ≤ j ≤ 2r+1. For concrete formulas of β
(r)
ji , γ

(r)
j , we note that for any α = (α1, α2, α3)

such that |α| ≤ r, there holds

∂|α|f

∂θα1∂vα2∂mα3
=

( 2r∑
i=1

Uα1,α2,α3

i (m)

V α1,α2,α3

i (v)
(x− θ)i−1

)
f

(
x− θ
σ

)
f

(
m(x− θ)

σ

)
+

1

σ

( 2r+1∑
i=1

Lα1,α2,α3

i

Nα1,α2,α3

i (v)
(x− θ)i−1

)
f

(
x− θ
σ

)
Φ

(
m(x− θ)

σ

)
.

In the above display Uα1,α2,α3

i (m), V α1,α2,α3

i (v), Nα1,α2,α3

i (v) are polynomials in terms

of m, v and Lα1,α2,α3

i are some constant numbers. As α3 ≥ 1, we can further check
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that Lα1,α2,α3

i = 0 for all 1 ≤ i ≤ 2r and α1, α2 such that |α| ≤ r. It follows that

β
(r)
ji =

2∆pi
σ0
j

1{j=1} +
1

σ0
i

∑
|α|≤r

Lα1,α2,α3

j

Nα1,α2,α3

j (v0
i )

pi(∆θi)
α1(∆vi)

α2(∆mi)
α3

α1!α2!α3!
,

γ
(r)
j =

k0∑
i=1

∑
|α|≤r

Uα1,α2,α3

j (m0
i )

V α1,α2,α3

j (v0
i )

pi(∆θi)
α1(∆vi)

α2(∆mi)
α3

α1!α2!α3!
,

where 1 ≤ i ≤ k0 and 1 ≤ j ≤ 2r+1. Since Lα1,α2,α3

j = 0 as α3 ≥ 1, we further obtain

that

β
(r)
ji =

2∆pi
σ0
j

1{j=1} +
1

σ0
i

∑
α1+α2≤r

Lα1,α2,0
j

Nα1,α2,0
j (v0

i )

pi(∆θi)
α1(∆vi)

α2

α1!α2!
.

Therefore, β
(r)
ji are polynomials of ∆pi,∆θi,∆vi, while γ

(r)
j are polynomials in terms

of ∆θi,∆vi,∆mi, for 1 ≤ i ≤ k0, 1 ≤ j ≤ 2r + 1.

Suppose that there is a sequence of G tending to G0 (in Wr distance) such

that all coefficients of its r-minimal form in (4.29) vanish. It can be checked that

β
(r)
ji /W

r
r (G,G0) → 0 for all even j ∈ [1, 2r + 1] entails that ∆θi/W

r
r (G,G0) → 0 for

all 1 ≤ i ≤ k0. Similarly, β
(r)
ji /W

r
r (G,G0) → 0 for all odd j ∈ [3, 2r + 1] entails

that ∆vi/W
r
r (G,G0) → 0 for all 1 ≤ i ≤ k0. So, as β

(r)
1i /W

r
r (G,G0) → 0, we obtain

∆pi/W
r
r (G,G0)→ 0. It follows that, as β

(r)
ji /W

r
r (G,G0)→ 0 for all 1 ≤ j ≤ 2r+1, we

must have ∆pi/W
r
r (G,G0),∆θi/W

r
r (G,G0),∆vi/W

r
r (G,G0) → 0 for all 1 ≤ i ≤ k0.

These results imply that

k0∑
i=1

|∆pi|+ pi(|∆θi|r + |∆vi|r)

W r
r (G,G0)

→ 0.

If ∆mi = 0 for all 1 ≤ i ≤ k0, then by means of Lemma 4.3.1,

k0∑
i=1

|∆pi|+ pi(|∆θi|r + |∆vi|r) = Dr(G0, G) � W r
r (G,G0),
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which contradicts with the above limit. Therefore, we must have max
1≤i≤k0

|∆mi| > 0.

Turning to γ
(r)
l and the fact that

∆pi/W
r
r (G,G0),∆θi/W

r
r (G,G0),∆vi/W

r
r (G,G0)→ 0,

if γ
(r)
l /W r

r (G,G0)→ 0 as 1 ≤ l ≤ 2r, we also have that

(
k0∑
i=1

∑
α3≤r

U0,0,α3

l (m0
i )

V 0,0,α3

l (v0
i )

pi(∆mi)
α3

α3!

)
/W r

r (G,G0)→ 0.

We can verify that as 1 ≤ l ≤ 2r is odd, U0,0,α3

j (m0
i ) = 0 for all α3 ≤ r and 1 ≤ i ≤ k0.

Additionally, as 1 ≤ l ≤ 2r is even, the above system of limits becomes

( ∑
i1−i2=l/2

qi1,i2
i1!

k0∑
i=1

pi(m
0
i )
i1−2i2−1(∆mi)

i1

(σ0
i )
l

)
/W r

r (G0, G)→ 0, (4.30)

where 1 ≤ i1 ≤ r, i2 ≤ (i1− 1)/2 as i1 is odds or i2 ≤ i1/2− 1 as i1 is even. Here, qi,j

are the integer coefficients that appear in the high order derivatives of f(x|θ, σ,m)

with respect to m:

∂s+1f

∂ms+1
=

(s−1)/2∑
j=0

q(s+1),jm
s−2j

σ2s+2−2j
(x− θ)2s−2j+1

 f (x− θ
σ

)
f

(
m(x− θ)

σ

)

when s is an odd number and

∂s+1f

∂ms+1
=

 s/2∑
j=0

q(s+1),jm
s−2j

σ2s+2−2j
(x− θ)2s−2j+1

 f (x− θ
σ

)
f

(
m(x− θ)

σ

)

when s is an even number. For instance, when s = 0, we have q1,0 = 2 and when

s = 1, we have q2,0 = −2.

Summarizing, in order for all the coefficients in the r-minimal form (4.29) to

vanish, i.e we have β
(r)
ji , γ

(r)
l /W r

r (G,G0) → 0, the system of limits (4.30) is the key
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factor to determine the singularity structure of G0 ∈ S3. We are going to explore the

structure of this system of limits under the specific settings of G0 ∈ S3.

4.7.1.1 Singularity level of G0 ∈ S31

Recall from the above argument that, as we have β
(r)
ji /W

r
r (G,G0) when 1 ≤ i, l ≤

k0 and 1 ≤ j ≤ 2r + 1, we obtain ∆θi,∆vi,∆pi/W
r
r (G,G0) → 0 for all 1 ≤ i ≤ k0.

Combining with Lemma 4.3.1, it follows that

k0∑
i=1

pi|∆mi|r/W r
r (G1, G) 6→ 0. (4.31)

Since we have max
1≤i≤k0

|∆mi| > 0, a combination of (4.30) and (4.31) leads to

( ∑
i1−i2=l/2

qi1,i2
i1!

k0∑
i=1

pi(m
0
i )
i1−2i2−1(∆mi)

i1

(σ0
i )
l

)/ k0∑
i=1

pi|∆mi|r → 0, (4.32)

for any even l such that 1 ≤ l ≤ 2r. Let qi = pi/σ
0
i , t

0
i = m0

i /σ
0
i , and ∆ti = ∆mi/σ

0
i

for all 1 ≤ i ≤ k0, then the above limits can be rewritten as

( k0∑
i=1

∑
i1−i2=l/2

qi1,i2
i1!

qi(t
0
i )
i1−2i2−1(∆ti)

i1

)
/

k0∑
i=1

qi|∆ti|r → 0, (4.33)

where in the summation of the above display, 1 ≤ i1 ≤ r, i2 ≤ (i1− 1)/2 as i1 is odd,

or i2 ≤ i1/2− 1 as i1 is even and l is an even number ranging from 2 to 2r. These are

the limits of the ratio of two semipolynomial functions. The existence of these limits

will be shown to entail the existence of zeros of a system of polynomial equations.

Greedy extraction of limiting polynomials As explained in the main text, it is

generally difficult to obtain all polynomial limits of the system of rational semipolyno-

mial functions given by (4.33). However, it is possible to obtain a subset of polynomial

limits via a greedy method of extraction. We shall demonstrate this technique for the
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specific case r = 3, and then present a general result, not unlike what we have done

in subsections 4.4.1 and 4.4.2 for o-mixtures. For r = 3, we only have three possible

choices of l in (4.33), which are l = 2, 4 and 6. As l = 2, we have (i1, i2) = (1, 0).

As l = 4, we obtain (i1, i2) ∈ {(2, 0), (3, 1)}. Finally, as l = 6, we get (i1, i2) = (3, 0).

Here, we can compute that q1,0 = 2, q2,0 = −2, q3,1 = −2, q3,0 = 2. Therefore, as

r = 3, the system of limits (4.33) becomes

( k0∑
i=1

qi∆ti

)
/

k0∑
i=1

qi|∆ti|3 → 0,

( k0∑
i=1

qit
0
i (∆ti)

2 +
1

3
qi(∆ti)

3

)
/

k0∑
i=1

qi|∆ti|3 → 0,

( k0∑
i=1

qi(t
0
i )

2(∆ti)
3

)
/

k0∑
i=1

qi|∆ti|3 → 0. (4.34)

Denote |∆tk0| := max
1≤i≤k0

{|∆ti|}. In each of the limiting expressions in the above

display, we shall divide both the numerator and denominator of the left hand side

by |∆tk0|α, where α is the smallest degree that appears in one of the monomials in

the numerator. Since |∆ti|/|∆tk0| is bounded, there exist a subsequence according to

which ∆ti/|∆tk0| tends to a constant, say ki, for each i = 1, . . . , k0. Note that at least

one of the ki is non-zero. Moreover, we obtain the following equations in the limit

k0∑
i=1

q0
i ki = 0,

k0∑
i=1

q0
i t

0
i (ki)

2 = 0,

k0∑
i=1

q0
i (t

0
i )

2(ki)
3 = 0.

Since q0
i = p0

i /σ
0
i , t

0
i = m0

i /σ
0
i for all 1 ≤ i ≤ k0, by rescaling ki, the above system of

polynomial equations can be rewritten as

k0∑
i=1

p0
i ki = 0,

k0∑
i=1

p0
im

0
i (ki)

2 = 0,

k0∑
i=1

p0
i (m

0
i )

2(ki)
3 = 0.

Now we shall apply the greedy extraction technique to the general system (4.33).
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This involves dividing both the numerator and the denominator of the left hand side

in each equation of the system by (∆tk0)
l/2 for any 2 ≤ l ≤ 2r and l is even. This

leads to the existence of solution for the following system of polynomial equations

k0∑
i=1

p0
i (m

0
i )
l/2−1k

l/2
i = 0, (4.35)

where the index l is even and 2 ≤ l ≤ 2r. In this sytem, at least one of ki is non-zero.

At this point, by a contrapositive argument we immediately deduces that if system

of polynomial equations (4.35) does not have a valid solution for the ki, one of which

must be non-zero, then G0 is not r-singular relative to Ek0 . It follows that `(G0|Ek0) ≤

r−1. This connection motivates a deeper investigation into the behavior of the system

of real polynomial equations (4.35).

Behavior of system of limiting polynomial equations We proceed to study the

solvability of the system of polynomial equations like (4.35). Consider two parameter

sequences a = {ai}k0i=1, b = {bi}k0i=1 such that ai > 0, bi 6= 0 for all 1 ≤ i ≤ l and bi

are pairwise different. Additionally, there exists two indices 1 ≤ i1 6= j1 ≤ l such that

bi1bj1 < 0. We can think of ai as taking the role of p0
i and bi the role of m0

i .

Define s(k0,a, b) to be the minimum value of s ≥ 1 such that the following system

of polynomial equations

k0∑
i=1

aib
u
i c
u+1
i = 0, for u = 0, 1, . . . , s (4.36)

does not admit any non-trivial solution, by which we require that at least one of

ci is non-zero. For example, if s = 2, and k0 = 2, the above system of polynomial

equations is

a1c1 + a2c2 = 0, a1b1c
2
1 + a2b2c

2
2 = 0, a1b

2
1c

3
1 + a2b

2
2c

3
2 = 0.
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In general, it is difficult to determine the exact value of s(k0,a, b) since it depends

on the specific values of parameter sequences a and b. However, it is possible to obtain

some nontrivial bounds:

Proposition 4.7.1. Let k0 ≥ 2.

(a) If for any subset I of {1, 2, . . . , k0} we have
∑
i∈I
ai

∏
j∈I\{i}

bj 6= 0, then s(k0,a, b) ≤

k0 − 1.

(b) If there is a subset I of {1, 2, . . . , k0} such that
∑
i∈I
ai

∏
j∈I\{i}

bj = 0, then s(k0,a, b) =

∞.

(c) Under the same condition as that of part (a):

If k0 = 2, then s(k0,a, b) = 1.

If k0 = 3, and
k0∑
i=1

ai
∏

j 6=i,j≤k0
bj > 0, then s(k0,a, b) = 1. Otherwise,

s(k0,a, b) = 2.

Remarks (i) Applying part (a) of this proposition to system (4.35), since G0 ∈

S31, i.e P3(p0,η0) =
k0∑
i=1

p0
i

∏
j 6=i

m0
j 6= 0, G0 is not s(k0, {p0

i }k0i=1, {m0
i }k0i=1) + 1-singular

relative to Ek0 . Therefore, the singularity level of G0 is at most s(k0, {p0
i }k0i=1, {m0

i }k0i=1).

(ii) Part (a) provides a mild condition of parameter sequences a, b under which a

nontrivial finite upper bound can be obtained. A closer investigation of the proof

establishes that this bound is tight, i.e., there exists (a, b) such that s(k0,a, b) = k0−1

holds. This motivates the definition of S31. (iii) Part (b) suggests the possibility of

infinite level of singularity, even as k0 is fixed. We will show that this happens when

G0 ∈ S33. (iv) Part (c) suggests that the singularity levels of G0 may be different for

different values of (p0,η0) for the same k0.

General bounds for singularity level of G0 ∈ S31 So far, we assume that

G0 has exactly one homologous set without C(1) singularity of size k0. Now, we
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suppose that G0 has more than one nonconformant homologous set without C(1)

singularity of components, and that there are no Gaussian components (i.e., P1(η0) =∏k0
j=1m

0
j 6= 0). It can be observed that the singularity level of G0 can be bounded in

terms of a number of system of polynomial equations of the same form as Eq. (4.35),

which are applied to disjoint subsets of noncomformant homologous components. The

application to each subset yields a corresponding system of polynomial limits like

(4.33). If none of such systems admit non-trivial solutions, then we are absolutely

certain that their corresponding systems of limiting equations cannot hold. As a

consequence, we obtain that `(G0|Ek0) ≤ s(G0), where

s(G0) := max
I
s(|I|, {p0

i }i∈I , {m0
i }i∈I), (4.37)

where the maximum is taken over all nonconformant homologous subsets I of com-

ponents of G0.

If, on the other hand, G0 has one or more Gaussian components, in addition to

having some nonconformant homologous subsets, then by combining the argument

presented in Section 4.5.1 with the foregoing argument, we deduce that the singularity

level of G0 is at most max{2, s(G0)}. Summarizing, we have the following theorem

regarding the upper bound of singularity levels of G0 ∈ S31 whose rigorous proof is

deferred to Appendix B.

Theorem 4.7.1. Suppose that G0 ∈ S31.

(a) If P1(η0) 6= 0, then `(G0|Ek0) ≤ s(G0) ≤ k∗ − 1 ≤ k0 − 1.

(b) If P1(η0) = 0, then `(G0|Ek0) ≤ max{2, s(G0)} ≤ max{2, k∗−1} ≤ max{2, k0−

1}.

where k∗ is the maximum length among all nonconformant homologous sets without

C(1) singularity of G0.
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Exact calculations in special cases Since our proof method was to extract only

an (incomplete) subset of polynomial limits, we could only speak of upper bounds of

the singularity level, not lower bounds in general. For some special cases of G0 ∈ S31,

with extra work we can determine the exact singularity level of G0. This is based

on the specific value of k∗, which is defined to be the maximum length among all

nonconformant homologous sets without C(1) singularity of G0 in Theorem 4.7.1:

Proposition 4.7.2. (Exact singularity level) Assume that G0 ∈ S31 and P1(η0) 6=

0.

(a) If k∗ = 2, then `(G0|Ek0) = 1.

(b) Let k∗ = 3. In addition, if all homologous sets I of G0 such that |I| = k∗ satisfy∑
i∈I
p0
i

∏
j∈I\{i}

m0
j > 0, then `(G0|Ek0) = 1. Otherwise, `(G0|Ek0) = 2.

4.7.1.2 Singularity structure of S32

For the simplicity of the argument in this section, we go back to the simple setting

of G0, i.e., G0 has only one homologous set of size k0. Since G0 ∈ S32, we have

P3(p0,η0) =
k0∑
i=1

p0
i

∏
j 6=i

m0
j = 0. This entails that s(k0, {p0

i } , {m0
i }) = ∞ according

to part (b) of Proposition 4.7.1. As a result, s(G0) = ∞, i.e., the upper bound

given by Theorem 4.7.1, that is, `(G0|Ek0) ≤ s(G0), is no longer meaningful for S32.

This does not necessarily imply that the singularity level for G0 ∈ S32 is infinite.

It simply means that the system of polynomial equations in (4.35) will not lead to

any contradiction for any order r. In fact, these equations described by (4.35) are

no longer sufficient to express the polynomial limits of the system (4.32). The issue

is that our greedy extraction of polynomial limits for the system (4.32) treats each

equation of the system separately. For instance, in system (4.34), a special case of

system (4.32) when r = 3, we do not consider the interaction between two summations
k0∑
i=1

qit
0
i (∆ti)

2 and
k0∑
i=1

1

3
qi(∆ti)

3 in the numerator of the second limit. As a result, the
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limiting polynomials obtained are dependent only on the lowest order monomial terms

that appear in the numerator of each of the r-minimal form’s coefficients.

To go further with S32, we introduce a more sophisticated technique for the poly-

nomial limit extraction, which seeks to partially account for the interactions among

different summations in the numerators of all the limits in system (4.32). This can

be achieved by keeping not only the lowest order monomial in the numerator of the

r-form’s coefficient, but also the second lowest order monomials. As a result, we can

extract a larger set of polynomial limits than (4.35). This would allow us to obtain

a tighter bound of the singularity level for elements of S32. Although our extrac-

tion technique is general, the system of limiting polynomials that can be extracted is

difficult to express explicitly for large values of k0. For this reason in the following

we shall illustrate this technique of polynomial limit extraction on a specific case of

k0 = 2.

Proposition 4.7.3. Assume that G0 ∈ S32 and G0 has only one homologous set of

size k0. Then as k0 = 2, we have `(G0|Ek0) = 3.

Remark: (i) The assumption that G0 has only one homologous set is just for the

convenience of the argument. The conclusion of this proposition still holds when

G0 ∈ S32 has multiple homologous sets and the maximum length of homologous sets

with C(1) singularity is 2. (ii) By using the same technique, we can demonstrate that

`(G0|Ek0) = k0 + 1 when k0 ≤ 5 and G0 ∈ S32 has only one homologous set of size k0.

We conjecture that this result also holds for general k0.

Proof. The proof proceeds in two main steps

Step 1: We will demonstrate that G0 is 3-singular relative to Ek0 . As r = 3, the

system (4.32) consists of the following limiting equations, as qi → q0
i > 0 and ∆ti → 0
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for all i = 1, 2,

2∑
i=1

qi∆ti/
2∑
i=1

qi|∆ti|3 → 0,(
2∑
i=1

qit
0
i (∆ti)

2 +
1

3
qi(∆ti)

3

)
/

2∑
i=1

qi|∆ti|3 → 0,(
2∑
i=1

qi(t
0
i )

2(∆ti)
3

)
/

2∑
i=1

qi|∆ti|3 → 0,

where qi = pi/σ
0
i , q

0
i = p0

i /σ
0
i , t

0
i = m0

i /σ
0
i , and ∆ti = ∆mi/σ

0
i for all i = 1, 2. The

condition of C(1) singularity means P3(p0,η0) = 0. That is p0
1m

0
2 + p0

2m
0
1 = 0. So,

q0
1t

0
2 + q0

2t
0
1 = 0. By choosing ∆t2 = 1/n, ∆t1 =

1

n

(
−q2

q1

+
1

n4

)
where q1 = q0

1 + 1/n

and q2 = −q1t
0
2/t

0
1 + 1/n2, we can check that all of the above limits are satisfied.

Hence, G0 is 3-singular relative to Ek0 .

Step 2: It remains to show that G0 is not 4-singular relative to Ek0 , and hence, G0’s

singularity level is 3. Let r = 4, the system (4.32) consists of the following limiting

equations

2∑
i=1

qni ∆tni /
2∑
i=1

qni |∆tni |4 → 0,(
2∑
i=1

qit
0
i (∆ti)

2 +
1

3
qi(∆ti)

3

)
/

2∑
i=1

qi|∆ti|4 → 0,(
2∑
i=1

1

3
qi(t

0
i )

2(∆ti)
3 +

1

4
qit

0
i (∆ti)

4

)
/

2∑
i=1

qi|∆ti|4 → 0,

2∑
i=1

qi(t
0
i )

3(∆ti)
4/

2∑
i=1

qi|∆ti|4 → 0.

In order to account for the second-lowest order monomials of the numerator in each of

the equations, we raise the order of the denominator in each equation to the former.
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That is,

K1 :=
2∑
i=1

qi∆ti/
2∑
i=1

qi|∆ti|2 → 0,

K2 :=

(
2∑
i=1

qit
0
i (∆ti)

2 +
1

3
qi(∆t

n
i )3

)
/

2∑
i=1

qi|∆ti|3 → 0,

K3 :=

(
2∑
i=1

1

3
qi(t

0
i )

2(∆ti)
3 +

1

4
qit

0
i (∆ti)

4

)
/

2∑
i=1

qi|∆ti|4 → 0,

K4 :=
2∑
i=1

qi(t
0
i )

3(∆ti)
4/

2∑
i=1

qi|∆ti|4 → 0.

We assume without loss of generality that |∆t2| is the maximum between |∆t1| and

|∆t2|. Denote ∆t1 = k1∆t2 where k1 ∈ [−1, 1] and k1 → k′1. The vanishing of K1

yields q0
1k
′
1 + q0

2 = 0. So, k′1 = −q0
2/q

0
1 = t02/t

0
1.

Divide both the numerator and denominator of K1 by (∆t2)2, we obtain (q1k1 +

q2)/∆t2 → 0. Write u = k1+q2/q1, then q1u/∆t2 → 0, which implies that u/∆t2 → 0.

Next, divide both the numerator and denominator of K2 by (∆t2)3, we obtain

(
2∑
i=1

qit
0
i (∆ti)

2 +
1

3
qi(∆ti)

3

)
/(∆t2)3 → 0.

Plug in the formula of k1 and the fact that u/∆t2 → 0, it follows that

(
q1t

0
1

(
q2

q1

)2

+ q2t
0
2

)
/(∆t2)→ −1

3
(q0

1(k′1)3 + q0
2).

Thus, we get P1 := (t01q2 + t02q1)/∆t2 → −
q0

1

3q0
2

(q0
1(k′1)3 + q0

2). It is simple to verify that

this limit is non-zero, otherwise we would have q0
1 = q0

2, which violates the definition

that G0 does not have C(2) singularity, i.e G0 ∈ S32.

Continuing, divide both the numerator and denominator of K3 by (∆t2)4, and with

the same argument, we obtain P2 := (t01q2−t02q1)(t01q2+t02q1)/∆t2 → −
3(q0

1)2

4q0
2

(q0
1t

0
1(k′1)4+
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q0
2t

0
2).

By dividing P2 by P1 and let it to vanish, we can extract the following polynomial

in the limit:

4(q0
1(k′1)3 + q0

2)(t01q
0
2 − t02q0

1) = 9q0
1(q0

1t
0
1(k′1)4 + q0

2t
0
2).

By plugging in k′1 = −q0
2/q

0
1 and t01q

0
2 + t02q

0
1 = 0, we can deduce that q0

1 = q0
2, which

is a contradiction. Thus, we conclude that G0 is not 4-singular relative to Ek0 .

4.7.1.3 Singularity level of G0 ∈ S33

As we can see from the proof of Proposition 4.7.2, the condition of without C(2)

singularity plays a major role in guaranteeing that G0 ∈ S32 is not 4-singular relative

to Ek0 when G0 has only one homologous set of k0 = 2. Therefore, for elements G0

in S33, we expect the singularity level of G0 may be very large. In fact, we can show

that

Theorem 4.7.2. If G0 ∈ S33, then `(G0|Ek0) =∞.

Proof. Here, we present the proof for k0 = 2. For general values of k0, the proof is

similar and deferred to Appendix B. For k0 = 2, the condition that G0 ∈ S33 entails

P4(p0,η0) = 0, i.e p0
1/σ

0
1 = p0

2/σ
0
2 and m0

1/σ
0
1 = −m0

2/σ
0
2. By choosing ∆m1/σ

0
1 =

−∆m2/σ
0
2, p1 = p2 = p0

1 = p0
2, we can check that

2∑
i=1

pi(m
0
i )
u(∆mj)

v

(σ0
i )
u+v+1

= 0,

for all odd numbers u ∈ [1, v] when v is even number, or for all even numbers u ∈ [0, v]

when v is odd number.

Take order r ≥ 1 to be an arbitrary natural number. Incorporating the iden-

tity in the previous display into (4.29) and (4.30), we obtain the vanishing of all

γ
(r)
l /W r

r (G1, G) for all 1 ≤ l ≤ 2r and l is even. If we choose ∆θi = ∆vi = 0 for all
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1 ≤ i ≤ 2, we also have the coefficients β
(r)
ji /W

r
r (G,G0) = 0 for all 1 ≤ i ≤ 2 and

1 ≤ j ≤ 2r + 1. Additionally, we also have γ
(r)
l /W r

r (G,G0) = 0 for all 1 ≤ l ≤ 2r

and l is odd. Hence, G0 is r-singular relative to Ek0 for any r ≥ 1. As a consequence,

`(G0|Ek0) =∞.

4.8 Appendix B

This Appendix contains the remaining proofs of the results presented in this chap-

ter.

4.8.1 Proofs for Section 3

PROOF OF THEOREM 4.3.1 Since the proofs for part (iii) and (iv) are similar,

we only provide the proof for part (iii). The proof of this part is the generalization

of that of part (c) in Theorem 3.2 in [Ho and Nguyen, 2016c]. By means of Taylor

expansion up to r-th order, we have

h2(pG, pG0) <

∫
x∈X

(pG(x)− pG0(x))2

pG0(x)
dx =

∫
x∈X

(
Tr∑
l=1

ξ
(r)
l (G)H

(r)
l (x) +Rr(x)

)2

pG0(x)
dx

=

∫
x∈X

R2
r(x)

pG0(x)
dx.

Here, Rr(x) has the following form

Rr(x) =

k0∑
i=1

si∑
j=1

∑
|α|=r+1

r + 1

α!
(∆ηij)

α

1∫
0

(1− t)r ∂
r+1f

∂ηα
(x|η0

i + t∆ηij)dt.
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Hence, as pG0(x) > p0
i f(x|η0

i ) for all 1 ≤ i ≤ k0, for any s < r + 1, we have

h2(pG, pG0)

W 2s
1 (G,G0)

<

∫
x∈X

R2
r(x)

W 2s
1 (G,G0)pG0(x)

dx

<

k0∑
i=1

∫
x∈X

(
si∑
j=1

∑
|α|=r+1

r + 1

α!
(∆ηij)

α
1∫
0

(1− t)r ∂
r+1f

∂ηα
(x|η0

i + t∆ηij)dt

)2

W 2s
1 (G,G0)p0

i f(x|η0
i )

dx

.
k0∑
i=1

∫
x∈X

si∑
j=1

∑
|α|=r+1

(
r + 1

α!
(∆ηij)

α
1∫
0

(1− t)r ∂
r+1f

∂ηα
(x|η0

i + t∆ηij)dt

)2

W 2s
1 (G,G0)p0

i f(x|η0
i )

dx,

where the last inequality comes from Cauchy-Schwarz’s inequality. Now, for any

s < r + 1, by utilizing Lemma 4.3.1, we obtain

|(∆ηij)α|
W s

1 (G,G0)
� |(∆ηij)

α|
Ds

1(G0, G)
<
|(∆ηij)α|
‖∆ηij‖s

→ 0, (4.38)

for any |α| = r + 1. According to the hypothesis, as ∆ηij < c0, we have

∫
x∈X

(
1∫
0

(1− t)r ∂
r+1f

∂ηα
(x|η0

i + t∆ηij)dt

)2

p0
i f(x|η0

i )
dx <

∫
x∈X

(
∂r+1f

∂ηα
(x|η0

i + t∆ηij)

)2

p0
i f(x|η0

i )
dx

< ∞. (4.39)

Combining (4.38) and (4.39), we achieve h(pG, pG0)/W
s
1 (G,G0)→ 0, which yields the

conclusion of this part.

4.8.2 Proofs for Section 4

PROOF OF LEMMA 4.4.1 For any k0 ≥ 1 and k0 different pairs η1 = (θ1, σ1,m1),

. . . , ηk0 = (θk0 , σk0 ,mk0), let αij ∈ R for i = 1, . . . , 4, j = 1, . . . , k0 such that for al-
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most all x ∈ R

k0∑
j=1

α1jf(x|ηj) + α2j
∂f

∂θ
(x|ηj) + α3j

∂f

∂σ2
(x|ηj)α4j

∂f

∂m
(x|ηj) = 0.

We can rewrite the above equation as

k0∑
j=1

{
[β1j + β2j(x− θj) + β3j(x− θj)2]Φ

(
mj(x− θj)

σj

)
exp

(
−(x− θj)2

2σ2
j

)
+

(γ1j + γ2j(x− θj))f
(
mj(x− θj)

σj

)
exp

(
−(x− θj)2

2σ2
j

)}
= 0, (4.40)

where β1j =
2α1j√
2πσj

− α3j√
2πσ3

j

, β2j =
2α2j√
2πσ3

j

, β3j =
α3j√
2πσ5

j

, γ1j = −2α2jmj√
2πσ2

j

, and

γ2j = − α3jmj√
2πσ4

j

+
2α4j√
2πσ2

j

for all j = 1, . . . , k0.

”Only if” direction: Assume by contrary that the conclusion does not hold, i.e.,

both type A and type B conditions do not hold. Denote σj+k0 =
σ2
j

1 +m2
j

for all

1 ≤ j ≤ k0. For the simplicity of the argument, we assume that σi are pairwise

different and
σ2
i

1 +m2
i

6∈
{
σ2
j : 1 ≤ j ≤ k0

}
for all 1 ≤ i ≤ k0. The argument for the

other cases is similar. Now, σj are pairwise different as 1 ≤ j ≤ 2k0. The equation

(4.40) can be rewritten as

2k0∑
j=1

{
[β1j + β2j(x− θj) + β3j(x− θj)2]×

Φ

(
mj(x− θj)

σj

)
exp

(
−(x− θj)2

2σ2
j

)}
= 0, (4.41)

where mj = 0, θj+k0 = θj, β1(j+k0) =
2γ1j√

2π
, β2(j+k0) =

2γ2j√
2π
, β3j = 0 as k0 + 1 ≤

j ≤ 2k0. Denote i = arg max
1≤i≤2k0

{σi}. Multiply both sides of (4.41) with the term

exp

(
(x− θi)2

2σ2
i

)
/Φ

(
mi(x− θi)

σi

)
and let x → +∞ if mi ≥ 0 or let x → −∞ if

mi < 0 on both sides of the new equation, we obtain β1i+β2i(x−θi)+β2i(x−θi)2 → 0.
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It implies that β1i = β2i = β3i = 0. Repeatedly apply the same argument to the

remaining σi until we obtain β1i = β2i = β3i = 0 for all 1 ≤ i ≤ 2k0. It is equivalent

to α1i = α2i = α3i = α4i = 0 for all 1 ≤ i ≤ k0, which is a contradiction.

”If” direction: There are two possible scenarios.

Type A singularity There exists some mj = 0 as 1 ≤ j ≤ k0. In this case, we

assume that m1 = 0. If we choose α1j = α2j = α3j = α4j = 0 for all 2 ≤ j ≤ k0, then

equation (4.40) can be rewritten as

β11

2
+

γ11√
2π

+

(
β21

2
+

γ21√
2π

)
(x− θ1) +

β31

2
(x− θ1)2 = 0.

By choosing α31 = 0, α11 =
α21m1√

2πσ1

, α21 = −α41σ1√
2π

, the above equation always equal

to 0. Since α11, α21, α41 are not necessarily zero, the first-order identifiability (i.e.,

linear independence condition) is violated.

Type B singularity There exists indices 1 ≤ i 6= j ≤ k0 such that

(
σ2
i

1 +m2
i

, θi

)
=(

σ2
j

1 +m2
j

, θj

)
. Without loss of generality, we assume that i = 1, j = 2. If we choose

α1j = α2j = α3j = α4j = 0 for all 3 ≤ j ≤ k0, then equation in (4.40) can be rewritten

as

2∑
j=1

{
[β1j + β2j(x− θj) + β3j(x− θj)2]Φ

(
mj(x− θj)

σj

)
exp

(
−(x− θj)2

2σ2
j

)}
+

1√
2π

(
2∑
j=1

γ1j +
2∑
j=1

γ2j(x− θ1)

)
exp

(
−(m2

1 + 1)(x− θ1)2

2σ2
1

)
= 0.

Now, we choose α1j = α2j = α3j = 0 for all 1 ≤ j ≤ 2,
α41

σ2
1

+
α42

σ2
2

= 0 then the above

equation always hold. Since α41 and α42 need not be zero, the first-order identifiability

condition is violated. This concludes the proof.
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PROOF OF LEMMA 4.4.2 The proof proceeds via induction on |α|. As |α| ≤ 2,

we can easily check the conclusion of the lemma. Assume that the conclusion holds

for any |α| ≤ k − 1. We shall demonstrate that it also holds for |α| = k. Indeed,

there are two settings:

Case 1: α1 = k Under this setting, α2 = α3 = 0. From the induction hypothesis,

∂|α|f

∂θα1∂vα2∂mα3
=

∂

∂θ

(
∂|α|−1f

∂θα1−1∂vα2∂mα3

)
=

∂

∂θ

( ∑
κ∈F|α|−1

P κ1,κ2,κ3
α1−1,α2,α3

(m)

Hκ1,κ2,κ3
α1−1,α2,α3

(m)Qκ1,κ2,κ3
α1−1,α2,α3

(v)

∂|κ|f

∂θκ1∂vκ2∂mκ3

)

=
∑

κ∈F|α|−1

P κ1,κ2,κ3
α1−1,α2,α3

(m)

Hκ1,κ2,κ3
α1−1,α2,α3

(m)Qκ1,κ2,κ3
α1−1,α2,α3

(v)

∂|κ|+1f

∂θκ1+1∂vκ2∂mκ3
,

=
∑

κ∈Fk−1:κ1=0

P κ1,κ2,κ3
α1−1,α2,α3

(m)

Hκ1,κ2,κ3
α1−1,α2,α3

(m)Qκ1,κ2,κ3
α1−1,α2,α3

(v)

∂|κ|+1f

∂θκ1+1∂vκ2∂mκ3

+
∑

κ∈Fk−1:κ1=1

P κ1,κ2,κ3
α1−1,α2,α3

(m)

Hκ1,κ2,κ3
α1−1,α2,α3

(m)Qκ1,κ2,κ3
α1−1,α2,α3

(v)

∂|κ|+1f

∂θκ1+1∂vκ2∂mκ3
(4.42)

where the second equality is due to the application of the hypothesis for α1−1+α2 +

α3 = k − 1. For any κ ∈ Fk−1 such that κ1 = 1,

∂|κ|+1f

∂θκ1+1∂vκ2∂mκ3
=

∂|κ|−1f

∂vκ2∂mκ3

(
2
∂f

∂v
− m3 +m

v

∂f

∂m

)
= 2

∂|κ|f

∂vκ2+1∂mκ3
− ∂|κ|−1f

∂vκ2∂mκ3

(
m3 +m

v

∂f

∂m

)
. (4.43)

From the inductive hypothesis, since |κ| = κ2 + κ3 + 1 ≤ k − 1,

∂|κ|f

∂vκ2+1∂mκ3
=
∑

κ′∈F|κ|

P
κ′1,κ

′
2,κ
′
3

0,κ2+1,κ3
(m)

H
κ′1,κ

′
2,κ
′
3

0,κ2+1,κ3
(m)Q

κ′1,κ
′
2,κ
′
3

0,κ2+1,κ3
(v)

∂|κ
′|f

∂θκ
′
1∂vκ

′
2∂mκ′3

. (4.44)
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In addition,

∂|κ|−1f

∂vκ2∂mκ3

(
m3 +m

v

∂f

∂m

)
=

∑
β:|β|≤|κ|,β1≤κ2,β2≤κ3+1

Aβ1,β2(m)

Bβ1,β2(v)

∂|β|f

∂vβ1∂mβ2
. (4.45)

Since |β| ≤ |κ| ≤ k − 1, from the hypothesis,

∂|β|f

∂vβ1∂mβ2
=

∑
κ′′∈F|β|

P
κ′′1 ,κ

′′
2 ,κ
′′
3

0,β1,β2
(m)

H
κ′′1 ,κ

′′
2 ,κ
′′
3

0,β1,β2
(m)Q

κ′′1 ,κ
′′
2 ,κ
′′
3

0,β1,β2
(v)

∂|κ
′′|f

∂θκ
′′
1∂vκ

′′
2∂mκ′′3

. (4.46)

Combining equations (4.42), (4.43), (4.44), (4.45), and (4.46), we arrive at the con-

clusion of the lemma.

Case 2: α1 ≤ k − 1 Under this setting, assume without loss of generality that

α2 ≥ 1.

∂|α|f

∂θα1∂vα2∂mα3
=

∂

∂v

(
∂|α|−1f

∂θα1∂vα2−1∂mα3

)
=

∂

∂v

( ∑
κ∈F|α|−1

P κ1,κ2,κ3
α1,α2−1,α3

(m)

Hκ1,κ2,κ3
α1,α2−1,α3

(m)Qκ1,κ2,κ3
α1,α2−1,α3

(v)

∂|κ|f

∂θκ1∂vκ2∂mκ3

)

=
∑

κ∈F|α|−1

∂

∂v

(
P κ1,κ2,κ3
α1,α2−1,α3

(m)

Hκ1,κ2,κ3
α1,α2−1,α3

(m)Qκ1,κ2,κ3
α1,α2−1,α3

(v)

)
∂|κ|f

∂θκ1∂vκ2∂mκ3

+
∑

κ∈F|α|−1

P κ1,κ2,κ3
α1,α2−1,α3

(m)

Hκ1,κ2,κ3
α1,α2−1,α3

(m)Qκ1,κ2,κ3
α1,α2−1,α3

(v)

∂|κ|+1f

∂θκ1∂vκ2+1∂mκ3
. (4.47)

Denote A :=
∑

κ∈F|α|−1

P κ1,κ2,κ3
α1,α2−1,α3

(m)

Hκ1,κ2,κ3
α1,α2−1,α3

(m)Qκ1,κ2,κ3
α1,α2−1,α3

(v)

∂|κ|+1f

∂θκ1∂vκ2+1∂mκ3
, we further have

that

A =
∑

κ∈F|α|−1:κ3=0

P κ1,κ2,κ3
α1,α2−1,α3

(m)

Hκ1,κ2,κ3
α1,α2−1,α3

(m)Qκ1,κ2,κ3
α1,α2−1,α3

(v)

∂|κ|+1f

∂θκ1∂vκ2+1∂mκ3

+
∑

κ∈F|α|−1:κ2=0,κ3≥1

P κ1,κ2,κ3
α1,α2−1,α3

(m)

Hκ1,κ2,κ3
α1,α2−1,α3

(m)Qκ1,κ2,κ3
α1,α2−1,α3

(v)

∂|κ|+1f

∂θκ1∂vκ2+1∂mκ3
. (4.48)
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Since m 6= 0, for any κ ∈ F|α|−1 such that κ2 = 0 and κ3 ≥ 1, we have

∂|κ|+1f

∂θκ1∂vκ2+1∂mκ3
=

∂|κ|−1f

∂θκ1∂mκ3−1

(
− 1

v

∂f

∂m
− m2 + 1

2mv

∂2f

∂m2

)
= −1

v

∂|κ|f

∂θκ1∂mκ3
− ∂|κ|−1f

∂θκ1∂mκ3−1

(
m2 + 1

2mv

∂2f

∂m2

)
. (4.49)

Since |κ| = κ1 + κ3 ≤ k − 1 and κ1 ≤ 1, we have (κ1, 0, κ3) ∈ Fk. Additionally, we

can represent

∂|κ|−1f

∂θκ1∂mκ3−1

(
m2 + 1

2mv

∂2f

∂m2

)
=

∑
1≤τ≤κ3+1

A′τ (m)

B′τ (m)C ′τ (v)

∂κ1+τf

∂θκ1∂mτ
,

where A′τ (m), B′τ (m), C ′τ (v) are some polynomials of m and v. Since κ1 + τ ≤

κ1 + κ3 + 1 ≤ k and κ1 ≤ 1, we have (κ1, 0, τ) ∈ Fk. Combining these results with

equations (4.47), (4.48), and (4.49), we achieve the conclusion of the lemma.

PROOF OF LEMMA 4.4.3 The proof of this lemma proceeds by induction on

r. If r = 1,

{
∂|α|f

θα1vα2mα3
: (α1, α2, α3) ∈ Fr

}
=

{
∂f

∂θ
,
∂f

∂v
,
∂f

∂m

}
,

which are linearly independent with respect to G0 ∈ S0 due to the conclusion of

Lemma 4.4.1. Assume that the conclusion of the lemma holds up to r. We will

demonstrate that it continues to hold for r + 1. In fact,

{
∂|α|f

θα1vα2mα3
: (α1, α2, α3) ∈ Fr+1

}
=

{
∂|α|f

θα1vα2mα3
: (α1, α2, α3) ∈ Fr

}
∪{

∂r+1f

∂θ∂vr
,
∂r+1f

∂vr+1
,
∂r+1f

∂θ∂mr
,
∂r+1f

∂mr+1

}
. (4.50)
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Assume that there are coefficients β
(i)
α1,α2,α3 where 1 ≤ i ≤ k0 and (α1, α2, α3) ∈ Fr+1

such that for all x

k0∑
i=1

∑
(α1,α2,α3)∈Fr+1

β(i)
α1,α2,α3

∂|α|f

θα1vα2mα3
(x|η0

i ) = 0.

Using the fact from (4.50), we rewrite the above equation as

k0∑
i=1

∑
(α1,α2,α3)∈Fr

β(i)
α1,α2,α3

∂|α|f

θα1vα2mα3
(x|η0

i ) + β
(i)
1,r,0

∂r+1f

∂θ∂vr
(x|η0

i ) +

β
(i)
0,r+1,0

∂r+1f

∂vr+1
((x|η0

i ) + β
(i)
1,0,r

∂r+1f

∂θ∂mr
(x|η0

i ) + β
(i)
0,0,r+1

∂r+1f

∂mr+1
(x|η0

i ) = 0. (4.51)

Equation (4.51) can be rewritten as

k0∑
i=1

( 2r+3∑
j=1

γ
(r+1)
j,i (x− θ0

i )
j−1

)
f

(
x− θ0

i

σ0
i

)
Φ

(
m0
i (x− θ0

i )

σ0
i

)

+

k0∑
i=1

( 2r+2∑
j=1

τ
(r+1)
j,i (x− θ0

i )
j−1

)
exp

(
−(m0

i )
2 + 1

2v0
i

(x− θ0
i )

2

)
= 0,

where γ
(r+1)
j,i are a combination of β

(i)
α1,α2,α3 when (α1, α2, α3) ∈ Fr+1 and α3 = 0.

Additionally, τ
(r+1)
j,i are a combination of β

(i)
α1,α2,α3 when (α1, α2, α3) ∈ Fr+1. Due to

the fact that there are no type A or type B singularities in

{
η0

1, . . . , η
0
k0

}
, by using

the same argument as that of the proof of Lemma 4.4.1, we obtain that γ
(r+1)
j,i = 0

for all 1 ≤ i ≤ k0, 1 ≤ j ≤ 2r+ 3 and τ
(r+1)
j,i = 0 for all 1 ≤ i ≤ k0, 1 ≤ j ≤ 2r+ 2. It

can be checked that γ
(r+1)
2r+3,i = 0 implies β

(i)
0,r+1,0 = 0 while γ

(r+1)
2r+2,i = 0 implies β

(i)
1,r,0 = 0

for all 1 ≤ i ≤ k0. Similarly, τ
(r+1)
2r+2,i = 0 implies β

(i)
0,0,r+1 = 0 while τ

(r+1)
2r+1,i = 0 implies

β
(i)
1,0,r = 0 for all 1 ≤ i ≤ k0. As a consequence, Eq. (4.51) is reduced to

k0∑
i=1

∑
(α1,α2,α3)∈Fr

β(i)
α1,α2,α3

∂|α|f

θα1vα2mα3
(x|η0

i ) = 0. (4.52)
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According to the hypothesis with r, we obtain that β
(i)
α1,α2,α3 = 0 for all 1 ≤ i ≤

k0, (α1, α2, α3) ∈ Fr. This concludes our proof.

PROOF OF PROPOSITION 4.4.1 From the formation of system of polynomial

equations (4.21), if we choose β3 = 0 (i.e., we only reduce to derivatives with respect to

the location and scale parameter), then we have P β1,β2,β3
α1,α2,α3

(m)/Hβ1,β2,β3
α1,α2,α3

(m)Qβ1,β2,β3
α1,α2,α3

(v) =

2α2 when α3 = 0 and P β1,β2,β3
α1,α2,α3

(m)/Hβ1,β2,β3
α1,α2,α3

(m)

Qβ1,β2,β3
α1,α2,α3

(v) = 0 as α3 ≥ 1 for any v,m and α1 + 2α2 + 2α3 = β1 + 2β2 + 2β3. This

shows that the system of polynomial equations (4.21) contains the following system

of equations

l∑
j=1

∑
α1+2α2=β1+2β2

2α2d2
ja
α1
j b

α2
j

α1!α2!
= 0, (4.53)

where β1 + 2β2 ≤ r and β1 ≤ 1. This is precisely the system of polynomial equations

(4.24) if we replace dj by xj, aj by yj, 2bj by zj, α1, α2 by n1, n2. Now, if we

choose r > r(l), the system of polynomial equations (4.53) has only trivial solution

aj = bj = 0 for all 1 ≤ j ≤ l. Substitute these results back to system of polynomial

equations (4.21), we also obtain cj = 0 for all 1 ≤ j ≤ l, which is a contradiction.

This completes our proof.

PROOF OF PROPOSITION 4.4.3 The proof of part (a) is straightforward

from the discussion in Section 4.4.1. For the proof for part (b), we will present an

explicit form for the system of polynomial equations to illustrate the variablity of ρ(l)

and ρ(l) based on the values of (m, v).

(b) As l = 2 and r = 6, the system of polynomial equations (4.21) can be rewritten
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as

3∑
i=1

d2
i ai = 0,

3∑
i=1

d2
i a

2
i + d2

i bi = 0,
3∑
i=1

−(m3 +m)d2
i a

2
i + 2vd2

i ci = 0,

3∑
i=1

1

3
d2
i a

3
i + d2

i aibi = 0,
3∑
i=1

−(m3 +m)d2
i a

3
i + 6vd2

i aici = 0,

3∑
i=1

(m3 +m)2

12v2
d2
i a

4
i −

m3 +m

v
d2
i a

2
i ci −

m2 + 1

vm
d2
i bici + d2

i c
2
i = 0,

3∑
i=1

1

6
d2
i a

4
i + d2

i a
2
i bi +

1

2
d2
i b

2
i = 0,

3∑
i=1

1

30
d2
i a

5
i +

1

3
d2
i a

3
i bi +

1

2
d2
i aib

2
i = 0,

3∑
i=1

(m3 +m)2

120v2
d2
i a

5
i −

(m3 +m)

6v
d2
i a

3
i ci −

m2 + 1

2vm
d2
i aibici +

1

2
d2
i aic

2
i = 0,

3∑
i=1

1

90
d2
i a

6
i +

1

12
d2
i a

4
i bi +

1

2
d2
i a

2
i b

2
i +

1

6
d2
i b

3
i = 0,

3∑
i=1

(m3 +m)3

720v3
d2
i a

6
i +

(m3 +m)2

24v2
d2
i a

4
i ci +

m3 +m

4v
d2
i a

2
i c

2
i +

(m2 + 1)2

8v2m2
d2
i b

2
i ci −

m2 + 1

4mv
d2
i bic

2
i +

1

6
d2
i c

3
i = 0. (4.54)

When r = 4, the system of polynomial equations (4.21) contains the first 7 equations

in the system of polynomial equations (4.54). Now, m and v are considered as two

additional variables in the above system of polynomial equations. Hence, there are 13

variables with only 7 equations. If we choose d1 = d2 = d3 and take the lexicographical

ordering a1 � a2 � a3 � b1 � b2 � b3 � c1 � c2 � c3 � m � v, the Grobener bases

(cf. Buchberger [1965]) of the above system of polynomial equations will return a

non-trivial solution (due to the complexity of the roots, we will not present them

here). As a consequence, ρ(l) ≥ 5 under the case l = 2.

For l = 2 and r = 5, the system of polynomial equations (4.21) retains the first

9 equations in system (4.54). It can be checked that if we choose m = ±2, v = 1,

then the system of polynomial equations when r = 5 does not have any non-trivial

solution (note that, we also use the same lexicographical order as that being used in
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the case r = 4). So, ρ(l) = 5. However, we can check that the value of m =
1

10
(close

to 0 in general) and v = 1 will lead the system of polynomial equations (4.54) to not

having any non-trivial solution. Thus, ρ(l) = 6. This concludes the proof or part (b)

of the proposition.

4.8.3 Proofs for Section 5

FULL PROOF OF THEOREM 4.5.2 Here, we shall complete the proof of

Theorem 4.5.2, which is the generalization of the argument in Section 4.5.1 for a

special case for G0. Note that, the idea of this generalization is also used to the other

settings of G0 6∈ S1. Now, we consider the possible existence of generic components in

G0, i.e., there are no homologous sets or symmetry components. Let u1 = 1 < u2 <

. . . < ui1 ∈ [1, k0+1] such that (
v0
j

1 + (m0
j)

2
, θ0
j ) = (

v0
l

1 + (m0
l )

2
, θ0
l ) and m0

jm
0
l > 0 for all

ui ≤ j, l ≤ ui+1−1, 1 ≤ i ≤ i1−1. The constraint m0
jm

0
l > 0 is due to the conformant

property of the homologous sets of G0. By definition, we have |Iui | = ui+1−ui for all

1 ≤ i ≤ i1− 1 where Iui denotes the set of all components homologous to component

ui.

To show that G0 is 1-singular, we construct a sequence of G ∈ Ek0 such that

(pi, θi, vi,mi) = (p0
i , θ

0
i , v

0
i ,m

0
i ) for all u2 ≤ i ≤ k0, i.e., all the components of G

and G0 are identical from index u2 up to k0. Hence, in the construction of the

components from index u1 to u2 − 1 of G we consider only the homologous set Iu1 of

G0. Utilizing the argument from the special case proof of Theorem 4.5.2 in Section

4.5.1, the construction of the sequence of G is specified by ∆θi = ∆vi = ∆pi = 0 and
u2−1∑
i=u1

pi∆mi/v
0
i = 0. Thus G0 is 1-singular. It remains to demonstrate that G0 ∈ S1 is

not 2-singular relative to Ek0 .

Indeed, consider any sequenceG ∈ Ek0 → G0 underW2 distance. SinceW 2
2 (G,G0) �
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D2(G0, G) (cf. Lemma 4.3.1), we have the 2-minimal form for the sequence G as

pG(x)− pG0(x)

W 2
2 (G,G0)

� A1(x) + A2(x)

D2(G0, G)
,

where A1(x)/D2(G0, G) and A2(x)/D2(G0, G) are linear combinations of the ele-

ments of the forms
∂|α|f

θα1vα2mα3
(x|η0

i ) for any 1 ≤ i ≤ k0 and 0 ≤ |α| ≤ 2. In

A1(x)/D2(G0, G), the indices of the components range from 1 to si1 − 1 while in

A2(x)/D2(G0, G), the indices of the components range from ui1 to k0. It is conve-

nient to think of the term A1(x)/D2(G0, G) as the linear combination of homologous

components, and A2(x)/D2(G0, G) as the linear combination of generic components,

i.e., no Gaussian nor homologous components.

Regarding A2(x)/D2(G0, G), since we have the system of partial differential equa-

tions in (4.2), the collection of functions in

{
∂|α|f

∂θα1vα2mα3
(x|η0

i ) : |α| ≤ 2, 1 ≤ i ≤ k0

}
are not linearly independent. Employing the same strategy described in Section 4.4,

we obtain a reduced system of linearly independent partial derivatives in Lemma 4.4.3.

This is the set

{
∂|α|f

∂θα1vα2mα3
(x|η0

i ) : α ∈ F2, 1 ≤ i ≤ k0

}
. Let λ

(2)
α1α2α3(η

0
i )/D2(G0, G)

be the coefficient of the terms
∂|α|f

θα1vα2mα3
(x|η0

i ) for any si1 ≤ i ≤ k0 and α ∈ F2. The

formulae for λ
(2)
α1,α2,α3 will be given later in Case 2.

Regarding A1(x)/D2(G0, G), by exploiting the fact that (
v0
j

1 + (m0
j)

2
, θ0
j ) =

(
v0
l

1 + (m0
l )

2
, θ0
l ) for all ui ≤ j, l ≤ ui+1 − 1, 1 ≤ i ≤ i1 − 1, the term A1(x)/D2(G0, G)

can be written as

A1(x)

D2(G0, G)
=

1

D2(G0, G)

( i1−1∑
l=1

{ ul+1−1∑
i=ul

[ 5∑
j=1

β
(2)
jil (x− θ0

ul
)j−1

]
f

(
x− θ0

ul

σ0
i

)
×

Φ

(
m0
i (x− θ0

ul
)

σ0
i

)}
+

[ 4∑
j=1

γ
(2)
jl (x− θ0

ul
)j−1

]
exp

(
− (m0

ul
)2 + 1

2v0
ul

(x− θ0
ul

)2

))
,

where f(x) =
1√
2π

exp(−x
2

2
). (This form is a general version of Eq. (4.26) in Section
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(4.5.1) when i1 = 2, u1 = 1, u2 = k0 + 1). The detailed formulas of β
(2)
jil and γ

(2)
jl for

1 ≤ l ≤ i1−1, ul ≤ i ≤ ul+1−1, and 1 ≤ j ≤ 5 are thus similar to that of (4.26). Here,

we rewrite their general fomulations for the transparency of subsequent arguments:

β
(2)
1il =

2∆pi
σ0
i

− pi∆vi
(σ0

i )
3
− pi(∆θi)

2

(σ0
i )

3
+

3pi(∆vi)
2

4(σ0
i )

5
, β

(2)
2il =

2pi∆θi
(σ0

i )
3
− 6pi∆θi∆vi

(σ0
i )

5
,

β
(2)
3il =

pi∆vi
(σ0

i )
5

+
pi(∆θi)

2

(σ0
i )

5
− 3pi(∆vi)

2

2(σ0
i )

7
, β

(2)
4il =

2pi∆θi∆vi
(σ0

i )
7

, β
(2)
5il =

pi(∆vi)
2

4(σ0
i )

9
,

γ
(2)
1l =

ul+1−1∑
j=ul

−pjm
0
j∆θj

π(σ0
j )

2
+

2pjm
0
j∆θj∆vj

π(σ0
j )

4
− 2pj∆θj∆mj

π(σ0
j )

2
,

γ
(2)
2l =

sl+1−1∑
j=sl

−pjm
0
j∆vj

2π(σ0
j )

4
− pj((m

0
j)

3 + 2m0
j)(∆θj)

2

2π(σ0
j )

4
+
pj∆mj

π(σ0
j )

2

+
5pjm

0
j(∆vj)

2

8π(σ0
i )

6
− pj∆mj∆vj

π(σ0
j )

4
,

γ
(2)
3l =

sl+1−1∑
j=sl

pj(2(m0
j)

2 + 2)∆mj∆θj

π(σ0
j )

4
− pj((m

0
j)

3 + 2m0
j)∆θj∆vj

2π(σ0
j )

6
,

γ
(2)
4l =

sl+1−1∑
j=sl

−pj((m
0
j)

3 + 2m0
j)(∆vj)

2

8π(σ0
j )

8
− pjm

0
j(∆mj)

2

2π(σ0
j )

4

+
pj((m

0
j)

2 + 1)∆mj∆vj

π(σ0
j )

6
,

where 1 ≤ l ≤ i1 − 1 and ul ≤ i ≤ ul+1 − 1. Now, suppose that all the coefficients

of A1(x)/D2(G0, G) and A2(x)/D2(G0, G) go to 0. It implies that γ
(2)
jl /D2(G0, G)

(1 ≤ j ≤ 4, 1 ≤ l ≤ i1 − 1), β
(2)
jil /D2(G0, G) (1 ≤ j ≤ 5, ul ≤ i ≤ ul+1 − 1,

1 ≤ l ≤ i1 − 1), and λ
(2)
α1α2α3(η

0
i )/D2(G0, G) (for all |α| ≤ 2) go to 0. From the

formation of D2(G0, G), we can find at least one index 1 ≤ i∗ ≤ k0 such that

(
|∆pi∗|+

pi∗(|∆θi∗|2 + |∆vi∗|2 + |∆mi∗ |2)

)
/D2(G0, G) 6→ 0. Let

τ(pi∗ , θi∗ , vi∗ ,mi∗) = |∆pi∗|+ pi∗(|∆θi∗|2 + |∆vi∗|2 + |∆mi∗ |2).
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Now, there are two possible cases for i∗:

Case 1 u1 ≤ i∗ ≤ ui1 − 1. Without loss of generality, we assume that u1 ≤ i∗ ≤

u2 − 1. Denote

d(pi∗ , θi∗ , vi∗ ,mi∗) =

u2−1∑
j=u1

|∆pj|+ pj(|∆θj|2 + |∆vj|2 + |∆mj|2).

Since τ(pi∗ , θi∗ , vi∗ ,mi∗)/D2(G0, G) 6→ 0, we have

d(pi∗ , θi∗ , vi∗ ,mi∗)/D2(G0, G) 6→ 0.

Therefore, for 1 ≤ j ≤ 5 and u1 ≤ i ≤ u2 − 1, Dj :=
αji1

d(pi∗ , θi∗ , vi∗ ,mi∗)
→ 0. Now,

our argument for this case is organized further into two steps:

Step 1.1 From the vanishes of D2 and D4, we obtain pi∆θi/d(pi∗ , θi∗ , vi∗ ,mi∗)→ 0

for all u1 ≤ i ≤ u2 − 1. Combining this result with D1 → 0 and D5 → 0, we achieve

for all u1 ≤ i ≤ u2 − 1 that

∆pi/d(pi∗ , θi∗ , vi∗ ,mi∗), pi∆vi/d(pi∗ , θi∗ , vi∗ ,mi∗)→ 0.

Therefore, for all u1 ≤ i ≤ u2 − 1,

pi(∆θi)
2/d(pi∗ , θi∗ , vi∗ ,mi∗), pi(vi)

2/d(pi∗ , θi∗ , vi∗ ,mi∗)→ 0.

These results eventually show that

U :=

( u2−1∑
j=u1

pj(∆mj)
2

)
/d(pi∗ , θi∗ , vi∗ ,mi∗) 6→ 0.
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Step 1.2 Since pi∆θi/d(pi∗ , θi∗ , vi∗ ,mi∗), pi∆vi/d(pi∗ , θi∗ , vi∗ ,mi∗)→ 0, by using the

result that γ
(2)
41 /d(pi∗ , θi∗ , vi∗ ,mi∗)→ 0, we have

V :=

[
u2−1∑
j=u1

pjm
0
j(∆mj)

2

(σ0
j )

4

]
/d(pi∗ , θi∗ , vi∗ ,mi∗)→ 0.

As U 6→ 0, we obtain

V/U =

[
u2−1∑
j=u1

pnjm
0
j(∆mj)

2

(σ0
j )

4

]
/

u2−1∑
j=u1

pj(∆mj)
2 → 0. (4.55)

Since m0
im

0
j > 0 for all u1 ≤ i, j ≤ u2 − 1, without loss of generality we assume that

m0
j > 0 for all s1 ≤ j ≤ s2 − 1. However, it implies that

[
u2−1∑
j=u1

pjm
0
j(∆mj)

2

(σ0
j )

4

]
/

u2−1∑
j=u1

pj(∆mj)
2 ≥ mmin

u2−1∑
j=u1

pj(∆mj)
2/

u2−1∑
j=u1

pj(∆mj)
2, (4.56)

where mmin := min
u1≤j≤u2−1

{
m0
j

(σ0
j )

4

}
. Combining with (4.55), mmin = 0 — a contradic-

tion. In sum, Case 1 cannot happen.

Case 2 ui1 ≤ i∗ ≤ k0. We can write down the formation of A2(x)/D2(G0, G) as

follows

A2(x)

D2(G0, G)
=

1

D2(G0, G)

( k0∑
i=ui1

∑
α∈F2

λ(2)
α1,α2,α3

(η0
i )

∂|α|f

∂θα1∂vα2∂mα3
(x|η0

i )

)
,
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where λ
(2)
α1,α2,α3(η

0
i ) are given by

λ
(2)
0,0,0(η0

i ) = ∆pi, λ
(2)
1,0,0(η0

i ) = pi∆θi, λ
(2)
0,1,0(η0

i ) = pi∆vi + pi(∆θi)
2,

λ
(2)
0,0,1(η0

i ) = −(m0
1)3 +m0

1

2v0
1

pi(∆θ1i)
2 − 1

v0
1

pi∆vi∆mi + pi∆mi,

λ
(2)
0,2,0(η0

i ) = pi(∆vi)
2, λ

(2)
0,0,2(η0

i ) = −(m0
1)2 + 1

2v0
1m

0
1

pi∆vi∆mi + pi∆(mi)
2,

λ
(2)
1,1,0(η0

i ) = pi∆θi∆vi, λ
(2)
1,0,1(η0

i ) = pi∆θi∆mi.

From the assumption with the coefficients of A2(x)/D2(G0, G), we have

λ(2)
α1,α2,α3

(η0
i )/D2(G0, G)→ 0

for any ui1 ≤ i ≤ k0. From the hypothesis with i∗, τ(pi∗ , θi∗ , vi∗ ,mi∗)/D2(G0, G) 6→ 0.

Therefore, it leads to λ
(2)
α1,α2,α3(η

0
i )/τ(pi∗ , θi∗ , vi∗ ,mi∗) for any ui1 ≤ i ≤ k0 and α ∈ F2.

Now, since λ
(2)
1,0,0(η0

i∗)/τ(pi∗ , θi∗ , vi∗ ,mi∗)→ 0, we obtain ∆θi∗/τ(pi∗ , θi∗ , vi∗ ,mi∗)→

0. Combining this result with λ
(2)
1,0,0(η0

i∗)/τ(pi∗ , θi∗ , vi∗ ,mi∗)→ 0, we have

∆vi∗/τ(pi∗ , θi∗ , vi∗ ,mi∗)→ 0.

Furthermore, as λ
(2)
0,0,1(η0

i∗)/τ(pi∗ , θi∗ , vi∗ ,mi∗)→ 0, we get ∆mi∗/τ(pi∗ , θi∗ , vi∗ ,mi∗)→

0. Hence, since λ
(2)
0,0,0(η0

i∗)/τ(pi∗ , θi∗ , vi∗ ,mi∗)→ 0, we ultimately obtain

1 =
|∆pi∗ |+ pi∗(|∆θi∗ |2 + |∆vi∗|2 + |∆mi∗|2)

τ(pi∗ , θi∗ , vi∗ ,mi∗)
→ 0,

which is a contradiction. As a consequence, Case 2 cannot happen.

Summarizing, not all the coefficients γ
(2)
jl /D2(G0, G) (1 ≤ j ≤ 4, 1 ≤ l ≤ i1 − 1),

β
(2)
jil /D2(G0, G) (1 ≤ j ≤ 5, ul ≤ i ≤ ul+1 − 1, 1 ≤ l ≤ i1 − 1), λ

(2)
α1α2α3(η

0
i )/D2(G0, G)

(for all α ∈ F2) go to 0. From Definition 4.3.2, G0 is not 2-singular relative to Ek0 .

This concludes our proof.
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FULL PROOF OF THEOREM 4.5.3 We divide the proof of this theorem into

two main steps.

Step 1: To illustrate our calculations, we consider at first a simple setting of G0 ∈

S2 in which m0
1,m

0
2, . . . ,m

0
k0

= 0, leaving out the possible setting of conformant

homologous sets and generic components. A complete proof for all possible settings

of G0 ∈ S2 will be given in Step 2.

G0 is 2-singular To establish this, we look at 2-minimal form for
pG(x)− pG0(x)

W 2
2 (G,G0)

,

which is asymptotically equal to

1

W 2
2 (G,G0)

[ k0∑
i=1

( 5∑
j=1

ζ
(2)
ji (x− θ0

i )
j−1

)
f

(
x− θ0

i

σ0
i

)]
, (4.57)

where ζ
(2)
li are the polynomials in terms of ∆θj, ∆vj, ∆mj, and ∆pj as 1 ≤ i, j ≤ k0

and 1 ≤ l ≤ 5. To make all the coefficients vanish, it suffices to have (∆vi)
2/W 2

2 (G,G0)

→ 0 and

[
− pi∆vi

2(σ0
i )

3
− pi(∆θi)

2

2(σ0
i )

3
+

3pi(∆vi)
2

8(σ0
i )

5
− 2pi∆θi∆mi√

2π(σ0
i )

2
+

∆pi
σ0
i

]
/W 2

2 (G,G0)→ 0,[
∆θi

(σ0
i )

3
+

2∆mi√
2π(σ0

i )
2
− 3∆θi∆vi

2(σ0
i )

5
− 2∆vi∆mi√

2π(σ0
i )

4

]
/W 2

2 (G,G0)→ 0,[
∆vi

2(σ0
i )

5
+

(∆θi)
2

2(σ0
i )

5
+

2∆θi∆mi√
2π(σ0

i )
4

]
/W 2

2 (G,G0)→ 0,[
∆θi∆vi
2(σ0

i )
7

+
∆vi∆mi√

2π(σ0
i )

6

]
/W 2

2 (G,G0)→ 0. (4.58)

This can be achieved by choosing a sequence of G → G0 in W2 such that ∆θi =

∆vi = ∆mi = ∆pi = 0 for all 2 ≤ i ≤ k0; only for component 1 do we set ∆θ1 =

−2∆m1σ
0
1/
√

2π and ∆v1 = (∆θ1)2/2. It follows that G0 is 2-singular relative to Ek0 .
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G0 is not 3-singular The 3-minimal form of (pG(x)−pG0(x))/W 3
3 (G,G0) is asymp-

totically equal to

1

W 3
3 (G,G0)

[ k0∑
i=1

( 7∑
j=1

ζ
(3)
ji (x− θ0

i )
j−1

)
f

(
x− θ0

i

σ0
i

)]
, (4.59)

where ζ
(3)
li are the polynomials in terms of ∆θj, ∆vj, ∆mj, and ∆pj as 1 ≤ i, j ≤ k0

and 1 ≤ l ≤ 7. Suppose that there exists a sequence G → G0 under W3 such that

all the coefficients of the 3-minimal form vanish. For any 1 ≤ i ≤ k0, it follows after

some calculations that

C
(i)
1 :=

[
− pi∆vi

2(σ0
i )

3
− pi(∆θi)

2

2(σ0
i )

3
+

3pi(∆vi)
2

8(σ0
i )

5
− 2pi∆θi∆mi√

2π(σ0
i )

2
+

3pi(∆θi)
2∆vi

4(σ0
i )

5
+

2pi∆θi∆vi∆mi√
2π(σ0

i )
4

+
∆pi
σ0
i

]
/W 3

3 (G,G0)→ 0,

C
(i)
2 :=

[
pi∆θi
(σ0

i )
3

+
2pi∆mi√
2π(σ0

i )
2
− 3pi∆θi∆vi

2(σ0
i )

5
− 2pi∆vi∆mi√

2π(σ0
i )

4
− pi(∆θi)

3

2(σ0
i )

5
−

3pi(∆θi)
2∆mi√

2π(σ0
i )

4
+

15pi∆θi(∆vi)
2

8(σ0
i )

7
+

2pi(∆vi)
2∆mi√

2π(σ0
i )

6

]
/W 3

3 (G,G0)→ 0,

C
(i)
3 :=

[
pi∆vi
2(σ0

i )
5

+
pi(∆θi)

2

2(σ0
i )

5
− 3pi(∆vi)

2

4(σ0
i )

7
+

2pi∆θi∆mi√
2π(σ0

i )
4
− 3pi(∆θi)

2∆vi
2(σ0

i )
7

−

5∆θi∆vi∆mi√
2π(σ0

i )
6

]
/W 3

3 (G,G0)→ 0,

C
(i)
4 :=

[
pi∆θi∆vi

2(σ0
i )

7
+
pi∆vi∆mi√

2π(σ0
i )

6
+
pi(∆θi)

3

6(σ0
i )

7
− pi(∆mi)

3

3
√

2π(σ0
i )

4
+

pi(∆θi)
2∆mi√

2π(σ0
i )

6
− 5pi∆θi(∆vi)

2

4(σ0
i )

9
− 2pi(∆vi)

2∆mi√
2π(σ0

i )
8

]
/W 3

3 (G,G0)→ 0,

C
(i)
5 :=

[
pi(∆vi)

2

8(σ0
i )

9
− 5pi(∆vi)

3

16(σ0
i )

11
+
pi(∆θi)

2∆vi
4(σ0

i )
9

+
pi∆θi∆vi∆mi√

2π(σ0
i )

8

]
/W 3

3 (G,G0)→ 0,

C
(i)
6 :=

[
pi∆θi(∆vi)

2

8(σ0
i )

11
+
pi(∆vi)

2∆mi

4
√

2π(σ0
i )

10

]
/W 3

3 (G,G0)→ 0,

C
(i)
7 := pi(∆vi)

3/48(σ0
i )

3W 3
3 (G,G0)→ 0. (4.60)
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Since the system of limits in (4.60) holds for any 1 ≤ i ≤ k0, to further simplify the

argument without loss of generality, we consider k0 = 1. Under that scenario, we can

rewrite W 3
3 (G,G0) = p1(|∆θ1|3 + |∆v1|3 + |∆m1|3) where p1 = 1. Additionally, for

the simplicity of the presentation, we denote Ci := C
(1)
i for any 1 ≤ i ≤ 7. Now, our

argument is organized into the following key steps

Step 1.1: We will argue that ∆θ1,∆v1,∆m1 6= 0. If ∆θ1 = 0, by combining the

vanishing of C5 and C7, we achieve (∆v1)2/W 3
3 (G,G0) → 0. Combining this result

with C3 → 0, we obtain ∆v1/W
3
3 (G,G0) → 0. Combining the previous results with

C4 → 0 eventually yields that (∆m1)3/W 3
3 (G,G0) → 0. Hence, 1 = p1(|∆v1|3 +

|∆m1|3)/W 3
3 (G,G0)→ 0, which is a contradiction.

If ∆v1 = 0, then C1+∆θ1C2 → 0 implies that (∆θ1)2/W 3
3 (G,G0)→ 0. Combining

this result with C4 → 0, we achieve (∆m1)3/W 3
3 (G,G0) → 0, which also leads to a

contradiction.

If ∆m1 = 0, then C6 → 0 leads to (∆θ1)(∆v1)2/W 3
3 (G,G0) → 0. Combine this

result with C4 → 0 leads to

[
(∆θ1)(∆v1)

2(σ1)7
+

(∆θ1)3

6(σ1)7

]
/W 3

3 (G,G0)→ 0. (4.61)

The combination of the above result and C3 → 0 implies that ∆v1/W
3
3 (G,G0) → 0.

Combine the former result with (4.61), we obtain (∆θ1)3/W 3
3 (G,G0) → 0, which is

also a contradiction. Overall, we obtain the conclusion of this step.

Step 1.2: If |∆v1| is the maximum among |∆θ1|, |∆v1|, and |∆m1|. Then from

C7 → 0, we obtain |∆v1|3/(|∆θ1|3 + |∆v1|3 + |∆m1|3)→ 0, which is a contradiction.
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Step 1.3: If |∆θ1| is the maximum among |∆θ1|, |∆v1|, and |∆m1|. Denote ∆v1/∆θ1

→ k1 and ∆m1/∆θ1 → k2. From C7, we obtain k1 = 0. As C2 → 0, we obtain

[
−∆θ1/(σ

0
1)3 + 2∆m1/

√
2π(σ0

1)2
]
/(|∆θ1|+ |∆v1|+ |∆m1|)→ 0.

By diving both the numerator and denominator of this ratio by ∆θ1, we quickly obtain

the equation 1/(σ0
1)3 +2k2/

√
2π(σ0

1)2 = 0, which yields the solution k2 = −√π/
√

2σ0
1.

Now, C5 → 0 yields that (∆v1)2/(|∆θ1|3 + |∆v1|3 + |∆m1|3) → 0. Applying this

result to C3 → 0 and C4 → 0, we have M1,M2 → 0 where the formations of M1,M2

are as follows:

M1 :=

(
∆v1

2(σ0
1)5

+
(∆θ1)2

2(σ0
1)5

+
2(∆θ1)(∆m1)√

2π(σ0
1)4

)
/(|∆θ1|3 + |∆v1|3 + |∆m1|3),

M2 :=

(
(∆θ1)(∆v1)

2(σ0
1)7

+
(∆v1)(∆m1)√

2π(σ0
1)6

+
(∆θ1)3

6(σ0
1)7
− (∆m1)3

3
√

2π(σ0
1)4

+

+
(∆θ1)2(∆m1)√

2π(σ0
1)6

)
/(|∆θ1|3 + |∆v1|3 + |∆m1|3).

Now,

(
∆θ1

(σ0
1)2

+
2∆m1√

2πσ0
1

)
M1 −M2 yields that

[
(∆m1)3

3
√

2π
+

2(θ1)(∆m1)2

πσ0
1

+
2(∆θ1)2(∆m1)√

2π(σ0
1)2

+
(∆θ1)3

3(σ1)3

]
/(|∆θ1|3 + |∆v1|3 + |∆m1|3)→ 0.

By dividing both the numerator and denominator of this term by (∆θ1)3, we obtain

the equation
k3

2

3
√

2π
+

2k2
2

πσ0
1

+
2k2√

2π(σ0
1)2

+
1

3(σ0
1)3

= 0. Since k2 = −
√
π√

2σ0
1

, this equation

yields π/6− 1/3 = 0, which is a contradiction. Therefore, this step cannot hold.

Step 1.4: If |∆m1| is the maximum among |∆θ1|, |∆v1|, and |∆m1|. The argument

in this step is similar to that of Step 1.3. In fact, by denoting ∆θ1/∆m1 → k3 and

∆v1/∆m1 → k4 then we also achieve k4 = 0 and k3 = −
√

2√
πσ0

1

(by C2 → 0). Now

by using the limits C3, C4 → 0 as that of Step 1.3 and after some calculations, we
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obtain the equation
k3

3

3(σ0
1)3

+
2k2

3√
2π(σ1)2

+
2k3

πσ0
1

+
1

3
√

2π
= 0, which also does not admit

k3 = −
√

2√
πσ0

1

as a solution — a contradiction.

In sum, we have shown under that simple setting of G0 ∈ S2, it is 2-singular, but

not 3-singular relative to Ek0 . Therefore, `(G0|Ek0) = 2.

Step 2: Now, we address the general setting of G0 ∈ S2, which accounts for the pos-

sible presence of both generic components and conformant homologous sets. Without

loss of generality, we assume that m0
1,m

0
2, . . . ,mi2

= 0 where 1 ≤ i2 ≤ k0 denotes the

largest index i such that m0
i = 0. The remaining components are either conformant

homologous sets or generic components. Using the exact same construction as that

of Step 1, we establish easily that G0 is 2-singular relative to Ek0 . It remains to show

that G0 is not 3-singular relative to Ek0 .

Consider the 3-minimal form for any sequence G ∈ Ek0 → G0 under W3 distance.

Since W 3
3 (G,G0) � D3(G0, G) (cf. Lemma 4.3.1), we have

pG(x)− pG0(x)

W 3
3 (G,G0)

� A′1(x) + A′2(x)

D3(G0, G)
,

where A′1(x)/D3(G0, G) is the linear combination of Gaussian components, i.e., the

indices of components range from 1 to i2, while A′2(x)/D3(G0, G) is the linear combi-

nation of conformant homologous components and generic components.

Suppose that all the coefficients of A′1(x)/D3(G0, G), A′2(x)/D3(G0, G) go to 0.

Similar to the argument in the proof of Theorem 4.5.2, observe that there is some

index i ∈ [1, k0] such that (|∆pi|+pi(|∆θi|3 +|∆vi|3 +|∆mi|3))/D3(G0, G) 6→ 0. There

are two possible cases regarding i .

Case 2.1 i ∈ [1, i2]. Applying a similar argument as that from Step 1 of this proof

where we have only Gaussian components, we conclude that not all of the coefficients

of A′1(x)/D3(G0, G) vanish, which is a contradiction. Therefore, Case 2.1 cannot
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happen.

Case 2.2 i ∈ [i2 + 1, k0]. Define

Dr,new(G0, G) =

k0∑
i=i2+1

(|∆pi|+ pi(|∆θi|r + |∆vi|r + |∆mi|r)),

for any r ∈ {2, 3}. The idea of Dr,new(G0, G) is that we truncate the value of

Dr(G0, G) from the index 1 to i2, i.e., all the indices correspond to Gaussian compo-

nents.

It is clear that D3,new(G0, G) . D2,new(G0, G). Since D3,new(G0, G)/D3(G0, G) 6→

0, we have D2,new(G0, G)/D3(G0, G) 6→ 0. By multiplying all the coefficients of

A′2(x)/D3(G0, G) with D2,new(G0, G)/D3(G0, G), we eventually obtain all the coeffi-

cients of A′2(x)/D2,new(G0, G) go to 0. However, by utilizing the same argument as in

the proof of Theorem 4.5.2, we reach to the conclusion that the second order Taylor

expansion is sufficient to have all the coefficients of A′2(x)/D2,new(G0, G) not vanish.

Thus, not all the coefficients of A′2(x)/D3(G0, G) go to 0, which is a contradiction.

As a consequence, Case 2.2 also cannot happen.

In sum, under no circumstance can all the coefficients of A′1(x)/D3(G0, G) and

A′2(x)/D3(G0, G) be made to vanish. Hence, G0 ∈ S2 is not 3-singular relative to Ek0 ,

which concludes the proof.

4.8.4 Proofs for Section 4.7

PROOF OF PROPOSITION 4.7.1 (a) The proof proceeds by induction on

l. When l = 1, the conclusion clearly holds. Assume that that conclusion of the

proposition holds for l − 1. We will demonstrate that it also holds for l. Denote

yi = aici and zi = bici for all 1 ≤ i ≤ l + 1. Then, we can rewrite system of

polynomial equations (4.36) as follows:
l+1∑
i=1

zui yi = 0 for any 0 ≤ u ≤ l. If there exists

some 1 ≤ i1 ≤ l + 1 such that ci1 = 0, then we go back to the case l − 1, which
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we have already known from the hypothesis that we do not have non-trivial solution.

Therefore, we assume that ci 6= 0 for all 1 ≤ i ≤ l + 1, which implies that yi 6= 0 for

all 1 ≤ i ≤ l+ 1. Now, the system of equations has the form of Vardermonde matrix,

which is



1 1 . . . 1

z1 z2 . . . zl+1

...
...

. . .
...

zs1 zs2 . . . zsl+1


. By suitable linear transformations, we can rewrite the

original system of equations as the following equivalent equations
∏
j 6=i

(zj − zi)yi = 0

for all 1 ≤ i ≤ l + 1. Since yi 6= 0 for all 1 ≤ i ≤ l + 1, we obtain
∏
j 6=i

(zj − zi) = 0

for all 1 ≤ i ≤ l + 1. As a consequence, there exists a partition J1, J2, . . . , Js of

{1, 2, . . . , l + 1} for some 1 ≤ s ≤ [l/2] such that if i2, i3 ∈ Ju for 1 ≤ u ≤ s, we have

zi2 = zi3 and for any 1 ≤ i 6= j ≤ s, any two elements zi4 ∈ Ji, zj4 ∈ Jj are different.

Choose any ji ∈ Ji for all 1 ≤ i ≤ s. It is clear that the system of equations can

be rewritten as
s∑
i=1

zuji
∑
j∈Ji

yj = 0 for all 0 ≤ u ≤ l + 1. If s ≥ 2, it indicates that

|Ji| ≤ l for all 1 ≤ i ≤ s. Now, if we have some 1 ≤ i4 ≤ s such that
∑
j∈Ji4

yj = 0

then we obtain
∑
j∈Ji4

ajcj = 0. Since zi1 = zi2 for any i1, i2 ∈ Ji4 , this equation can

be rewritten as
∑
j∈Ji4

aj
∏
v 6=j

bv = 0, which is a contradiction to the assumption of part

(a) of the proposition. Therefore,
∑
j∈Ji

yj 6= 0 for all 1 ≤ i ≤ s. However, by using

the same argument as before, again by linear transformation, we can rewrite the new

system of polynomial equations as
∑
j∈Ji

yj
∏
v 6=i

(zju − zji) = 0 for all 1 ≤ i ≤ s. This

implies that there should be some 1 ≤ u1 6= u2 ≤ s such that zju1 = zju2 , which is a

contradiction.

As a consequence, we have s = 1, i.e., |I1| = l + 1. Hence, b1c1 = b2c2 = . . . =

bl+1cl+1. Combining this fact with the equation
l+1∑
i=1

aici = 0, we obtain
l+1∑
i=1

ai
∏
j 6=i

bj = 0,

which is a contradiction to the assumption of the proposition. This concludes the

proof.

(b) We choose ci = 0 for all i 6∈ I ⊂ {1, . . . , l}. The system of polynomial equations
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(4.36) becomes
∑
i∈s
aib

u
i c
u+1
i = 0 for all u ≥ 0. Notice that by choosing bici = bjcj for

all i, j ∈ I, we have
∑
i∈I
aib

u
i c
u+1
i = bjcj

∑
i∈I
aici = 0 for some j ∈ I and for all u ≥ 1 as

long as
∑
i∈I
aici = 0. Combining all the conditions, we obtain

∑
i∈J

ai
∏
j 6=i

bj = 0, which

completes the proof.

(c) The result for the case l = 1 is obvious. For the case l = 2, after replacing

c3 in terms of c1, c2, we obtain the following quadratic equation (a1a3b1 + a2
1b3)c2

1 +

2a1a2b3c1c2 + (a2a3b2 + a2
2b3)c2

2 = 0. Note that, c1, c2 6= 0 due to the assumption

of part (c). Therefore, we does not have solution of this quadratic equation when

a2
1a

2
2b

2
3 < (a1a3b1 + a2

1b1)(a2a3b2 + a2
2b3). It is equivalent to

3∑
i=1

ai
∏
j 6=i

bj > 0, which

confirms our hypothesis. We are done.

FULL PROOF OF THEOREM 4.7.1 Here, we only provide the proof for part

(b) as the proof for part (a) is similar. This is a generalization of the argument in

Section 4.7.1. Under this situation, apart from the nonconformant homologous sets

without C(1) singularity, we also have for G0 the presence of Gaussian components

components and possibly some conformant homologous sets, in addition to some

generic components.

Let u1 = 1 < u2 < . . . < ui3 ∈ [1, k0+1] such that (
v0
j

1 + (m0
j)

2
, θ0
j ) = (

v0
l

1 + (m0
l )

2
, θ0
l )

for all ui ≤ j, l ≤ ui+1 − 1, 1 ≤ i ≤ i3 − 1, i.e., all the nonconformant homologous

components without type C(1) singularity are from index 1 to ui3 . The remaining

components are either Gaussian ones or conformant homologous sets or generic ones.

It follows that |Iui | = ui+1 − ui for all 1 ≤ i ≤ i3 − 1 and all Iui are nonconformant

homologous sets without C(1) singularity.

Consider the r-th minimal form for any sequence G ∈ Ek0 → G0 under Wr distance

where r = max

{
3, s(G0) + 1

}
. Since W r

r (G,G0) � Dr(G0, G) (cf. Lemma 4.3.1), we
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have

pG(x)− pG0(x)

W r
r (G,G0)

� B1(x) +B2(x)

Dr(G0, G)
,

where B1(x)/Dr(G0, G) is the linear combination of nonconformant homologous com-

ponents, i.e., the indices of components range from 1 to i3 while B2(x)/Dr(G0, G) is

the linear combination of conformant homologous components, Gaussian components,

and generic components.

Now, suppose that all the coefficients of B1(x)/Dr(G0, G), B2(x)/Dr(G0, G) go to

0. Similar to the argument employed in the proof of Theorem 4.5.2, there is some

index i ∈ [1, k0] such that (|∆pi|+pi(|∆θi|r + |∆vi|r + |∆mi|r))/Dr(G0, G) 6→ 0. Now,

there are two possible scenarios regarding i

Case 1.1 i ∈ [1, ui3 − 1]. Under that case, we can check that

B1(x)

Dr(G0, G)
=

1

Dr(G0, G)

( i3−1∑
l=1

{ ul+1−1∑
i=ul

[ 2r+1∑
j=1

β
(r)
jil (x− θ0

ul
)j−1

]
f

(
x− θ0

ul

σ0
i

)
×

Φ

(
m0
i (x− θ0

ul
)

σ0
i

)}
+

[ 2r∑
j=1

γ
(r)
jl (x− θ0

ul
)j−1

]
exp

(
− (m0

ul
)2 + 1

2v0
ul

(x− θ0
ul

)2

))
.

This representation of B1(x)/Dr(G0, G) is the general formulation of the equation

(4.26) in Section (4.5.1) where i3 = 2, u1 = 1, u2 = k0 + 1, and r = r. Since

i ∈ [1, ui3 − 1], there exists some index l∗ ∈ [1, i3 − 1] such that i ∈ [ul∗ , ul∗+1 − 1].

By means of the same argument as that of Section 4.7.1 for β
(r)
jil /Dr(G0, G)→ 0 and

γ
(r)
jl /Dr(G0, G)→ 0, we can extract the following system of polynomial limits:

ul∗+1−1∑
i=ul∗

p0
i (m

0
i )
l/2−1(ki)

l/2 = 0,

203



where at least one of ki differs from 0. Here, l is any even number such that 2 ≤ l ≤ 2r.

From the formulation of s(G0), since r ≥ s(G0)+1 ≥ s(|Iul∗ |, {p0
i }i∈IuI∗ , {m

0
i }i∈IuI∗ )+

1, we can guarantee that the above system of polynomial equations does not have any

non-trivial solution, which is a contradiction. Therefore, Case 1.1 cannot happen.

Case 1.2 i ∈ [ui3 , k0]. Using the same argument as that in the proof of Theorem

4.5.3, the third order Taylor expansion is sufficient so that not all the coefficients of

B2(x)/D3,new(G0, G) go to 0 where

D3,new(G0, G) =

k0∑
i=ui3

(|∆pi|+ pi(|∆θi|3 + |∆vi|3 + |∆mi|3)).

Since r ≥ 3, we have D3,new(G0, G)/Dr(G0, G) 6→ 0. As all the coefficients of

B2(x)/Dr(G0, G) vanish, it leads to all the coefficients of B2(x)/D3,new(G0, G) go

to 0, which is a contradiction. Thus, Case 1.2 cannot happen.

In sum, for any sequence of G tending to G0 in Wr, not all the coefficients of

B1(x)/Dr(G0, G) and B2(x)/Dr(G0, G) go to 0. By Definition 4.3.2, we conclude

that G0 ∈ S2 is not r-singular relative to Ek0 . As a consequence, `(G0|Ek0) ≤ r− 1 =

max

{
2, s(G0)

}
.

PROOF OF PROPOSITION 4.7.2 Here, we utilize the same assumption on

G0 as that in the proof of Theorem 4.7.1, i.e., all the nonconformant homologous sets

without C(1) singularity are from index 1 to ui3 . We also rearrange the components

of G0 such that the first nonconformant homologous set without C(1) singularity Iu1

has exactly k∗ elements, i.e., u2 − u1 = k∗. As u1 = 1, we have u2 = k∗ + 1.

(a) We will demonstrate that G0 is 1-singular relative to Ek0 . Indeed, the sequence

of G is constructed as follows: pi = p0
i , θi = θ0

i , vi = v0
i for all u2 = k∗ + 1 ≤ i ≤ k0,

i.e., we match all the components of G and G0 except the first k∗ components of G0.

Now, by proceeding in the same way as described in Section 4.7.1 up to Eq. (4.33), to
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verify that G0 is indeed 1-singular, the choice of the first k∗ components of G needs

to satisfy

u2−1∑
i=u1

qi∆ti/

u2−1∑
i=u1

qi|∆ti| → 0,

where qi = pi/σ
0
i and ∆ti = ∆mi/σ

0
i as u1 ≤ i ≤ u2−1. A simple choice is to take the

first k∗ components of G by
u2−1∑
i=u1

qi∆ti = q1∆t1 + q2∆t2 = 0, which is always possible.

We conclude that G0 is 1-singular relative to Ek0 . Since s(G0) = 1 as k∗ = 2, by

combining with the upper bound of Theorem 4.7.1, we have `(G0|Ek0) = 1.

(b) There are two cases to consider in this part

Case 1: All the homologous sets I of G0 such that |I| = k∗ satisfy
∑
i∈I
p0
i

∏
j∈I\{i}

m0
j >

0. To demonstrate that G0 is 1-singular relative to Ek0 , we utilize the same construc-

tion of G as that of part (a), i.e., pi = p0
i , θi = θ0

i , vi = v0
i for all u2 = k∗ + 1 ≤ i ≤ k0

and
u2−1∑
i=u1

qi∆ti = 0. Next, we will show that G0 is not 2-singular relative to Ek0 . Using

the same argument as that of the proof of Theorem 4.7.1, we obtain the following

system of limiting rational polynomial functions:

ul∗+1−1∑
i=ul∗

qi∆ti/

ul∗+1−1∑
i=ul∗

qi|∆ti|2 → 0,

ul∗+1−1∑
i=ul∗

qit
0
i (∆ti)

2/

ul∗+1−1∑
i=ul∗

qi|∆ti|2 → 0,

where l∗ is some index in [1, i3− 1] and qi = pi/σ
0
i , ∆ti = ∆mi/σ

0
i , t

0
i = m0

i /σ
0
i for all

ul∗ ≤ i ≤ ul∗+1 − 1. By employing the greedy extraction technique being described

in Section 4.7.1.1, we obtain the following system of polynomial equations:

ul∗+1−1∑
i=ul∗

p0
i ci = 0,

ul∗+1−1∑
i=ul∗

p0
im

0
i c

2
i = 0,
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where at least one of ci differs from 0. Now, we have two possible scenarios:

Case 1.1: |Iul∗ | = ul∗+1− ul∗ = 2. Then, by solving the above system of equations,

we obtain
∑

i∈Iul∗
p0
i

∏
j∈Iul∗ \{i}

m0
j = 0, which means Iul∗ is nonconformant homologous

set with C(1) singularity of G0 — a contradiction to the fact that G0 ∈ S31.

Case 1.2: |Iul∗ | = ul∗+1 − ul∗ = k∗ = 3. Then, by solving the above system of

equations, we obtain
∑

i∈Iul∗
p0
i

∏
j∈Iul∗ \{i}

m0
j < 0 — a contradiction to the assumption of

Case 1.

Thus, G0 is not 2-singular relative to Ek0 . As a consequence, `(G0|Ek0) = 1 under

Case 1.

Case 2: There exists at least one nonconformant homologous set I of G0 such that

|I| = k∗ satisfies
∑
i∈I
p0
i

∏
j∈I\{i}

m0
j < 0. Without loss of generality, we assume the

homologous set Iu1 of G0 to have the property
∑
i∈Iu1

p0
i

∏
j∈Iu1\{i}

m0
j < 0. We will show

that G0 is 2-singular relative to Ek0 . In fact, we construct the sequence of G by letting

pi = p0
i , θi = θ0

i , vi = v0
i for all u2 = k∗ + 1 ≤ i ≤ k0. In order for G0 to be 2-singular,

it is sufficient that

u2−1∑
i=u1

qi∆ti/

u2−1∑
i=u1

qi|∆ti|2 → 0,

u2−1∑
i=u1

qit
0
i (∆ti)

2/

u2−1∑
i=u1

qi|∆ti|2 → 0.

The simple solution to the above system of limits is
u2−1∑
i=u1

qi∆ti = 0 and
u2−1∑
i=u1

qit
0
i (∆ti)

2 =

0. One solution to these two equations is pi = p0
i and ∆mi = (σ0

i )
2di/n for all

u1 ≤ i ≤ u2 − 1 where d1, d2, d3 satisfy

u2−1∑
i=u1

p0
i di = 0,

u2−1∑
i=u1

p0
im

0
i d

2
i = 0,
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which is guaranteed to have non-trivial solution as
∑
i∈Iu1

p0
i

∏
j∈Iu1\{i}

m0
j < 0. Therefore,

G0 is 2-singular relative to Ek0 . Since s(G0) = 2 as k∗ = 3, combining with the upper

bound of Theorem 4.7.1, we obtain `(G0|Ek0) = 2 under Case 2. This concludes our

proof.

FULL PROOF OF THEOREM 4.7.2 Here, we shall provide the complete proof

of Theorem 4.7.2, which is also the generalization of the argument in Section 4.7.1.3.

Indeed, without loss of generality, we assume that (p0
1/σ

0
1,m

0
1/σ

0
1) = (p0

2/σ
0
2,−m0

2/σ
0
2).

Next, we proceed to choosing a sequence of G ∈ Ek0 as follows: pi = p0
i , θi = θ0

i , vi = v0
i

for all 1 ≤ i ≤ k0, and m1 = m0
1 +1/n, m2 = m0

2−σ0
2/nσ

0
1, mi = m0

i for all 3 ≤ i ≤ k0.

The choice of m1,m2 is taken to guarantee that ∆m1/σ
0
1 + ∆m2/σ

0
2 = 0 as we have

discussed in Section 4.7.1.3. Then, we can check that
2∑
j=1

pj(m
0
j)
u(∆mj)

v/(σ0
j )
u+v+1 =

0 for all odd numbers u ≤ v when v is even number or for all even numbers 0 ≤ u ≤ v

when v is odd number. From here, the completion of the proof follows in the same

way as that of the special case previously described.

4.8.5 Proofs for auxiliary results

Lemma 4.8.1. Let {f(x|θ, σ,m), θ ∈ Θ1, σ ∈ Θ2,m ∈ Θ3} be a class of skew normal

distribution. Denote v := σ2, then


∂2f

∂θ2
(x|θ, σ,m)− 2

∂f

∂v
(x|θ, σ,m) +

m3 +m

v

∂f

∂m
(x|θ, σ,m) = 0.

2m
∂f

∂m
(x|θ, σ,m) + (m2 + 1)

∂2f

∂m2
(x|θ, σ,m) + 2vm

∂2f

∂v∂m
(x|θ, σ,m) = 0.
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Proof. Direct calculation yields

∂2f

∂θ2
(x|θ, σ,m) =

{(
− 2√

2πσ3
+

2(x− θ)2

√
2πσ5

)
Φ

(
m(x− θ)

σ

)
−

2m(m2 + 2)(x− θ)√
2πσ4

f

(
m(x− θ)

σ

)}
exp

(
−(x− θ)2

2σ2

)
,

∂f

∂v
(x|θ, σ,m) =

{(
− 1√

2πσ3
+

(x− θ)2

√
2πσ5

)
Φ

(
m(x− θ)

σ

)
−

m(x− θ)√
2πσ4

f

(
m(x− θ)

σ

)}
exp

(
−(x− θ)2

2σ2

)
,

∂f

∂m
(x|θ, σ,m) =

2(x− θ)√
2πσ2

f

(
m(x− θ)

σ

)
exp

(
−(x− θ)2

2σ2

)
,

∂2f

∂m2
(x|θ, σ,m) =

−2m(x− θ)3

√
2πσ4

f

(
m(x− θ)

σ

)
exp

(
−(x− θ)2

2σ2

)
,

∂2f

∂v∂m
(x|θ, σ,m) =

(
− 2(x− θ)√

2πσ4
+

(m2 + 1)(x− θ)3

√
2πσ6

)
exp

(
−(x− θ)2

2σ2

)
.

From these equations, we can easily verify the conclusion of our lemma.
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CHAPTER V

Robust estimation of mixing measures in finite

mixture models

In finite mixture models, apart from underlying mixing measures, true kernel den-

sity functions of each subpopulation in the data are, in many scenarios, unknown.

Perhaps the most popular approach is to choose some kernel functions that we em-

pirically believe our data are generated from and use these kernels to fit our models.

Nevertheless, as long as the chosen and the true kernels are different, statistical infer-

ence of mixing measures under this setting may be highly unstable. To overcome this

challenge, we propose simple yet efficient robust estimators of the mixing measures in

these models, which are inspired by the combination of minimum Hellinger distance

estimators, model selection criteria, and the superefficiency phenomenon. We demon-

strate that our estimators consistently recover the true number of components and

achieve the optimal convergence rates of parameter estimates under both the well-

and mis-specified kernel settings for any fixed bandwidth. These desirable asymptotic

properties are illustrated via careful simulation studies with both synthetic and real

data.
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5.1 Introduction

Finite mixture models have become a popular model tool for making inference

about the heterogeneity in data, starting, at least, with the classical work of Pearson

[1894] on biometrical ratios on crabs. They have been used in various domains arising

from biological, physical, and social sciences. For a comprehensive introduction of

statistical inference in mixture models, we refer the readers to the books of McLachlan

and Basford [1988], Lindsay [1995], Peel and McLachlan [2000].

In finite mixture models, we have our data X1, X2, . . . , Xn ∈ X ⊂ Rd (d ≥ 1) to

be i.i.d observations from a finite mixture density function

p
G
f0
0

(x) =

∫
f0(x|θ)dG0(θ) =

k0∑
i=1

p0
i f0(x|θ0

i ),

where G0 =
∑k0

i=1 p
0
i δθ0i is a true but unknown mixing measure with exactly k0 < ∞

non-zero components and

{
f0(x|θ), θ ∈ Θ ⊂ Rd1

}
is a true family of density func-

tions, possibly partially unknown where d1 ≥ 1. There are essentially three principal

challenges to the models that have attracted a great deal of attention from various

researchers. They include estimating the true number of components k0, understand-

ing the behavior of parameter estimations, i.e., the atoms and weights of true mixing

measures G0, and determining the underlying kernel density f0 of each subpopulation

in the data. The first topic has been an intense area of research recently, see for ex-

ample [Roeder, 1994, Escobar and West, 1995, Dacunha-Castelle and Gassiat, 1997,

Richardson and Green, 1997, Dacunha-Castelle and Gassiat, 1999, Keribin, 2000,

James et al., 2001, Chen et al., 2012, J.Chen and Khalili, 2012, Kasahara and Shi-

motsu, 2014a]. However, the second and third topic have receive much less attention

due to their great mathematical difficulty. When the kernel density function f0 is

assumed to be known and k0 is bounded by some fixed positive integer number, there
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have been substantial advances in the understanding of parameter estimations of G0.

More specifically, when k0 is known, i.e., the exact-fitted setting, Ho and Nguyen

[2016c] introduced a stronger version of classical parameter identifiability condition,

which is first order identifiability, to guarantee the standard convergence rate n−1/2

of parameter estimations. When k0 is unknown and bounded, i.e., the over-fitted

setting, Chen [1995], Nguyen [2013], Ho and Nguyen [2016c] utilized the notion of

second order identifiability to establish the convergence rate n−1/4 of parameter esti-

mations. Recently, Ho and Nguyen [2016a,b] introduced the ”singularity level” notion

of the Fisher information matrix to characterize the convergence rates of parameter

estimations when either the first or the second order identifiability condition fails to

hold. When the kernel density function f0 is unknown, there have been some work

utilizing the semiparametric approaches [Bordes et al., 2006, Hunter et al., 2007]. The

high level idea of these work is that we estimate f0 from some classes of functions

with infinite dimension and achieve the estimations of mixing measure G0 accord-

ingly. However, it is very difficult to establish a guarantee for the identifiability of the

parameters, even when the parameter space is simple [Hunter et al., 2007]. Therefore,

semiparametric approaches for estimating G0 are usually not reliable.

Perhaps, the most common approach to avoid the identifiability issue of f0 is to

choose some kernel function f that we tactically believe the data are generated from,

and utilize that kernel to fit the model to obtain an estimate of the mixing measure

G0. In view of its simplicity and prevalence, this is also the approach that we consider

in this chapter. However, it is likely that the chosen kernel f and the true kernel f0

are different, i.e., we are under a misspecified kernel setting. Hence, the estimation of

mixing measure G0 under this approach may be highly unstable. The robustness ques-

tion is unavoidable. Our principal goal in this chapter therefore, is the construction

of robust estimators of G0 where the estimation of both the number of components

and the values of their parameters are of interest. Moreover, these estimators should
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achieve the best possible convergence rates under various assumptions on both f and

f0. When the true number of components k0 is known, various robust methods have

been proposed in the literature, see for example [Woodward et al., 1984, Donoho and

Liu, 1988, Cutler and Cordero-Brana, 1996]. However, there is scarce work for ro-

bust estimators when the true number of components k0 is unknown. Recently, Woo

and Sriram [2006] proposed a robust estimator of the number of components based

on the idea of minimum Hellinger distance estimator [Beran, 1977, Lindsay, 1994,

Lin and He, 2006, Karunamuni and Wu, 2009]. However, their work faces certain

limitations. Firstly, their estimator relied greatly upon the choice of bandwidth. In

particular, in order to achieve the consistency of the number of components under

the well-specified kernel setting, i.e., when {f} = {f0}, the bandwidth should vanish

to 0 sufficiently slowly (cf. Theorem 3.1 in Woo and Sriram [2006]). Secondly, the be-

haviors of parameter estimates from their estimators are hard to interpret due to the

subtle choice of bandwidth. Last but not least, they also argued that their method

achieved the robust estimation of the number of components under the misspecified

kernel setting, i.e., when f and f0 are different. Not only does their statement lack

theoretical guarantee, their argument turns out to be also erroneous (see Section 5.3

in Woo and Sriram [2006]). More specifically, they considered the chosen kernel f

to be Gaussian kernel and the true kernel f0 to be Student’s kernel with some fixed

degree of freedom. The parameter space Θ consists of mean and scale parameter

while the number of components k0 = 2. They demonstrated that their estimator

still maintained the correct number of components of G0, i.e., k0 = 2, under that

setting of f and f0. Unfortunately, their argument is not clear as their estimator

should maintain the number of components of some mixing measure G∗ which min-

imizes the appropriate Hellinger distance to the true model. Of course, establishing

the consistency of their parameter estimators under the misspecified kernel setting is

also a non-trivial problem.
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Inspired by the idea of minimum Hellinger distance estimator, we propose flexible

robust estimators of the mixing measure G0 that address all the limitations of the

estimator in [Woo and Sriram, 2006]. Not only our estimators are computationally

feasible and robust but they also possess various desirable properties, such as the flex-

ible choice of bandwidth, the consistency of the number of components, and the best

possible convergence rates of the parameters. In particular, our main contributions

in this chapter can be summarized as follows

(i) We treat the well-specified kernel setting, i.e., {f} = {f0}, and misspecified

kernel setting, i.e., {f} 6= {f0}, separately. Under both settings, we achieve

the consistency of our estimators regarding the true number of components

for any fixed bandwidth. Furthermore, when the bandwidth vanishes to 0 at

appropriate rate, the consistency of estimating the true number of components

is also guaranteed.

(ii) For any fixed bandwidth, when f0 is identifiable in the first order the opti-

mal convergence rates n−1/2 of parameter estimates are established under the

well-specified kernel setting. Additionally, when f0 is not identifiable in the

first order, we demonstrate that our estimators still achieve the best possible

convergence rates of parameter estimates.

(iii) Under the misspecified kernel setting, we demonstrate that our estimators con-

verge to some mixing measure G∗ that is close to the true model under the

Hellinger metric for any fixed bandwidth. When f is first order identifiable and

G∗ has finite number of components, the optimal convergence rates n−1/2 are

also established under mild conditions of both f and f0. Moreover, when G∗

has infinite number of components, some analyses about the consistency of our

estimators are also discussed.

Finally, our argument, so far, has mostly focused on the setting when the true mixing
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measure G0 is fixed with the sample size n. However, we note in passing that in a

proper asymptotic model, G0 may also vary with n and converge to some distribu-

tion in the limit. Under the well-specified kernel setting, we demonstrate that our

estimators also achieve the minimax convergence rate of estimating G0 under certain

condition on the identifiability of kernel density function f0.

Chapter organization: The rest of the chapter is organized as follows. Section

6.2 provides preliminary backgrounds and facts. Section 5.3 presents an algorithm to

construct a robust estimator of mixing measure based on model selection perspective.

Theoretical results regarding that estimator are treated separately under both the

well- and misspecified kernel setting. Section 5.4 introduces another algorithm to

construct a robust estimator of mixing measure based on the idea of superefficiency.

Section 5.5 addresses the performance of estimators developed in Section 5.3 and

Section 5.4 under non-standard setting of kernel density function and true mixing

measure. The theoretical results are illustrated via careful simulation studies with

both synthetic and real data in Section 5.6. Discussions regarding possible future

work are presented in Section 6.6 while self-contained proofs of key results are given

in Section 5.8 and proofs of the remaining results are given in the Appendices.

Notation: Given two densities p, q (with respect to the Lebesgue measure µ), the

total variation distance is given by TV (p, q) =
1

2

∫
|p(x)− q(x)|dµ(x). Additionally,

the square of Hellinger distance is given by h2(p, q) =
1

2

∫
(
√
p(x)−

√
q(x))2dµ(x).

For any κ = (κ1, . . . , κd1) ∈ Nd1 , we denote
∂|κ|f

∂θκ
(x|θ) =

∂|κ|f

∂θκ11 . . . ∂θ
κd1
d1

(x|θ) where

θ = (θ1, . . . , θd1). Additionally, the expression an & bn will be used to denote the

inequality up to a constant multiple where the value of the constant is independent

of n and fixed within our setting. We also denote an � bn if both an & bn and an . bn

hold.
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5.2 Background

Throughout the chapter, we assume that the parameter space Θ is a compact

subset of Rd1 . For any kernel density function f and mixing measure G, we define

pGf (x) :=
∫
f(x|θ)dG(θ). Additionally, we denote Ek0 := Ek0(Θ) the space of discrete

mixing measures with exactly k0 distinct support points on Θ and Ok := Ok(Θ)

the space of discrete mixing measures with at most k distinct support points on Θ.

Additionally, denote G := G(Θ) = ∪
k∈N+

Ek the set of all discrete measures with finite

supports on Θ. Finally, G denotes the space of all discrete measures (including those

with countably infinite supports) on Θ.

As described in the introduction, a goal of our paper is to construct robust es-

timators that maintain the consistency of the number of components and the best

possible convergence rates of parameter estimations. As in Nguyen [2013], our tool-

kit for analyzing the identifiability and convergence of parameters in a mixture model

is based on the Wasserstein distances, which can be defined as the optimal cost of

moving masses transforming one probability measure to another [Villani, 2009]. In

particular, consider a mixing measure G =
k∑
i=1

piδθi , where p = (p1, p2, . . . , pk) de-

notes the proportion vector. Likewise, let G′ =
∑k′

i=1 p
′
iδθ′i . A coupling between p and

p′ is a joint distribution q on [1 . . . , k] × [1, . . . , k′], which is expressed as a matrix

q = (qij)1≤i≤k,1 ≤j≤k′ ∈ [0, 1]k×k
′

with margins
k∑

m=1

qmj = p′j and
k′∑
m=1

qim = pi for any

i = 1, 2, . . . , k and j = 1, 2, . . . , k′. We use Q(p,p′) to denote the space of all such

couplings. For any r ≥ 1, the r-th order Wasserstein distance between G and G′ is

given by

Wr(G,G
′) = inf

q∈Q(p,p′)

(∑
i,j

qij(‖θi − θ′j‖)r
)1/r

,

where ‖ · ‖ denotes the l2 norm for elements in Rd1 . It is simple to argue that if a
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sequence of probability measures Gn ∈ Ek0 converges to G0 ∈ Ek0 under the Wr metric

at a rate ωn = o(1) then the set of atoms of Gn converges to the k0 atoms of G0, up

to a permutation of the atoms, at the same rate ωn.

We recall now the following key definitions that are used to analyze the behavior

of mixing measures in finite mixture models (cf. [Heinrich and Kahn, 2016+, Ho and

Nguyen, 2016b]). We start with

Definition 5.2.1. We say the family of densities {f(x|θ), θ ∈ Θ} is uniformly Lips-

chitz up to the order r, for some r ≥ 1, if f as a function of θ is differentiable up to

the order r and its partial derivatives with respect to θ satisfy the following inequality

∑
|κ|=r

∣∣∣∣(∂|κ|f∂θκ
(x|θ1)− ∂|κ|f

∂θκ
(x|θ2)

)
γκ
∣∣∣∣ ≤ C‖θ1 − θ2‖δr‖γ‖rr

for any γ ∈ Rd1 and for some positive constant δ and C independent of x and θ1, θ2 ∈

Θ. Here, γκ =
d1∏
i=1

γκii where κ = (κ1, . . . , κd1).

We can verify that many popular classes of density functions, including Gaussian,

Student’s t, and skew normal family, satisfy the uniform Lipschitz condition up to

any order r ≥ 1. Now, we have the following stronger notion of identifiability

Definition 5.2.2. For any r ≥ 1, we say that the family {f(x|θ), θ ∈ Θ} is identi-

fiable in the r-th order if f(x|θ) is differentiable up to the r-th order in θ and the

following holds

A1. For any k ≥ 1, given k different elements θ1, . . . , θk ∈ Θ. If we have α
(i)
κ for

1 ≤ i ≤ k, κ ∈ Nd1 and |κ| ≤ r such that for almost all x

r∑
l=0

∑
|κ|=l

k∑
i=1

α(i)
κ

∂|κ|f

∂θκ
(x|θi) = 0

then α
(i)
κ = 0 for all 1 ≤ i ≤ k and |κ| ≤ r.
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Rationale of the first order identifiability: Throughout the chapter, we denote

I(G, f) := E(lGl
T
G) the Fisher information matrix of the kernel density f at the

probability measure G. Here, lG :=
∂

∂G
log pGf (x) is the score function, where

∂

∂G

means the derivatives with respect to all the components and masses of G. The first

order identifiability of f is an equivalent way to say that the Fisher information matrix

I(G, f) is non-singular for any G. Now, under the first order identifiability and the

first order uniform Lipschitz condition on f , a careful investigation of Theorem 3.1

and Corollary 3.1 in Ho and Nguyen [2016c] yields the following result

Proposition 5.2.1. Suppose that the density family f is identifiable in the first order

and uniformly Lipschitz up to the first order. Then, there is a positive constant C0

depending on G0 such that as long as G ∈ Ok0 we have

h(pGf , pGf0
) ≥ C0W1(G,G0).

Note that, the result of Proposition 5.2.1 is slightly stronger than that of The-

orem 3.1 and Corollary 3.1 in Ho and Nguyen [2016c] as it holds for any G ∈ Ok0
instead of only for any G ∈ Ek0 as in these later results. The first order identifiability

property of kernel density function f implies that any estimation method that yields

the convergence rate n−1/2 for pGf0
under the Hellinger distance, the induced rate of

convergence for the mixing measure G0 is n−1/2 under W1 distance.

5.3 Minimum Hellinger distance estimator with non-singular

Fisher information matrix

Throughout this section, we assume that two density families {f0(x|θ), θ ∈ Θ}

and {f(x|θ), θ ∈ Θ} are identifiable in the first order and admit uniform Lipschitz

condition up to the first order. Now, let K be any fixed multivariate density function
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and Kσ(x) =
1

σd
K
(x
σ

)
for any σ > 0. We define

f ∗Kσ(x|θ) :=

∫
f(x− y|θ)Kσ(y)dy

for any θ ∈ Θ. The notation f ∗Kσ can be thought as the convolution of the density

family {f(x|θ)} with kernel function Kσ. From that definition, we have

pGf ∗Kσ =
k∑
i=1

pif ∗Kσ(x|θi) =
k∑
i=1

pi

∫
f(x− y|θi)Kσ(y)dy

for any discrete measure G =
k∑
i=1

piδθi in G. Now, our approach to define a robust

estimator of G0 is inspired by the minimum Hellinger distance estimator [Beran, 1977]

and the model selection criteria. Indeed, we have the following algorithm

Algorithm 1: Let Cnn
−1/2 → 0 and Cnn

1/2 →∞ as n→∞.

• Step 1: Determine Ĝn,m = arg min
G∈Om

h(pGf ∗Kσ, Pn ∗Kσ) for any m ≥ 1.

• Step 2: Choose

m̂n = inf

{
m ≥ 1 : h(pĜfn,m ∗Kσ, Pn ∗Kσ) ≤ h(pĜfn,m+1

∗Kσ, Pn ∗Kσ) + Cnn
−1/2

}
,

• Step 3: Let Ĝn = Ĝn,m̂n for each n.

Note that, the choice of Cn is to guarantee that m̂n is finite. Additionally, it can

be chosen based on certain model selection criterion. For instance, if we use BIC,

then Cn =
√

(d1 + 1)logn/2. The above algorithm is rather similar to the algorithm

considered in Woo and Sriram [2006] except the fact that we take the convolution of

pGf with Kσ in both Step 1 and Step 2. In fact, with the adaptation of notations as

those in our paper, the algorithm in Woo and Sriram [2006] is as follows
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Woo-Sriram (WS) Algorithm:

• Step 1: Determine Gn,m = arg min
G∈Om

h(pGf , Pn ∗Kσ) for any n,m ≥ 1.

• Step 2: Choose

mn = inf

{
m ≥ 1 : h(p

G
f
n,m
, Pn ∗Kσ) ≤ h(p

G
f
n,m+1

, Pn ∗Kσ) + C ′nn
−1/2

}
,

where C ′nn
−1/2 → 0.

• Step 3: Let Gn = Gn,mn for each n.

The convolution trick in Algorithm 1 was also considered in James et al. [2001] to

construct the consistent estimation of mixture complexity. However, their work was

based on the Kullback-Leibler (KL) divergence rather than the Hellinger distance.

Under the misspecified kernel setting, i.e., {f} 6= {f0}, the esimatiors of mixing

measures G0 from KL divergence may be unstable. Additionally, they only worked

with true kernel function f0 to be Gaussian, while in many applications, it is not

realistic to expect that f0 is Gaussian.

To demonstrate the advantages of our proposed estimator Ĝn over Woo-Sriram’s

estimator Gn, we will provide a careful theoretical study of both these estimators

in the chapter. For readers’ convenience, we provide now a summary of our later

analyses of the convergence behaviors of Ĝn and Gn. Under the well-specified setting,

i.e., {f} = {f0}, the convolution trick in Algorithm 1 is crucial to guarantee the

optimal rate n−1/2 of Ĝn to G0 for any fixed bandwidth σ > 0. It comes from the fact

that Pn ∗Kσ(x) is the unbiased estimator of pG0 ∗Kσ(x) for all x ∈ X . Hence, under

suitable conditions of f0 we can guarantee that h(Pn∗Kσ, pGf00
∗Kσ) = Op(n

−1/2) when

the bandwidth σ is fixed. However, it is not the case for WS Algorithm. Indeed, we

demonstrate later in Section 5.3.3 that for any fixed bandwidth σ > 0, Gn converges

to G0 where G0 = arg min
G∈G

h(pGf0 , pGf00
∗Kσ) under certain conditions of true kernel
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f0, K and G0 (cf. Theorem 5.3.3). Unfortunately, G0 may be very different from G0

even if they may have the same number of components. Therefore, even though we

may recover the true number of components with WS algorithm, we hardly can obtain

good estimates of parameter values. It shows that Algorithm 1 is more appealing than

WS Algorithm under the well-specified kernel setting with fixed bandwidth σ.

When the bandwidth σ is allowed to vanish to 0 as n → ∞, with the additional

condition nσd → 0, we are able to guarantee that m̂n → k0 almost surely (cf. Propo-

sition 5.3.1). This result is also consistent with the result mn → k0 almost surely from

Theorem 1 in [Woo and Sriram, 2006]. Moreover, under these conditions of bandwidth

σ, both the estimators Ĝn and Gn converge to G0 as n → ∞. However, we can not

establish the exact convergence rate n−1/2 of Ĝn to G0 but only n−1/2 up to some log-

arithmic factor under some choices of the bandwidth σ. It is due to the fact that our

current technique is based on the evaluation of the term h(Pn ∗Kσ, pGf00
∗Kσ), which

does not converge to 0 at the rate n−1/2 when σ → 0. The situation is similar for the

convergence rates of Gn as we also need to rely on studying h(Pn ∗Kσ, pGf00
∗Kσ).

Under the misspecified kernel setting, i.e., when chosen kernel f may be different

from true kernel f0, the convolution trick continues to be useful for studying the

convergence rate of Ĝn to some G∗ where G∗ = arg min
G∈G

h(pGf ∗Kσ, pGf00
∗Kσ). In

fact, as G∗ has finite number of components, under certain conditions on f, f0, and K,

we are able to establish the convergence rate n−1/2 of Ĝn to G∗ (cf. Theorem 5.3.2)

for any fixed bandwidth σ > 0. When the number of components of G∗ is infinite,

we also report the consistency of the number of components of Ĝn (cf. Proposition

5.3.2) under certain conditions of f and K. However, the convergence rates of Ĝn

to G∗ are very complicated to establish. Therefore, we leave that scenario for future

work.
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5.3.1 Well-specified kernel setting

In this section, we consider the setting that f0 is known, i.e., {f} = {f0}. As we

have seen from the discussion in Section 6.2, the first order identifiability condition

plays an important role to obtain the convergence rate n−1/2 of parameter estimations

under mixture models. As Algorithm 1 relies on studying the variation around kernel

function f0 ∗Kσ in the limit, we would like to guarantee that f0 ∗Kσ is identifiable in

the first order for any σ > 0. Fortunately, we have a mild condition of K such that

the first order identifiability of f0 ∗Kσ is maintained

Lemma 5.3.1. Assume that K̂(t) 6= 0 for almost all t ∈ Rd where K̂(t) is the Fourier

transform of kernel function K. Then, as long as f0 is identifiable in the first order,

we obtain that f0 ∗Kσ is identifiable in the first order for any σ > 0.

The assumption K̂(t) 6= 0 is very mild. Indeed, some popular choices of K to

satisfy the condition of Lemma 5.3.1 are the Gaussian and Student’s t kernel. Inspired

by the result of Lemma 5.3.1, we have the following result establishing the convergence

rates of Ĝn,σ to G0 under W1 distance for any fixed bandwidth σ > 0

Theorem 5.3.1. Let σ > 0 be given.

(i) If f0 ∗Kσ is identifiable, then m̂n → k0 almost surely.

(ii) Assume further the following conditions

(P.1) The kernel K is chosen such that f0 ∗ Kσ is also identifiable in the first

order and admits a uniform Lipschitz property up to the first order.

(P.2) Ψ(G0, σ) :=

∫
g(x|G0, σ)

p
G
f0
0
∗Kσ(x)

dx <∞ where g(x|G0, σ) :=

∫
K2
σ(x− y)p

G
f0
0

(y)dy.

Then, we have

W1(Ĝn, G0) = Op

(√
Ψ(G0, σ)

C2
1(σ)

n−1/2

)
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where C1(σ) := inf
G∈Ok0

h(pGf0 ∗Kσ, pGf00
∗Kσ)

W1(G,G0)
.

Remarks:

(i) Condition (P.1) is satisfied by many kernels K as the consequence of Lemma

5.3.1. By assumption (P.1) and Proposition 5.2.1, we obtain the following bound

h(pGf0 ∗Kσ, pGf00
∗Kσ) & W1(G,G0)

for any G ∈ Ok0 , i.e., C1(σ) > 0.

(ii) Condition (P.2) is mild. One easy example for such setting is when f0 and K

are both Gaussian kernels. In fact, when f0 and K are standard univariate

Gaussian kernels, we achieve

Ψ(G0, σ) =

k0∑
i=1

∫
p0
i

∫
K2
σ(x− y)f0(y|θ0

i , σ
0
i )dy

p
G
f0
0
∗Kσ(x)

dx

<

k0∑
i=1

∫ ∫
K2
σ(x− y)f0(y|θ0

i , σ
0
i )dy

f0 ∗Kσ(x|θ0
i )

dx

∝
k0∑
i=1

(
(σ0

i )
2 + σ2

)
/σ2 <∞.

Another specific example is when f0 and K are both Cauchy kernels or generally

Student’s t kernels with odd degree of freedom. However, assumption (P.2) may

fail when K has much shorter tails than f0. For example if f0 is Laplacian kernel

and K is Gaussian kernel, then Ψ(G0, σ) =∞.

Comment on Ĝn as σ → 0: To avoid the ambiguity, we now denote {σn} as the

sequence of varied bandwidths σ. The following result shows the consistency of m̂n

under specific conditions on σn → 0
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Proposition 5.3.1. Given a sequence of bandwidths {σn} such that σn → 0 and

nσdn →∞ as n→∞. If f0 is identifiable, then m̂n → k0 almost surely.

Our result shows that if σn is small enough, the parametric n1/2 rate of convergence

of Ĝn to G0 is achieved. It would be more elegant to argue that this rate is achieved

for some sequence σn → 0. However, this cannot be done with the technique employed

in the proof of Theorem 5.3.1. In particular, even though we still can guarantee that

lim
σn→0

C1(σn) > 0 (cf. Lemma 5.10.1 in Appendix B), the difficulty is that Ψ(G0, σn) =

O(σ
−β(d)
n ) for some β(d) > 0 depending on d as σn → 0. As a consequence, whatever

the sequence of bandwidths σn → 0 we choose, we will be only able to obtain the

convergence rate n−1/2 up to the logarithmic term of Ĝn to G0. It can be thought

as the limitation of the elegant technique employed in Theorem 5.3.1. We leave the

exact convergence rate n−1/2 of Ĝn to G0 under the setting σn → 0 for the future

work.

5.3.2 Misspecified kernel setting

In the previous section, we assume the well-specified kernel setting, i.e., {f} =

{f0}, and achieve the standard convergence rate n−1/2 of Ĝn to G0 under mild condi-

tions on f0 and K for any fixed bandwidth σ > 0. However, the well-specified kernel

assumption is often violated in practice, i.e., the chosen kernel f may be different

from the true kernel f0. Motivated by this challenge, in this section we consider the

setting when {f} 6= {f0} and demonstrate that the convergence rates of Ĝn are still

desirable under certain assumptions on f, f0, and K. Due to the complex nature of

misspecified kernel setting, we will only study the behavior of Ĝn when the bandwidth

σ > 0 is fixed in this section. Now, for any σ > 0 assume that we can find

G∗ = arg min
G∈G

h(pGf ∗Kσ, pGf00
∗Kσ).
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With the above formulation, G∗ is a discrete mixing measure that minimizes that

Hellinger distance between pGf ∗ Kσ and p
Gf

0

0

∗ Kσ. As G∗ may be not unique, we

denote

M =

{
G∗ ∈ G : G∗ = arg min

G∈G
h(pGf ∗Kσ, pGf00

∗Kσ)

}
.

That is, M is the collection of G∗ being the discrete mixing measure that minimizes

the Hellinger distance between pGf ∗Kσ and p
Gf

0

0

∗Kσ. We start with the following

key property of elements G∗ in M

Lemma 5.3.2. For any G ∈ G and G∗ ∈M, it holds

∫
pGf ∗Kσ(x)

√√√√p
G
f0
0
∗Kσ(x)

pGf∗ ∗Kσ(x)
dx ≤

∫ √
pGf∗ ∗Kσ(x)

√
p
G
f0
0
∗Kσ(x)dx (5.1)

With the above result, we have the following important property of M

Lemma 5.3.3. For any two elements G1,∗, G2,∗ ∈ M, we obtain pGf1,∗
∗ Kσ(x) =

pGf2,∗
∗Kσ(x) for almost surely x ∈ X .

Now, we consider the partition ofM to the union ofMk = {G∗ ∈M : G∗ has k

elements} where k ∈ [1,∞]. Let k∗ := k∗(M) be the minimum number k ∈ [1,∞]

such that Mk is non-empty. Now we divide our argument into two distinct settings

of k∗: k∗ is finite and k∗ is infinite.

5.3.2.1 Finite k∗:

By Lemma 5.3.3, Mk∗ will have exactly one element G∗ as long as f ∗ Kσ is

identifiable. Furthermore, Mk is empty for all k∗ < k < ∞. However, it is possible

thatM∞ still contains various elements . Fortunately, due to the parsimonious nature

of Algorithm 1 and the result of Theorem 5.3.2, we will be able to demonstrate that Ĝn
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still converges to the unique element G∗ ∈ Mk∗ at the optimal rate n−1/2 regardless

of the behavior of M∞.

For the simplicity of our later argument under that setting of k∗, we denote G∗

the unique element in Mk∗ . One simple example for k∗ < ∞ is when f is location-

scale family and f0 is finite mixture of f . In particular, f0(x|η, τ) =
1

τ
f0

(
(x− η)/τ

)
where η and τ are location and scale parameters respectively. Additionally, f0(x) =∑m

i=1 p
∗
i f(x|η∗i , τ ∗i ) for some fixed positive integer m and fixed pairwise distinct com-

ponents (p∗i , η
∗
i , τ
∗
i ) where 1 ≤ i ≤ m. Under that setting, we can check that k∗ ≤ mk0

and pGf∗ (x) = p
G
f0
0

(x) almost surely. The explicit formulation of G∗, therefore, can be

found from the combinations of G0 and (p∗i , η
∗
i , τ
∗
i ) where 1 ≤ i ≤ m. From inequality

(5.1) in Lemma 5.3.2, we have the following well-defined modification of Hellinger

distance

Definition 5.3.1. Given σ > 0. For any two mixing measures G1, G2 ∈ G, we define

the distance h∗(pGf1
∗Kσ, pGf2

∗Kσ) by

(
h∗(pGf1

∗Kσ, pGf2
∗Kσ)

)2

=
1

2

∫ (√
pGf1
∗Kσ(x)−

√
pGf2
∗Kσ(x)

)2

√√√√p
G
f0
0
∗Kσ(x)

pGf∗ ∗Kσ(x)
dx

The notatable feature of h∗ is the involvement of term
√
p
G
f0
0
∗Kσ(x)/pGf∗ ∗Kσ(x)

in its formulation, which makes it slightly different from the traditional Hellinger

distance. As long as {f} ≡ {f0}, we obtain h∗(pGf1
∗Kσ, pGf2

∗Kσ) ≡ h(pGf1
∗Kσ, pGf2

∗

Kσ) for any G1, G2 ∈ G, i.e., the traditional Hellinger distance is a special case of h∗

under the well-specified kernel setting. The modified version of Hellinger distance h∗

is particularly useful for establishing the convergence rates of Ĝn to G∗ for any fixed

σ > 0.

Note that, in the context of the well-specified kernel setting in Section 5.3.1 the

key step we utilized to obtain the convergence rate n−1/2 of Ĝn to G0 was based on

the lower bound of the Hellinger distance and the first order Wasserstein distance in
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inequality (5.1). With the modified Hellinger distance h∗, it turns out that we have

the similar kind of lower bound as long as k∗ <∞.

Lemma 5.3.4. Assume that f ∗Kσ is identifiable in the first order and admits Lip-

schitz property up to the first order. If k∗ <∞, then for any G ∈ Ok∗ there holds

h∗(pGf ∗Kσ, pGf∗ ∗Kσ) & W1(G,G∗).

Equipped with the above inequality, we have the following result regarding the

convergence rate of Ĝn to G∗ under the setting k∗ <∞

Theorem 5.3.2. Assume k∗ <∞ for some σ > 0.

(i) If f ∗Kσ is identifiable, then m̂n → k∗ almost surely.

(ii) Assume further that condition (P.2) in Theorem 5.3.1 holds, i.e., Ψ(G0, σ) <∞

and the following conditions hold:

(M.1) The kernel K is chosen such that f ∗ Kσ is identifiable in the first order

and admits a uniform Lipschitz property up to the first order.

(M.2) sup
θ∈Θ

∫ √
f ∗Kσ(x|θ)dx ≤M1(σ) for some positive constant M1(σ).

(M.3) sup
θ∈Θ

∥∥∥∂f ∗Kσ

∂θ
(x|θ)/

(
f ∗Kσ(x|θ)

)3/4
∥∥∥
∞
≤ M2(σ) for some positive con-

stant M2(σ).

Then, we have

W1(Ĝn, G∗) = Op

(√
M2(σ)Ψ(G0, σ)

C4
∗,1(σ)

n−1/2

)

where C∗,1(σ) := inf
G∈Ok∗

h∗(pGf ∗Kσ, pGf∗ ∗Kσ)

W1(G,G∗)
and M(σ) is some positive con-

stant.
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Remarks:

(i) As being mentioned in Lemma 5.3.4, condition (M.1) guarantees that C∗,1(σ) >

0.

(ii) Conditions (M.2) and (M.3) are mild. An easy example is when f is Gaussian

kernel and K is standard Gaussian kernel.

(iii) When f0 is indeed a finite mixture of f while both of them are location-scale

kernels, a close investigation of the proof of this theorem reveals that we can

relax condition (M.2) and (M.3) for the conclusion of this theorem to hold.

5.3.2.2 Infinite k∗:

So far, we have assumed that k∗ has finite number of support points and achieve

the cherished convergence rate n−1/2 of Ĝn to unique element G∗ ∈Mk∗ under certain

conditions on f, f0, and K. It is due to the fact that m̂n → k∗ < ∞ almost surely,

which is eventually a consequence of the identifibility of kernel density function f ∗Kσ.

However, for the setting k∗ =∞, to establish the consistency of m̂n, we need to resort

to a slightly stronger version of identifiability, which is finitely identifiable condition.

We adapt Definition 3 in Nguyen [2013]:

Definition 5.3.2. The family {f(x|θ), θ ∈ Θ} is finitely identifiable if for any G1 ∈ G

and G2 ∈ G, |pGf1 (x)− pGf2 (x)| = 0 for almost surely x ∈ X implies that G1 ≡ G2.

An example of finite identifiability is when f is Gaussian kernel with both location

and variance parameter. Now, a close investigation of Step 1 in the proof of Theorem

5.3.2 quickly yields the following result

Proposition 5.3.2. Given σ > 0 such that f ∗Kσ is finitely identifiable. If k∗ =∞,

we achieve m̂n →∞ almost surely.
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Even though we achieve the consistency result of m̂n when k∗ = ∞, the con-

vergence rate of Ĝn to G∗ still remains an elusive problem. However, an important

insight from Proposition 5.3.2 indicates that the convergence rate of Ĝn to some ele-

ment G∗ ∈ M∞ may be much slower than n−1/2 when k∗ =∞. It is due to the fact

that both Ĝn and G∗ ∈ M∞ have unbounded numbers of components in which the

kind of bound in Lemma 5.3.4 is no longer sufficient. We leave the detail analyses of

Ĝn under that setting of k∗ for the future work.

5.3.3 Analysis of WS Algorithm

So far, we have focused on studying the behaviors of Ĝn in Algorithm 1, i.e.,

we established the consistency of the number of components of Ĝn as well as the

convergence rates of parameter estimates of Ĝn under various settings of f and f0

when the bandwidth σ is fixed. As we mentioned at the beginning of Section 3, we

also would like to demonstrate the flexibilities and advantages of our estimator Ĝn

over Woo-Sriram’s estimator Gn in WS algorithm. As a consequence, in this section

we also provide a careful analysis for the estimators Gn from WS Algorithm under

the fixed bandwidth setting. For the simplicity of our argument, we only consider the

well-specified kernel setting, i.e., {f} = {f0}. Rememeber that f0 is identifiable in

the first order and has uniform Lipschitz up to the first order. Assume now we can

find

G0 = arg min
G∈G

h(pGf0 , pGf00
∗Kσ),

i.e., G0 is the discrete mixing measure that minimizes that Hellinger distance between

pGf0 and p
G
f0
0
∗ Kσ. Similar to Lemma 5.3.2, we also have the following property
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characterizing G0:

∫
pGf (x)

√√√√p
G
f0
0
∗Kσ(x)

p
G
f0
0

(x)
dx ≤

∫ √
p
G
f0
0

(x)
√
p
G
f0
0
∗Kσ(x)dx (5.2)

for any G ∈ G. As being argued in Section 5.3.2, G0 may either have infinite number

of components or unique; however, for the sake of simplicity, we assume in this section

that there exists G0 having finite number of components. Using the same argument

as in the proof of Lemma 5.3.3, we can treat G0 as unique mixing measure with finite

number of components.

We denote k0 the number of components of G0. Fortunately, the form of G0 can

be determined explicitly under various settings of f0 and K. For instance, assume

that f0 are either univariate Gaussian kernels or Cauchy kernels with parameters

θ = (η, τ) where η and τ are location and variance parameter respectively and K are

either standard univariate Gaussian kernels or Cauchy kernels respectively. Then, a

simple calculation shows that k0 = k0 and G0 =
k0∑
i=1

p0
i δ(θ0i ,τ

0
i )

where τ 0
i =

√
(τ 0
i )2 + σ2

for any 1 ≤ i ≤ k0 and σ > 0.

From inequality (5.2), we have the following well-defined modification of Hellinger

distance

Definition 5.3.3. Given σ > 0. For any two mixing measures G1, G2 ∈ G, we define

the distance between p
G
f0
1

and p
G
f0
2

as

(
h(p

G
f0
1
, p

G
f0
2

)

)2

=
1

2

∫ (√
p
G
f0
1

(x)−
√
p
G
f0
2

(x)

)2

√√√√p
G
f0
0
∗Kσ(x)

p
G
f0
0

(x)
dx

As f0 is identifiable in the first order and admits uniform Lipschitz condition up

to the first order, we obtain that

h(pGf0 , pGf00
) & W1(G,G0) (5.3)
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for any G ∈ Ok0 . The proof of this bound is omitted since it is similar to that

of Lemma 5.3.4. The above inequality leads to the following result concerning the

convergence rate of Gn to G0 when k0 <∞

Theorem 5.3.3. Given σ > 0. Assume that k0 <∞.

(i) If f0 ∗Kσ is identifiable, then mn → k0 almost surely.

(ii) Assume further that condition (P.2) in Theorem 5.3.1 holds, i.e., Ψ(G0, σ) <

∞. Additionally, we have the following conditions

(S.1) sup
θ∈Θ

∫ √
f0(x|θ)dx ≤M1 for some positive constant M1.

(S.2) sup
θ∈Θ

∥∥∥∂f0

∂θ
(x|θ)/(f0(x|θ))3/4

∥∥∥
∞
≤M2 for some positive constant M2.

Then, we obtain

W1(Gn, G0) = Op

(√
[M(σ)]2Ψ(G0, σ)

[C(σ)]4
n−1/2

)

where C(σ) := inf
G∈Ok0

h(pGf0 , pGf00
)

W1(G,G0)
and M(σ) is some positive constant.

Condition (S.1) and (S.2) are indeed very mild as it is satisfied by many popular

kernels, such as Gaussian, Laplacian, and Student’s t with degree of freedom greater

than 3. As being indicated in Theorem 5.3.3, the estimators Gn from WS algorithm

will not converge to the true mixing measure G0 for any fixed bandwith σ. It demon-

strates that Algorithm 1 is more appealing than WS algorithm under this setting.

For the setting when the bandwidth is allowed to vanish to 0, our current approach

in the proof of Theorem 5.3.3 is not sufficient to determine whether it is possible to

achieve the convergence rate n−1/2 of WS’s estimatorGn to G0. Similar to the remark

after Proposition 5.3.1, one of the main difficulties with our current technique is that

the term Ψ(G0, σ) = O(σ−β(d)) for some β(d) > 0 depending on d. Another difficulty
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is associated with the term M(σ) as it may also converge to 0 as σ → 0. We leave

this intriguing question for the future work.

5.4 Different approach with minimum Hellinger distance es-

timator

From the previous section, we develop a robust estimator of mixing measure G0

based on the idea of minimum Hellinger distance estimator and model selection cri-

teria. That estimator is shown to possess various desirable properties, including the

consistency of number of components m̂n and the optimal convergence rates of Ĝn. In

this section, we take a rather different approach of constructing such robust estimator.

In fact, we have the following algorithm

Algorithm 2:

• Step 1: Determine Ĝn,m = arg min
G∈Om

h(pGf ∗Kσ, Pn ∗Kσ) for any n,m ≥ 1.

• Step 2: Choose

m̃n = inf

{
m ≥ 1 : h(pĜfn,m ∗Kσ, Pn ∗Kσ) < ε

}
,

where ε > 0 is any given positive constant.

• Step 3: Let G̃n = Ĝn,m̃n for each n.

Unlike Step 2 in Algorithm 1 where we consider the difference h(pĜfn,m ∗ Kσ, Pn ∗

Kσ)− h(pĜfn,m+1
∗Kσ, Pn ∗Kσ), here we consider solely h(pĜfn,m ∗Kσ, Pn ∗Kσ). The

above robust estimator of mixing measure is based on the idea of minimum Hellinger

distance estimator and sufficiency phenomenon. The superefficiency idea was also

considered in [Heinrich and Kahn, 2016+]; however, their construction was based on

minimum distance estimator without the convolution kernel Kσ and the threshold ε
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was allowed to go to 0 as n→∞. Needless to mention, minimum distance estimator

is neither computationally simple nor robust.

Our focus with Algorithm 2 in this section will be mainly about its attractive

theoretical performance. As we observe from Algorithm 2, the choices of f, f0, and

G0 play crucial roles in determining the convergence rate of G̃n to G0 for any ε >

0. Similar to the argument of Theorem 5.3.1 and Theorem 5.3.2, one of the key

ingredients to fulfill that goal is to find the conditions of f , f0, and G0 such that we

obtain the consistency of m̃n, i.e., m̃n → k0 under the well-specified kernel setting or

m̃n → k∗ under the misspecified kernel setting where k∗ is defined as in Section 5.3.2.

The following proposition yields the sufficient and necessary conditions to answer that

consistency question

Theorem 5.4.1. For any σ > 0, we have

• Under the well-specified kernel setting, m̃n → k0 almost surely if and only if

ε < h(p
G
f0
0,k0−1

∗Kσ, pGf00
∗Kσ) (5.4)

where G0,k0−1 = arg min
G∈Ek0−1

h(pGf0 ∗Kσ, pGf00
∗Kσ).

• Under the misspecified kernel setting, if k∗ <∞, then m̃n → k∗ almost surely if

and only if

h(pGf∗ ∗Kσ, pGf00
∗Kσ) ≤ ε < h(pGf∗,k∗−1

∗Kσ, pGf00
∗Kσ) (5.5)

where G∗,k∗−1 = arg min
G∈Ek∗−1

h(pGf ∗Kσ, pGf00
∗Kσ) and G∗ ∈ M with exactly k∗

components.

If we allow ε → 0 in Algorithm 2, we achieve the inconsistency of m̃n under the

misspecified kernel setting when k∗ < ∞. Hence, the choice of threshold ε from

Heinrich and Kahn [2016+] is not optimal regarding the misspecified kernel setting.
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Unfortunately, the conditions (5.4) and (5.5) are rather cryptic as in general, it is

hard to determine the exact formulation of G0,k0−1, G∗,k∗−1, and G∗. Thus, we would

like to have simple conditions on f, f0, and G0. Under the well-specified setting, it

appears that condition (5.4) can be recasted as condition regarding the lower bound

on the smallest mass of G0 and the minimal distance between its point masses as

follows

Proposition 5.4.1. (Well-speficied kernel setting) For any given σ > 0, assume

that f0 ∗Kσ is uniformly Lipschitz up to the first oder and identifiable. Then, there

exists a positive constant C depending on f0, G0, K,Θ and σ such that if we have

min
1≤i≤k0

p0
i min

1≤i 6=j≤k0
‖θ0

i − θ0
j‖ ≥ Cε, (5.6)

then we obtain the inequality in (5.4).

Unlike (5.4), it is tricky to derive simple conditions for (5.5) to hold under the

misspecified kernel setting due to the wide range of possibility of f . Before arriving

at these conditions, we define the following norm || · || between any two classes of

density functions {f1(x|θ) : θ ∈ Θ} and {f2(x|θ) : θ ∈ Θ} as follows

||f1 − f2|| = sup
θ∈Θ

∫
|f1(x|θ)− f2(x|θ)|dx.

When ||f1 − f2|| = 0, for each θ ∈ Θ we have f1(x|θ) = f2(x|θ) for almost surely

x ∈ X . Now, we have the following definition regarding the distinguishability of any

two classes of density functions {f1(x|θ)} and {f2(x|θ)}

Definition 5.4.1. Given any two classes of density functions {fi(x|θ), θ ∈ Θ} where

1 ≤ i ≤ 2. We say that f1 and f2 are distinguishable if we have h(p
G
f1
1
, p

G
f2
2

) > 0

for any finite discrete mixing measures G1, G2 in Θ.
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Example 5.4.1. If f1 is location-scale univariate Gaussian family and f2 is location-

scale univariate Student’s t family with fixed degree of freedom ν > 1, then f1 and f2

are distinguishable.

The proof for this example is deferred to Appendix B. Equipped with all the above

definitions, we have the following sufficient condition regarding the inequality in (5.5)

Proposition 5.4.2. (Misspecified kernel setting) Given σ > 0. Assume that

K is chosen such that that f0 ∗Kσ and f ∗Kσ are distinguishable and are uniformly

Lipschitz up to the first order. If k∗ ≤ k0, there exists a positive constant C1 depending

only on f, f0, G0, K,Θ, and σ such that as long as ||f − f0|| ≤ 2ε2 and

min
1≤i≤k0

p0
i min

1≤i 6=j≤k0
||θ0

i − θ0
j || ≥ C1ε,

we obtain the inequalities in (5.5).

Remarks:

(i) The distinguishability of f0 ∗ Kσ and f ∗ Kσ is needed for the following lower

bound (cf. Lemma 5.9.2 in Section 5.8)

h(pGf ∗Kσ, pGf00
∗Kσ) ≥ C ′1W1(G,G0)

for any G ∈ Ek∗−1 where C ′1 is some positive constant depending only on

f, f0, G0,Θ, and σ.

(ii) The assumption k∗ ≤ k0 is purely for the argument of the proposition to go

through. Indeed, from the lower bound in part (i), our proof relies on the

evaluation of the quantity inf
G∈Ek∗−1

W1(G,G0) as in the proof of Proposition 5.4.1.

As k∗ > k0, this quantity becomes zero, which is not informative to further lower

bound the right hand side of the inequality in part (i). Therefore, the current
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approach employed in our proof of Proposition 5.4.2 is not effective to deal with

the setting k∗ > k0.

5.5 Extension to non-standard settings

In this section, we briefly demonstrate that the robust estimator from Algorithm

1 (similarly Algorithm 2) also achieves the most desirable convergence rates under

non-standard settings. In particular, we consider first the situation where f0 or f may

be not identifiable in the first order. In the second setting, the true mixing measure

G0 changes with the sample size n and converges to some discrete distribution G̃0

under W1 distance.

5.5.1 A singular Fisher information matrix

The results in the previous sections are under the assumption that both the true

kernel f0 and chosen kernel f are identifiable in the first order. This is equivalent to

the non-singularity of the Fisher information matrix of p
G
f0
0

and pGf∗ when G∗ ∈ M,

i.e., both I(G0, f0) and I(G∗, f) are non-singular. Therefore, we achieve the cherished

convergence rate n−1/2 of Ĝn. Unfortunately, these assumptions do not always hold.

For instance, both the Gamma and skew normal kernel are not identifiable in the first

order [Ho and Nguyen, 2016a,b]. According to Azzalini and Valle [1996], Wiper et al.

[2001], these kernels are particularly useful for modelling various kinds of data: the

Gamma kernel is used for modeling non-negative valued data and the skew normal

kernel is prevalently used to model asymetric data. Therefore, it is worth considering

the performance of Algorithm 1 under the nonidentifiability in the first order of both

kernels f0 and f . Throughout this section, for the simplicity of the argument we

consider only the well-specified kernel setting and the setting that f0 may be not

identifiable in the first order. The argument for the misspecified kernel setting and

not first order identifiability of both f or f0 can be argued in the similar fashion.
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The non-identifiability in the first order of f0 implies that the Fisher information

matrix I(G0, f0) of p
G
f0
0

is singular at some particular values of G0. Therefore, the

convergence rate of Ĝn to G0 will be much slower than the standard convergence rate

n−1/2. In order to precisely determine the convergence rates of parameters under the

singular Fisher information matrix setting, Ho and Nguyen [2016b] introduced the

notion of singularity levels of the Fisher information matrix I(G0, f0) (cf. Definition

3.1 and Definition 3.3). Here, we adapt the definitions of singularity levels according

to the notations in our paper for the convenience of readers. In particular, we say

that G0 is r-singular relative to the ambient space Ok0 and the kernel f0 as long as

I(G0, f0) admits r-th level of singularity level for 0 ≤ r <∞, i.e., we have

inf
G∈Ok0

TV (pGf0 , pGf00
)/W s

s (G,G0) = 0, s = 1, . . . , r.

TV (pGf0 , pGf00
) & W r+1

r+1 (G,G0), for all G ∈ Ok0 . (5.7)

The infinite singularity level of the Fisher information matrix I(G0, f0) implies that

inequality (5.7) will not hold for any r ≥ 0.

When f0 is identifiable in the first order, I(G0, f0) will only have zero order sin-

gularity level for all G0 ∈ Ek0 , i.e., r = 0 in (5.7). However, the singularity levels

of the Fisher information matrix I(G0, f0) are generally not uniform over G0 when

I(G0, f0) is singular. For example, when f0 is skew normal kernel, I(G0, f0) will ad-

mit any order of singularity levels, ranging from 0 to∞ depending on the interaction

of atoms and masses of G0[Ho and Nguyen, 2016b]. The notion of singularity level

allows us to establish the convergence rates of any estimator of G0 immediately. In

fact, if r < ∞ is the singularity level of I(G0, f0), for any estimation method that

yields the convergence rate n−1/2 for p
G
f0
0

under the Hellinger distance, the induced

best possible rate of convergence for the mixing measure G0 is n−1/2(r+1) under Wr+1

distance. If r = ∞ is the singularity level of I(G0, f0), all the estimation methods
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will yield the non-polynomial convergence rate of G0, i.e., not of the form n−1/2s for

any s ≥ 1.

Now, by using the same line of argument as that of Theorem 5.3.1 we have the fol-

lowing result regarding the convergence rate of Ĝn to G0 when the Fisher information

matrix I(G0, f0) has r-th singularity level

Proposition 5.5.1. Given σ > 0. Assume that the Fisher information I(G0, f0)

has r-th singularity level where r < ∞ and that condition (P.2) in Theorem 5.3.1

holds, i.e., Ψ(G0, σ) <∞. Furthermore, the kernel K is chosen such that the Fisher

information matrix I(G0, f0 ∗ Kσ) has r-th singularity level and f0 ∗ Kσ admits a

uniform Lipschitz property up to the r-th order. Then, we have

Wr+1(Ĝn, G0) = Op

(√
Ψ(G0, σ)

C2
r (σ)

n−1/2(r+1)

)

where Cr(σ) = inf
G∈Ok0

h(pGf0 ∗Kσ, pGf00
∗Kσ)

W r+1
r+1 (G,G0)

.

Remarks:

(i) A mild condition such that I(G0, f0) and I(G0, f0∗Kσ) have the same singularity

level is K̂(t) 6= 0 for all t ∈ Rd where K̂(t) denotes the Fourier transformation

of K (cf. Lemma 5.10.2 in the Appendix B).

(ii) Some examples of f0 that are not identifiable in the first order and satisfy

Ψ(G0, σ) <∞ are skew normal and exponential kernel while K is chosen to be

Gaussian or exponential kernel respectively.

(iii) The result of Proposition 5.5.1 implies that under suitable choice of kernel K,

Algorithm 1 still achieves the best possible convergence rate for estimating G0

even when the Fisher information matrix I(G0, f0) is singular.
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5.5.2 Extension to varying true parameters

So far, our analysis has relied upon the assumption that G0 is fixed as n → ∞.

However, there are situations where in proper asymptotic models the true mixing

measure G0 also varies with n and converges to some distribution G̃0 under W1

distance as n → ∞. In this section, we will demonstrate that the estimator in

Algorithm 1 still achieves the optimal convergence rate.

Denote the number of components of G̃0 by k̃0. For the clarity of our argument

we only work with the well-specified kernel setting and with the setting that f0 is

identifiable in the first order. As we have seen from the analysis of Section 5.3.1, when

G0 does not change with n, the key steps used to establish the standard convergence

rate n−1/2 of Ĝn to G0 are through the combination of the convergence of m̂n to k0

almost surely and, under the first order identifiability of f0 ∗Kσ, the lower bound

h(pGf0 ∗Kσ, pGf00
∗Kσ) & W1(G,G0) (5.8)

for any G ∈ Ok0 . Unfortunately, these two results no longer hold as G0 varies with

n. In this section, to avoid the ambiguity of the later argument, we denote by Gn
0 the

true mixing distribution when the sample size is n. Similarly, let kn0 be the number

of components of Gn
0 . Assume that lim sup

n→∞
kn0 = k <∞. We start with the following

result regarding the convergence rate of m̂n under that setting of Gn
0

Proposition 5.5.2. Given σ > 0. If f0 ∗ Kσ is identifiable, then |m̂n − kn0 | → 0

almost surely as n→∞.

According to the above proposition, m̂n will not converge to k̃0 almost surely when

k > k̃0. Additionally, from that proposition, inequality (5.8) no longer holds since

both the number of components of Ĝn and Gn
0 vary. In fact, we need to impose a

much stronger condition on the identifiability of f0 ∗Kσ.
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Throughout the rest of this section, we assume that d = d1 = 1, i.e., we work with

the univariate setting of f0. Equipped with the result of Theorem 4.6 in Heinrich and

Kahn [2016+], we have the following bound

Proposition 5.5.3. Given σ > 0. Let K be chosen such that f0 ∗Kσ is identifiable

up to the (2k−2k̃0)-order and admits a uniform Lipschitz condition up to (2k−2k̃0)-

order. Then, there exist ε0 > 0 and N(ε0) ∈ N such that

h(pGf0 ∗Kσ, pGn,f00
∗Kσ) ≥ Cv(σ)W 2k−2k̃0+1

1 (G,Gn
0 ) (5.9)

for any n ≥ N(ε0) and for any G ∈ Okn0 such that W1(G, G̃0) ≤ ε0. Here, Cv(σ) is

some positive constant depending only on G̃0 and σ.

Similar to the argument of Lemma 5.3.1, an easy example of K and f0 for the

assumptions of Proposition 5.5.3 to hold is K̂(t) 6= 0 for all t ∈ Rd and f0 is strongly

identifiable up to the (2k− 2k̃0)-order, which is satisfied by location family of density

functions (cf. Theorem 2.4 in [Heinrich and Kahn, 2016+]). Now, a combination

of Proposition 5.5.2 and Proposition 5.5.3 yields the following result regarding the

convergence rate of Ĝn to Gn
0

Corollary 5.5.1. Given the assumptions in Proposition 5.5.3. Assume that Ψ(Gn
0 , σ) <

∞ for all n ≥ 1. Then, we have

W1(Ĝn, G
n
0 ) = Op

(√
Ψ(Gn

0 , σ)

C2
v (σ)

n−1/(4k−4k̃0+2)

)

where Cv(σ) is the constant in inequality (5.9).

Remark:

(i) As k = k̃0, we recover the result in Theorem 5.3.1.
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(ii) If f0 is univariate Gaussian or Cauchy family and K is standard Gaussian or

Cauchy kernel respectively, then Ψ(Gn
0 , σ)→ Ψ(G̃0, σ) as n→∞.

(iii) If W1(Gn
0 , G̃0) = O(n−1/(4k−4k0+2)+κ) for some κ > 0, then the convergence rate

n−1/(4k−4k0+2) of Ĝn to Gn
0 is minimax (cf. Theorem 3.2 in [Heinrich and Kahn,

2016+]). Therefore, Algorithm 1 also achieves the minimax rate of convergence

for estimating Gn
0 , which is consistent with the minimax rate of convergence

of minimum distance estimator in Heinrich and Kahn [2016+]. However, our

estimator from Algorithm 1 is more appealing than that from Heinrich and Kahn

[2016+] as it is computationally feasible and robust while the minimum distance

estimator is neither computationally feasible nor robust. We will illustrate the

result of Corollary 5.5.1 in the simulation studies in Section 5.6.

5.6 Empirical studies

We present in this section numerous numerical studies to validate our theoretical

results in the previous sections. To find the mixing measure Ĝn,m = arg min
G∈Om

h(pGf ∗Kσ, Pn ∗Kσ),

we utilize the HMIX algorithm developed in Section 4.1 of [Cutler and Cordero-Brana,

1996]. This algorithm is essentially similar to the EM algorithm and ultimately gives

us local solutions to the minimization problem.

5.6.1 Synthetic data

We start with testing Algorithm 1 using synthetic data. The discussion is divided

into separate enquiries of the well- and mis-specified kernel setups.

Well-specified kernel setting Under this setting, we assess the performance of

estimator in Algorithm 1 under two cases of G0:

Case 1: G0 is fixed with the sample size. Under this case, we consider three choices

of f0: Gaussian and Cauchy distribution for the first order identifiability, and skew
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normal kernel for the fail of first order identifiability.

• Case 1.1 - Gaussian family:

f0(x|η, τ) =
1√
2πτ

exp

(
−(x− η)2

2τ 2

)
G0 =

1

2
δ(0,
√

10) +
1

4
δ(−0.3,

√
0.05) +

1

4
δ(0.3,

√
0.05).

• Case 1.2 - Cauchy family:

f0(x|η, τ) =
1

πτ(1 + (x− η)2/τ 2)

G0 =
1

2
δ(0,
√

10) +
1

4
δ(−0.3,

√
0.05) +

1

4
δ(0.3,

√
0.05).

• Case 1.3 - Skew normal family:

f0(x|η, τ,m) =
2√
2πτ

exp

(
−(x− η)2

2τ 2

)
Φ (m(x− η)/τ)

G0 =
1

2
δ(0,
√

10,0) +
1

4
δ(−0.3,

√
0.05,0) +

1

4
δ(0.3,

√
0.05,0).

where Φ is the cumulative function of standard normal distribution.

For the Gaussian case and skew normal case of f0, we choose K to be the standard

Gaussian kernel while K is chosen to be the standard Cauchy kernel for the Cauchy

case of f0. Note that, regarding skew normal case it was shown that the Fisher

information matrix I(G0, f0) has second level singularity (cf. Theorem 5.3 in [Ho and

Nguyen, 2016b]); therefore, from the result of Proposition 5.5.1, the convergence rate

of Ĝn to G0 will be at most n−1/6. Now for the bandwith, we choose σ = 1. The

sample sizes will be n = 200∗ i where 1 ≤ i ≤ 20. The tuning parameter Cn is chosen

according to BIC criterion. More specifically, Cn =
√

3 log n/
√

2 for Gaussian and

Cauchy family while Cn =
√

2 log n for skew normal family. For each sample size n,
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we perform Algorithm 1 exactly 100 times and then choose m̂n to be the estimated

number of components with the highest probability of appearing. Afterwards, we take

the average among all the replications with the estimated number of components m̂n

to obtain W1(Ĝn, G0). See Figure 5.1 where the Wasserstein distances W1(Ĝn, G0)

and the percentage of time m̂n = 3 are plotted against increasing sample size n

along with the error bars. The simulation results regarding Gaussian and Cauchy

family match well with the standard n−1/2 convergence rate from Theorem 5.3.1 while

the simulation results regarding skew normal family also fit with the best possible

convergence rate n−1/6 as we argued earlier.
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Figure 5.1: Performance of Ĝn in Algorithm 1 under the well-specified kernel setting
and fixed G0. Top figures - left to right: (1) W1(Ĝn, G0) under Gaussian case. (2)

W1(Ĝn, G0) under Cauchy case. Bottom figures - left to right: (1) W1(Ĝn, G0) under
Skew normal case. (2) Percentage of time m̂n = 3 obtained from 100 runs.

Case 2: G0 is varied with the sample size. Under this case, we consider two choices

of f0: Gaussian and Cauchy distribution with only location parameter.

• Case 2.1 - Gaussian family:

f0(x|η) =
1√
2π

exp

(
−(x− η)2

2

)
G0 =

1

4
δ1−1/n +

1

4
δ1+1/n +

1

2
δ2,

where n is the sample size.
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• Case 2.2 - Cauchy family:

f0(x|η) =
1

π(1 + (x− η)2)

G0 =
1

4
δ1−1/

√
n +

1

4
δ1+1/

√
n +

1

2
δ1+2/

√
n.

With these settings, we can verify that G̃0 =
1

2
δ1 +

1

2
δ2 for the Gaussian case and

G̃0 = δ1 for the Cauchy case. Additionally, W1(G0, G̃0) � 1/n for the Gaussian case

and W1(G0, G̃0) � 1/
√
n for the Cauchy case. According to the result of Corollary

5.5.1, the convergence rate of W1(Ĝn, G0) is n−1/6 for the Gaussian case and is n−1/10

for the Cauchy case, which are also minimax according to the values of W1(G0, G̃0).

The procedure for choosing K, σ, n, and m̂n is similar to that of Case 1. See Figure

5.2 where the Wasserstein distances W1(Ĝn, G0) and the percentage of time m̂n = 3

are plotted against increasing sample size n along with the error bars. The simulation

results for both Gaussian and Cauchy family agree with the convergence rates n−1/6

and n−1/10 respectively.
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Figure 5.2: Performance of Ĝn in Algorithm 1 under the well-specified kernel setting
and varied G0. Left to right: (1) W1(Ĝn, G0) under Gaussian case. (2) W1(Ĝn, G0)

under Cauchy case. (3) Percentage of time m̂n = 3 obtained from 100 runs.

Misspecified kernel setting Under that setting, we assess the performance of

Algorithm 1 under two cases of f, f0, and G0.
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• Case 2.1 - Gaussian distribution: f is normal kernel,

f0(x|η, τ) =
1

2
f(x− 2|η, τ) +

1

2
f(x+ 2|η, τ)

G0 =
1

3
δ(0,2) +

2

3
δ(1,3).

• Case 2.2 - Cauchy distribution: f is Cauchy kernel,

f0(x|η, τ) =
1

2
f(x− 2|η, τ) +

1

2
f(x+ 2|η, τ)

G0 =
1

3
δ(0,2) +

2

3
δ(1,3).

With these settings of f, f0, G0, we can verify that G∗ =
1

6
δ(−2,2) +

1

3
δ(−1,3) +

1

6
δ(2,2) +

1

3
δ(3,3) for any σ > 0. The procedure for choosing K, σ, n, and m̂n is similar to that

of Case 1 in the well-specified kernel setting. Figure 5.3 illustrates the Wasserstein

distances W1(Ĝn, G∗) and the percentage of time m̂n = 4 along with the increasing

sample size n and the error bars. The simulation results under that simple misspecified

seting of both families suit with the standard n−1/2 rate from Theorem 5.3.2.
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Figure 5.3: Performance of Ĝn in Algorithm 1 under misspecified kernel setting. L
to R: (1) W1(Ĝn, G∗) under Gaussian case. (2) W1(Ĝn, G∗) under Cauchy case. (3)

Percentage of time m̂n = 4 obtained from 100 runs.

5.6.2 Real data

We begin investigating the performance of Algorithm 1 on the well-known data

set of the Sodium-lithium countertransport (SLC) data [Dudley et al., 1991, Roeder,
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1994, Ishwaran et al., 2001]. This simple dataset includes red blood cell sodium-

lithium countertransport (SLC) activity data collected from 190 individuals. As being

argued by Roeder [1994], the SLC activity data were believed to be derived from

either mixture of two normal distributions or mixture of three normal distributions.

Therefore, we will fit this data by using mixture of normal distributions with unknown

mean and variance. We choose the bandwidth σ = 0.05 and the tuning parameter

Cn =
√

3 log n/
√

2 where n is the sample size. This follows BIC, which is the criterion

appropriate for modelling parameters estimation. The simulation result yields m̂n = 2

while the values of Ĝn are reported in Table 5.1.

The SLC activity data was also considered in Woo and Sriram [2006] when the

authors achieved mn = 2. In particular, they allowed the bandwidth σ to go to 0 and

chose the tuning parameter Cn = 3/n, which is inspired by AIC criterion. They also

obtained similar result of estimating the true number of components when utilizing

the minimum Kulback-Leibler divergence estimator (MKE) from [James et al., 2001].

The values of parameter estimates from these two algorithms were presented in Table

7 in Woo and Sriram [2006] where we will use them for the comparison purpose with

the results from Algorithm 1. Moreover, we also run the EM algorithm to determine

the parameter estimates when we assume the data are from mixture of two normal

distributions. All the values of parameter estimates from these three algorithms

are included in Table 5.1. Finally, Figure 5.4 represents the fits from parameter

estimates of all the mentioned algorithms to SLC data. Even though the weights

from Algorithm 1 are not very close to those from WS algorithm and EM algorithm,

the fit from Algorithm 1 is comparable to those from these algorithms, i.e., their fits

look fairly similar. As a consequence, the results from Algorithm 1 with SLC data

are in agreement with those from several state-of-the-art algorithms in the literature.
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p1 p2 η1 η2 τ1 τ2
Algorithm 1 0.264 0.736 0.368 0.231 0.118 0.065
WS algo-
rithm

0.305 0.695 0.352 0.222 0.106 0.060

MKE algo-
rithm

0.246 0.754 0.378 0.225 0.102 0.060

EM algo-
rithm

0.328 0.672 0.363 0.227 0.115 0.058

Table 5.1: Summary of parameter estimates in SLC activity data from mixture of
two normal distributions with Algorithm 1, WS algorithm, MKE algorithm, and EM
algorithm. Here, pi, ηi, τi represents the weights, means, and variance respectively.
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Figure 5.4: From left to right: (1) Histogram of SLC activity data. (2) Density plot
from mixture of two normals based on Algorithm 1, WS algorithm, MKE algorithm,

and MLE.

5.7 Summaries and discussions

We propose flexible robust estimators of mixing measures in finite mixture models

based on minimum Hellinger distance idea. Our estimators are shown to exhibit the

consistency of the number of components under both the well-and mis-specified kernel

setting. Additionally, the best possible convergence rates of parameter estimates are

achieved under various settings of both kernel f and f0. Another salient feature of

our work is the flexible choice of bandwidth, which circumvents the subtle choice of

bandwidth from many proposed estimators in the literature. However, there are still

open questions relating to the performance or the extension of our robust estimators

in the chapter. We give several examples:
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• As being mentioned in the previous sections, the estimators in Algorithm 1

and WS algorithm achieve the consistency of the number of components when

the bandwidth goes to 0 sufficiently slow. Can we determine the setting of

bandwidth such that the convergence rates of parameter estimates from these

algorithms are optimal, at least under the well-specified kernel setting?

• Our analysis is based on the assumption that the components of G0 belong

to compact set Θ. When G0 is finitely supported, this is always the case,

but the set is unknown in advance and, in practice, we often do not know

the range of the true parameters. Therefore, it would be interesting to see

whether estimators in Algorithm 1 and 2 still achieve both the consistency of the

number of components and optimal convergence rates of parameter estimates

when Θ = Rd1 .

• Bayesian robust inference of mixing measures in finite mixture models has been

of interest recently, see for example [Miller and Dunson, 2015]. Whether the idea

of minimum Hellinger distance can be adapted to that setting is an interesting

direction to consider in the future.

5.8 Proofs of key results

We provide now the proofs of Theorem 5.3.1 and Theorem 5.3.2 in Section 5.3.

The remaining proofs are given in the Appendices.

PROOF OF THEOREM 5.3.1 We divide the main argument into three key

steps:

247



Step 1: m̂n → k0 almost surely. The proof of this step follows the argument from

[Leroux, 1992]. In fact, for any positive integer m we denote

G0,m = arg min
G∈Om

h(pGf0 ∗Kσ, pGf00
∗Kσ).

Now, as n→∞ we have almost surely that

h(p
Ĝ
f0
n,m
∗Kσ, Pn ∗Kσ)− h(p

Ĝ
f0
n,m+1

∗Kσ, Pn ∗Kσ)→ dm,

where dm = h(p
G
f0
0,m
∗Kσ, pGf00

∗Kσ)−h(p
G
f0
0,m+1

∗Kσ, pGf00
∗Kσ) and the limit is due to

the fact that h(Pn∗Kσ, pG0∗Kσ)→ 0 almost surely for all σ > 0. Now, to demonstrate

that m̂n → k0 almost surely, it is sufficient to prove that dm = 0 as m ≥ k0 and dm > 0

as m < k0. In fact, as m ≥ k0, we have inf
G∈Om

h(pGf0 ∗Kσ, pGf00
∗Kσ) = 0. Therefore,

dm = 0 as m ≥ k0.

When m < k0, we assume that dm = 0, i.e., h(p
G
f0
0,m
∗Kσ, pGf00

∗Kσ) = h(p
G
f0
0,m+1

∗

Kσ, pGf00
∗Kσ). It implies that

h(p
G
f0
0,m
∗Kσ, pGf00

∗Kσ) ≤ h(pGf0 ∗Kσ, pGf00
∗Kσ) ∀ G ∈ Om+1.

For any ε > 0, we choose G = (1− ε)G0,m + εδθ where θ ∈ Θ is some component. The

inequality in the above display implies that

∫
(p
G
f0
0
∗Kσ(x))1/2

([
(1− ε)p

G
f0
0,m
∗Kσ(x) + εf ∗Kσ(x|θ)

]1/2

−

(p
G
f0
0,m
∗Kσ(x))1/2

)
dx ≤ 0.
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As ε→ 0, the above inequality divided by ε becomes

∫
(p
G
f0
0
∗Kσ(x))1/2(p

G
f0
0,m
∗Kσ(x))1/2dx ≥∫

(p
G
f0
0
∗Kσ(x))1/2f0 ∗Kσ(x|θ)(p

G
f0
0,m
∗Kσ(x))−1/2dx.

Now, by choosing θ = θ0
i for all 1 ≤ i ≤ k0, as we sum up the right hand side of the

above inequality, we obtain

∫
(p
G
f0
0
∗Kσ(x))1/2(p

G
f0
0,m
∗Kσ(x))1/2dx ≥

∫
(p
G
f0
0
∗Kσ(x))3/2(p

G
f0
0,m
∗Kσ(x))−1/2dx

≥ 1.

Therefore, we have h(p
G
f0
0,m
∗Kσ, pGf00

∗Kσ) = 0. Due to the identifiability assumption

of f0 ∗ Kσ, the previous equation implies that G0,m ≡ G0, which is a contradiction

as m < k0. Thus, we have dm > 0 for any m < k0. We achieve the conclusion that

m̂n → k0 almost surely.

Step 2: h(Pn ∗ Kσ, pG0 ∗ Kσ) = Op

(√
Ψ(G0, σ)

n

)
. Indeed, by means of Taylor

expansion up to the first order, we have

h2(Pn ∗Kσ, pGf00
∗Kσ) =

∫ (
1−

√√√√1 +
Pn ∗Kσ(x)− p

G
f0
0
∗Kσ(x)

p
G
f0
0
∗Kσ(x)

)2

p
G
f0
0
∗Kσ(x)dx.

' 1

4

∫ (Pn ∗Kσ(x)− p
G
f0
0
∗Kσ(x))2

p
G
f0
0
∗Kσ(x)

dx.

Notice that,

E

(∫ (Pn ∗Kσ(x)− p
G
f0
0
∗Kσ(x))2

p
G
f0
0
∗Kσ(x)

dx

)
=

∫
Var(Pn ∗Kσ(x))

p
G
f0
0
∗Kσ(x)

dx,
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From assumption (P.2), we obtain

∫
Var(Pn ∗Kσ(x))

p
G
f0
0
∗Kσ(x)

dx = O

(
Ψ(G0, σ)

n

)
. It follows

that

E

(∫ (Pn ∗Kσ(x)− p
G
f0
0
∗Kσ(x))2

p
G
f0
0
∗Kσ(x)

dx

)
= O

(
Ψ(G0, σ)

n

)
.

Therefore, we achieve h(Pn ∗Kσ, pGf00
∗Kσ) = Op

(√
Ψ(G0, σ)

n

)
. It implies that for

any ε > 0, we can find Mε > 0 and the index N1(ε) ≥ 1 such that

P

(
h(Pn ∗Kσ, pGf00

∗Kσ) > Mε

√
Ψ(G0, σ)

n

)
< ε/2 (5.10)

for all n ≥ N1(ε).

Step 3: Now, denote the event A = {m̂n → k0 as n→∞}. Under this event, for

each ω ∈ A, we can find N(ω) such that as n ≥ N(ω), we have m̂n = k0. It suggests

that Ĝn ∈ Ok0 as n ≥ N(ω). Define Am = {ω ∈ A : ∀ n ≥ m we have m̂n = k0}.

From this definition, we obtain A1 ⊂ A2 . . . ⊂ Am ⊂ . . . and
∞⋃
m=1

Am = A. Therefore,

lim
m→∞

P (Am) = P (A) = 1. Therefore, for any ε > 0 we can find the corresponding

index N2(ε) such that P (AN2(ε)) > 1− ε/2.

Now, for any ω ∈ AN2(ε), we have m̂n = k0 as n ≥ N2(ε). From assumptions (P.1)

and the definition of C1(σ), we obtain

C1(σ)W1(Ĝn, G0) ≤ h(pĜn ∗Kσ, pGf00
∗Kσ)

≤ h(p
Ĝ
f0
n
∗Kσ, Pn ∗Kσ) + h(Pn ∗Kσ, pGf00

∗Kσ)

≤ 2h(Pn ∗Kσ, pGf00
∗Kσ). (5.11)
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Using the inequalities from (5.10) and (5.11), we have

P

(
W1(Ĝn, G0) > 2Mε

√
Ψ(G0, σ)

C2
1(σ)n

)
= P

((
W1(Ĝn, G0) > 2Mε

√
Ψ(G0, σ)

C2
1(σ)n

)
1Ac

N2(ε)

)

+P

((
W1(Ĝn, G0) > 2Mε

√
Ψ(G0, σ)

C2
1(σ)n

)
1AN2(ε)

)

≤ ε/2 + P

((
W1(Ĝn, G0) > 2Mε

√
Ψ(G0, σ)

C2
1(σ)n

)
1AN2(ε)

)
< ε

for all n ≥ max {N1(ε), N2(ε)}. We achieve the conclusion of the theorem.

PROOF OF THEOREM 5.3.2 We also divide our argument into two key steps

Step 1 m̂n → k∗ almost surely. Indeed, by carrying out the same argument as that

of Step 1 in the proof of Theorem 5.3.1 (here, we replace f0 by f and G0,m by G∗,m,

as m < k∗), we eventually obtain the following inequality

∫
(p
G
f0
0
∗Kσ(x))1/2(pGf∗,m ∗Kσ(x))1/2dx ≥∫

(p
G
f0
0
∗Kσ(x))1/2f ∗Kσ(x|θ)(pGf∗,m ∗Kσ(x))−1/2dx.

for any θ ∈ Θ. By choosing θ ∈ supp(G∗), the set of all support points of G∗, and

sum over all of these components, we achieve

∫
(p
G
f0
0
∗Kσ(x))1/2(pGf∗,m ∗Kσ(x))1/2dx ≥∫

(p
G
f0
0
∗Kσ(x))1/2pGf∗ ∗Kσ(x)(pGf∗,m ∗Kσ(x))−1/2dx.
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From the above inequality, we have

∫ (√
pGf∗,m ∗Kσ(x)−

√
pGf∗ ∗Kσ(x)

)2

√√√√ p
G
f0
0
∗Kσ(x)

pGf∗,m ∗Kσ(x)
dx ≤

2

(∫ √
p
G
f0
0
∗Kσ(x)

√
pGf∗,m ∗Kσ(x)dx−

∫ √
p
G
f0
0
∗Kσ(x)

√
pGf∗ ∗Kσ(x)dx

)
≤ 0,

where the second inequality is due to the fact that G∗ minimizes h(pGf ∗Kσ, pGf00
∗Kσ)

among all G ∈ G. The above inequality implies that pGf∗,m ∗Kσ(x) = pGf∗ ∗Kσ(x) for

almost surely x ∈ X . Due to the identifiability of f ∗Kσ, we obtain Gm
∗ ≡ G∗, which

is a contradiction to the fact that m < k∗. Therefore, we achieve mn → k∗ almost

surely.

Step 2 Now, since m̂n → k∗ almost surely, using the same argument as Step 3 in

the proof of Theorem 5.3.1, we can find N(ε) such that m̂n = k∗ for any n ≥ N(ε)

and such that P (AN(ε)) > 1 − ε/2 for any ε > 0. Additionally, since Ĝn = Ĝn,m̂n

minimizes h(pGf ∗Kσ, Pn ∗Kσ) among all G ∈ Om̂n , it implies that

∫ √
pĜfn ∗Kσ(x)

√
Pn ∗Kσ(x)dx ≥

∫ √
pGf∗ ∗Kσ(x)

√
Pn ∗Kσ(x)dx.

when n ≥ N(ε). From this inequality, we obtain

∫ (√
pĜfn ∗Kσ(x)−

√
pGf∗ ∗Kσ(x)

)(√
Pn ∗Kσ(x)−

√
p
G
f0
0
∗Kσ(x)

)
dx ≥∫ √

p
G
f0
0
∗Kσ(x)

√
pGf∗ ∗Kσ(x)dx−

∫ √
p
G
f0
0
∗Kσ(x)

√
pĜfn ∗Kσ(x)dx := B.(5.12)
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By means of the inequality in Lemma 5.3.2, we have

B ≥
∫ √

pĜfn ∗Kσ(x)

√√√√p
G
f0
0
∗Kσ(x)

pGf∗ ∗Kσ(x)
dx−

∫ √
p
G
f0
0
∗Kσ(x)

√
pĜfn ∗Kσ(x)dx

= 2

(
h∗(pĜfn ∗Kσ, pGf∗ ∗Kσ)

)2

−B.

It implies that B ≥
(
h∗(pĜfn ∗ Kσ, pGf∗ ∗ Kσ)

)2

. Plugging this inequality to (5.12)

leads to

C :=

∫ (√
pĜfn ∗Kσ(x)−

√
pGf∗ ∗Kσ(x)

)(√
Pn ∗Kσ(x)−

√
p
G
f0
0
∗Kσ(x)

)
dx ≥(

h∗(pĜfn ∗Kσ, pGf∗ ∗Kσ)

)2

.(5.13)

For the left hand side (LHS) of (5.13), we have the following inequality

C ≤
∥∥∥∥(pĜfn ∗Kσ)1/4 − (pGf∗ ∗Kσ)1/4

∥∥∥∥
∞

∫ (
(pĜfn ∗Kσ(x))1/4 + (pGf∗ ∗Kσ(x))1/4

)
×∣∣∣∣√Pn ∗Kσ(x)−

√
p
G
f0
0
∗Kσ(x)

∣∣∣∣dx
≤
∥∥∥∥(pĜfn ∗Kσ)1/4 − (pGf∗ ∗Kσ)1/4

∥∥∥∥
∞

∥∥∥∥(pĜfn ∗Kσ)1/4 + (pGf∗ ∗Kσ)1/4

∥∥∥∥
2

×
√

2h(Pn ∗Kσ, pGf00
∗Kσ).(5.14)

where the last inequality is due to Holder’s inequality. Now, our next argument will

be divided into two small key steps

Step 2.1 With assumption (M.3), we will show that

D :=

∥∥∥∥(pGf ∗Kσ)1/4 − (pGf∗ ∗Kσ)1/4

∥∥∥∥
∞
≤M3(σ)W1(G,G0) (5.15)

for any G ∈ Ok∗ where M3(σ) is some positive constant.
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In fact, denote G =
k∑
i=1

piδθi where k ≤ k∗ and G∗ =
k∗∑
i=1

p∗i δθ∗i . Using the same

proof argument as that of (5.31) in the proof of Proposition 5.4.1, there exists a

positive number ε0 depending only G∗ such that as long as W1(G,G∗) ≤ ε0, G will

have exactly k∗ components, i.e., k = k∗. Additionally, up to the relabelling of the

components of G, we also obtain |pi − p∗i | ≤ c0W1(G,G∗) where c0 is some positive

constant depending only on G∗. Therefore, by choosing G such that W1(G,G∗) ≤

C0 = min

{
ε0, min

1≤i≤k∗

p∗i
2c0

}
, we achieve |pi − p∗i | ≤ min

1≤i≤k∗
p∗i /2. Hence, pi ≥ min

1≤i≤k∗
p∗i /2

for all 1 ≤ i ≤ k∗. Under this setting of G, for any coupling q of p = (p1, . . . , pk) and

p∗ = (p∗1, . . . , p
∗
k∗

), by means of triangle inequality we obtain

D =

∥∥∥∥ pGf ∗Kσ − pGf∗ ∗Kσ{
(pGf ∗Kσ)1/4 + (pGf∗ ∗Kσ)1/4

}{
(pGf ∗Kσ)1/2 + (pGf∗ ∗Kσ)1/2

}∥∥∥∥
∞

≤
∑
i,j

qij

∥∥∥∥ f ∗Kσ(x|θi)− f ∗Kσ(x|θ∗j ){
(pGf ∗Kσ)1/4 + (pGf∗ ∗Kσ)1/4

}{
(pGf ∗Kσ)1/2 + (pGf∗ ∗Kσ)1/2

}∥∥∥∥
∞
.

where the ranges of i, j in the above sum satisfy 1 ≤ i, j ≤ k∗. It is clear that for any

α ∈ {1/2, 1/4}

(pGf ∗Kσ(x))α + (pGf∗ ∗Kσ(x))α > min
{
pαi , (p

∗
j)
α
}{

(f ∗Kσ(x|θi))α + (f ∗Kσ(x|θ∗j ))α
}

> min
1≤i≤k∗

(
p∗i
2

)α {
f ∗Kσ(x|θi))α + (f ∗Kσ(x|θ∗j ))α

}
.

Therefore, we eventually achieve that

D .
∑
i,j

qij

∥∥∥∥(f ∗Kσ(x|θi))1/4 − (f ∗Kσ(x|θ∗j ))1/4

∥∥∥∥
∞
.

Now, due to assumption (M.3) and mean value theorem, we achieve for any x ∈ X

that

∣∣f ∗Kσ(x|θi))1/4 − (f ∗Kσ(x|θ∗j ))1/4
∣∣ ≤M2(σ)||θi − θ∗j ||.
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Thus, for any coupling q of p and p∗

D .
∑
i,j

qij||θi − θ∗j ||.

As a consequence, we eventually have

D . inf
q∈Q(p,p∗)

∑
i,j

qij||θi − θ∗j || = W1(G,G∗)

for any G ∈ Ok∗ such that W1(G,G∗) ≤ C0. Now, for any G ∈ Ok∗ such that

W1(G,G∗) > C0, as D is bounded, it is clear that D . W1(G,G∗). In sum, we

achieve inequality (5.15).

Step 2.2 Due to assumption (M.2), we also can quickly verify that

∥∥∥∥(pĜfn ∗Kσ)1/4 + (pGf∗ ∗Kσ)1/4

∥∥∥∥
2

≤ 2
√
k∗M1(σ). (5.16)

Combining (5.14), (5.15), (5.16), we ultimately achieve that

(
h∗(pĜfn ∗Kσ, pGf∗ ∗Kσ)

)2

≤M(σ)W1(Ĝn, G∗)h(Pn ∗Kσ, pGf00
∗Kσ)

where M(σ) is some positive constant. Due to assumption (M.1), from the result of

Lemma 5.3.4 and definition of C∗,1(σ), we have

h∗(pĜfn ∗Kσ, pGf∗ ∗Kσ) & C∗,1(σ)W1(Ĝn, G∗).

Combining the above results with the bound h(Pn∗Kσ, pGf00
∗Kσ) = Op

(√
Ψ(G0, σ)

n

)
from Step 2 in the proof of Theorem 5.3.1, we quickly obtain the conclusion of the

theorem.
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5.9 Appendix A

In this Appendix, we provide the proofs of several key results in Section 5.3 and

Section 5.4.

PROOF OF LEMMA 5.3.1 The proof of this lemma is a straightforward applica-

tion of the Fourier transform. In fact, for any finite k different elements θ1, . . . , θk ∈ Θ,

assume that we have αi ∈ R, βi ∈ Rd1 (for all i = 1, . . . , k) such that for almost all x

k∑
i=1

αif0 ∗Kσ(x|θi) + βTi
∂f0 ∗Kσ

∂θ
(x|θi) = 0,

By means of Fourier transformation on both sides of the above equation, we obtain

for all t ∈ Rd that

K̂σ(t)

( k∑
i=1

αif̂0(t|θi) + βTi
f̂0

∂θ
(t|θi)

)
= 0.

Since K̂σ(t) = K̂(σt) 6= 0 for almost all t ∈ Rd and f is identifiable in the first order,

we obtain that αi = 0, βi = 0 ∈ Rd1 for all 1 ≤ i ≤ k. We achieve the conclusion of

this lemma.

PROOF OF LEMMA 5.3.4 We denote the following modification of the total

variation distance

TV ∗(pGf1
∗Kσ, pGf2

∗Kσ) =
1

2

∫ ∣∣∣pGf1 ∗Kσ(x)− pGf2 ∗Kσ(x)
∣∣∣(pGf00 ∗Kσ(x)

pGf∗ ∗Kσ(x)

)1/4

dx.
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for any two mixing measures G1, G2 ∈ G. By Holder’s inequality, we have

TV ∗(pGf ∗Kσ, pGf∗ ∗Kσ) ≤ 1√
2
h∗(pGf ∗Kσ, pGf∗ ∗Kσ)×(∫ (√

pGf ∗Kσ(x) +
√
pGf∗ ∗Kσ(x)

)2

dx

)1/2

≤
√

2h∗(pGf ∗Kσ, pGf∗ ∗Kσ).(5.17)

Therefore, in order to obtain the conclusion of the lemma it suffices to demonstrate

that

inf
G∈Ok∗

TV ∗(pGf ∗Kσ, pGf∗ ∗Kσ)/W1(G,G∗) > 0. (5.18)

Firstly, we will show that

lim
ε→0

inf
G∈Ok∗

{
TV ∗(pGf ∗Kσ, pGf∗ ∗Kσ)

W1(G,G∗)
: W1(G,G∗) ≤ ε

}
> 0.

Assume that the above inequality does not hold. There exists a sequence Gn ∈ Ok∗
such that W1(Gn, G∗)→ 0 and TV ∗(pGfn ∗Kσ, pGf∗ ∗Kσ)/W1(Gn, G∗)→ 0. By means

of Fatou’s lemma, we obtain

0 = lim inf
n→∞

TV ∗(pGfn ∗Kσ, pGf∗ ∗Kσ)

W1(Gn, G∗)
≥ 1

2

∫
lim inf
n→∞

∣∣∣pGfn ∗Kσ − pGf∗ ∗Kσ

∣∣∣(pGf00 ∗Kσ

pGf∗ ∗Kσ

)1/4

W1(Gn, G∗)
dx.

Therefore, for almost surely x ∈ X , we have

lim inf
n→∞

∣∣∣pGfn ∗Kσ − pGf∗ ∗Kσ

∣∣∣(pGf00 ∗Kσ

pGf∗ ∗Kσ

)1/4

W1(Gn, G∗)
= 0. (5.19)

Since W1(Gn, G∗) → 0 and Gn ∈ Ok∗ , we can find a subsequence of kn such that

kn = k∗. Without loss of generality, we replace that subsequence of kn by its whole

sequence. Then, Gn will have exactly k∗ components for all n ≥ 1. From here, by
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using the same argument as that in the proof of Theorem 3.1 in Ho and Nguyen

[2016c], equality (5.19) cannot happen - a contradiction.

Therefore, we can find a positive constant number ε0 such that TV ∗(pGf ∗Kσ, pGf∗ ∗

Kσ) & W1(G,G∗) for any W1(G,G∗) ≤ ε0. Now, to obtain the conclusion of (5.18),

we only need to verify that

inf
G∈Ok∗ :W1(G,G∗)>ε0

TV ∗(pGf ∗Kσ, pGf∗ ∗Kσ)/W1(G,G∗) > 0.

In fact, if the above statement does not hold, we can find a sequence G′n ∈ Ok∗ such

that W1(Gn, G∗) > ε0 and TV ∗(pG′fn ∗ Kσ, pGf∗ ∗ Kσ)/W1(G′n, G∗) → 0. Since Θ is

a closed bounded set, we can find G′ ∈ Ok∗ such that a subsequence of G′n satisfies

W1(G′n, G
′) → 0 and W1(G′, G∗) > ε0. Without loss of generality, we replace that

subsequence of G′n by its whole sequence. Therefore, TV ∗(pG′fn ∗Kσ, pGf∗ ∗Kσ)→ 0 as

n→∞. Since W1(G′n, G
′)→ 0, due to the first order Liptschitz continuity of f ∗Kσ

we obtain pG′fn ∗Kσ(x)→ pGf∗ ∗Kσ(x) for any x ∈ X when n→∞. Now, by means

of Fatou’s lemma

0 = lim
n→∞

TV ∗(pG′fn ∗Kσ, pGf∗ ∗Kσ) ≥
∫

lim inf
n→∞

∣∣∣pG′fn ∗Kσ − pGf∗ ∗Kσ

∣∣∣(pGf00 ∗Kσ

pGf∗ ∗Kσ

)1/4

dx

= TV ∗(pG′f ∗Kσ, pGf∗ ∗Kσ),

which only happens when pG′f ∗ Kσ(x) = pGf∗ ∗ Kσ(x) for almost surely x. Due to

the identifiability of f ∗ Kσ, the former equality implies that G′ ≡ G∗, which is a

contradiction to W1(G′, G∗) > ε0. We achieve the conclusion of the lemma.

PROOF OF PROPOSITION 5.3.1 In this proof, to avoid the ambiguity we

denote Ĝn,m,σn = Ĝn,m and G0,m,σn = arg min
G∈Om

h(pGf0 ∗Kσ, pGf00
∗Kσ) for any σ > 0.
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Now, as n→∞, we will prove for almost surely that

h(p
Ĝ
f0
n,m,σn

∗Kσn , Pn ∗Kσn)− h(p
Ĝ
f0
n,m+1,σn

∗Kσ, Pn ∗Kσn)→ d′m, (5.20)

where d′m = h(p
G
f0
0,m
, p

G
f0
0

) − h(p
G
f0
0,m+1

, p
G
f0
0

) where G0,m = arg min
G∈Om

h(pGf0 , pGf00
). To

achieve this result, we start with the following lemma

Lemma 5.9.1. For any sequence Gn and σn → 0, we have as n→∞ that

h(p
G
f0
n
∗Kσn , pGf0n )→ 0.

The proof of this lemma is deferred to the Appendix. Now, applying the result of

Lemma 5.9.1 to the sequences G0,m,σn and σn, we have

lim
n→∞

h(p
G
f0
0,m,σn

∗Kσn , pGf00
∗Kσn) = lim

n→∞
h(p

G
f0
0,m,σn

, p
G
f0
0

) ≥ h(p
G
f0
0,m
, p

G
f0
0

). (5.21)

On the other hand, from the definition of G0,m,σn , we have h(p
G
f0
0,m,σn

∗ Kσn , pGf00
∗

Kσn) ≤ h(p
G
f0
0,m
∗Kσn , pGf00

∗Kσn). Therefore,

lim
n→∞

h(p
G
f0
0,m,σn

∗Kσn , pGf00
∗Kσn) ≤ lim

n→∞
h(p

G
f0
0,m
∗Kσn , pGf00

∗Kσn)

= h(p
G
f0
0,m
, p

G
f0
0

). (5.22)

Combining the results from (5.21) and (5.22), we have

lim
n→∞

h(p
G
f0
0,m,σn

∗Kσn , pGf00
∗Kσn) = h(p

G
f0
0,m
, p

G
f0
0

). (5.23)

Now, we will demonstrate that

lim
n→∞

h(p
Ĝ
f0
n,m,σn

∗Kσn , Pn ∗Kσn) = lim
n→∞

h(p
G
f0
0,m,σn

∗Kσn , pGf00
∗Kσn). (5.24)
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In fact, from the definition of Ĝn,m,σn we quickly obtain that

lim
n→∞

h(p
Ĝ
f0
n,m,σn

∗Kσn , Pn ∗Kσn) ≤ lim
n→∞

h(p
G
f0
0,m,σn

∗Kσn , Pn ∗Kσn)

= lim
n→∞

h(p
G
f0
0,m,σn

∗Kσn , pGf00
∗Kσn) (5.25)

where the last equality is due to the fact that h(Pn ∗Kσn , pGf00
)→ 0 almost surely as

n→∞, σn → 0 and nσdn →∞. On the other hand, from the formulation of G0,m,σn

we have

lim
n→∞

h(p
G
f0
0,m,σn

∗Kσn , pGf00
∗Kσn) ≤ lim

n→∞
h(p

Ĝ
f0
n,m,σn

∗Kσn , pGf00
∗Kσn)

= lim
n→∞

h(p
Ĝ
f0
n,m,σn

∗Kσn , Pn ∗Kσn) (5.26)

Combining (5.25) and (5.26), we obtain equality (5.24). Now, the combination of

(5.23) and (5.24) leads to

lim
n→∞

h(p
Ĝ
f0
n,m,σn

∗Kσn , Pn ∗Kσn) = h(p
G
f0
0,m
, p

G
f0
0

).

Therefore, we obtain the conclusion of (5.20). From here, by using the same argument

as Step 1 of Theorem 5.3.1, we ultimately get d′m = 0 as m ≥ k0 and d′m > 0 as

m < k0. As a consequence, m̂n → k0 almost surely as n→∞. The conclusion of the

proposition follows.

PROOF OF LEMMA 5.3.2 The proof proceeds by using the idea from Leroux’s

argument [Leroux, 1992]. In fact, from the definition of G∗, we have h(pGf∗ ∗Kσ, pGf00
∗

Kσ) ≤ h(pGf ∗ Kσ, pGf00
∗ Kσ) for any G ∈ G. Now, for any θ ∈ Θ, by choosing

G = (1 − ε)G∗ + εδθ and letting ε → 0 as Step 1 in the proof of Theorem 5.3.1, we
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eventually obtain

∫
(p
G
f0
0
∗Kσ(x))1/2(pGf∗ ∗Kσ(x))1/2dx

≥
∫

(p
G
f0
0
∗Kσ(x))1/2f ∗Kσ(x|θ)(pGf∗ ∗Kσ(x))−1/2dx.

By choosing θ ∈ supp(G∗) and summing over all of these components, we readily

obtain inequality (5.1), which concludes the result of the lemma.

PROOF OF LEMMA 5.3.3 By means of Holder inequality, we obtain

(∫ √
pGf1,∗

∗Kσ(x)
√
p
G
f0
0
∗Kσ(x)dx

)2

≤
∫
pGf1,∗

∗Kσ(x)

√√√√ p
G
f0
0
∗Kσ(x)

pGf2,∗
∗Kσ(x)

dx×

×
∫ √

pGf2,∗
∗Kσ(x)

√
p
G
f0
0
∗Kσ(x)dx.

From the definition of G1,∗ and G2,∗, we achieve

∫ √
pGf1,∗

∗Kσ(x)
√
p
G
f0
0
∗Kσ(x)dx =

∫ √
pGf2,∗

∗Kσ(x)
√
p
G
f0
0
∗Kσ(x)dx.

Therefore, the above inequality along with innequality (5.1) in Lemma 5.3.2 lead to

∫
pGf1,∗

∗Kσ(x)

√√√√ p
G
f0
0
∗Kσ(x)

pGf2,∗
∗Kσ(x)

dx =

∫ √
pGf2,∗

∗Kσ(x)
√
p
G
f0
0
∗Kσ(x)dx.

It eventually implies that

∫ (√
pGf1,∗

∗Kσ(x)−
√
pGf2,∗

∗Kσ(x)

)2

√√√√ p
G
f0
0
∗Kσ(x)

pGf2,∗
∗Kσ(x)

dx = 0.

Therefore, pGf1,∗
∗Kσ(x) = pGf2,∗

∗Kσ(x) almost surely x ∈ X . We obtain the conclusion

of the lemma.
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PROOF OF THEOREM 5.3.3 The proof of the theorem is rather similar to

that in Theorem 5.3.2. Therefore, we only give a sketch of this proof. In fact, to

demonstrate that mn → k0, we only need to show that dm > 0 when m < k0 where

dm = h(p
G
f0
0,m
, pG0 ∗Kσ)− h(p

G
f0
0,m+1

, pG0 ∗Kσ) (5.27)

and G0,m = arg min
G∈Om

h(pG, pGf00
∗Kσ). If dm = 0 for some m < k0, following the

technique in Step 1 in the proof of Theorem 5.3.2 we eventually achieve

∫ (√
p
G
f0
0,m
−
√
p
G
f0
0

)2

√√√√p
G
f0
0
∗Kσ

p
G
f0
0

dx ≤

2

∫ √
p
G
f0
0
∗Kσ

(√
p
G
f0
0,m
∗Kσ −

√
p
G
f0
0
∗Kσ

)
dx ≤ 0,

which is a contradiction. Therefore, mn → k0 almost surely.

To establish the convergence rate of Gn to G0, by using inequality (5.2) we ulti-

mately get the following inequality

∫ (√
p
G
f0
n
−
√
p
G
f0
0

)(√
Pn ∗Kσ −

√
p
G
f0
0
∗Kσ

)
dx ≥

(
h(p

G
f0
n
, p

G
f0
0

)
)2

Couple with condition (S.1), (S.2), and inequality (5.3), by using the same technique

as that from Step 2 in the proof of Theorem 5.3.2, we have

{
C(σ)

}2
W 2

1 (Gn, G0) ≤M(σ)W1(Gn, G0)h(Pn ∗Kσ, pGf00
∗Kσ),

which immediately yields the conclusion of the theorem.

PROOF OF THEOREM 5.4.1 Here, we provide the proof for part (b) only as

it is the generalization of part (a). The proof is similar to that in Step 1 of Theorem
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5.3.2. In fact, as n→∞ we have for almost surely that

h(pĜn,m ∗Kσ, Pn ∗Kσ)→ h(pGf∗,m ∗Kσ, pGf00
∗Kσ) (5.28)

where G∗,m = arg min
G∈Om

h(pGf ∗Kσ, pGf00
∗Kσ). From the argument of Step 1 in the

proof of Theorem 5.3.2, we have

h(pGf∗,m+1
∗Kσ, pGf00

∗Kσ) < h(pGf∗,m ∗Kσ, pGf00
∗Kσ) (5.29)

for any 1 ≤ m ≤ k∗ − 1. It implies that G∗,m ∈ Em for all 1 ≤ m ≤ k∗. Now, if we

would like to have m̃n → k∗ as n→∞, the sufficient and necessary condition is

h(pGf∗ ∗Kσ, pGf00
∗Kσ) ≤ ε < h(pGf∗,k∗−1

∗Kσ, pGf00
∗Kσ),

which is precisely the conclusion of the theorem.

PROOF OF PROPOSITION 5.4.1 Using the argument from Step 1 in the

proof of Theorem 5.3.1, we obtain that G0,k0−1 has exactly k0 − 1 elements. Now,

since f0 ∗Kσ is uniformly Lipschitz up to the first order and identifiable, we obtain

inf
G∈Ek0−1

h(pGf0 ∗Kσ, pGf00
∗Kσ)/W1(G,G0) = C ′

where C ′ is some positive constant depending only on f0, G0,Θ, and σ. Therefore,

we get

h(p
G
f0
0,k0−1

∗Kσ, pGf00
∗Kσ) ≥ C ′W1(G0, G0,k0−1) ≥ C ′ inf

G∈Ek0−1

W1(G,G0). (5.30)
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Now, for any G =
k0−1∑
i=1

piδθi ∈ Ek0−1, we can find the index j∗ ∈ [1, k0] such that

‖θi − θ0
j∗‖ ≥ min

1≤j 6=j∗≤k0
||θi − θ0

j ||

for any 1 ≤ i ≤ k0 − 1. Therefore, we obtain

2||θi − θ0
j∗|| ≥ ||θi − θ0

j∗||+ min
1≤j 6=j∗≤k0

||θi − θ0
j || ≥ min

1≤u6=v≤k0
||θ0

u − θ0
v||

for any 1 ≤ i ≤ k0 − 1. From the definition of W1(G,G0), we can find the optimal

coupling q ∈ Q(p,p0) such that W1(G,G0) =
∑
qij‖θi − θ0

j‖. Hence, we get

W1(G,G0) ≥
k0∑
i=1

qij∗‖θi − θ0
j∗‖ ≥ p0

j∗ min
1≤i≤k0−1

‖θi − θ0
j∗‖

≥
(

min
1≤i≤k0

p0
i × min

1≤i 6=j≤k0
||θ0

i − θ0
j ||
)
/2

for all G ∈ Ek0−1. It implies that

inf
G∈Ek0−1

W1(G,G0) ≥
(

min
1≤i≤k0

p0
i × min

1≤i 6=j≤k0
||θ0

i − θ0
j ||
)
/2. (5.31)

By combining (5.30) and (5.31), if we choose min
1≤i≤k0

p0
i min

1≤i 6=j≤k0
||θ0

i − θ0
j || ≥ 2ε/C ′,

then ε < h(p
G
f0
0,k0−1

∗ Kσ, pGf00
∗ Kσ). As a consequence, by defining C = 1/C ′ we

obtain the conclusion of the lemma.

PROOF OF PROPOSITION 5.4.2 The proof proceeds by treating two sides of

(5.5) separately.
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Inequality h(pGf∗ ∗Kσ, pGf00
∗Kσ) ≤ ε: From the definition of G∗, we obtain

h2(pGf∗ ∗Kσ, pGf00
∗Kσ) ≤ h2(pGf0

∗Kσ, pGf00
∗Kσ) ≤ V (pGf0

∗Kσ, pGf00
∗Kσ)

≤ ||f − f0||/2

It implies that as long as we choose f, f0 such that ||f − f0|| ≤ 2ε2, we achieve

h(pGf∗ ∗Kσ, pGf00
∗Kσ) ≤ ε.

Inequality ε < h(pGf∗,k∗−1
∗Kσ, pGf00

∗Kσ): We start with the following lemma

Lemma 5.9.2. Under the hypothesis of Proposition 5.4.2, we obtain

h(pGf ∗Kσ, pGf00
∗Kσ) ≥ C1W1(G,G0)

for any G ∈ Ek∗−1 where C1 is some positive constant depending only on f, f0, G0,Θ,

Ω, and σ.

The proof of Lemma 5.9.2 is deferred to the Appendix. Now, from the above

lemma, we have

h(pGf∗,k∗−1
∗Kσ, pGf00

∗Kσ) ≥ C1W1(G0, G∗,k∗−1) ≥ C1 inf
G∈Ek∗−1

W1(G,G0)

≥ C1 inf
G∈Ek0−1

W1(G,G0)

where the last inequality is due to k∗ ≤ k0. By ultilizing the same argument as that

of the well-specified setting in the proof of Proposition 5.4.1, if we choose

min
1≤i≤k0

p0
i min

1≤i 6=j≤k0
||θ0

i − θ0
j || ≥ 2ε/C1,

then ε < h(pGf∗,k∗−1
∗Kσ, pGf00

∗Kσ). Combining all of the above argument, we achieve

the conclusion of the proposition.
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PROOF OF PROPOSITION 5.5.3 The proof of this proposition is a straight-

forward combination of Fatou’s lemma and the argument from Theorem 4.6 in Hein-

rich and Kahn [2016+]. In fact, for any ε > 0, as W1(Gn
0 , G̃0)→ 0 we can find M(ε) ∈

N such that W1(Gn
0 , G̃0) < ε for any n ≥ M(ε). Additionally, as lim sup

n→∞
kn0 = k, we

can find T (ε) ∈ N such that kn0 ≤ k for all n ≥ T (ε). Denote N(ε) = max {M(ε), T (ε)}

for any ε > 0. Now, assume that for any ε > 0, we have

inf
G∈Okn0 :W1(G,G̃0)<ε

h(pGf0 ∗Kσ, pGn,f00
∗Kσ)/W 2k−2k̃0+1

1 (G,Gn
0 ) = 0.

as long as n ≥ N(ε). For each n ≥ N(ε), it implies that we have a sequence Gn
m ∈

Okn0 ⊂ Ok such that W1(Gn
m, G̃0) < ε for all m ≥ 1 and

h(p
G
n,f0
m
∗Kσ, pGn,f00

∗Kσ)/W 2k−2k̃0+1
1 (Gn

m, G
n
0 )→ 0

as m→∞. By means of Fatou’s lemma, we eventually have

lim inf
m→∞

(
p
G
n,f0
m
∗Kσ(x)− p

G
n,f0
0
∗Kσ(x)

)
/W 2k−2k̃0+1

1 (Gn
m, G

n
0 )→ 0

almost surely x ∈ X . However, from the argument of Theorem 4.6 in Heinrich and

Kahn [2016+], we can find ε0 > 0 such that for all Gn
m, G

n
0 ∈ Ok where W1(Gn

m, G̃0)∨

W1(Gn
0 , G̃0) < ε0, not for almost surely x ∈ X that

(
p
G
n,f0
m
∗Kσ(x)− p

G
n,f0
0
∗Kσ(x)

)
/W 2k−2k̃0+1

1 (Gn
m, G

n
0 )→ 0

for each n ≥ N(ε0), which is a contradiction. Therefore, we achieve the conclusion of

the proposition.
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5.10 Appendix B

This appendix contains remaining proofs of the main results in the chapter.

PROOF OF PROPOSITION 5.2.1 A careful investigation of the proof of The-

orem 3.1 in [Ho and Nguyen, 2016c] implies that

h(pGf , pGf0
) & W1(G,G0), (5.32)

for any G ∈ Ok0 such that W1(G,G0) is sufficiently small. The latter restriction

means that the result in (5.32) is of a local nature. We also would like to extend this

lower bound of h(pGf , pGf0
) for any G ∈ Ok0 . It appears that the first order Lipschitz

continuity of f is sufficient to extend (5.32) for any G ∈ Ok0 . In fact, by the result

in (5.32), we can find a positive constant ε0 such that

inf
G∈Ok0 :W1(G,G0)≤ε0

h(pGf , pGf0
)/W1(G,G0) > 0

Therefore, to extend (5.32) for any G ∈ Ok0 , it is sufficient to demonstrate that

inf
G∈Ok0 :W1(G,G0)>ε0

h(pGf , pGf0
)/W1(G,G0) > 0

Assume by the contrary that the above result does not hold. It implies that we can find

a sequence Gn ∈ Ok0 such that W1(Gn, G0) > ε0 and h(pGfn , pGf0
)/W1(Gn, G0)→ 0 as

n → ∞. Since Θ is a compact set, we can find G′ ∈ Ok0 such that a subsequence

of Gn satisfies W1(Gn, G
′) → 0 and W1(G′, G0) > ε0. Without loss of generality,

we replace that subsequence by its whole sequence. Therefore, h(pGfn , pGf0
) → 0 as

n→∞. Due to the first order Lipschitz continuity of f , we obtain pGfn(x)→ pG′f (x)
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for any x ∈ X when n→∞. Now, by means of Fatou’s lemma, we have

0 = lim
n→∞

h(pGfn , pGf0
) ≥

∫
lim inf
n→∞

(√
pGfn(x)−

√
pGf0

(x)

)2

dx = h(pG′f , pGf0
).

Since f is identifiable, the above result implies that G′ ≡ G0, which contradicts the

assumption that W1(G′, G0) > ε0. As a consequence, we can extend inequality (5.32)

for any G ∈ Ok0 when f is uniformly Lipschitz up to the first order.

PROOF OF EXAMPLE 5.4.1 Assume by the contrary that f1 and f2 are not

distinguishable. We denote θ = (η, τ) where η represents the location parameter and

τ represents the variance parameter. Now, the assumption implies that we can find

G1 =
t1∑
i=1

αiδ(ηi,τi) and G2 =
t2∑
i=1

βiδ(η′i,τ
′
i)

such that h(p
G
f1
1
, p

G
f2
2

) = 0. Therefore, we

have

t1∑
i=1

αif1(x|ηi, τi) =

t2∑
i=1

βif2(x|η′i, τ ′i) for almost surely x ∈ R

The above equation can be rewritten as

t1∑
i=1

α′i exp

(
− (aix

2
1 + bix1 + ci)

)
=

t2∑
i=1

β′i

(
ν + a′ix

2
1 + b′ix1 + c′i

)−(ν+1)/2

, (5.33)

where α′i =
αi√
2πτi

, ai =
1

2τ 2
i

, bi =
ηi
τ 2
i

, ci =
η2
i

2τ 2
i

as 1 ≤ i ≤ t1 and β′j =
Cνβj
τ ′j

, a′i =

1

ν(τ ′i)
2
, b′i = − 2η′i

ν(τ ′i)
2
, c′i =

(η′i)
2

ν(τ ′i)
2

for all 1 ≤ j ≤ t2 with Cν =
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

) .

Choose ai1 = min
1≤i≤t1

{ai}. Denote J = {1 ≤ i ≤ t1 : ai = ai1}. Choose 1 ≤ i2 ≤ t1

such that bi2 = max
i∈J
{bi}. Now, multiply both sides of (5.33) with exp(ai2x

2
1 + bi2x1 +
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ci2), we obtain

α′i2 +
∑
i 6=i2

α′i exp

(
ai2x

2
1 + bi2x1 + ci2 − (aix

2
1 + bix1 + ci)

))
=

t2∑
i=1

β′i exp(ai2x
2
1 + bi2x1 + ci2)

(
ν + a′ix

2
1 + b′ix1 + c′i

)−(ν+1)/2

.

As x→∞, the left hand side of the above equation goes to α′i2 while the right hand

side of the above equation either goes to 0 if β′i = 0 for all 1 ≤ i ≤ t2 or goes to ±∞

if at least one of β′i differs from 0. As a consequence, we obtain α′i2 = 0 and β′i = 0

for all 1 ≤ i ≤ t2. It leads to βi = 0 for all 1 ≤ i ≤ t2, which is a contradiction. As a

consequence, we achieve the conclusion of the example.

PROOF OF LEMMA 5.9.1 The proof idea of this lemma is similar to that of

Theorem 1 in Chapter 2 of [Devroye and Gyorfi, 1985]. However, it is slightly more

complex than that of this theorem as we allow Gn to vary when σn vary. Here, we

provide the proof of this lemma for the completeness. Since the Hellinger distance

is upper bound by the total variation distance, it is sufficient to demonstrate that

V (p
G
f0
n
∗ Kσn , pGf0n ) → 0 as n → ∞. Firstly, assume that f0(x|θ) is continuous and

vanishes outside a compact set which is independent of θ and Σ. For any large number

M , we split K = K ′+K ′′ where K ′ = K1‖x| ≤M and K ′′ = K1‖x| >M . Now, by using

Young’s inequality we obtain

∫
|p
G
f0
n
∗Kσn(x)− p

G
f0
n

(x)|dx ≤
∫ ∣∣∣∣pGf0n ∗K ′σn(x)− p

G
f0
n

(x)

∫
K ′σn(y)dy

∣∣∣∣dx+∫
|p
G
f0
n
∗K ′′σn(x)|dx+

∫
p
G
f0
n

(x)dx

∫
K ′′σn(x)dx

≤
∫
A

∣∣∣∣pGf0n ∗Kσn(x)− p
G
f0
n

(x)

∫
K ′σn(y)dy

∣∣∣∣dx+ 2

∫
K ′′σn(x)dx.
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for some compact set A. It is clear that for any ε > 0, we can choose M(ε) such that

as M > M(ε),

∫
K ′′σn(x)dx =

∫
K ′′(x)dx < ε. Regarding the first term in the right

hand side of the above display, by denoting Gn =
mn∑
i=1

pni δθni we obtain

∫
A

∣∣∣∣pGf0n ∗Kσn(x)− p
G
f0
n

(x)

∫
K ′σn(y)dy

∣∣∣∣dx ≤ ∫
A

∫
|p
G
f0
n

(x− y)− p
G
f0
n

(x)|K ′σn(y)|dydx

≤
∫
A

∫ mn∑
i=1

pni |f0(x− y|θni )− f0(x|θni )|K ′σn(y)|dydx

≤ ω(Mσn)

∫
A

∫
|K ′σn(y)|dydx ≤ ω(Mσn)µ(A)→ 0

where ω(t) = sup
||x−y||≤t

|f0(x|θ)− f0(y|θ)| denotes the modulus of continuity of f0 and

µ denotes the Lebesgue measure. Therefore, the conclusion of this lemma holds for

that setting of f0(x|θ).

Regarding the general setting of f0(x|θ), for any ε > 0 since Θ is a bounded set,

we can find a continous function g(x|θ) being supported on a compact set B(ε) that

is independent of θ ∈ Θ such that

∫
|f0(x|θ)− g(x|θ)|dx < ε. Hence, we obtain

∫
|p
G
f0
n
∗Kσn(x)− p

G
f0
n

(x)|dx ≤
∫ ∣∣∣∣(pGf0n − pGgn

)
∗Kσn(x)

∣∣∣∣dx+∫
|p
G
f0
n

(x)− pGgn(x)|dx+

∫
|pGgn ∗Kσn(x)− pGgn(x)|dx

≤ 2ε+

∫
|pGgn ∗Kσn(x)− pGgn(x)|dx

where

∫
|pGgn ∗Kσn(x)− pGgn(x)|dx→ 0 as n→∞. We achieve the conclusion of the

lemma.

Lemma 5.10.1. Assume that f0 and K satisfy condition (P.1) in Theorem 5.3.1.

Furthermore, K has an integrable radial majorant Ψ ∈ L1(µ) where Ψ(x) = sup
||y||≥||x||

|K(y)|.

Then, we can find a positive constant ε01 such that as σ ≤ ε01, for any G ∈ Ok0 we
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have

h(pGf0 ∗Kσ, pGf00
∗Kσ) ≥ TV (pGf0 ∗Kσ, pGf00

∗Kσ) & W1(G,G0).

, i.e., C1(σ) ≥ C1 as σ → 0 where C1 only depends on G0.

Proof. We divide the proof of this lemma into two key steps

Step 1: We firstly demontrate the following result

lim
ε→0

inf
G∈Ok0 ,σ>0

{
TV (pGf0 ∗Kσ, pGf00

∗Kσ)

W1(G,G0)
: W1(G,G0) ∨ σ ≤ ε

}
> 0. (5.34)

The proof idea of the above inequality is essentially similar to that from the proof

of Theorem 3.1 in Ho and Nguyen [2016c]. Here, we provide such proof for the

completeness. Assume that the conclusion of inequality (5.34) does not hold. There-

fore, we can find two sequences {Gn} and {σn} such that TV (p
G
f0
n
∗ Kσn , pGf00

∗

Kσn)/W1(Gn, G0)→ 0 where W1(Gn, G0)→ 0 and σn → 0 as n→∞. As Gn ∈ Ok0 ,

it implies that there exists a subsequence {Gnm} of {Gn} such that Gnm has ex-

actly k0 elements for all m. Without loss of generality, we replace this subsequence

by the whole sequence {Gn}. Now, we can represent Gn as Gn =
k0∑
i=1

pni δθni such

that (pni , θ
n
i ) → (p0

i , θ
0
i ). Similar to the argument in Step 1 from the proof of

Theorem 3.1 in Ho and Nguyen [2016c], we have W1(Gn, G0) . d(Gn, G0) where

d(Gn, G0) =
k0∑
i=1

pni ‖∆θni ‖+ |∆pni | and ∆pni = pni −p0
i ,∆θ

n
i = θni −θ0

i for all 1 ≤ i ≤ k0.

It implies that V (p
G
f0
n
∗Kσn , pGf00

∗Kσn)/d(Gn, G0)→ 0.

Now, we denote gn(x|θ) =

∫
f0(x− y|θ)Kσn(y)dy for all θ ∈ Θ. Similar to Step

2 from the proof of Theorem 3.1 in Ho and Nguyen [2016c], by means of Taylor

expansion up to the first order we can represent

p
G
f0
n
∗Kσn(x)− p

G
f0
0
∗Kσn(x)

d(Gn, G0)
� 1

d(Gn, G0)

( k0∑
i=1

∆pni gn(x|θ0
i ) + pni

∂gn
∂θ

(x|θ0
i )

)
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which are the linear combinations of the elements of gn(x|θ0
i ),

∂gn
∂θ

(x|θ0
i ) for 1 ≤ i ≤ k0.

Denote mn to be the maximum of the absolute values of these coefficients. We can

argue that mn 6→ 0 as n → ∞. Additionally, since K satisfies condition (P.3),

from Theorem 3 in Chapter 2 of Devroye and Gyorfi [1985], for any θ ∈ Θ, we have

gn(x|θ)→ f0(x|θ) and
∂gn
∂θ

(x|θ)→ ∂f0

∂θ
(x|θ) for almost surely x. Therefore, we obtain

1

mn

dn

(
p
G
f0
n
∗Kσn(x)− p

G
f0
0
∗Kσn(x)

)
d(Gn, G0)

→
k0∑
i=1

αif0(x|θ0
i ) + βTi

∂f0

∂θ
(x|θ0

i )

where not all the elements of αi, βi equal to 0. Due to the first order identifiability

of f0 and the Fatou’s lemma, TV (p
G
f0
n
∗Kσn , pGf00

∗Kσn)/d(Gn, G0)→ 0 will lead to

αi = 0, βi = 0 ∈ Rd1 for all 1 ≤ i ≤ k0, which is a contradiction. We achieve the

conclusion of (5.34).

Step 2: The result of (5.34) implies that we can find a positive number ε01 such that

as W1(G,G0) ∨ σ ≤ ε01, we have

h(pGf0 ∗Kσ, pGf00
∗Kσ) ≥ TV (pGf0 ∗Kσ, pGf00

∗Kσ) & W1(G,G0). (5.35)

In order to extend the above inequality to any G ∈ Ok0 , it is sufficient to demonstrate

that

inf
σ<ε01,W1(G,G0)>ε01

h(pGf0 ∗Kσ, pGf00
∗Kσ)

W1(G,G0)
> 0.

In fact, if the above result does not hold, we can find two sequences G′n ∈ Ok0 and σ′n

such that W1(G′n, G0) > ε01, σ′n ≤ ε01 and h(p
G
′f0
n
∗Kσ′n , pGf00

∗Kσ′n)/W1(G′n, G0) → 0

as n→∞. Since Θ is closed bounded set, we can find two subsequences
{
G′nm

}
and{

σ′nm
}

of {G′n} and {σ′n} respectively such that W1(G′nm , G
′)→ 0 and |σ′nm −σ′| → 0

as m→∞ where G′ ∈ Ok0 and σ′ ∈ [0, ε01].
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Due to the first order Lipschitz continuity of f ∗Kσnm for any m ≥ 1, we achieve

p
G
′f0
nm

∗Kσ′nm
(x)→ pG′f0 ∗Kσ′(x) for any x ∈ X . Here, pG′f0 ∗Kσ′ = pG′f0 when σ′ = 0.

Therefore, by utilizing the Fatou’s argument, we obtain h(pG′f0 ∗Kσ′ , pGf00
∗Kσ′) = 0,

which implies G′ ≡ G0, a contradiction. As a consequence, when σ ≤ ε01, for any

G ∈ Ok0 we have

h(pGf0 ∗Kσ, pGf00
∗Kσ) ≥ V (pGf0 ∗Kσ, pGf00

∗Kσ) & W1(G,G0).

We achieve the conclusion of the lemma.

PROOF OF LEMMA 5.9.2 To obtain the conclusion of this lemma, it is equiv-

alent to demonstrate that

inf
G∈Ek∗−1

h(pGf ∗Kσ, pGf00
∗Kσ)/W1(G,G0) > 0.

Assume by the contrary that the above conclusion does not hold. It implies that we

can find sequence of measuresGn ∈ Ek∗−1 such that h(pGfn∗Kσ, pGf00
∗Kσ)/W1(Gn, G0)→

0 as n→∞. Since Θ is closed bounded set, it implies that we can find a subsequence

of Gn that converge to G′ ∈ Ek∗−1 in W1 distance. Without loss of generality, we

replace this subsequence by the whole sequence of Gn, i.e W1(Gn, G
′) → 0. Since

k∗ ≤ k0, it implies that W1(G′, G0) 6= 0. Therefore, W1(Gn, G0) 6→ 0 as n → ∞.

Hence, h(pGfnn ∗Kσ, pGf00
∗Kσ)→ 0 as n→∞. Now, from the triangle inequality, we

obtain

|h(pGfn ∗Kσ, pGf00
∗Kσ)− h(pG′f ∗Kσ, pGf00

∗Kσ)| ≤ h(pGfn ∗Kσ, pG′f ∗Kσ).

As W1(Gn, G
′) → 0, from the uniform Lipschitz continuity of f and Holder’s in-

equality, we obtain h(pGfn ∗ Kσ, pG′f ∗ Kσ) ≤ h(pGfn , pG′f ) → 0 as n → ∞. Thus,
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h(pGfn ∗Kσ, pGf00
∗Kσ)→ h(pG′f ∗Kσ, pGf00

∗Kσ) = 0. Since f and f0 are distinguish-

able, we achieve G′ ≡ G0, which is a contradiction. As a consequence, we achieve the

conclusion of the lemma.

Lemma 5.10.2. Assume that K̂(t) 6= 0 for almost all t ∈ Rd where K̂(t) is the

Fourier transform of kernel function K. Then if I(G0, f0) has r-th singularity level

for some r ≥ 0, then I(G0, f0 ∗Kσ) also has r-th singularity level for any σ > 0.

Proof. Remind that, I(G0, f0) has r-th singularity level is equivalent to G0 is r-

singular relative to the ambient space Ok0 and kernel function f0 in [Ho and Nguyen,

2016b]. Now, for any ρ ∈ N, given any sequence Gn =
kn∑
i=1

pni δθni ∈ Ok0 and Gn → G0

in Wρ metric. We can find a subsequence of Gn such that kn = k0 and each atoms of

G0 will have exactly one component of Gn converges to. Without loss of generality, we

replace the subsequence of Gn by its whole sequence and relabel the atoms of Gn such

that (pni , θ
n
i )→ (p0

i , θ
0
i ) for all 1 ≤ i ≤ k0. Denote ∆θni = θni − θ0

i and ∆pni = pni − p0
i

for all 1 ≤ i ≤ k0. From Definition 3.1 in Ho and Nguyen [2016b], a ρ-minimal form

of Gn from Taylor expansion up to the order ρ satisfies

p
G
f0
n

(x)− p
G
f0
0

(x)

W ρ
ρ (Gn, G0)

=

Tρ∑
l=1

(
ξ

(ρ)
l (Gn)

W ρ
ρ (G0, Gn)

)
H

(ρ)
l (x) + o(1),

for all x. Here, H
(ρ)
l (x)are linearly independent functions of x for all l, and coefficients

ξ
(ρ)
l (G) are polynomials of the components of ∆θi, and pi for l ranges from 1 to a

finite Tρ. From the above representation, we achieve

p
G
f0∗Kσ
n

(x)− p
G
f0∗Kσ
0

(x)

W ρ
ρ (Gn, G0)

=

Tρ∑
l=1

(
ξ

(ρ)
l (Gn)

W ρ
ρ (G0, Gn)

)
H

(ρ)
l ∗Kσ(x) + o(1), (5.36)

where H
(ρ)
l ∗Kσ(x) =

∫
H

(ρ)
l (x− y)Kσ(y)dy for all 1 ≤ l ≤ Tρ. We will show that

H
(ρ)
l ∗Kσ(x) are linearly independent functions of x for all 1 ≤ l ≤ Tρ. In fact, assume
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that we can find the coefficients αl ∈ R such that

Tρ∑
l=1

αlH
(ρ)
l ∗Kσ(x) = 0

for all x. By means of Fourier transformation in both sides of the above equation, we

obtain

K̂(t)

( Tρ∑
l=1

αlĤl

(ρ)
(t)

)
= 0

for all t ∈ Rd. As K̂(t) 6= 0 for all t ∈ Rd and H
(ρ)
l (x) for all l are linearly independent

functions of x for all 1 ≤ l ≤ Tρ, the above equation implies that αl = 0 for all

1 ≤ l ≤ Tρ. Therefore, H
(ρ)
l ∗ Kσ(x) are linearly independent functions of x for all

1 ≤ l ≤ Tρ and ρ ∈ N.

From the hypothesis, since I(G0, f0) has r-th singularity level, it implies that

for any sequence Gn ∈ Ok0 such that W r+1
r+1 (Gn, G0) → 0, we do not have all the

ratios ξ
(r+1)
l (Gn)/W r+1

r+1 (G0, Gn) in (5.36) go to 0 for 1 ≤ l ≤ Tr+1. It in turns also

means that not all the ratios ξ
(r)
l (G′n)/W r

r (G0, G
′
n) in (5.36) go to 0. Additionally,

as I(G0, f0) has r-th singularity level, we can find a sequence G′n ∈ Ok0 such that

W r
r (G′n, G0) → 0 and ξ

(r)
l (G′n)/W r

r (G0, G
′
n) in (5.36) go to 0 for 1 ≤ l ≤ Tr. It

in turns also means that all the ratios ξ
(r)
l (G′n)/W r

r (G0, G
′
n) in (5.36) go to 0. As a

consequence, from Definition 3.3 in Ho and Nguyen [2016b], we achieve the conclusion

of the lemma.
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CHAPTER VI

Multilevel clustering via Wasserstein means

We propose a novel approach to the problem of multilevel clustering, which aims

to simultaneously partition data in each group and discover grouping patterns among

groups in a potentially large hierarchically structured corpus of data. Our method

involves a joint optimization formulation over several spaces of discrete probability

measures, which are endowed with Wasserstein distance metrics. We propose a num-

ber of variants of this problem, which admit fast optimization algorithms, by exploit-

ing the connection to the problem of finding Wasserstein barycenters. Consistency

properties are established for the estimates of both local and global clusters. Finally,

experiment results with both synthetic and real data are presented to demonstrate

the flexibility and scalability of the proposed approach. 1

6.1 Introduction

In numerous applications in engineering and sciences, data are often organized in

a multilevel structure. For instance, a typical structural view of text data in ma-

chine learning is to have words grouped into documents, documents are grouped into

corpora. A prominent strand of modeling and algorithmic works in the past couple

decades has been to discover latent multilevel structures from these hierarchically

1This chapter has been published in [Ho et al., 2017].
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structured data. For specific clustering tasks, one may be interested in simultane-

ously partitioning the data in each group (to obtain local clusters) and partitioning

a collection of data groups (to obtain global clusters). Another concrete example

is the problem of clustering images (i.e., global clusters) where each image contains

partions of multiple annotated regions (i.e., local clusters) [Oliva and Torralba, 2001].

While hierachical clustering techniques may be employed to find a tree-structed clus-

tering given a collection of data points, they are not applicable to discovering the

nested structure of multilevel data. Bayesian hierarchical models provide a powerful

approach, exemplified by influential works such as Blei et al. [2003], Pritchard et al.

[2000], Teh et al. [2006]. More specific to the simultaneous and multilevel clustering

problem, we mention the paper of Rodriguez et al. [2008]. In this interesting work,

a Bayesian nonparametric model, namely the nested Dirichlet process (NDP) model,

was introduced that enables the inference of clustering of a collection of probability

distributions from which different groups of data are drawn. With suitable extensions,

this modeling framework has been further developed for simultaneous multilevel clus-

tering, see for instance, [Wulsin et al., 2016, Nguyen et al., 2014, Huynh et al., 2016].

The focus of this chapter is on the multilevel clustering problem motivated in the

aforementioned modeling works, but we shall take a purely optimization approach.

We aim to formulate optimization problems that enable the discovery of multilevel

clustering structures hidden in grouped data. Our technical approach is inspired by

the role of optimal transport distances in hierarchical modeling and clustering prob-

lems. The optimal transport distances, also known as Wasserstein distances [Villani,

2003], have been shown to be the natural distance metric for the convergence theory

of latent mixing measures arising in both mixture models [Nguyen, 2013] and hier-

archical models [Nguyen, 2016]. They are also intimately connected to the problem

of clustering — this relationship goes back at least to the work of [Pollard, 1982],

where it is pointed out that the well-known K-means clustering algorithm can be
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directly linked to the quantization problem — the problem of determining an opti-

mal finite discrete probability measure that minimizes its second-order Wasserstein

distance from the empirical distribution of given data [Graf and Luschgy, 2000].

If one is to perform simultaneous K-means clustering for hierarchically grouped

data, both at the global level (among groups), and local level (within each group), then

this can be achieved by a joint optimization problem defined with suitable notions of

Wasserstein distances inserted into the objective function. In particular, multilevel

clustering requires the optimization in the space of probability measures defined in

different levels of abstraction, including the space of measures of measures on the

space of grouped data. Our goal, therefore, is to formulate this optimization precisely,

to develop algorithms for solving the optimization problem efficiently, and to make

sense of the obtained solutions in terms of statistical consistency.

The algorithms that we propose address directly a multilevel clustering problem

formulated from a purely optimization viewpoint, but they may also be taken as a

fast approximation to the inference of latent mixing measures that arise in the nested

Dirichlet process of [Rodriguez et al., 2008]. From a statistical viewpoint, we shall

establish a consistency theory for our multilevel clustering problem in the manner

achieved for K-means clustering [Pollard, 1982]. From a computational viewpoint,

quite interestingly, we will be able to explicate and exploit the connection betwen

our optimization and that of finding the Wasserstein barycenter [Agueh and Carlier,

2011], an interesting computational problem that have also attracted much recent

interests, e.g., [Cuturi and Doucet, 2014].

In summary, the main contributions offered in this work include (i) a new opti-

mization formulation to the multilevel clustering problem using Wasserstein distances

defined on different levels of the hierarchical data structure; (ii) fast algorithms by ex-

ploiting the connection of our formulation to the Wasserstein barycenter problem; (iii)

consistency theorems established for proposed estimates under very mild condition of
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data’s distributions; (iv) several flexibile alternatives by introducing constraints that

encourage the borrowing of strength among local and global clusters, and (v) finally,

demonstration of efficiency and flexibility of our approach in a number of simulated

and real data sets.

The chapter is organized as follows. Section 6.2 provides preliminary background

on Wasserstein distance, Wasserstein barycenter, and the connection between K-

means clustering and the quantization problem. Section 6.3 presents several opti-

mization formulations of the multilevel clusering problem, and the algorithms for

solving them. Section 6.4 establishes consistency results of the estimators introduced

in Section 6.4. Section 6.5 presents careful simulation studies with both synthetic

and real data. Finally, we conclude the chapter with a discussion in Section 6.6.

Additional technical details, including all proofs, are given in the Supplement.

6.2 Background

For any given subset Θ ⊂ Rd, let P(Θ) denote the space of Borel probability

measures on Θ. The Wasserstein space of order r ∈ [1,∞) of probability measures

on Θ is defined as Pr(Θ) =

{
G ∈ P(Θ) :

∫
‖x‖rdG(x) < ∞

}
, where ‖.‖ denotes

Euclidean metric in Rd. Additionally, for any k ≥ 1 the probability simplex is denoted

by ∆k =

{
u ∈ Rk : ui ≥ 0,

k∑
i=1

ui = 1

}
. Finally, let Ok(Θ) (resp., Ek(Θ)) be the set

of probability measures with at most (resp., exactly) k support points in Θ.

Wasserstein distances For any elements G and G′ in Pr(Θ) where r ≥ 1, the

Wasserstein distance of order r between G and G′ is defined as (cf. [Villani, 2003]):

Wr(G,G
′) =

(
inf

π∈Π(G,G′)

∫
Θ2

‖x− y‖rdπ(x, y)

)1/r
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where Π(G,G′) is the set of all probability measures on Θ × Θ that have marginals

G and G′. In words, W r
r (G,G′) is the optimal cost of moving mass from G to G′,

where the cost of moving unit mass is proportional to r-power of Euclidean distance

in Θ. When G and G′ are two discrete measures with finite number of atoms, fast

computation of Wr(G,G
′) can be achieved (see, e.g., Cuturi [2013]). The details of

this are deferred to the Supplement.

By a recursion of concepts, we can speak of measures of measures, and define

a suitable distance metric on this abstract space: the space of Borel measures on

Pr(Θ), to be denoted by Pr(Pr(Θ)). This is also a Polish space (that is, complete

and separable metric space) as Pr(Θ) is a Polish space. It will be endowed with a

Wasserstein metric of order r that is induced by a metric Wr on Pr(Θ) as follows (cf.

Section 3 of Nguyen [2016]): for any D,D′ ∈ Pr(Pr(Θ))

Wr(D,D′) :=

(
inf

∫
Pr(Θ)2

W r
r (G,G′)dπ(G,G′)

)1/r

where the infimum in the above ranges over all π ∈ Π(D,D′) such that Π(D,D′) is

the set of all probability measures on Pr(Θ) × Pr(Θ) that has marginals D and D′.

In words, Wr(D,D′) corresponds to the optimal cost of moving mass from D to D′,

where the cost of moving unit mass in its space of support Pr(Θ) is proportional to

the r-power of the Wr distance in Pr(Θ). Note a slight notational abuse — Wr is

used for both Pr(Θ) and Pr(Pr(Θ)), but it should be clear which one is being used

from context.

Wasserstein barycenter Next, we present a brief overview of Wasserstein barycen-

ter problem, first studied by [Agueh and Carlier, 2011] and subsequentially many oth-

ers (e.g., [Benamou et al., 2015, Solomon et al., 2015, Álvarez Estebana et al., 2016]).

Given probability measures P1, P2, . . . , PN ∈ P2(Θ) for N ≥ 1, their Wasserstein

barycenter PN,λ is such that
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PN,λ = arg min
P∈P2(Θ)

N∑
i=1

λiW
2
2 (P, Pi) (6.1)

where λ ∈ ∆N denote weights associated with P1, . . . , PN . When P1, . . . , PN are

discrete measures with finite number of atoms and the weights λ are uniform, it was

shown by [Anderes et al., 2015] that the problem of finding Wasserstein barycenter

PN,λ over the space P2(Θ) in (6.1) is reduced to search only over a much simpler

space Ol(Θ) where l =
N∑
i=1

si −N + 1 and si is the number of components of Pi for

all 1 ≤ i ≤ N . Efficient algorithms for finding local solutions of the Wasserstein

barycenter problem over Ok(Θ) for some k ≥ 1 have been studied recently in [Cuturi

and Doucet, 2014]. These algorithms will prove to be a useful building block for our

method as we shall describe in the sequel. The notion of Wasserstein barycenter has

been utilized for approximate Bayesian inference [Srivastava et al., 2015].

K-means as quantization problem The well-known K-means clustering algo-

rithm can be viewed as solving an optimization problem that arises in the problem of

quantization, a simple but very useful connection [Pollard, 1982, Graf and Luschgy,

2000]. The connection is the following. Given n unlabelled samples Y1, . . . , Yn ∈ Θ.

Assume that these data are associated with at most k clusters where k ≥ 1 is some

given number. The K-means problem finds the set S containing at most k elements

θ1, . . . , θk ∈ Θ that minimizes the following objective

inf
S:|S|≤k

1

n

n∑
i=1

d2(Yi, S). (6.2)

Let Pn =
1

n

n∑
i=1

δYi be the empirical measure of data Y1, . . . , Yn. Then, problem (6.2)

is equivalent to finding a discrete probability measure G which has finite number of

support points and solves:

inf
G∈Ok(Θ)

W 2
2 (G,Pn). (6.3)
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Due to the inclusion of Wasserstein metric in its formulation, we call this a Wasser-

stein means problem. This problem can be further thought of as a Wasserstein

barycenter problem where N = 1. In light of this observation, as noted by [Cu-

turi and Doucet, 2014], the algorithm for finding the Wasserstein barycenter offers

an alternative for the popular Loyd’s algorithm for determing local minimum of the

K-means objective.

6.3 Clustering with multilevel structure data

Given m groups of nj exchangeable data points Xj,i where 1 ≤ j ≤ m, 1 ≤ i ≤ nj,

i.e., data are presented in a two-level grouping structure, our goal is to learn about

the two-level clustering structure of the data. We want to obtain simultaneously local

clusters for each data group, and global clusters among all groups.

6.3.1 Multilevel Wasserstein Means (MWM) Algorithm

For any j = 1, . . . ,m, we denote the empirical measure for group j by P j
nj

:=

1

nj

nj∑
i=1

δXj,i . Throughout this section, for simplicity of exposition we assume that the

number of both local and global clusters are either known or bounded above by a

given number. In particular, for local clustering we allow group j to have at most

kj clusters for j = 1, . . . ,m. For global clustering, we assume to have M group

(Wasserstein) means among the m given groups.

High level idea For local clustering, for each j = 1, . . . ,m, performing a K-means

clustering for group j, as expressed by (6.3), can be viewed as finding a finite discrete

measure Gj ∈ Okj(Θ) that minimizes squared Wasserstein distance W 2
2 (Gj, P

j
nj

). For

global clustering, we are interested in obtaining clusters out of m groups, each of

which is now represented by the discrete measure Gj, for j = 1, . . . ,m. Adopting

again the viewpoint of Eq. (6.3), provided that all of Gjs are given, we can apply K-
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means quantization method to find their distributional clusters. The global clustering

in the space of measures of measures on Θ can be succintly expressed by

inf
H∈EM (P2(Θ))

W 2
2

(
H, 1

m

m∑
j=1

δGj

)
.

However, Gj are not known — they have to be optimized through local clustering in

each data group.

MWM problem formulation We have arrived at an objective function for jointly

optimizing over both local and global clusters

inf
Gj∈Okj (Θ),

H∈EM (P2(Θ))

m∑
j=1

W 2
2 (Gj, P

j
nj

) +W 2
2 (H, 1

m

m∑
j=1

δGj). (6.4)

We call the above optimization the problem of Multilevel Wasserstein Means

(MWM). The notable feature of MWM is that its loss function consists of two types of

distances associated with the hierarchical data structure: one is distance in the space

of measures, e.g., W 2
2 (Gj, P

j
nj

), and the other in space of measures of measures, e.g.,

W 2
2 (H, 1

m

m∑
j=1

δGj). By adopting K-means optimization to both local and global clus-

tering, the multilevel Wasserstein means problem might look formidable at the first

sight. Fortunately, it is possible to simplify this original formulation substantially, by

exploiting the structure of H.

Indeed, we can show that formulation (6.4) is equivalent to the following opti-

mization problem, which looks much simpler as it involves only measures on Θ:

inf
Gj∈Okj (Θ),H

m∑
j=1

W 2
2 (Gj, P

j
nj

) +
d2
W2

(Gj,H)

m
(6.5)

where d2
W2

(G,H) := min
1≤i≤M

W 2
2 (G,Hi) and H = (H1, . . . , HM), with each Hi ∈

P2(Θ). The proof of this equivalence is deferred to Proposition B.4 in the Sup-
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plement. Before going into to the details of the algorithm for solving (6.5) in Section

6.3.1.2, we shall present some simpler cases, which help to illustrate some properties

of the optimal solutions of (6.5), while providing insights of subsequent developments

of the MWM formulation. Readers may proceed directly to Section 6.3.1.2 for the

description of the algorithm in the first reading.

6.3.1.1 Properties of MWM in special cases

Example 1. Suppose kj = 1 and nj = n for all 1 ≤ j ≤ m, and M = 1. Write

H = H ∈ P2(Θ). Under this setting, the objective function (6.5) can be rewritten as

inf
θj∈Θ,

H∈P2(Θ)

m∑
j=1

n∑
i=1

‖θj −Xj,i‖2 +W 2
2 (δθj , H)/m, (6.6)

whereGj = δθj for any 1 ≤ j ≤ m. From the result of Theorem A.1 in the Supplement,

inf
θj∈Θ

m∑
j=1

W 2
2 (δθj , H) ≥ inf

H∈E1(Θ)

m∑
j=1

W 2
2 (Gj, H)

=
m∑
j=1

‖θj − (
m∑
i=1

θi)/m‖2,

where second infimum is achieved when H = δ
(
m∑
j=1

θj)/m
. Thus, objective function

(6.6) may be rewritten as

inf
θj∈Θ

m∑
j=1

n∑
i=1

‖θj −Xj,i‖2 + ‖mθj − (
m∑
l=1

θl)‖2/m3.

Write Xj = (
n∑
i=1

Xj,i)/n for all 1 ≤ j ≤ m. As m ≥ 2, we can check that the

unique optimal solutions for the above optimization problem are θj =

(
(m2n+1)Xj+∑

i 6=j
X i

)
/(m2n + m) for any 1 ≤ j ≤ m. If we further assume that our data Xj,i are

i.i.d samples from probability measure P j having mean µj = EX∼P j(X) for any
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1 ≤ j ≤ m, the previous result implies that θi 6→ θj for almost surely as long as

µi 6= µj. As a consequence, if µj are pairwise different, the multi-level Wasserstein

means under that simple scenario of (6.5) will not have identical centers among local

groups.

On the other hand, we have W 2
2 (Gi, Gj) = ‖θi − θj‖2 =

(
mn

mn+ 1

)2

‖X i − Xj‖2.

Now, from the definition of Wasserstein distance

W 2
2 (P i

n, P
j
n) = min

σ

1

n

n∑
l=1

‖Xi,l −Xj,σ(l)‖2

≥ ‖X i −Xj‖2,

where σ in the above sum varies over all the permutation of {1, 2, . . . , n} and the

second inequality is due to Cauchy-Schwarz’s inequality. It implies that as long as

W 2
2 (P i

n, P
j
n) is small, the optimal solution Gi and Gj of (6.6) will be sufficiently close

to each other. By letting n→∞, we also achieve the same conclusion regarding the

asymptotic behavior of Gi and Gj with respect to W2(P i, P j).

Example 2. kj = 1 and nj = n for all 1 ≤ j ≤ m and M = 2. Write H = (H1, H2).

Moreover, assume that there is a strict subset A of {1, 2, . . . ,m} such that

max

{
max
i,j∈A

W2(P i
n, P

j
n),

max
i,j∈Ac

W2(P i
n, P

j
n)

}
� min

i∈A,j∈Ac
W2(P i

n, P
j
n),

i.e., the distances of empirical measures P i
n and P j

n when i and j belong to the same

set A or Ac are much less than those when i and j do not belong to the same set.

Under this condition, by using the argument from part (i) we can write the objective

function (6.5) as

285



inf
θj∈Θ,

H1∈P2(Θ)

∑
j∈A

n∑
i=1

‖θj −Xj,i‖2 +
W 2

2 (δθj , H1)

|A| +

inf
θj∈Θ,

H2∈P2(Θ)

∑
j∈Ac

n∑
i=1

‖θj −Xj,i‖2 +
W 2

2 (δθj , H2)

|Ac| .

The above objective function suggests that the optimal solutions θi, θj (equivalently,

Gi and Gj) will not be close to each other as long as i and j do not belong to the

same set A or Ac, i.e., P i
n and P j

n are very far. Therefore, the two groups of “local”

measures Gj do not share atoms under that setting of empirical measures.

The examples examined above indicate that the MWM problem in general do not

“encourage” the local measures Gj to share atoms among each other in its solution.

Additionally, when the empirical measures of local groups are very close, it may also

suggest that they belong to the same cluster and the distances among optimal local

measures Gj can be very small.

6.3.1.2 Algorithm Description

Now we are ready to describe our algorithm in the general case. This is a procedure

for finding a local minimum of Problem (6.5) and is summarized in Algorithm 1. We

prepare the following details regarding the initialization and updating steps required

by the algorithm:

• The initialization of local measures G
(0)
j (i.e., the initialization of their atoms

and weights) can be obtained by performing K-means clustering on local data

Xj,i for 1 ≤ j ≤ m. The initialization of elements H
(0)
i of H(0) is based on a

simple extension of the K-means algorithm. Details are given in Algorithm 3 in

the Supplement;

• The updates G
(t+1)
j can be computed efficiently by simply using algorithms

from Cuturi and Doucet [2014] to search for local solutions of these barycenter
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Algorithm 1 Multilevel Wasserstein Means (MWM)

Input: Data Xj,i, Parameters kj, M .
Output: prob. measures Gj and elements Hi of H .

Initialize measures G
(0)
j , elements H

(0)
i of H(0), t = 0.

while Y
(t)
j , b

(t)
j , H

(t)
i have not converged do

1. Update Y
(t)
j and b

(t)
j for 1 ≤ j ≤ m:

for j = 1 to m do
ij ← arg min

1≤u≤M
W 2

2 (G
(t)
j , H

(t)
u ).

G
(t+1)
j ← arg min

Gj∈Okj (Θ)

W 2
2 (Gj, P

j
nj

)+

+W 2
2 (Gj, H

(t)
ij

)/m.
end for
2. Update H

(t)
i for 1 ≤ i ≤M :

for j = 1 to m do
ij ← arg min

1≤u≤M
W 2

2 (G
(t+1)
j , H

(t)
u ).

end for
for i = 1 to M do
Ci ← {l : il = i} for 1 ≤ i ≤M .

H
(t+1)
i ← arg min

Hi∈P2(Θ)

∑
l∈Ci

W 2
2 (Hi, G

(t+1)
l ).

end for
3. t← t+ 1.

end while

problems within the space Okj(Θ) from the atoms and weights of G
(t)
j ;

• Since all G
(t+1)
j are finite discrete measures, finding the updates for H

(t+1)
i over

the whole space P2(Θ) can be reduced to searching for a local solution within

space Ol(t) where l(t) =
∑
j∈Ci
|supp(G

(t+1)
j )| − |Ci| from the global atoms H

(t)
i

of H(t) (Justification of this reduction is derived from Theorem A.1 in the

Supplement). This again can be done by utilizing algorithms from Cuturi and

Doucet [2014]. Note that, as l(t) becomes very large when m is large, to speed

up the computation of Algorithm 1 we impose a threshold L, e.g., L = 10, for

l(t) in its implementation.

The following guarantee for Algorithm 1 can be established:
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Theorem 6.3.1. Algorithm 1 monotonically decreases the objective function (6.4) of

the MWM formulation.

6.3.2 Multilevel Wasserstein Means with Sharing

As we have observed from the analysis of several specific cases, the multilevel

Waserstein means formulation may not encourage the sharing components locally

among m groups in its solution. However, enforced sharing has been demonstrated to

be a very useful technique, which leads to the “borrowing of strength” among different

parts of the model, consequentially improving the inferential efficiency [Teh et al.,

2006, Nguyen, 2016]. In this section, we seek to encourage the borrowing of strength

among groups by imposing additional constraints on the atoms of G1, . . . , Gm in the

original MWM formulation (6.4). Denote AM,SK =

{
Gj ∈ OK(Θ), H ∈ EM(P(Θ)) :

supp(Gj) ⊆ SK ∀1 ≤ j ≤ m

}
for any given K,M ≥ 1 where the constraint set SK

has exactly K elements. To simplify the exposition, let us assume that kj = K for

all 1 ≤ j ≤ m. Consider the following locally constrained version of the multilevel

Wasserstein means problem

inf
m∑
j=1

W 2
2 (Gj, P

j
nj

) +W 2
2 (H, 1

m

m∑
j=1

δGj). (6.7)

where SK , Gj,H ∈ AM,SK in the above infimum. We call the above optimization the

problem of Multilevel Wasserstein Means with Sharing (MWMS). The local constraint

assumption supp(Gj) ⊆ SK had been utilized previously in the literature — see

for example the work of [Kulis and Jordan, 2012], who developed an optimization-

based approach to the inference of the HDP [Teh et al., 2006], which also encourages

explicitly the sharing of local group means among local clusters. Now, we can rewrite

objective function (6.7) as follows
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inf
SK ,Gj ,H∈BM,SK

m∑
j=1

W 2
2 (Gj, P

j
nj

) +
d2
W2

(Gj,H)

m
(6.8)

where BM,SK =

{
Gj ∈ OK(Θ), H = (H1, . . . , HM) : supp(Gj) ⊆ SK ∀1 ≤ j ≤ m

}
.

The high level idea of finding local minimums of objective function (6.8) is to first,

update the elements of constraint set SK to provide the supports for local measures

Gj and then, obtain the weights of these measures as well as the elements of global

set H by computing appropriate Wasserstein barycenters. Due to space constraint,

the details of these steps of the MWMS Algorithm (Algorithm 2) are deferred to the

Supplement.

6.4 Consistency results

We proceed to establish consistency for the estimators introduced in the previous

section. For the brevity of the presentation, we only focus on the MWM method;

consistency for MWMS can be obtained in a similar fashion. Fix m, and assume that

P j is the true distribution of data Xj,i for j = 1, . . . ,m. Write G = (G1, . . . , Gm) and

n = (n1, . . . , nm). We say n → ∞ if nj → ∞ for j = 1, . . . ,m. Define the following

functions

fn(G,H) =
m∑
j=1

W 2
2 (Gj, P

j
nj

) +W 2
2 (H, 1

m

m∑
j=1

δGj),

f(G,H) =
m∑
j=1

W 2
2 (Gj, P

j) +W 2
2 (H, 1

m

m∑
j=1

δGj),

where Gj ∈ Okj(Θ), H ∈ EM(P(Θ)) as 1 ≤ j ≤ m. The first consistency property of

the WMW formulation:

Theorem 6.4.1. Given that P j ∈ P2(Θ) for 1 ≤ j ≤ m. Then, there holds almost

surely, as n→∞
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inf
Gj∈Okj (Θ),

H∈EM (P2(Θ))

fn(G,H)− inf
Gj∈Okj (Θ),

H∈EM (P2(Θ))

f(G,H)→ 0.

The next theorem establishes that the “true” global and local clusters can be recov-

ered. To this end, assume that for each n there is an optimal solution (Ĝn1
1 , . . . , Ĝ

nm
m , Ĥn)

or in short (Ĝ
n
,Hn) of the objective function (6.4). Moreover, there exist a (not

necessarily unique) optimal solution minimizing f(G,H) over Gj ∈ Okj(Θ) and

H ∈ EM(P2(Θ)). Let F be the collection of such optimal solutions. For any

Gj ∈ Okj(Θ) and H ∈ EM(P2(Θ)), define

d(G,H,F) = inf
(G0,H0)∈F

m∑
j=1

W 2
2 (Gj, G

0
j) +W 2

2 (H,H0).

Given the above assumptions, we have the following result regarding the convergence

of (Ĝ
n
,Hn):

Theorem 6.4.2. Assume that Θ is bounded and P j ∈ P2(Θ) for all 1 ≤ j ≤ m.

Then, we have d(Ĝ
n
, Ĥn,F)→ 0 as n→∞ almost surely.

Remark: (i) The assumption Θ is bounded is just for the convenience of proof

argument. We believe that the conclusion of this theorem may still hold when Θ = Rd.

(ii) If |F| = 1, i.e., there exists an unique optimal solutionG0,H0 minimizing f(G,H)

over Gj ∈ Okj(Θ) and H ∈ EM(P2(Θ)), the result of Theorem 6.4.2 implies that

W2(Ĝ
nj
j , G

0
j)→ 0 for 1 ≤ j ≤ m and W2(Ĥn,H0)→ 0 as n→∞.

6.5 Empirical studies

6.5.1 Synthetic data

In this section, we are interested in evaluating the effectiveness of both MWM

and MWMS clustering algorithms by considering different synthetic data generating

processes. Unless otherwise specified, we set the number of groups m = 50, number
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Figure 6.1: Data with a lot of small groups: (a) NC data with constant variance;
(b) NC data with non-constant variance; (c) LC data with constant variance; (d) LC
data with non-constant variance
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Figure 6.2: Data with few big groups: (a) NC data with constant variance; (b) NC
data with non-constant variance; (c) LC data with constant variance; (d) LC data
with non-constant variance

of observations per group nj = 50 in d = 10 dimensions, number of global clusters

M = 5 with 6 atoms. For Algorithm 1 (MWM) local measures Gj have 5 atoms

each; for Algorithm 2 (MWMS) number of atoms in constraint set SK is 50. As a

benchmark for the comparison we will use a basic 3-stage K-means approach (the

details of which can be found in the Supplement). The Wasserstein distance between

the estimated distributions (i.e. Ĝ1, . . . , Ĝm; Ĥ1, . . . , ĤM) and the data generating

ones will be used as the comparison metric.

Recall that the MWM formulation does not impose constraints on the atoms of

Gi, while the MWMS formulation explicitly enforces the sharing of atoms across these

measures. We used multiple layers of mixtures while adding Gaussian noise at each

layer to generate global and local clusters and the no-constraint (NC) data. We varied

number of groups m from 500 to 10000. We notice that the 3-stage K-means algorithm

performs the best when there is no constraint structure and variance is constant across

clusters (Fig. 6.1(a) and 6.2(a)) — this is, not surprisingly, a favorable setting for the
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basic K-means method. As soon as we depart from the (unrealistic) constant-variance,

no-sharing assumption, both of our algorithms start to outperform the basic three-

stage K-means. The superior performance is most pronounced with local-constraint

(LC) data (with or without constant variance conditions). See Fig. 6.1(c,d). It is

worth noting that even when group variances are constant, the 3-stage K-means is no

longer longer effective because now fails to account for the shared structure. When

m = 50 and group sizes are larger, we set SK = 15. Results are reported in Fig.

6.2 (c), (d). These results demonstrate the effectiveness and flexibility of our both

algorithms.

6.5.2 Real data analysis
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Figure 6.3: Clustering representation for two datasets: (a) Five image clusters from
Labelme data discovered by MWMS algorithm: tag-clouds on the left are

accumulated from all images in the clusters while six images on the right are
randomly chosen images in that cluster; (b) StudentLife discovered network with

three node groups: (1) discovered student clusters, (3) student nodes, (5) discovered
activity location (from Wifi data); and two edge groups: (2) Student to cluster
assignment, (4) Student involved to activity location. Node sizes (of discovered

nodes) depict the number of element in clusters while edge sizes between Student
and activity location represent the popularity of student’s activities.
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We applied our multilevel clustering algorithms to two real-world datasets: La-

belMe and StudentLife.

LabelMe dataset consists of 2, 688 annotated images which are classified into

8 scene categories including tall buildings, inside city, street, highway, coast, open

country, mountain, and forest Oliva and Torralba [2001] . Each image contains

multiple annotated regions. Each region, which is annotated by users, represents an

object in the image. As shown in Figure 6.4, the left image is an image from open

country category and contains 4 regions while the right panel denotes an image of tall

buildings category including 16 regions. Note that the regions in each image can be

overlapped. We remove the images containing less then 4 regions and obtain 1, 800

images.

sky

field

tree

flowers

sky

building

building

building

building

building

car

car

car

car

car

car

sidewalk

road

poster

Figure 6.4: Examples of images used in LabelMe dataset. Each image consists of
different annotated regions.

We then extract GIST feature Oliva and Torralba [2001] for each region in a

image. GIST is a visual descriptor to represent perceptual dimensions and oriented

spatial structures of a scene. Each GIST descriptor is a 512-dimensional vector. We

further use PCA to project GIST features into 30 dimensions. Finally, we obtain

1, 800 “documents”, each of which contains regions as observations. Each region now

is represented by a 30-dimensional vector. We now can perform clustering regions in

every image since they are visually correlated. In the next level of clustering, we can

cluster images into scene categories.
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Table 6.1: Clustering performance for LabelMe dataset.

Methods NMI ARI AMI Time (s)

K-means 0.349 0.237 0.324 0.3
TSK-means 0.236 0.112 0.22 218
MC2 0.315 0.206 0.273 4.2
MWM 0.373 0.263 0.352 332
MWMS 0.391 0.284 0.368 544

StudentLife dataset is a large dataset frequently used in pervasive and ubiqui-

tous computing research. Data signals consist of multiple channels (e.g., WiFi signals,

Bluetooth scan, etc.), which are collected from smartphones of 49 students at Dart-

mouth College over a 10-week spring term in 2013. However, in our experiments, we

use only WiFi signal strengths. We applied a similar procedure described in Nguyen

et al. [2016] to pre-process the data. We aggregate the number of scans by each Wifi

access point and select 500 Wifi Ids with the highest frequencies. Eventually, we

obtain 49 “documents” with totally approximately 4.6 million 500-dimensional data

points.

Experimental results. To quantitatively evaluate our proposed methods, we

compare our algorithms with several base-line methods: K-means, three-stage K-

means (TSK-means) as described in the Supplement, MC2-SVI without context

Huynh et al. [2016]. Clustering performance in Table 6.1 is evaluated with the image

clustering problem for LabelMe dataset. With K-means, we average all data points

to obtain a single vector for each images. K-means needs much less time to run since

the number of data points is now reduced to 1, 800. For MC2-SVI, we used stochastic

varitational and a parallelized Spark-based implementation in Huynh et al. [2016] to

carry out experiments. This implementation has the advantage of making use of all

of 16 cores on the test machine. The running time for MC2-SVI is reported after

scanning one epoch. In terms of clustering accuracy, MWM and MWMS algorithms

perform the best.
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Fig. 6.3 demonstrates five representative image clusters with six randomly chosen

images in each (on the right) which are discovered by our MWMS algorithm. We also

accumulate labeled tags from all images in each cluster to produce the tag-cloud on

the left. These tag-clouds can be considered as visual ground truth of clusters. Our

algorithm can group images into clusters which are consistent with their tag-clouds.

We use StudentLife dataset to demonstrate the capability of multilevel clustering

with large-scale datasets. This dataset not only contains a large number of data points

but presents in high dimension. Our algorithms need approximately 1 hour to perform

multilevel clustering on this dataset. Fig. 6.3 presents two levels of clusters discovered

by our algorithms. The innermost (blue) and outermost (green) rings depict local and

global clusters respectively. Global clusters represent groups of students while local

clusters shared between students (“documents”) may be used to infer locations of

students’ activities. From these clusteing we can dissect students’ shared location

(activities), e.g. Student 49 (U49 ) mainly takes part in activity location 4 (L4 ).

6.6 Discussion

We have proposed an optimization based approach to multilevel clustering using

Wasserstein metrics. There are several possible directions for extensions. Firstly, we

have only considered continuous data; it is of interest to extend our formulation to

discrete data. Secondly, our method requires knowledge of the numbers of clusters

both in local and global clustering. When these numbers are unknown, it seems

reasonable to incorporate penalty on the model complexity. Thirdly, our formulation

does not directly account for the “noise” distribution away from the (Wasserstein)

means. To improve the robustness, it may be desirable to make use of the first-

order Wasserstein metric instead of the second-order one. Finally, we are interested

in extending our approach to richer settings of hierarchical data, such as one when

group level-context is available.
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6.7 Appendix A

In this appendix, we collect relevant information on the Wasserstein metric and

Wasserstein barycenter problem, which were introduced in Section 6.2 in this chap-

ter. For any Borel map g : Θ → Θ and probability measure G on Θ, the push-

forward measure of G through g, denoted by g#G, is defined by the condition that∫
Θ

f(y)d(g#G)(y) =
∫
Θ

f(g(x))dG(x) for every continuous bounded function f on Θ.

Wasserstein metric When G =
k∑
i=1

piδθi and G′ =
k′∑
i=1

p′iδθ′i are discrete measures

with finite support, i.e., k and k′ are finite, the Wasserstein distance of order r between

G and G′ can be represented as

W r
r (G,G′) = min

T∈Π(G,G′)
〈T,MG,G′〉 (6.9)

where we have

Π(G,G′) =
{
T ∈ Rk×k′

+ : T1k′ = p, T1k = p′
}

such that p = (p1, . . . , pk)
T and p′ = (p′1, . . . , p

′
k′)

T , MG,G′ =
{
‖θi − θ′j‖

}
i,j
∈ Rk×k′

+

is the cost matrix, i.e. matrix of pairwise distances of elements between G and

G′, and 〈A,B〉 = tr(ATB) is the Frobenius dot-product of matrices. The optimal

T ∈ Π(G,G′) in optimization problem (6.9) is called the optimal coupling of G and

G′, representing the optimal transport between these two measures. When k = k′,

the complexity of best algorithms for finding the optimal transport is O(k3 log k).

Currently, Cuturi [2013] proposed a regularized version of (6.9) based on Sinkhorn

distance where the complexity of finding an approximation of the optimal transport is

O(k2). Due to its favorably fast computation, throughout the chapter we shall utilize

Cuturi’s algorithm to compute the Wasserstein distance between G and G′ as well as
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their optimal transport in (6.9).

Wasserstein barycenter As introduced in Section 6.2 in this chapter, for any

probability measures P1, P2, . . . , PN ∈ P2(Θ), their Wasserstein barycenter PN,λ is

such that

PN,λ = arg min
P∈P2(Θ)

N∑
i=1

λiW
2
2 (P, Pi)

where λ ∈ ∆N denote weights associated with P1, . . . , PN . According to [Agueh and

Carlier, 2011], PN,λ can be obtained as a solution to so-called multi-marginal optimal

transporation problem. In fact, if we denote T 1
k as the measure preseving map from

P1 to Pk, i.e., Pk = T 1
k#P1, for any 1 ≤ k ≤ N , then

PN,λ =

( N∑
k=1

λkT
1
k

)
#P1.

Unfortunately, the forms of the maps T 1
k are analytically intractable, especially if no

special constraints on P1, . . . , PN are imposed.

Recently, [Anderes et al., 2015] studied the Wasserstein barycenters PN,λ when

P1, P2, . . . , PN are finite discrete measures and λ =

(
1/N, . . . , 1/N

)
. They demon-

strate the following sharp result (cf. Theorem 2 in [Anderes et al., 2015]) regarding

the number of atoms of PN,λ

Theorem A.1. There exists a Wasserstein barycenter PN,λ such that supp(PN,λ) ≤
N∑
i=1

si −N + 1.

Therefore, when P1, . . . , PN are indeed finite discrete measures and the weights

are uniform, the problem of finding Wasserstein barycenter PN,λ over the (computa-

tionally large) space P2(Θ) is reduced to a search over a smaller space Ol(Θ) where

l =
N∑
i=1

si −N + 1.
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6.8 Appendix B

In this appendix, we provide proofs for the remaining results in this chapter. We

start by giving a proof for the transition from multilevel Wasserstein means objective

function (6.4) to objective function (6.5) in Section 6.3.1 in this chapter. All the no-

tations in this appendix are similar to those in the main text. For each closed subset

S ⊂ P2(Θ), denote the Voronoi region generated by S on the space P2(Θ) by the col-

lection of subsets {VP}P∈S , where VP := {Q ∈ P2(Θ) : W 2
2 (Q,P ) = min

G∈S
W 2

2 (Q,G)}.

We define the projection mapping πS as: πS : P2(Θ) → S where πS(Q) = P as

Q ∈ VP . Note that, for any P1, P2 ∈ S such that VP1 and VP2 share the boundary,

the values of πS at the elements in that boundary can be chosen to be either P1 or

P2. Now, we start with the following useful lemmas.

Lemma B.1. For any closed subset S on P2(Θ), if Q ∈ P2(P2(Θ)), then

EX∼Q(d2
W2

(X,S)) = W 2
2 (Q, πS#Q)

where d2
W2

(X,S) = inf
P∈S

W 2
2 (X,P ).

Proof. For any element π ∈ Π(Q, πS#Q):

∫
W 2

2 (P,G)dπ(P,G) ≥
∫
d2
W2

(P,S)dπ(P,G)

=

∫
d2
W2

(P,S)dQ(P )

= EX∼Q(d2
W2

(X,S))

where the integrations in the first two terms range over P2(Θ)× S while that in the
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final term ranges over P2(Θ). Therefore, we obtain

W 2
2 (Q, πS#Q) = inf

∫
P2(Θ)×S

W 2
2 (P,G)dπ(P,G)

≥ EX∼Q(d2
W2

(X,S)) (6.10)

where the infimum in the first equality ranges over all π ∈ Π(Q, πS#Q).

On the other hand, let g : P2(Θ)→ P2(Θ)× S such that g(P ) = (P, πS(P )) for

all P ∈ P2(Θ). Additionally, let µπS = g#Q, the push-forward measure of Q under

mapping g. It is clear that µπS is a coupling between Q and πS#Q. Under this

construction, we obtain for any X ∼ Q that

E
(
W 2

2 (X, πS(X))
)

=

∫
W 2

2 (P,G)dµπS (P,G)

≥ inf

∫
W 2

2 (P,G)dπ(P,G)

= W 2
2 (Q, πS#Q) (6.11)

where the infimum in the second inequality ranges over all π ∈ Π(Q, πS#Q) and the

integrations range over P2(Θ)× S. Now, from the definition of πS

E(W 2
2 (X, πS(X))) =

∫
W 2

2 (P, πS(P ))dQ(P )

=

∫
d2
W2

(P,S)dQ(P )

= E(d2
W2

(X,S)) (6.12)

where the integrations in the above equations range over P2(Θ). By combining (6.11)

and (6.12), we would obtain that

EX∼Q(d2
W2

(X,S)) ≥ W 2
2 (Q, πS#Q). (6.13)
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From (6.10) and (6.13), it is straightforward that EX∼Q(d(X,S)2) = W 2
2 (Q, πS#Q).

Therefore, we achieve the conclusion of the lemma.

Lemma B.2. For any closed subset S ⊂ P2(Θ) and µ ∈ P2(P2(Θ)) with supp(µ) ⊆ S,

there holds W 2
2 (Q, µ) ≥ W 2

2 (Q, πS#Q) for any Q ∈ P2(P2(Θ)).

Proof. Since supp(µ) ⊆ S, it is clear thatW 2
2 (Q, µ) = inf

π∈Π(Q,µ)

∫
P2(Θ)×S

W 2
2 (P,G)dπ(P,G).

Additionally, we have

∫
W 2

2 (P,G)dπ(P,G) ≥
∫
d2
W2

(P,S)dπ(P,G)

=

∫
d2
W2

(P,S)dQ(P )

= EX∼Q(d2
W2

(X,S))

= W 2
2 (Q, πS#Q)

where the last inequality is due to Lemma B.1 and the integrations in the first two

terms range over P2(Θ)×S while that in the final term ranges over P2(Θ). Therefore,

we achieve the conclusion of the lemma.

Equipped with Lemma B.1 and Lemma B.2, we are ready to establish the equiv-

alence between multilevel Wasserstein means objective function (5) and objective

function (4) in Section 6.3.1 in the main text.

Lemma B.3. For any given positive integers m and M , we have

A := inf
H∈EM (P2(Θ))

W 2
2 (H, 1

m

m∑
j=1

δGj)

=
1

m
inf

H=(H1,...,HM )

m∑
j=1

d2
W2

(Gj,H) := B.

Proof. Write Q =
1

m

m∑
j=1

δGj . From the definition of B, for any ε > 0, we can find H
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such that

B ≥ 1

m

m∑
j=1

d2
W2

(Gj,H)− ε

= EX∼Q(d2
W2

(X,H))− ε

= W 2
2 (Q, πH#Q)− ε

≥ A− ε

where the second equality in the above display is due to Lemma B.1 while the last

inequality is from the fact that πH#Q is a discrete probability measure in P2(P2(Θ))

with exactly M support points. Since the inequality in the above display holds for

any ε, it implies that B ≥ A. On the other hand, from the formation of A, for any

ε > 0, we also can find H′ ∈ EM(P2(Θ)) such that

A ≥ W 2
2 (H′,Q)− ε

≥ W 2
2 (Q, πH′#Q)− ε

=
1

m

m∑
j=1

d2
W2

(Gj,H
′)− ε

≥ B − ε

where H ′ = supp(H′), the second inequality is due to Lemma B.2, and the third

equality is due to Lemma B.1. Therefore, it means that A ≥ B. We achieve the

conclusion of the lemma.

Proposition B.4. For any positive integer numbers m,M and kj as 1 ≤ j ≤ m, we
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denote

C := inf
Gj∈Okj (Θ) ∀1≤j≤m,
H∈EM (P2(Θ))

m∑
i=1

W 2
2 (Gj, P

j
nj

)

+ W 2
2 (H, 1

m

m∑
i=1

δGi)

D := inf
Gj∈Okj (Θ) ∀1≤j≤m,
H=(H1,...,HM )

m∑
j=1

W 2
2 (Gj, P

j
nj

)

+
d2
W2

(Gj,H)

m
.

Then, we have C = D.

Proof. The proof of this proposition is a straightforward application of Lemma B.3.

Indeed, for each fixed (G1, . . . , Gm) the infimum w.r.t to H in C leads to the same

infimum w.r.t to H in D, according to Lemma B.3. Now, by taking the infimum

w.r.t to (G1, . . . , Gm) on both sides, we achieve the conclusion of the proposition.

In the remainder of the Supplement, we present the proofs for all remaining the-

orems stated in the main text.

PROOF OF THEOREM 6.3.1 The proof of this theorem is straightforward from

the formulation of Algorithm 1. In fact, for any Gj ∈ Ekj(Θ) and H = (H1, . . . , HM),

we denote the function

f(G,H) =
m∑
j=1

W 2
2 (Gj, P

j
n) +

d2
W2

(Gj,H)

m

where G = (G1, . . . , Gm). To obtain the conclusion of this theorem, it is sufficient to

demonstrate for any t ≥ 0 that

f(G(t+1),H(t+1)) ≤ f(G(t),H(t)).
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This inequality comes directly from f(G(t+1),H(t)) ≤ f(G(t),H(t)), which is due to

the Wasserstein barycenter problems to obtainG
(t+1)
j for 1 ≤ j ≤ m, and f(G(t+1),H(t+1)) ≤

f(G(t+1),H(t)), which is due to the optimization steps to achieve elements H
(t+1)
u of

H(t+1) as 1 ≤ u ≤M . As a consequence, we achieve the conclusion of the theorem.

PROOF OF THEOREM 6.4.1 To simplify notation, write

Ln = inf
Gj∈Okj (Θ),

H∈EM (P2(Θ))

fn(G,H),

L0 = inf
Gj∈Okj (Θ),

H∈EM (P2(Θ))

f(G,H).

For any ε > 0, from the definition of L0, we can find Gj ∈ Okj(Θ) and H ∈ EM(P(Θ))

such that

f(G,H)1/2 ≤ L
1/2
0 + ε.

Therefore, we would have

L1/2
n − L1/2

0 ≤ L1/2
n − f(G,H)1/2 + ε

≤ fn(G,H)1/2 − f(G,H)1/2 + ε

=
fn(G,H)− f(G,H)

fn(G,H)1/2 + f(G,H)1/2
+ ε

≤
m∑
j=1

|W 2
2 (Gj, P

j
nj

)−W 2
2 (Gj, P

j)|
W2(Gj, P

j
nj) +W2(Gj, P j)

+ ε

≤
m∑
j=1

W2(P j
nj
, P j) + ε.

By reversing the direction, we also obtain the inequality L
1/2
n −L1/2

0 ≥
m∑
j=1

W2(P j
nj
, P j)−

ε. Hence, |L1/2
n − L1/2

0 −
m∑
j=1

W2(P j
nj
, P j)| ≤ ε for any ε > 0. Since P j ∈ P2(Θ) for

all 1 ≤ j ≤ m, we obtain that W2(P j
nj
, P j) → 0 almost surely as nj → ∞ (see for
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example Theorem 6.9 in [Villani, 2009]). As a consequence, we obtain the conclusion

of the theorem.

PROOF OF THEOREM 6.4.2 For any ε > 0, we denote

A(ε) =

{
Gi ∈ Oki(Θ),H ∈ EM(P(Θ)) :

d(G,H,F) ≥ ε

}
.

Since Θ is a compact set, we also have Okj(Θ) and EM(P2(Θ)) are compact for any

1 ≤ i ≤ m. As a consequence, A(ε) is also a compact set. For any (G,H) ∈ A(ε), by

the definition of F we would have f(G,H) > f(G0,H0) for any (G0,H0) ∈ F . Since

A(ε) is compact, it leads to

inf
(G,H)∈A(ε)

f(G,H) > f(G0,H0).

for any (G0,H0) ∈ F . From the formulation of fn as in the proof of Theorem 6.4.1,

we can verify that lim
n→∞

fn(Ĝ
n
, Ĥn) = lim

n→∞
f(Ĝ

n
, Ĥn) almost surely as n → ∞.

Combining this result with that of Theorem 6.4.1, we obtain f(Ĝ
n
, Ĥn)→ f(G0,H0)

as n→∞ for any (G0,H0) ∈ F . Therefore, for any ε > 0, as n is large enough, we

have d(Ĝ
n
, Ĥn,F) < ε. As a consequence, we achieve the conclusion regarding the

consistency of the mixing measures.

6.9 Appendix C

In this appendix, we provide details on the algorithm for the Multilevel Wasser-

stein means with sharing (MWMS) formulation (Algorithm 2). Recall the MWMS
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objective function as follows

inf
SK ,Gj ,H∈BM,SK

m∑
j=1

W 2
2 (Gj, P

j
nj

) +
d2
W2

(Gj,H)

m

where BM,SK =

{
Gj ∈ OK(Θ), H = (H1, . . . , HM) : supp(Gj) ⊆ SK ∀1 ≤ j ≤ m

}
.

We make the following remarks regarding the initializations and updates of Algo-

rithm 2:

(i) An efficient way to initialize global set S
(0)
K =

{
a

(0)
1 , . . . , a

(0)
K

}
∈ Rd×K is to

perform K-means on the whole data set Xj,i for 1 ≤ j ≤ m, 1 ≤ i ≤ nj;

(ii) The updates a
(t+1)
j are indeed the solutions of the following optimization prob-

lems

inf
a
(t)
j

{ m∑
l=1

W 2
2 (G

(t)
l , P

l
n) +

m∑
l=1

W 2
2 (G

(t)
l , H

(t)
il

)

m

}
,

which is equivalent to find a
(t)
j to optimize

m
m∑
u=1

nj∑
v=1

T uj,v‖a(t)
j −Xu,v‖2

+
m∑
u=1

∑
v

Uu
j,v‖a(t)

j − h(t)
ij ,v
||2.

where T j is an optimal coupling of G
(t)
j , P j

n and U j is an optimal coupling of

G
(t)
j , H

(t)
ij

. By taking the first order derivative of the above function with respect

to a
(t)
j , we quickly achieve a

(t+1)
j as the closed form minimum of that function;

(iii) Updating the local weights of G
(t+1)
j is equivalent to updating G

(t+1)
j as the

atoms of G
(t+1)
j are known to stem from S

(t+1)
K .

Now, similar to Theorem 3.1 in the main text, we also have the following theoretical
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Algorithm 2 Multilevel Wasserstein Means with Sharing (MWMS)

Input: Data Xj,i, K, M .
Output: global set SK , local measures Gj, and elements Hi of H .

Initialize S
(0)
K =

{
a

(0)
1 , . . . , a

(0)
K

}
, elements H

(0)
i of H(0), and t = 0.

while S
(t)
K , G

(t)
j , H

(t)
i have not converged do

1. Update global set S
(t)
K :

for j = 1 to m do
ij ← arg min

1≤u≤M
W 2

2 (G
(t)
j , H

(t)
u ).

T j ← optimal coupling of G
(t)
j , P j

n (cf. Appendix A).

U j ← optimal coupling of G
(t)
j , H

(t)
ij

.
end for
for i = 1 to M do
h

(t)
i ← atoms of H

(t)
i with h

(t)
i,v as v-th column.

end for
for i = 1 to K do

mD ← m
m∑
u=1

ni∑
v=1

T ui,v +
m∑
u=1

∑
v 6=i

Uu
i,v.

a
(t+1)
i ←

(
m

m∑
u=1

ni∑
v=1

T ui,vXu,v+

m∑
u=1

∑
v

Uu
i,vh

(t)
ju,v

)
/mD.

end for
2. Update G

(t)
j for 1 ≤ j ≤ m:

for j = 1 to m do
G

(t+1)
j ← arg min

Gj :supp(Gj)≡S
(t+1)
K

W 2
2 (Gj, P

j
nj

)

+W 2
2 (Gj, H

(t)
ij

)/m.
end for
3. Update H

(t)
i for 1 ≤ i ≤M as Algorithm 1.

4. t← t+ 1.
end while
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guarantee regarding the behavior of Algorithm 2 as follows

Theorem C.1. Algorithm 2 monotonically decreases the objective function of the

MWMS formulation.

Proof. The proof is quite similar to the proof of Theorem 6.3.1. In fact, recall from

the proof of Theorem 6.3.1 that for any Gj ∈ Ekj(Θ) and H = (H1, . . . , HM) we

denote the function

f(G,H) =
m∑
j=1

W 2
2 (Gj, P

j
n) +

d2
W2

(Gj,H)

m

where G = (G1, . . . , Gm). Now it is sufficient to demonstrate for any t ≥ 0 that

f(G(t+1),H(t+1)) ≤ f(G(t),H(t)).

where the formulation of f is similar as in the proof of Theorem 6.3.1. Indeed, by the

definition of Wasserstein distances, we have

E = mf(G(t),H(t)) =
m∑
u=1

∑
j,v

mT uj,v‖a(t)
j −Xu,v‖2 + Uu

j,v‖a(t)
j − h(t)

iu,v
‖2.

Therefore, the update of a
(t+1)
i from Algorithm 2 leads to

E ≥
m∑
u=1

∑
j,v

mT uj,v‖a(t+1)
j −Xu,v‖2

+ Uu
j,v‖a(t+1)

j − h(t)
iu,v
‖2

≥ m

m∑
j=1

W 2
2 (G

(t)′

j , P j
n) +

m∑
j=1

W 2
2 (G

(t)′

j , H
(t)
ij

)

≥ m
m∑
j=1

W 2
2 (G

(t)′

j , P j
n) +

m∑
j=1

d2
W2

(G
(t)′

j ,H(t))

= mf(G′
(t)
,H(t))
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where G′(t) = (G
(t)′

1 , . . . , G
(t)′
m ), G

(t)′

j are formed by replacing the atoms of G
(t)
j by

the elements of S
(t+1)
K , noting that supp(G

(t)′

j ) ⊆ S(t+1)
K as 1 ≤ j ≤ m, and the

second inequality comes directly from the definition of Wasserstein distance. Hence,

we obtain

f(G(t),H(t)) ≥ f(G′
(t)
,H(t)). (6.14)

From the formation of G
(t+1)
j as 1 ≤ j ≤ m, we get

m∑
j=1

d2
W2

(G
(t+1)
j ,H(t)) ≤

m∑
j=1

d2
W2

(G
(t)′

j ,H(t)).

Thus, it leads to

f(G′
(t)
,H(t)) ≥ f(G(t+1),H(t)). (6.15)

Finally, from the definition of H
(t+1)
1 , . . . , H

(t+1)
M , we have

f(G(t+1),H(t)) ≥ f(G(t+1),H(t+1)). (6.16)

By combining (6.14), (6.15), and (6.16), we arrive at the conclusion of the theorem.

6.10 Appendix D

In this appendix, we offer details on the data generation processes utilized in the

simulation studies presented in Section 6.5 in the main text. The notions of m,n, d,M

are given in the main text. Let Ki be the number of supporting atoms of Hi and

kj the number of atoms of Gj. For any d ≥ 1, we denote 1d to be d dimensional

vector with all components to be 1. Furthermore, Id is an identity matrix with d
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dimensions.

Comparison metric (Wasserstein distance to truth)

W :=
1

m

m∑
j=1

W2(Ĝj, Gj) + dM(Ĥ ,H)

where Ĥ := {Ĥ1, . . . , ĤM}, H := {H1, . . . , HM} and dM(Ĥ,H) is a minimum-

matching distance Tang et al. [2014], Nguyen [2015]:

dM(Ĥ ,H) := max{d(Ĥ ,H), d(H , Ĥ)}

where

d(Ĥ ,H) := max
1≤i≤M

min
1≤j≤M

W2(Hi, Ĥj).

Multilevel Wasserstein means setting The global clusters are generated as fol-

lows:

means for atoms µi := 5(i− 1), i = 1, . . . ,M.

atoms of Hi : φij ∼ N (µi1d, Id), j = 1, . . . , Ki.

weights of atoms: πi ∼ Dir(1Ki).

Let Hi :=

Ki∑
j=1

πijδφij .
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For each group j = 1, . . . ,m, generate local measures and data as follows:

pick cluster label zj ∼ Unif({1, . . . ,M}).

mean for atoms : τji ∼ Hzj , i = 1, . . . , kj.

atoms of Gj : θji ∼ N (τji, Id), i = 1, . . . , kj.

weights of atoms pj ∼ Dir(1kj).

Let Gj :=

kj∑
i=1

pjiδθji .

data mean µi ∼ Gj, i = 1, . . . , nj.

observation Xj,i ∼ N (µi, Id).

For the case of non-constrained variances, the variance to generate atoms θji of Gj is

set to be proportional to global cluster label zj assigned to Gj.

Multilevel Wasserstein means with sharing setting

The global clusters are generated as follows:

means for atoms µi := 5(i− 1), i = 1, . . . ,M.

atoms of Hi : φij ∼ N (µi1d, Id), j = 1, . . . , Ki.

weights of atoms πi ∼ Dir(1Ki).

Let Hi :=

Ki∑
j=1

πijδφij .

For each shared atom k = 1, . . . , K:

pick cluster label zk ∼ Unif({1, . . . ,M}).

mean for atoms : τk ∼ Hzk .

atoms of SK : θk ∼ N (τk, Id).
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For each group j = 1, . . . ,m generate local measures and data as follows:

pick cluster label z̃j ∼ Unif({1, . . . ,M}).

select shared atoms sj = {k : zk = z̃j}.

weights of atoms psj ∼ Dir(1|sj |); Gj :=
∑
i∈sj

piδθi .

data mean µi ∼ Gj, i = 1, . . . , nj.

observation Xj,i ∼ N (µi, Id).

For the case of non-constrained variances, the variance to generate atoms θi of Gj

where i ∈ sj is set to be proportional to global cluster label z̃j assigned to Gj.

Three-stage K-means First, we estimate Gj for each group 1 ≤ j ≤ m by using

K-means algorithm with kj clusters. Then, we cluster labels using K-means algorithm

with M clusters based on the collection of all atoms of Gjs. Finally, we estimate the

atoms of each Hi via K-means algorithm with exactly L clusters for each group of local

atoms. Here, L is some given threshold being used in Algorithm 1 in Section 6.3.1 in

the main text to speed up the computation (see final remark regarding Algorithm 1

in Section 6.3.1). The three-stage K-means algorithm is summarized in Algorithm 3.
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Algorithm 3 Three-stage K-means

Input: Data Xj,i, kj, M , L.
Output: local measures Gj and global elements Hi of H .
Stage 1
for j = 1 to m do
Gj ← kj clusters of group j with K-means (atoms as centroids and weights as
label frequencies).

end for
C ← collection of all atoms of Gj.
Stage 2
{D1, . . . , DM} ← M clusters from K-means on C.
Stage 3
for i = 1 to M do
Hi ← L clusters of Di with K-means (atoms as centroids and weights as label
frequencies).

end for
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CHAPTER VII

Conclusions and suggestions

In this thesis, we have investigated several fundamental challenges of mixture and

hierarchical models. Our main contributions can be summarized briefly as follows:

• A systematic understanding of statistical efficiency of parameter estimation in

finite mixture models.

• Robust estimators of mixing measure in finite mixture models.

• Efficient joint optimization approaches to cluster complex multilevel data.

In the following sections, we will outline several directions that we would like to

pursue in the future

7.1 Statistical efficiency, computational complexity, and high

dimensionality of mixture and hierarchical models

7.1.1 Statistical efficiency of parameter estimation

In Chapter II, Chapter III, and Chapter IV, the systematic understanding of

statistical efficiency regarding parameter estimation is developed thoroughly. It in-

dicates crucial steps toward the development of more efficient model-based inference
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procedures. In particular, this raises the following directions at both inference and

modeling questions that we intend to pursue in the future

(1) Methods based on likelihood-based penalization techniques were shown to be

quite effective. In many cases, parameter values residing in the vicinity of re-

gions of high singularity levels should be hard to estimate efficiently. Developing

a penalization technique generalized to regularize the estimates toward subsets

containing singularity points of smaller levels is an interesting problem we hope

to address.

(2) Suitable choices of Bayesian prior have been proposed to induce favorable pos-

terior contraction behavior for overfitted finite mixtures. It is of significant in-

terest to develop an appropriate prior for the mixture model parameters given

our knowledge of singular points residing in the parameter space.

(3) Reparametrization is an effective technique that can be employed to combat

singularities present in the class of skewed distributions [Hallin and Ley, 2014].

It would be interesting to study if such reparametrization technique can be

systematically developed for the mixture models as well.

7.1.2 Computational complexity of parameter estimation

The improved understanding of statistical efficiency of parameter estimation in

finite mixture models carries notable consequences on the computational complexity

of parameter estimation procedures, including both optimization and sampling based

methods. More specifically, the non-uniform nature of the singularity levels reveals a

complex structure of the likelihood function: regions in parameter space that carry

low singularity levels may observe a relatively high curvature of the likelihood sur-

face, while high singularity levels imply a “flatter” likelihood surface along a certain

subspace of the parameters. Given such interpretation, one of the important direc-
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tions is to explore the convergence behaviors of EM algorithm in Gaussian mixture

models when both the location and covariance parameter are of consideration. Cur-

rent studies in the literature demonstrated that when only the location parameter

is of interest, a suitable initialization in the neighborhood of global maximizers will

guarantee the geometric convergence of EM algorithm to these maximizers [Balakr-

ishnan et al., 2017]. It is our view that the insights from these studies along with our

improved understanding of geometric structures of the model’s parameter space will

shed light on the performance of EM algorithm under these models.

7.1.3 Efficient models in high dimensional clustering

Apart from the future directions arising from the previous chapters, the general

themes of our future research are to move beyond mixture models toward more chal-

lenging regimes with several promising applications in practice. In particular, high

dimensional data with grouping structures, such as gene microarray data, are om-

nipresent nowadays. Empirical studies suggested that only a few dimensions in such

data are actually influential while the remaining dimensions usually do not contain

important information. Motivated by the fact that traditional clustering methods are

not effective to capture such phenomena in big data, some models like regularized K-

means or mixture models [Pan and Shen, 2007, Sun et al., 2012] have been proposed

recently in the literature to address this challenge. Nevertheless, these models used

very strong assumptions regarding data structures; fitting them is computationally

costly or even infeasible when the dimension and the sample size are rather large.

Given the significant impacts of this problem in practice, our principal goals in this

research direction are to develop efficient and scalable models such that they perform

sufficiently well with various settings of high dimensional data.
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7.1.4 Computational complexity of MCMC methods

Sampling techniques based on MCMC have been used extensively in machine

learning and statistics applications in the recent years due to the huge advancement

in high performance computing. In Bayesian statistics, various MCMC algorithms

have been proposed to keep up with increasingly complex structures of hierarchical

models. However, current studies demonstrated that certain MCMC algorithms tend

to have very slow mixing times, a criterion used to measure the number of iterations

needed for the posterior distribution to be within some small distance of the sta-

tionary distribution. For instance, the collapsed Gibbs sampling algorithm for the

posterior distribution of group labels in Gaussian mixture models was shown to have

its mixing times at least of some large power of the sample size [Tosh and Dasgupta,

2014]. Given these computational challenges, our future goals are two-fold: we intend

first to explore the computational complexity of contemporary MCMC algorithms in

hierarchical models, and secondly to utilize these understandings to develop fast and

scalable alternative MCMC algorithms for these models with rapid mixing times.

7.2 Semi-parametric inference of finite mixtures of regres-

sion models

Finite mixtures of regression models are utilized when regression data are believed

to belong to distinct unobserved categories. One simple instance of such models is

when each group shares the same regression relationship but the error distributions

among categories are different. Due to their great modeling flexibility, these models

have been used extensively in machine learning applications, market segmentation,

and social sciences. Nevertheless, most of the previous works with these models

in the literature tend to rely on parametric assumptions about dependence of the

parameters on covariates, which are usually not realistic. To address these limitations,
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an important direction is to explore the semiparametric inference with finite mixture

of regression models. This approach had been considered by Huang and Yao [2012]

where they made use of kernel regression to obtain parameter estimation; however,

their work was only restricted to the univariate setting of covariates. Our current

directions are to develop more computationally efficient semiparametric models that

can be applied to much broader settings of data. Last but not least, we also intend to

extend our current insights of semiparametric inference to more challenging regimes

of finite mixture of regression models, such as the high dimensional settings when the

number of covariates are much larger than the sample size.

7.3 Statistical applications of optimal transport theory

Given the promising applications of optimal transport to complex multi-level data

in Chapter VI, there are two main directions that we would like to pursue in the future

(1) Firstly, our current work with multi-level data in Chapter VI has focused mostly

on moderate size settings. One worthy yet challenging direction is to scale up

our approach to million data points or more. Secondly, we have only consid-

ered continuous data; it is of interest to extend our formulation of multilevel

Wasserstein means to discrete data. Thirdly, our method requires knowledge

of the numbers of clusters both in local and global clustering. When these

numbers are unknown, it seems reasonable to incorporate penalty on the model

complexity. Fourthly, our formulation does not directly account for the “noise”

distribution away from the (Wasserstein) means. To improve the robustness,

it may be desirable to make use of the first-order Wasserstein metric instead

of the second-order one. Finally, we are interested in extending our approach

to richer settings of hierarchical data, such as one when group level-context is

available. Another interesting direction is to incorporate the optimal transport
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perspective to more complex practical settings of multi-centers data, such as

those with center-level contexts.

(2) Current advances in clustering analysis witness valuable statistical insights

about the geometric structures of latent mixing measures arising from hierar-

chical models based on Wasserstein metric. In particular, the variation of like-

lihood function in mixture models can be captured effectively by the changes in

Wasserstein neighborhood or the borrowing strength phenomenon in hierarchi-

cal Dirichlet Process models can be analyzed under optimal transport perspec-

tive [Nguyen, 2016]. Motivated by such fruitful connections, there has been a

growing interest of extending the understandings of Wasserstein metric to other

statistical settings, such as a multi-label classification problem with Wasserstein

loss function [Frogner et al., 2015]. Our ultimate goals under this direction

concern with exploring the methodological and algorithmic aspects of optimal

transport to improve statistical and computational efficiencies of several state

of the art models in statistics. We believe that it will be an extraordinarily

fertile area with potentially numerous applications in the future.
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