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 Abstract 

Hydrolysis within the vacuole in yeast and lysosome in mammals is required for the 

degradation and recycling of a vast array of substrates. In humans, defects in lysosomal 

hydrolysis and efflux contribute to a class of diseases referred to as lysosomal storage disorders 

that affect 1/8000 live births. Despite the importance of these processes, many of the proteins 

and regulatory mechanisms involved in hydrolysis and efflux are poorly understood, especially 

those involved in proteolysis.  

 Using the yeast Saccharomyces cerevisiae as a model, I employed a combination of 

molecular and cellular biological techniques to characterize a previously overlooked homolog of 

the protease Prc1 (carboxypeptidase Y), Ybr139w. I demonstrated that these two homologous 

serine carboxypeptidases are required for proper functioning of the vacuole; cells lacking Prc1 

and Ybr139w exhibit defects in zymogen activation, amino acid recycling, and degradation of 

autophagic bodies delivered to the vacuole via macroautophagy (hereafter autophagy). Based on 

its function in the terminal steps of autophagy, I have proposed that Ybr139w be renamed as 

Atg42. 

This work expands our understanding of vacuolar proteases and encourages improved 

characterization of these proteins together with potential homologs. Such an undertaking will 

enable further dissection of the mechanisms of proteolytic activation of zymogens and the 

terminal steps of autophagy, including lysis of the autophagic body, degradation of the cargo, 

and efflux of the resultant macromolecules.  
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Chapter I 

Vacuolar hydrolysis and efflux: Current knowledge and unanswered questions1 

Introduction 

The yeast vacuole (lysosome in humans) is a key center for metal ion homeostasis, 

nutrient storage, and cellular detoxification (Li and Kane, 2009). Perhaps its best-known function 

is as a degradative organelle; in yeast, the vacuole accounts for approximately 40% of protein 

degradation during growing conditions, which increases to 85% when cells are starved of 

nutrients (Teichert et al., 1989). Substrates destined for the vacuole can be delivered there by a 

variety of trafficking mechanisms including the vacuolar protein sorting pathway, endocytosis, 

the cytoplasm-to-vacuole targeting (Cvt) pathway, and direct transport across the vacuole 

membrane (Li and Kane, 2009; Feyder et al., 2015). A major trafficking pathway whereby 

proteins and other substrates are delivered to the vacuole during stress conditions is autophagy 

(Wen and Klionsky, 2016). A detailed review of the mechanism of autophagy in mammals is 

presented in chapter II. Here, I will provide a brief overview of the process in Saccharomyces 

cerevisiae.  

In yeast, there are two primary types of autophagy, selective and non-selective. Either of 

these processes can occur through microautophagy or macroautophagy. Microautophagy 

involves internalization of cargo into the vacuolar lumen through invagination or protrusion of 

the vacuolar limiting membrane. The membrane scissions off into the vacuolar lumen, after 

which the resultant intralumenal vesicles are lysed and the cargo degraded (Reggiori and 

                                                 
1 A modified version of this chapter has been submitted for publication in Autophagy. 
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Klionsky, 2013; Wen and Klionsky, 2016). Macroautophagy, the more extensively studied form 

of autophagy, is characterized by de novo formation of a double-membrane structure that 

encapsulates cargo away from the vacuole. Under conditions of nutrient starvation, 

macroautophagy, hereafter autophagy, is induced at the perivacuolar phagophore assembly site 

(PAS) by the Atg1 kinase complex (Suzuki et al., 2001; Mizushima, 2010). Following induction, 

nucleation and membrane expansion lead to formation of a transient double-membrane 

phagophore that forms de novo and gradually expands to surround cargo. These processes 

involve the transmembrane protein Atg9 and phosphatidylinositol 3-kinase (PtdIns3K) complex 

I, as well as two ubiquitin-like (Ubl) conjugation systems that include the Ubl proteins Atg12 

and Atg8 (Reggiori and Klionsky, 2013; Wen and Klionsky, 2016). 

Eventually, the ends of the expanding phagophore join to form a completed double-

membrane vesicle called an autophagosome. The mature autophagosome travels to the vacuole, 

where the outer membrane of the autophagosome fuses with the limiting membrane of the 

vacuole, releasing the cargo bound by the autophagosome inner membrane into the vacuolar 

lumen, where it is now termed an autophagic body. Once inside the vacuole, the autophagic body 

must be lysed, its contents degraded, and the breakdown products transported back into the 

cytoplasm for reuse (Reggiori and Klionsky, 2013). 

The vast majority of autophagy research has focused on induction, regulation, membrane 

recruitment and autophagosome formation, cargo recognition, and fusion of autophagosomes 

with the vacuole, whereas the intravacuolar steps of degradation and efflux of substrates have 

been largely neglected. Although generally glossed over in discussions of autophagic processes, 

these terminal events are critically important for completion of autophagy and maintenance of 

cellular health. In humans, there is an entire class of more than fifty diseases, the lysosomal 
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storage disorders, involving accumulation of different substrates in the lysosome resulting from 

defects in lysosomal hydrolases and their activators as well as vacuolar transporters (Greiner-

Tollersrud et al., 2005; Boustany, 2013). Altogether, lysosomal storage disorders occur in 

approximately 1/8000 live births (Meikle et al., 1999; Poorthuis et al., 1999), varying widely in 

age of onset, severity, substrate(s) accumulated, and organ system(s) affected.  

In this chapter, I will discuss several major classes of vacuolar substrates, current 

knowledge regarding their degradation and efflux, effects of defects in these processes, and 

unanswered questions that require further study.  

Nucleic Acids 

The vast majority of studies on RNA degradation have focused on nuclear and 

cytoplasmic RNA decay and quality control pathways. However, RNA degradation also occurs 

in the vacuole in an autophagy-dependent manner, which contributes to cellular RNA 

homeostasis and regulation of translational fidelity (Frankel et al., 2017). T2 RNases are a 

highly-conserved family of endoribonucleases that cleave single-stranded RNA, resulting in 

mono- or oligonucleotides with a terminal 3' phosphate group (Irie, 1999). To date, Rny1 is the 

only known vacuolar RNase (MacIntosh et al., 2001). This enzyme converts RNA in the vacuole 

to 3' mononucleotides, and cells lacking Rny1 accumulate free RNA in the vacuole following 

autophagy induction by nitrogen starvation (Huang et al., 2015). The vacuolar phosphatase Pho8 

then converts the 3' mononucleotides into nucleosides, which are released into the cytoplasm for 

further processing (Huang et al., 2015). Similar to several autophagy-related proteins, Rny1 

levels increase significantly during nitrogen starvation, as do Pho8 levels, albeit not significantly 

(Müller et al., 2015).  
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Various animal studies have highlighted the physiological importance of RNA 

degradation in the context of neurodegenerative diseases. Loss of the zebrafish ortholog of Rny1, 

Rnaset2, leads to accumulation of rRNA in neuronal lysosomes (Haud et al., 2011). Loss-of-

function mutations in the human ortholog, RNASET2, are associated with the neurological 

disease cystic leukoencephalopathy (Henneke et al., 2009). 

Cells lacking the two major vacuolar proteases, Pep4 (proteinase A) and Prb1 (proteinase 

B), fail to display an increase in nucleoside levels upon nitrogen starvation (Huang et al., 2015). 

As will be discussed later in this chapter, Pep4 and Prb1 are required for proteolytic processing 

and activation of several vacuolar hydrolases, including Pho8 (Klionsky and Emr, 1989), as well 

as lysis of autophagic bodies within the vacuole (Takeshige et al., 1992). It is unknown whether 

it is the failure to lyse autophagic bodies, failure to activate Pho8, or both that accounts for the 

impaired RNA degradation in pep4∆ prb1∆ cells. In yeast, it is still unclear which RNA species 

undergo autophagy-dependent degradation. Also unknown is the efflux mechanism for the 

resultant nucleosides and the identity of any transporter(s) involved in this process. The 

nucleoside transporter Fun26 is likely involved, due to its localization to the vacuolar membrane 

(Vickers et al., 2000; Wiederhold et al., 2009; Lu and Lin, 2011; Boswell-Casteel et al., 2014). 

Lipids 

 Non-polar, or “neutral”, lipids serve a variety of purposes in eukaryotic cells; they can be 

used as precursors for membrane biogenesis and participate in energy production during 

starvation (Barbosa and Siniossoglou, 2017). Cells defective in the production of neutral lipids 

exhibit a block in autophagy at the early stages of autophagosome formation (Li et al., 2015; 

Shpilka et al., 2015). In the cytoplasm, neutral lipids are stored within specialized organelles 

called lipid droplets (LDs) that can also sequester toxic fatty acids that may be harmful to cells. 
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LDs consist of a phospholipid monolayer and associated proteins surrounding a hydrophobic 

core of neutral lipids, mostly consisting of triacylglycerol (TAG) and steryl esters (SE) (Wang, 

2015; Barbosa and Siniossoglou, 2017). Lipids can be liberated from LDs in several ways, 

including both a cytoplasmic process and an autophagy-related process called lipophagy. 

 In mammalian cells, lipophagy occurs through macroautophagy (Singh et al., 2009). In 

yeast, however, lipophagy occurs through microautophagy and can be induced in response to 

nitrogen starvation (van Zutphen et al., 2014), stationary phase (Wang et al., 2014), and lipid 

imbalances resulting from inhibition of phosphatidylcholine biosynthesis (Vevea et al., 2015). 

Lipophagy induced by nitrogen starvation or stationary phase requires the core autophagy 

machinery (van Zutphen et al., 2014; Wang et al., 2014). The role of the autophagic machinery 

in lipid stress-induced lipophagy is unclear, but ATG7 at least is not required (Vevea et al., 

2015). Once inside the vacuole, turnover of LDs is largely dependent on the lipase Atg15 (van 

Zutphen et al., 2014).  

Studies in mice and humans have indicated that functional lipophagy is important for 

regulating fat content in the liver. For example, in mice, lipophagy is involved in the generation 

of free fatty acids to be used in very-low-density lipoprotein production. Furthermore, there is 

strong correlative evidence linking autophagy to the prevention of nonalcoholic fatty liver 

disease in humans (Martinez-Lopez and Singh, 2015).  

Despite the importance of lipophagy, much remains unknown about the terminal steps 

within the vacuole. As mentioned above, vacuolar lipase activity in yeast is not completely 

abrogated in Atg15-deficient cells (van Zutphen et al., 2014). What accounts for this residual 

activity? Are there other as yet unidentified vacuolar lipases? Once broken down, how are lipids 

then recycled? 
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In addition to these broader issues, many questions still remain about Atg15 itself. Atg15 

is a vacuolar phospholipase that has activity primarily towards phosphotidylserine and, to a 

lesser extent, cardiolipin and phosphatidylethanolamine (Epple et al., 2001; Ramya and 

Rajasekharan, 2016). As previously mentioned, Atg15 is required for efficient turnover of LDs 

within the vacuole (van Zutphen et al., 2014). Atg15 is also required for the breakdown of 

autophagic and Cvt bodies (the single-membrane intravacuolar vesicles that form via the Cvt 

pathway) (Epple et al., 2001; Teter et al., 2001). These functions of Atg15 are critical for cell 

survival, as cells lacking Atg15 lose viability within six days of nitrogen starvation, whereas 

wild-type cells maintain robust viability at this time point (Teter et al., 2001). The regulation of 

Atg15 activity is poorly understood, but proteolytic processing is hypothesized to play a role in 

Atg15 activation, similar to many other vacuolar hydrolases (Klionsky et al., 1990; Teter et al., 

2001). If and how Atg15 is proteolytically activated in the vacuole remains to be elucidated.  

Polyphosphate 

 Due to its structural incorporation into nucleic acids and phospholipids as well as roles in 

protein modification and signal transduction, phosphorus is an essential element for sustaining 

life (Yang et al., 2017). In yeast, phosphorus is primarily stored as chains of inorganic 

polyphosphate (polyP), most of which is retained in the vacuole (Kornberg, 1999; Saito et al., 

2005; Gerasimaitė and Mayer, 2016; Yang et al., 2017). Aside from acting as a phosphate 

storage mechanism, polyP functions in metal chelation in yeast, whereas in mammals it serves 

diverse functions ranging from activation of inflammatory responses and blood clotting to 

regulation of bone calcification (Gerasimaitė and Mayer, 2016). 

In yeast, polyP is simultaneously synthesized and translocated across the vacuolar 

membrane by the VTC (vacuolar transporter chaperone) complex, which consists of two 
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proposed regulatory subunits, Vtc2 and Vtc3, as well as Vtc1 and the catalytic subunit Vtc4 

(Cohen et al., 1999; Gerasimaitė et al., 2014; Gerasimaitė and Mayer, 2016). The VTC complex 

can form two distinct subcomplexes; the first consists of Vtc4, Vtc3, and Vtc1, and localizes 

primarily to the vacuolar membrane, whereas the second, consisting of Vtc4, Vtc2, and Vtc1, 

localizes to the cell periphery, but can be found at the vacuole during phosphate starvation 

(Gerasimaitė and Mayer, 2016). Vtc4 synthesizes polyP from ATP in a metal ion-dependent 

manner, with Mn2+ being the most effective cofactor. This enzyme is highly stimulated by 

inorganic pyrophosphate (PPi), which is also thought to be a primer for polyP polymerization 

(Hothorn et al., 2009). The subunits of the VTC complex form a channel that allows for 

translocation of polyP across the membrane into the vacuolar lumen in a process dependent on a 

proton gradient established by the vacuolar-type proton-translocating ATPase (V-ATPase) 

(Hothorn et al., 2009; Gerasimaitė et al., 2014). A fifth subunit of the VTC complex, Vtc5, was 

recently characterized; overexpression of Vtc5 enhances polyP synthesis, whereas deletion of the 

corresponding gene decreases it (Desfougères et al., 2016). The mechanistic details of how Vtc5 

regulates polyP synthesis remain to be determined. 

PolyP within the vacuole can be broken down by the polyphosphatase Ppn1 (Gerasimaitė 

and Mayer, 2016). Expression of PPN1 increases during phosphate starvation (Ogawa et al., 

2000). Ppn1 is delivered to the vacuole via the multivesicular body (MVB) pathway, after which 

the N-terminal transmembrane domain is cleaved, releasing the soluble enzyme into the vacuole 

lumen (Reggiori and Pelham, 2001). Activation of Ppn1 is dependent on vacuolar proteases and 

involves both N-terminal and C-terminal cleavage events (Sethuraman et al., 2001; Shi and 

Kornberg, 2005). Following release from polyP chains, inorganic phosphate (Pi) is then exported 

from the vacuole into the cytoplasm (Gerasimaitė and Mayer, 2016). It is suggested that the 
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phosphate transporter Pho91 is responsible for this activity, as it localizes to the vacuole 

membrane (Hürlimann et al., 2007). 

Extracts from cells lacking Ppn1 and the other major yeast polyphosphatase, Ppx1, which 

localizes to the cytosol and mitochondria, still have detectable polyphosphatase activity (Lichko 

et al., 2008; Gerasimaitė and Mayer, 2016). Very recently, Gerasimaitė and Mayer investigated 

Ynl217w, a previously uncharacterized vacuolar protein (Huh et al., 2003), and suggested that it 

may be the remaining vacuolar polyphosphatase, thus the name Ppn2 was proposed. Purified 

vacuolar lysates from cells lacking Vtc4, Ppn1, and Ppn2 have no phosphatase activity in vitro 

(Gerasimaitė and Mayer, 2017). Ppn2 was shown to be an endopolyphosphatase delivered to the 

vacuole via the MVB pathway (Gerasimaitė and Mayer, 2017). 

No Ppn1 activity was detected in cells lacking Pep4, Prb1, and a third major vacuolar 

protease, Prc1 (carboxypeptidase Y) (Sethuraman et al., 2001), but as will be discussed later in 

this chapter, these three proteases are involved in activation of several other zymogens. Which 

vacuolar protease(s) are directly involved in the activation of Ppn1? Is Ppn2 also proteolytically 

activated and, if so, how? Also, polyP is a storage molecule localized to the same cellular 

compartment as the enzymes that disassemble it, Ppn1 and Ppn2. How are these phosphatases 

regulated to only be active when appropriate? 

Several connections between phosphate metabolism and autophagy have been suggested 

that require further study. It has been shown that nitrogen starvation increases Vtc1, Vtc3, and 

Vtc4 localization to the vacuole membrane and that these proteins are required for 

microautophagy (Uttenweiler et al., 2007). How the VTC complex directly participates in 

microautophagy remains to be determined, as well as how this may or may not connect to 

phosphate levels and metabolism. It has recently been demonstrated that phosphate starvation 
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can induce autophagy, albeit to a much lower level than autophagy induced by nitrogen or 

carbon starvation (Yokota et al., 2017). Does polyphosphate serve as a phosphate source under 

these conditions? 

Carbohydrates  

 Several types of carbohydrates, including oligosaccharides and storage carbohydrates, 

can undergo vacuolar degradation. Ams1 (α-mannosidase) is a peripheral membrane protein 

associated with the lumenal face of the vacuole membrane (Van der Wilden et al., 1973; 

Opheim, 1978; Yoshihisa et al., 1988; Yoshihisa and Anraku, 1990). In the vacuole, it is 

involved in the degradation of free oligosaccharides generated as a result of newly synthesized, 

but misfolded, glycoproteins undergoing ER-associated protein degradation (ERAD) (Chantret et 

al., 2003). Ams1 expression increases during both nitrogen and glucose starvation (Müller et al., 

2015; Umekawa et al., 2016), similar to many other hydrolases and autophagy-related genes 

(Van Den Hazel et al., 1996; Cebollero and Reggiori, 2009). Expression also increases in 

response to treatment of cells with rapamycin, a TORC1 inhibitor, which indicates involvement 

of the TORC1 signaling pathway in the regulation of Ams1 levels (Umekawa et al., 2016). The 

reason behind this TORC1-dependent regulation is currently unclear, but it suggests that Ams1 

may have a role in digestion of glycoproteins during autophagic recycling, as TORC1 is also a 

repressor of autophagy (Reggiori and Klionsky, 2013).  

S. cerevisiae can store glucose as either trehalose or glycogen. Trehalose is a glucose 

disaccharide that accumulates during entry into stationary phase or in nutrient-poor conditions 

(Lillie and Pringle, 1980). It has many intracellular functions; in addition to serving as a source 

of carbon and energy, trehalose can protect cells from stresses including desiccation, temperature 

extremes, and oxidative and osmotic stress (Elbein et al., 2003; Eleutherio et al., 2015). 
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Trehalose can be degraded in the cytosol by the neutral trehalase Nth1 or in the vacuole by the 

acid trehalase Ath1 (François and Parrou, 2001). Ath1 is a resident vacuolar protein and has 

optimal activity under acidic pH (Keller et al., 1982; Mittenbühler and Holzer, 1988; Huang et 

al., 2007); however, Ath1 has also been detected at the cell periphery (Jules et al., 2004; He et 

al., 2009). Mutations in ATH1 lead to higher levels of intracellular trehalose and increased 

resistance to stresses such as dehydration, freezing, and toxic levels of ethanol (Kim et al., 1996), 

as well as an inability to grow using trehalose as a carbon source (Nwaka et al., 1996).  

 Glycogen is a larger polymer of extensively-branched glucose chains (François and 

Parrou, 2001; Wilson et al., 2010). When nutrients such as carbon, nitrogen, phosphorous, or 

sulfur are depleted, glycogen is synthesized in the cytoplasm from glucose donated from UDP-

glucose molecules (Lillie and Pringle, 1980; François and Parrou, 2001). Glycogen synthesis is 

regulated by many of the same signaling pathways as autophagy. Snf1 and Pho85, which are 

positive and negative regulators of autophagy, respectively (Wang et al., 2001), also exert the 

same types of control on glycogen synthesis (François and Parrou, 2001). Furthermore, 

inhibition of TORC1 by rapamycin increases glycogen synthesis (Barbet et al., 1996), and cells 

lacking Tor1 hyperaccumulate glycogen (Wilson et al., 2002). 

 Glucose can be liberated from glycogen via two distinct mechanisms. The first occurs in 

the cytoplasm, where the glycogen phosphorylase Gph1 releases glucose-1-phosphate from the 

ends of the glycogen chains and the debranching enzyme, Gdb1, removes glucose at the branch 

points (Hwang et al., 1989; Teste et al., 2000). The second glycogen degradation pathway occurs 

in the vacuole; the vacuolar glucoamylase Sga1 releases glucose from glycogen by hydrolysis 

(Colonna and Magee, 1978; Yamashita and Fukui, 1985; Pugh et al., 1989). Cells lacking Sga1 

show decreased glycogen degradation in late stationary phase (Wang et al., 2001).  
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Degradation of vacuolar/lysosomal glycogen stores is crucial in maintaining cell health. 

In mice lacking the lysosomal α-glucosidase (GAA), glycogen overaccumulates in lysosomes in 

multiple muscle groups (Fukuda et al., 2006). In humans, mutation of GAA leads to Pompe 

disease (glycogen storage disease type II); the infantile form, which is most severe, is 

characterized by cardiomegaly, hypotonia, and respiratory distress, and life expectancy is less 

than 1 year of age (van den Hout et al., 2003; Kishnani et al., 2006). 

 It is unclear why there are two distinct pools of glycogen and how glycogen is 

transported into the vacuole, but it is suggested that autophagy has a role in glycogen transport 

and storage in the vacuole, as atg1∆ cells have reduced glycogen storage (Wang et al., 2001). A 

model has been proposed whereby some of the glycogen synthesized in the cytoplasm is 

transported by autophagy to the vacuole for storage, where it is protected from cytoplasmic 

degradation by Gph1 and Gdb1. Later in starvation, vacuolar glycogen can be degraded by Sga1 

(Wang et al., 2001). This model is highly speculative and warrants extensive testing. If vacuolar 

glycogen is delivered via autophagy, does this occur in a selective or non-selective manner? If it 

is selective, what are the receptor and adaptor protein(s) involved in cargo recognition? 

Additionally, what is the nutritional or intracellular cue to trigger degradation of the vacuolar 

pool of glycogen? 

 Many questions about vacuolar glycogen storage, degradation, and efflux remain. As 

with polyP storage and degradation, both glycogen and its degradative enzyme, Sga1, are 

localized in the same intracellular compartment. How is Sga1 activity regulated so that vacuolar 

glycogen is only degraded at the appropriate time? Does Sga1 undergo proteolytic activation by 

proteases? In a screen for mutants affecting glycogen storage, deletion of 11 of the 17 V-ATPase 

subunits and assembly factors that were screened results in elevated glycogen accumulation, 



12 

indicating that vacuolar acidification is required for the degradation of glycogen (Wilson et al., 

2002), but the reason for this is currently unknown. 

Additionally, how glucose or mannose exit the vacuole is unclear, as no vacuolar hexose 

exporter has been identified. Ybr241c may be worth investigating in this regard, as it is a 

putative transporter of the sugar porter family that localizes to the vacuole membrane (Huh et al., 

2003; Palma et al., 2007). 

Organelles 

 As discussed above, various smaller cargoes are delivered to the vacuole through 

autophagy. However, several types of selective autophagy can deliver larger portions of 

organelles to the vacuole. For example, mitochondria, peroxisomes, and ribosomes can be 

degraded by autophagic processes termed mitophagy, pexophagy, and ribophagy, respectively 

(Suzuki, 2013). Depending on the cargo and nurient conditions, this can occur by either 

macroautophagy or microautophagy. Numerous studies have been devoted to characterizing the 

induction of these processes, identification of target organelles by the autophagy machinery, and 

receptors and adaptors involved in phagophore engulfment of these organelles (Suzuki, 2013). 

However, how these organelles are broken down once inside the vacuole remains a mystery. 

Two illustrative examples I will discuss here are mitophagy and micronucleophagy (also termed 

piecemeal microautophagy of the nucleus). 

Under mitophagy-inducing conditions, such as nitrogen starvation following growth in 

non-fermentable carbon sources that induce proliferation of mitochondria, the cytosolic N 

terminus of the mitochondrial outer membrane protein Atg32 is phosphorylated (Kanki et al., 

2015). This facilitates its interaction with the cytosolic selective autophagy scaffold protein 

Atg11, which recruits the mitochondrion to the PAS (Aoki et al., 2011; Kanki et al., 2015). At 
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the PAS, phosphorylated Atg32 binds to Atg8, which, in its phosphatidylethanolamine-

conjugated form, associates with the expanding phagophore (Ichimura et al., 2000; Farré et al., 

2013). Following phagophore membrane expansion and autophagosome completion, the 

autophagosome travels to the vacuole and membrane fusion occurs, releasing the autophagic 

body with its mitochondrial cargo into the vacuolar lumen. 

As with all macroautophagic cargoes, whether selective or non-selective, breakdown of 

autophagic bodies must then occur to allow cargo access to the degradative environment of the 

vacuolar lumen. As previously mentioned, this process is defective in cells lacking Pep4, Prb1, 

or Atg15 (Takeshige et al., 1992; Epple et al., 2001; Teter et al., 2001). Perhaps not surprisingly 

then, autophagic bodies containing mitochondria are observed in cells lacking Pep4 and Prb1 

(Okamoto et al., 2009). Mitochondria are not the only selective autophagy cargo for which this is 

true. Peroxisomes also fail to be degraded in cells lacking Pep4 or Atg15 (Epple et al., 2003), 

presumably due to the autophagic body remaining intact.  

Mitophagy is an important process for degrading superfluous or damaged mitochondria 

(Kanki et al., 2015). During erythrocyte maturation in mammals, for example, mitophagy clears 

mitochondria from these cells as part of their proper development (Ashrafi and Schwarz, 2013). 

Reactive oxygen species (ROS) produced as a natural byproduct of mitochondrial oxidative 

phosphorylation cause damage to mitochondrial proteins and mtDNA. This damage then leads to 

increased ROS production, spawning a vicious cycle of oxidative damage and further 

mitochondrial dysfunction. Over time, this damage can contribute to aging, cancer, and 

neurodegenerative diseases (Wallace, 2005). One pathway by which dysfunctional mitochondria 

are identified and targeted for mitophagy in mammals involves the proteins PINK1/PARK6 and 

PRKN/PARK2/Parkin. In depolarized mitochondria, the mitochondrial protein PINK1 
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accumulates on the mitochondrial outer membrane. There, it is recognized by PRKN, an E3 

ubiquitin ligase, which then ubiquitinates several mitochondrial outer membrane proteins, 

targeting the damaged mitochondrion for degradation via mitophagy (Kanki et al., 2015; Pickrell 

and Youle, 2015). Mutations in PINK1 and PRKN are associated with autosomal recessive 

familial Parkinson disease (Kitada et al., 1998; Valente et al., 2004; Rodolfo et al., 2017), 

underscoring the important role of mitophagy in clearing dysfunctional mitochondria. 

Selective autophagy can also occur by microautophagy. Micronucleophagy is a 

microautophagic process and, as such, occurs by invagination of the vacuolar membrane rather 

than delivery to the vacuole by autophagosomes. In response to nitrogen or carbon starvation, 

non-essential portions of the nucleus become anchored to the vacuole membrane through 

interaction of the nuclear membrane protein Nvj1 with the vacuolar membrane protein Vac8 to 

form nucleus-vacuole (NV) junctions (Pan et al., 2000; Roberts et al., 2003; Kvam and Goldfarb, 

2007). Invagination of the vacuolar membrane and extrusion of the nucleus then occur at these 

sites before the membranes pinch off, releasing small vesicles into the vacuolar lumen, where 

they are degraded (Kvam and Goldfarb, 2007). Breakdown of these vesicles depends on Pep4 

and Atg15, and is also inhibited when cells are treated with the Prb1 inhibitor PMSF (Roberts et 

al., 2003; Krick et al., 2008), similar to the breakdown of autophagic bodies resulting from 

macroautophagy (Takeshige et al., 1992; Epple et al., 2001; Teter et al., 2001).  

Both of these examples of specific autophagy illustrate large gaps in our knowledge of 

the vacuolar degradation of specific organellar autophagic cargo. First, how does Atg15 

differentiate between microautophagic vesicles derived from the vacuolar membrane and the 

vacuolar membrane itself? What happens during microautophagy to mark the invaginated 

membrane as distinct from its source? Concerning both macroatuophagy and microautophagy, 
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which hydrolases are responsible for organellar breakdown following lysis of the autophagic 

bodies or microautophagic vesicles by Atg15? Does Atg15 also disrupt the organelle 

membranes, or are there other lipases involved? How are other non-lipid components of the 

organelles degraded and recycled within the vacuole? 

Proteins 

Introduction to proteases 

 The yeast vacuole is home to a vast array of proteases and peptidases. Whereas synthesis 

and trafficking of these enzymes have been extensively studied and characterized, this section 

will focus on what is known about their activities within the context of the vacuole.  

 The two major proteases in the vacuole are the endoproteases Pep4 and Prb1. Pep4 is an 

aspartyl endoprotease related to mammalian CTSD (cathepsin D) and cleaves preferentially 

between hydrophobic amino acids (Ammerer et al., 1986; Woolford et al., 1986; Dreyer, 1989). 

Prb1 is a subtilisin-like serine endoprotease with fairly broad substrate specificity similar to 

porcine chymotrypsin C and trypsin (Lenney et al., 1974; Kominami et al., 1981; Moehle et al., 

1987). During vegetative growth conditions, the vacuole is responsible for 40% of cellular 

proteolysis, which increases to 85% during nutrient starvation (Teichert et al., 1989). Pep4 and 

Prb1 are critical in this process through their own proteolytic activities, as well as through 

proteolytic activation of other proteases, which will be discussed below (Knop et al., 1993; Van 

Den Hazel et al., 1996). When both PEP4 and PRB1 are mutated, protein degradation is severely 

impaired during nitrogen starvation and sporulation is almost completely abolished (Zubenko 

and Jones, 1981; Teichert et al., 1989). 

Prc1 is a broad specificity vacuolar serine carboxypeptidase that prefers cleavage 

between hydrophobic residues and is thought to contribute to general protein/peptide turnover in 
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the vacuole; however, specific biological substrates have not been defined (Hayashi, 1976; 

Stennicke et al., 1996; Van Den Hazel et al., 1996; Jung et al., 1999; Huh et al., 2003). Ybr139w 

is a vacuolar protein that is predicted to be a serine carboxypeptidase based on a high degree of 

amino acid sequence similarity with Prc1 (Nasr et al., 1994; Huh et al., 2003; Baxter et al., 

2004). The substrate specificity of Ybr139w is currently unknown. Both Prc1 and Ybr139w are 

involved in the synthesis of phytochelatins, peptides that bind heavy metal ions (Wünschmann et 

al., 2007), suggesting that there may be at least some functional overlap between these two 

proteins and that Ybr139w may be a functional homolog of Prc1, which is the basis of the work 

presented in chapter III. 

Cps1 (carboxypeptidase S) is a vacuolar carboxypeptidase that is predicted to belong to a 

family of zinc metalloproteases (Spormann et al., 1992; Hecht et al., 2014). Although its 

intracellular function remains unclear, it is likely to participate in hydrolysis of leucine from the 

C terminus of proteins along with Prc1, as Cps1 is required for growth in Prc1-deficient strains 

when a synthetic dipeptide with leucine as the C-terminal amino acid is provided as the sole 

source of nitrogen (Wolf and Weiser, 1977; Spormann et al., 1991). 

There are three known resident vacuolar aminopeptidases. Ape3 (aminopeptidase Y) is a 

broad-specificity vacuolar protease able to cleave N-terminal Lys, Arg, Leu, Met, Ala, Ser, Phe, 

Tyr, and Pro residues with varying efficiency and accounts for most of the aminopeptidase 

activity in the vacuole (Yasuhara et al., 1994); however, its biological function remains 

unknown. Another vacuolar aminopeptidase, Ape1 (aminopeptidase I), is activated by Zn2+, 

cleaves N-terminal leucine residues, and may play a role in glutathione metabolism as discussed 

below (Metz and Röhm, 1976; Frey and Röhm, 1978; Trumbly and Bradley, 1983; Adamis et al., 

2009). The third resident aminopeptidase, Ape4 (aspartyl aminopeptidase), belongs to the same 
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family of metalloproteases as Ape1, is similar to mammalian aspartyl aminopeptidase, and 

cleaves the acidic residues Asp and Glu from the N terminus of substrates (Wilk et al., 1998; 

Yokoyama et al., 2006); however, like Ape3, its biological substrates are unknown (Yuga et al., 

2011). Ape4 resides in the vacuole during vegetative growth, although an increase in vacuolar 

localization of Ape4 occurs when cells are starved for nutrients, perhaps in order to assist with 

autophagic protein turnover (Yuga et al., 2011).  

Dap2 (dipeptidyl aminopeptidase B) is an integral membrane protein of the vacuole 

annotated as a serine hydrolase and, while its biological function remains unknown, it bears 

homology to Ste13, which cycles between the trans-Golgi network and endosomal system in a 

phosphorylation-dependent manner and is involved in proteolytic activation of the yeast α-factor 

(Fuller et al., 1988; Roberts et al., 1989; Baxter et al., 2004; Johnston et al., 2005). 

Zymogen activation cascade 

 Many vacuolar hydrolases are synthesized as inactive zymogens that undergo Pep4- 

and/or Prb1-dependent proteolytic processing in the vacuole that leads to activation (Klionsky et 

al., 1990; Van Den Hazel et al., 1996; Hecht et al., 2014).  

Pep4 undergoes self-mediated processing in the vacuole to remove its N-terminal 

propeptide and mature into the active enzyme (Rupp et al., 1991). It was originally thought that 

Pep4 maturation would be induced by the acidic environment of the vacuole, as most vacuolar 

hydrolases have an acidic pH optimum (Li and Kane, 2009). Additionally, mutations that impair 

activity of the V-ATPase, which is required for vacuolar acidification, show accumulation of 

autophagic bodies and protein degradation defects following nitrogen starvation (Nakamura et 

al., 1997; Kane, 2006). However, the maturation of Pep4 and several other Pep4-dependent 

zymogens is fairly normal in these mutants, albeit somewhat slower (Yamashiro et al., 1990; 
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Sørensen et al., 1994; Nakamura et al., 1997), indicating that there are other vacuolar factors 

involved in Pep4 activation. These factors, as well as how premature activation of Pep4 is 

prevented, are currently unknown. Once activated, Pep4 initiates further zymogen activation 

through Prb1. Prb1 undergoes two C-terminal processing events in the vacuole; the first is 

mediated by Pep4 and the second was thought to be catalyzed by Prb1 itself (Mechler et al., 

1988; Moehle et al., 1989; Nebes and Jones, 1991); however, I present evidence in chapter III 

that other proteases are involved in this second processing step.  

Prc1 is processed to its mature form through sequential N-terminal propeptide cleavage 

events mediated by Pep4 and Prb1 (Hecht et al., 2014); mutations in the PEP4 gene result in 

accumulation of a Prc1 precursor (Hemmings et al., 1981), purified Pep4 can process prPrc1 to 

an intermediate form in vitro (Sørensen et al., 1994), and an intermediate form of Prc1 is seen in 

Prb1-deficient cells (Mechler et al., 1987). It is currently unknown whether the predicted Prc1 

homolog, Ybr139w, is proteolytically processed. Ape3 is also processed and activated in a Prb1-

dependent manner; vacuolar extracts from cells lacking Pep4, Prb1, Prc1, and Cps1 show no 

Ape3 enzymatic activity; however, addition of purified Prb1 allows for cleavage of the N-

terminal propeptide and an increase in Ape3 activity (Yasuhara et al., 1994).  

Other targets of proteolytic activation are Pho8 and Ppn1, which participate in vacuolar 

RNA and polyP degradation, respectively. Cleavage of the Pho8 C-terminal propeptide is Pep4-

dependent (Klionsky and Emr, 1989); in this case, however, Pep4 may be acting through Prb1, as 

overexpression of Prb1 increases activation of Pho8 (Merz and Wickner, 2004), but it remains to 

be determined whether activation by Pep4 and Prb1 is direct or indirect. Ppn1 is delivered to the 

vacuole by the multivesicular body pathway, after which the transmembrane domain is cleaved 

to release soluble Ppn1 into the vacuole lumen (Reggiori and Pelham, 2001). There is no Ppn1 
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activity in pep4∆ prb1∆ prc1∆ cells (Sethuraman et al., 2001), and sequencing of the mature 

enzyme indicates a C-terminal cleavage event (Shi and Kornberg, 2005). It is also suggested that 

Ppn2 is delivered to the vacuole by the MVB pathway (Gerasimaitė and Mayer, 2017), but 

whether or not it is proteolytically activated upon arrival is yet to be determined.  

Not all vacuolar proteases undergo proteolytic activation. While Prb1 does process Cps1 

from a membrane-bound to a soluble enzyme within the vacuole (Spormann et al., 1992), this is 

not an activating event; Cps1 activity is independent of both Pep4 and Prb1 (Bordallo et al., 

1991; Spormann et al., 1991). Processing of precursor Ape1 (prApe1) to its mature form by 

cleavage of the N-terminal propeptide is also Pep4- and Prb1-dependent (Klionsky et al., 1992; 

Seguí-Real et al., 1995); however, this may not be required for its activity, as prApe1 is 

enzymatically active in pep4∆ cells (Andrei-Selmer et al., 2001). Similarly, processing of Ape4 

is defective in pep4∆ prb1∆ cells (Yuga et al., 2011), but both full-length and cleaved forms of 

Ape4 exhibit enzymatic activity (Yokoyama et al., 2006). Another protease independent of Pep4 

is Dap2; disruption of the PEP4 gene has no effect on either the apparent molecular weight or in 

vitro enzymatic activity of Dap2 (Roberts et al., 1989). 

Although many proteins undergo Prb1- and/or Pep4-dependent cleavage and activation, it 

is still unclear in most cases whether this is direct or indirect and whether the activation cascade 

is more complex. If it is indirect, which proteases function downstream of Prb1 to facilitate the 

processing of zymogens?  

Glutathione catabolism 

 Whereas many specific functions of vacuolar protease are unknown, there is evidence for 

the involvement of several vacuolar proteases in the catabolism of glutathione (GSH, L-γ-

glutamyl-L-cysteinylglycine), a tripeptide that performs many functions in the cell including 
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detoxification of toxic metabolites and protection from oxidative stress (Meister and Anderson, 

1983; Penninckx and Elskens, 1993). GSH is broken down within the vacuole in two steps; first 

the γ-glutamyltranspeptidase Ecm38 hydrolyzes the N-terminal glutamate, followed by 

degradation of the CysGly dipeptide by an as yet unidentified cysteinylglycine dipeptidase 

(Jaspers et al., 1985; Penninckx and Jaspers, 1985). Ecm38 is associated with the vacuolar 

membrane (Jaspers and Penninckx, 1984), with its active site facing the vacuolar lumen (Mehdi 

et al., 2001). It has been proposed, though not experimentally demonstrated, that Ape1 may act 

in the second step to degrade the CysGly dipeptide in the vacuole (Adamis et al., 2009); 

however, the ability of Ape1 to cleave N-terminal Cys residues has not been previously 

described. 

 In Arabidopsis thaliana, GSH catabolism can proceed by a second pathway, during 

which phytochelatin synthase (PCS) can remove the C-terminal Gly from GSH, resulting in a γ-

GluCys dipeptide (Beck et al., 2003; Grzam et al., 2006; Blum et al., 2007). Using fluorescent 

glutathione-S-bimane (GS-bimane) conjugates, it was shown that S. cerevisiae can generate both 

CysGly-bimane and γ-GluCys-bimane from GS-bimane, indicating that this second degradation 

pathway also occurs in yeast (Wünschmann et al., 2010). While S. cerevisiae does not have a 

PCS homolog, the vacuolar serine carboxypeptidases Prc1 and Ybr139w are required for 

phytochelatin synthesis in yeast (Wünschmann et al., 2007), as well as the conversion of GS-

bimane to γ-GluCys-bimane, with Ybr139w having a larger role than Prc1 (Wünschmann et al., 

2010). Cells lacking Ecm38 accumulate γ-GluCys-bimane, while ecm38∆ prc1∆ ybr139w∆ cells 

show no breakdown of GS-bimane (Wünschmann et al., 2010). Whether Prc1 and Ybr139w 

cleave the C-terminal Gly from GSH directly or indirectly, perhaps through proteolytic 

activation of the actual protease, remains to be determined. Also, it is still unclear how γ-GluCys 
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or CysGly dipeptides are broken down in the final step in either GSH degradation pathway, but 

there is no shortage of canditate vacuolar amino-, carboxy-, and dipeptidases available for future 

study.  

 There is some evidence that GSH metabolism and autophagy may be connected; nitrogen 

starvation causes a migration of the majority of cellular GSH to the vacuole (Mehdi and 

Penninckx, 1997). The pool of GSH increases for ~2 h, followed by a decrease (Mehdi and 

Penninckx, 1997). When GSH biosynthesis is blocked during nitrogen starvation, cell growth is 

impaired (as measured by dry weight), suggesting that GSH may possibly be used as a source of 

nitrogen (Mehdi and Penninckx, 1997). After 3-4 h of starvation, the specific activity of Ecm38 

also increases (Mehdi and Penninckx, 1997). Both nitrogen starvation and treatment of cells with 

the TORC1 inhibitor rapamycin induce expression of Ecm38 (Springael and Penninckx, 2003). 

Ecm38 is also derepressed in sulphate starvation, during which GSH can be used as a source of 

sulfur and cysteine (Elskens et al., 1991). Another observation is that in cells defective in GSH 

synthesis, there is an increase in mitophagy during nitrogen starvation as compared to wild-type 

cells, and addition of a cell-permeable GSH derivative reduces mitophagy under these same 

conditions (Deffieu et al., 2009).  

 There are many questions remaining about the roles of autophagy and vacuolar proteases 

in GSH metabolism. Is the increased influx of GSH into the vacuole during nitrogen starvation 

solely dependent on the vacuolar glutathione-S-conjugate transporters Ycf1 and Bpt1 (Szczypka 

et al., 1994; Li et al., 1996; Rebbeor et al., 1998; Klein et al., 2002; Sharma et al., 2002), or is at 

least some of it autophagy dependent? If the latter, is this process selective or non-selective and 

if it is selective, what are the scaffold and receptor proteins involved in cargo recognition? 

Additionally how is Ecm38 activity towards GSH regulated? Which vacuolar proteases are 
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responsible for the breakdown of γ-GluCys and CysGly dipeptides in the second step of GSH 

catabolism? What is the mechanism whereby GSH metabolism regulates mitophagy? As GSH 

provides an alternative nitrogen source during nitrogen starvation, will blocking GSH catabolism 

via ECM38 mutation also impair cell viability during prolonged nitrogen starvation?  

Importance of proteases in cell survival 

 Many vacuolar proteases are required for the terminal steps of autophagy and cell 

survival under nitrogen starvation conditions. Similar to many autophagy-related genes 

(Cebollero and Reggiori, 2009), most of the known vacuolar proteases are upregulated in 

response to nitrogen starvation or rapamycin treatment, including Ape1, Prc1, Cps1, Pep4, Prb1, 

and Ybr139w (Gasch et al., 2000; Scherens et al., 2006; Müller et al., 2015). Ape3, and Dap2 

are also upregulated, but not significantly (Müller et al., 2015). Pep4 and Prb1 are especially 

important in cell survival and the autophagic response, as Pep4- and Prb1-deficient cells 

accumulate autophagic bodies in the vacuole during nitrogen starvation (Takeshige et al., 1992), 

and pep4∆ cells lose viability in nitrogen starvation after approximately 8 days, whereas wild-

type cells still show 90% viability at this time (Teter et al., 2001). Prc1-deficent cells do not 

accumulate autophagic bodies (Takeshige et al., 1992), but as Ybr139w may be a homolog of 

Prc1, this observation could be due to reduncancy and compensatory effects, which is the basis 

of the work presented in chapter III. 

Human diseases related to lysosomal protease defects 

 In humans, defects in lysosomal proteolysis can have serious effects on health and 

disease. Cathepsins, of which there are 15 in humans, are a class of lysosomal proteases (Ketterer 

et al., 2017). Mutations or defects in the cathepsin-encoding genes result in a variety of 

pathologies, including several lysosomal storage disorders.  
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Neuronal ceroid lipofuscinoses (NCLs) are a group of neurodegenerative lysosomal 

storage disorders characterized by progressive visual failure, seizures, and dementia (Mole et al., 

2005). There are fourteen different subtypes of NCLs based on the gene affected, although for 

several, the function of the causative gene is relatively unknown. Five subtypes are due to 

mutations in lysosomal enzymes, three of which are proteases (two cathepsins and a tripeptidyl 

peptidase). CLN2 is caused by mutations in TPP1 (tripeptidyl peptidase I), which is not a 

cathepsin, CLN10 is caused by mutations in CTSD, and CLN13 is caused by mutations in CTSF 

(cathepsin F) (Mole and Cotman, 2015). Yeast Pep4 is related to mammalian CTSD (Parr et al., 

2007). In its most severe form, which involves a complete lack of CTSD activity, CLN10 is 

characterized by severe neuronal loss, microcephaly, seizures, and death within hours to weeks 

after birth (Barohn et al., 1992; Steinfeld et al., 2006). CLN13 is markedly less severe than 

CLN10; symptoms include progressive loss of mental and motor function, but do not manifest 

until late adulthood (Ketterer et al., 2017). 

Mutations in the gene encoding CTSA (cathepsin A), a serine carboxypeptidase that is 

structurally similar to yeast Prc1 (and likely Ybr139w as well), lead to a different type of 

lysosomal storage disorder called galactosialidosis (Hiraiwa, 1999). CTSA stabilizes a 

multienzyme complex of GLB1/β-galactosidase and NEU1 (neuraminidase 1), protecting them 

from degradation in the lysosome (Potier et al., 1990). Mutations in CTSA result in deficiency of 

GLB1 and NEU1, leading to accumulation of glycoproteins in the vacuole (Bonten et al., 2014; 

Ketterer et al., 2017). In its most severe form, galactosialidosis can cause death within the first 

year of life (Ketterer et al., 2017). 

 Not all diseases involving cathepsin defects are classified as lysosomal storage diseases. 

For example, loss-of-function mutations in the gene coding for CTSH (cathepsin H) are 
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associated with myopia (Ketterer et al., 2017). Pycnodysostosis, which is a disease of the bones 

characterized by osteopetrosis, short stature, and skull deformities, is caused by mutations in the 

CTSK (cathepsin K) gene (Andren et al., 1962; Maroteaux and Lamy, 1962; Ketterer et al., 

2017). Papillon-Lefèvre syndrome, which is caused by mutations in the CTSC (cathepsin C) 

gene, primarily affects the teeth and skin (Ketterer et al., 2017); aggressive periodontitis causes 

loss of both deciduous and permanent teeth, and palmoplantar hyperkeratosis causes thickening 

of the skin and scaly lesions that crack and fissure (Gorlin et al., 1964; Haneke, 1979; 

Sreeramulu et al., 2015). 

Whereas the transcriptional regulation, synthesis, trafficking, and proteolytic processing 

of vacuolar proteases have been extensively studied, surprisingly little is known about their 

substrates and intracellular functions. However, it is clear from the wide range of human diseases 

related to protease defects that vacuolar/lysosomal proteases are critically important in cellular 

function and survival. A significant effort must be made to better characterize and fully 

appreciate the vast array of proteases within the yeast vacuole. 

Efflux of amino acids 

 Following protein breakdown, amino acids generated in the vacuole can be exported back 

into the cytoplasm. The AVT family of proteins in S. cerevisiae consists of 7 predicted 

membrane-spanning proteins related to vesicular transporters belonging to the amino acid/auxin 

permease (AAAP) family in higher eukaryotes (Sekito et al., 2008). Avt1 imports glutamine, 

asparagine, leucine, isoleucine, and tyrosine into vacuoles for storage (Russnak et al., 2001; 

Sekito et al., 2008). The substrate(s), localization, and direction of transport of Avt2 and Avt5 

are unknown (Sekito et al., 2008), but in Schizosaccharomyces pombe, the Avt5 homolog 

localizes to the vacuole membrane and is involved in amino acid uptake into vacuoles 
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(Chardwiriyapreecha et al., 2010), which may give clues as to its function in S. cerevisiae. The 

remaining four AVT family members, Avt3, Avt4, Avt6, and Avt7 are all indicated to be 

involved in amino acid efflux from the vacuole. Avt3 and Avt4 export glutamine, leucine, 

isoleucine, asparagine, and tyrosine from vacuoles into the cytoplasm (Russnak et al., 2001). 

Avt4 can also export the basic amino acids arginine, lysine, and histidine (Sekito et al., 2014). 

Avt3 may additionally export proline, as vacuolar proline levels are higher in avt3∆ cells than 

wild-type cells (Nishida et al., 2016). Atg6 exports glutamate and aspartate from vacuoles 

(Russnak et al., 2001), whereas recent work has demonstrated that Avt7 may be involved in 

efflux of glutamine and proline (Tone et al., 2015). 

 Another protein involved in vacuolar amino acid efflux is Atg22. Atg22 is a vacuolar 

integral membrane protein that is indicated to transport tyrosine, leucine, and isoleucine (Yang et 

al., 2006). Although biochemical methods have yet to confirm the transport activity of Atg22, 

the observation that cells lacking Atg22 accumulate more vacuolar tyrosine, leucine, and 

isoleucine as compared to wild-type cells supports this function (Yang et al., 2006). 

Several proteins of the PQ-loop family are also proposed to be involved in vacuolar 

amino acid efflux. The first, Ers1, is similar to human CTNS (cystinosin, lysosomal cystine 

transporter), which exports cystine, a disulfide-linked form of cysteine resulting from lysosomal 

degradation of proteins, from lysosomes (Kalatzis et al., 2001; Gao et al., 2005; Sekito et al., 

2008). Ers1 localizes to the vacuole membrane and while Ers1-deficient yeast cells show 

sensitivity to the antibiotic hygromycin B, expression of CTNS in these cells can complement 

the hygromycin B sensitivity and confer resistance (Gao et al., 2005). Recently, it was 

demonstrated that Ers1 can transport cystine, although intracellular cystine does not increase in 

ers1∆ cells (Simpkins et al., 2016), possibly indicating the presence of redundant, as yet 
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unidentified, cystine transporters. Additional PQ-loop family members Ypq1, Ypq2, and Rtc2 

also localize to the vacuole membrane, and it is proposed that they export basic amino acids 

(Jézégou et al., 2012).  

In humans, mutations in CTNS lead to the disease cystinosis, which is characterized by 

accumulation of cystine crystals in the lysosome. In its most severe and common form, the 

infantile nephropathic form, it leads to the development of renal Fanconi syndrome by 6-12 

months of age and progressive loss of kidney function, growth retardation, neuromuscular 

dysfunction, hypothyroidism, and vision problems if left untreated (Elmonem et al., 2016).  

Efflux of vacuolar amino acids generated by autophagy is critically important to support 

protein synthesis and continued cell survival during starvation conditions. Similar to many other 

autophagy-related genes (Cebollero and Reggiori, 2009), Atg22 expression and protein level 

increase during nitrogen starvation (Gasch et al., 2000; Yang et al., 2006). Additionally, 

microarray data show that Atg22, Avt1, Avt4, and Avt7 are upregulated in response to 

rapamycin treatment (Scherens et al., 2006).  

Free amino acids generated by autophagy are required to support increased synthesis of 

several proteins during nitrogen starvation, including Ape1 and Prc1 (Onodera and Ohsumi, 

2005). In autophagy-deficient atg7∆ cells, synthesis of Ape1 and Prc1 is severely impaired 

compared to wild-type cells in nitrogen starvation conditions (Onodera and Ohsumi, 2005). 

Similarly, when the genes encoding the leucine transporters Atg22, Avt3, and Avt4 are deleted, 

synthesis of Ape1 and Prc1 is reduced in leucine-starvation conditions (Yang et al., 2006), 

suggesting that efflux of amino acids generated by autophagic degradation back into the 

cytoplasm is necessary to support protein synthesis. The lack of these efflux permeases also 

affects the ability of cells to survive in starvation conditions; when starved for nitrogen, wild-
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type cells maintain robust viability over an extended time course, whereas cells lacking Atg22 

lose viability at 12 days, cells lacking Avt3 and Avt4 lose viability at 5-6 days, and cells lacking 

all three lose viability at 4 days, similar to an autophagy-defective atg1∆ mutant (Yang et al., 

2006).  

 Although many amino acid efflux transporters have been identified and characterized, 

further work must be done to determine the transport mechanism of amino acids for which 

transporters have not yet been identified. 

Vacuolar proteins of unknown function 

 In addition to the subset of vacuolar hydrolases discussed herein, there are many known 

or predicted vacuolar proteins for which a function has not yet been described; more than 200 of 

the approximately 6000 open reading frames in the yeast genome are annotated as having 

vacuolar localization, at least under some conditions (Li and Kane, 2009). Many of these 

putative proteins are just beginning to be characterized and some have not been characterized at 

all. In Uniprot, search results for vacuolar hydrolases include Pff1 (YBR074W), Ecm14 

(YHR132C), YHR202W, and YNL115C (The UniProt Consortium, 2017), among others. 

Pff1 and Ecm14 are predicted to be proteases. Pff1 is a predicted metalloprotease that 

localizes to the vacuole membrane; it is a multipass integral membrane protein, and topology 

studies indicate that the protease domain faces the vacuole lumen (Hecht et al., 2013). Protease 

activity and substrate specificity have yet to be shown, as well as determination of biological 

function and regulation. Ecm14 localizes to the vacuole (Huh et al., 2003) and is predicted to be 

a zinc-dependent carboxypeptidase (The UniProt Consortium, 2017). 

GFP-tagged Yhr202w exhibits vacuolar localization (Huh et al., 2003) and may have 

phosphatase and/or nucleotidase activity (Finn et al., 2017). Ynl115c localizes to the vacuolar 
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membrane (Huh et al., 2003) and possesses an α/β-hydrolase fold (Finn et al., 2017). Another 

protein of interest is Yol019w, a protein of unknown function that localizes to the vacuole and is 

transcriptionally upregulated in cells treated with rapamycin (Huh et al., 2003; Scherens et al., 

2006). 

Conclusions and goals for this dissertation 

While decades of study have greatly increase our knowledge of vacuolar substrate 

degradation and efflux, there are still many gaps in this knowledge, especially concerning protein 

substrates. Many known vacuolar proteases have indeterminate substrate specificities and 

intracellular functions, while many predicted proteases remain to be characterized. In addition, 

for many vacuolar zymogens it is still unknown whether activation via Pep4 and/or Prb1 occurs 

directly or indirectly through other proteases. In the case of indirect activation, what are the 

additional proteases involved in the activation and processing cascade? Vacuolar proteases are 

especially important during nutrient starvation when autophagy is induced, as the vacuole is 

almost entirely responsible for cellular protein degradation under these conditions (Teichert et 

al., 1989). In addition, many human diseases are associated with defects in lysosomal proteolysis 

and efflux; therefore, it is critical that we increase our understanding of these vacuolar/lysosomal 

events. 

The goal of this dissertation is to begin to fill in the gaps in our knowledge of vacuolar 

proteases in S. cerevisiae, especially with regard to their roles in the terminal events of 

autophagic degradation of proteins, beginning with the study of serine carboxypeptidases, 

specifically Prc1 and its predicted homolog Ybr139w. 
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Chapter II 

An overview of autophagy: Morphology, mechanism and regulation2 

Abstract 

 Significance: Autophagy is a highly conserved eukaryotic cellular recycling process. 

Through the degradation of cytoplasmic organelles, proteins, and macromolecules, and the 

recycling of the breakdown products, autophagy plays important roles in cell survival and 

maintenance. Accordingly, dysfunction of this process contributes to the pathologies of many 

human diseases. Recent Advances: Extensive research is currently being done to better 

understand the process of autophagy. In this review, we describe current knowledge of the 

morphology, molecular mechanism, and regulation of mammalian autophagy. Critical Issues: 

At the mechanistic and regulatory levels, there are still many unanswered questions and points of 

confusion that have yet to be resolved. Future Directions: Through further research, a more 

complete and accurate picture of the molecular mechanism and regulation of autophagy will not 

only strengthen our understanding of this significant cellular process, but will aid in the 

development of new treatments for human diseases in which autophagy is not functioning 

properly.  

Introduction 

 Autophagy is a cellular degradation and recycling process that is highly conserved in all 

eukaryotes. In mammalian cells, there are three primary types of autophagy: microautophagy, 

                                                 
2 This chapter has been published as Parzych, K.R. and Klionsky, D.J. (2014) An overview of 
autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 20(3):460-73. doi: 
10.1089/ars.2013.5371. 
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macroautophagy, and chaperone-mediated autophagy. While each is morphologically distinct, all 

three culminate in the delivery of cargo to the lysosome for degradation and recycling (Figure 

II.1) (Yang and Klionsky, 2010). During microautophagy, invaginations or protrusions of the 

lysosomal membrane are used to capture cargo (Mijaljica et al., 2011). Uptake occurs directly at 

the limiting membrane of the lysosome, and can include intact organelles. Chaperone-mediated 

autophagy differs from microautophagy in that it does not use membranous structures to 

sequester cargo, but instead uses chaperones to identify cargo proteins that contain a particular 

pentapeptide motif; these substrates are then unfolded and translocated individually directly 

across the lysosomal membrane (Massey et al., 2004). In contrast to microautophagy and 

chaperone-mediated autophagy, macroautophagy involves sequestration of the cargo away from 

the lysosome. In this case, de novo synthesis of double-membrane vesicles—autophagosomes—

is used to sequester cargo and subsequently transport it to the lysosome (Yorimitsu and 

Klionsky, 2005). 

 Of the three types of autophagy, macroautophagy is the best studied. Macroautophagy 

occurs at a low level constitutively and can be further induced under stress conditions, such as 

nutrient or energy starvation, to degrade cytoplasmic material into metabolites that can be used 

in biosynthetic processes or energy production, allowing for cell survival (Yorimitsu and 

Klionsky, 2005). Under normal growing conditions, macroautophagy aids in cellular 

maintenance by specifically degrading damaged or superfluous organelles (Yang and Klionsky, 

2010). Thus, macroautophagy is primarily a cytoprotective mechanism; however, excessive self-

degradation can be deleterious. Accordingly, autophagic dysfunction is associated with a variety 

of human pathologies, including lung, liver, and heart disease, neurodegeneration, myopathies, 

cancer, ageing, and metabolic diseases such as diabetes (Wirawan et al., 2012). 
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 This review provides an overview of the current state of knowledge of autophagy, with 

an emphasis on the morphology, molecular mechanism, regulation, and selectivity of mammalian 

macroautophagy. 

I. Microautophagy 

 Microautophagy refers to a process by which cytoplasmic contents enter the lysosome 

through an invagination or deformation of the lysosomal membrane (Marzella et al., 1981). In 

one early study, isolated rat liver lysosomes were shown by electron microscopy to engulf 

Percoll particles in vitro by way of protrusions or cup-like invaginations of the lysosomal 

membrane, forming vesicles within the lysosome. Some of these particles were seen free-floating 

within the lysosomal lumen, presumably through rupture/lysis of the vesicles (Marzella et al., 

1980). A very recent study presented evidence that a microautophagy-like process called 

endosomal microautophagy transports soluble cytosolic proteins to the vesicles of late 

endosomal multivesicular bodies (Sahu et al., 2011). Due to the limited number of tools 

available for the study of microautophagy, we know relatively little about this process, including 

its regulation and possible roles in human health and disease (Mijaljica et al., 2011).  

II. Chaperone-mediated autophagy (CMA) 

 A second type of autophagy, which has so far only been described in mammalian cells, is 

chaperone-mediated autophagy (CMA). Unlike microautophagy and macroautophagy, which can 

both non-specifically engulf bulk cytoplasm, CMA is highly specific; common to all CMA 

substrates is a pentapeptide targeting motif biochemically related to KFERQ (Dice, 1990). Based 

on sequence analysis and immunoprecipitation experiments, it is estimated that approximately 

30% of cytosolic proteins contain such a sequence (Chiang and Dice, 1988). Target proteins 

containing the KFERQ consensus motif are unfolded through the action of cytosolic chaperones 
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and translocated directly across the lysosomal membrane where they are degraded in the lumen 

(Orenstein and Cuervo, 2010). CMA degrades a wide range of substrate proteins, including 

certain glycolytic enzymes, transcription factors and their inhibitors, calcium and lipid binding 

proteins, proteasome subunits, and proteins involved in vesicular trafficking (Arias and Cuervo, 

2011).  

 During CMA, the KFERQ motif is recognized by the heat shock 70kDa protein 8 

(HSPA8/HSC70), as well as other co-chaperones (Figure II.1) (Chiang et al., 1989). HSPA8 can 

then deliver the substrate to the lysosomal membrane, where it likely assists in substrate 

unfolding (Agarraberes and Dice, 2001). At the lysosomal membrane, the substrate binds to 

monomers of the CMA substrate receptor, lysosomal-associated membrane protein 2A 

(LAMP2A) (Cuervo and Dice, 1996). This substrate-receptor binding leads to the 

multimerization of LAMP2A (Cuervo and Dice, 1996; Bandyopadhyay et al., 2008). As the 

multimeric translocation complex forms, subunits of the complex are stabilized on the lumenal 

side of the lysosomal membrane by HSP90 (Bandyopadhyay et al., 2008). Following 

translocation of the substrate into the lysosomal lumen—in part through the action of lumenal 

HSPA8—the translocation complex is actively disassembled by cytosolic HSPA8, and LAMP2A 

returns to a monomeric state where it can bind new substrate and initiate a new round of 

translocation (Bandyopadhyay et al., 2008).  

 Regulation of the translocation process occurs at the level of substrate binding to 

LAMP2A, which is rate-limiting for CMA (Cuervo and Dice, 2000a). Changes in LAMP2A 

levels at the lysosomal membrane modulate the level of CMA activity and primarily result from 

changes in degradation and organization of LAMP2A rather than synthesis of the protein 

(Cuervo and Dice, 2000a, b; Bandyopadhyay et al., 2008). Some data support the idea that 
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redistribution of LAMP2A between fluid regions of the lysosomal membrane and lipid-enriched 

microdomains influences the degradation of LAMP2A (Kaushik et al., 2006). While much is 

known about translocation regulation, far less is clear about overall CMA regulation (Arias and 

Cuervo, 2011). Mild oxidative stress (Kiffin et al., 2004), protein-damaging toxins (Cuervo et 

al., 1999), and extended periods of nutrient deprivation all upregulate CMA (Auteri et al., 1983; 

Cuervo et al., 1995), but the intracellular signaling pathways that facilitate this change are not 

fully understood (Arias and Cuervo, 2011). 

 It is suggested that HSPA8 and LAMP2A also participate in a type of macroautophagy 

called chaperone-assisted selective autophagy (CASA). During this process, chaperones aid in 

the clearance of selectively ubiquitinated organelles and protein complexes (Kirkin et al., 

2009c). Association of these ubiquitinated targets with receptors such as SQSTM1/p62 and 

NBR1, and with enzymes including HDAC6 allows for recognition by the macroautophagy 

machinery, delivery to the lysosome, and degradation (Kirkin et al., 2009a; Kirkin et al., 2009c; 

Lamark et al., 2009). 

III. Macroautophagy  

III.A Basic morphological progression 

 As stated above, macroautophagy is distinct from microautophagy and CMA in part 

because the initial site of sequestration occurs away from the limiting membrane of the 

lysosome, and involves the formation of cytosolic vesicles that transport the cargo to this 

organelle. The morphological feature that makes macroautophagy unique from other intracellular 

vesicle-mediated trafficking processes is that the sequestering vesicles, termed autophagosomes, 

form de novo rather than through membrane budding; that is, the autophagosome forms by 

expansion, and does not bud from a preexisting organelle, already containing cargo (Yang and 
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Klionsky, 2009). Upon induction of macroautophagy in yeast, formation of autophagosomes 

begins at a single perivacuolar site called the phagophore assembly site (PAS) (Chen and 

Klionsky, 2011). In mammalian systems, autophagosome generation is initiated at multiple sites 

throughout the cytoplasm rather than at a single PAS (Itakura and Mizushima, 2010; Chen and 

Klionsky, 2011). Several studies suggest that endoplasmic reticulum-associated structures called 

omegasomes may serve as initiation sites in mammals (Hayashi-Nishino et al., 2009; Ylä-Anttila 

et al., 2009).  

 Following initiation, the membrane begins to expand. At this stage, it is called a 

phagophore, which is the primary double-membrane sequestering compartment (Figure II.2) (He 

and Klionsky, 2009). The source of membrane that makes up the phagophore is highly debated, 

but various studies have implicated the plasma membrane (Ravikumar et al., 2010a; Ravikumar 

et al., 2010b), endoplasmic reticulum (ER) (Hayashi-Nishino et al., 2009; Ylä-Anttila et al., 

2009), Golgi complex (Takahashi et al., 2011), and mitochondria (Hailey et al., 2010) as 

possible sources (Mizushima et al., 2011; Weidberg et al., 2011). As the phagophore expands, 

the membrane bends to ultimately generate a spherical autophagosome. The factors that drive 

curvature of the membrane during nonspecific macroautophagy are not known. In the case of 

selective macroautophagy, the membrane appears to essentially wrap around the cargo, thus 

adjusting to fit the specific target (Mijaljica et al., 2012). Upon completion, the phagophore fully 

surrounds its cargo and fuses to form the double-membrane autophagosome. The size of the 

autophagosome varies based on organism and cargo type. For example, the diameter of 

autophagosomes ranges from approximately 0.4 to 0.9 µm in yeast, and 0.5 to 1.5 µm in 

mammals (Pfeifer, 1978; Schworer et al., 1981; Takeshige et al., 1992; Mizushima and 

Klionsky, 2007). 
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 Once the autophagosome is formed, it must deliver its cargo to the lysosome in mammals 

or the functionally related vacuole in yeast and plants. As it reaches its destination, the outer 

membrane of the autophagosome will fuse with the lysosomal/vacuolar membrane. In yeast and 

plants, due to the relatively large size of the vacuole, this releases a single-membrane autophagic 

body into the vacuolar lumen. Fusion between autophagosomes and lysosomes in mammals, 

however, does not generate autophagic bodies (Devenish and Klionsky, 2012). The product of 

fusion between an autophagosome and lysosome in mammalian cells is referred to as an 

autolysosome (Yang and Klionsky, 2009). Exposed to the acidic lumen and resident hydrolases 

of the lysosome/vacuole, the autophagosome inner membrane and, subsequently, the autophagic 

cargo are degraded and the component parts are exported back into the cytoplasm through 

lysosomal permeases for use by the cell in biosynthetic processes or to generate energy 

(Yorimitsu and Klionsky, 2005). In mammals, macroautophagy often converges with the 

endocytic pathway. Hence, prior to fusion with lysosomes, autophagosomes may also fuse with 

early or late endosomes to form amphisomes, which then fuse with lysosomes to become 

autolysosomes (Tooze et al., 1990; Berg et al., 1998).  

III.B Macroautophagy machinery 

III.B.1 Induction 

In yeast macroautophagy, induction of autophagosome formation is regulated by the Atg1-

Atg13-Atg17 kinase complex (He and Klionsky, 2009). In mammalian cells this complex is 

made up of an Atg1 homolog from the Unc-51-like kinase family (either ULK1 or ULK2), the 

mammalian homolog of Atg13 (ATG13), and RB1-inducible coiled-coil 1 (RB1CC1/FIP200), 

which is required for the induction of macroautophagy and may be an ortholog of yeast Atg17 

(Figure II.3) (Hara et al., 2008; Ganley et al., 2009; Hosokawa et al., 2009a; Jung et al., 2009). 
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Also in this complex is C12orf44/ATG101, which binds directly to ATG13, is essential for 

macroautophagy, and has no known yeast homolog (Hosokawa et al., 2009b; Mercer et al., 

2009). The mammalian ULK1/2-ATG13-RB1CC1 complex is stable and forms regardless of 

nutrient status (Hosokawa et al., 2009a; Jung et al., 2009).  

 The association of the mechanistic target of rapamycin complex 1 (MTORC1) with the 

induction complex is, however, influenced by nutrient status. Under nutrient-rich conditions, 

MTORC1 associates with the complex, but dissociates upon nutrient starvation (Hosokawa et al., 

2009a). When MTORC1 is complex-associated, it phosphorylates ULK1/2 and ATG13, 

inactivating them. However when cells are treated with rapamycin or starved for nutrients, 

MTORC1 dissociates from the induction complex, resulting in dephosphorylation at these sites 

and induction of macroautophagy (Hosokawa et al., 2009a; Jung et al., 2009). The phosphatases 

responsible at this stage are as yet unknown. The involvement of MTORC1 in the regulation of 

macroautophagy is an active area of research and will be discussed in greater detail below as 

well as in another review in this forum series.  

III.B.2 Nucleation 

The next complex recruited to the putative site of autophagosome formation is the ATG14-

containing class III phosphatidylinositol 3-kinase (PtdIns3K) complex (Itakura and Mizushima, 

2010). The PtdIns3K complex generates PtdIns3P, which is required for macroautophagy in both 

yeast and mammals (Burman and Ktistakis, 2010). This complex is involved in the nucleation of 

the phagophore and consists of PIK3C3/VPS34, PIK3R4/p150 (Vps15 in yeast), and BECN1 

(Vps30/Atg6 in yeast) (Figure II.4) (Liang et al., 1999; Kihara et al., 2001; Furuya et al., 2005; 

Itakura et al., 2008; Yan et al., 2009). As in yeast, this complex can either function in 

macroautophagy by associating with ATG14 or in the endocytic pathway through an interaction 



49 

with UVRAG (an ortholog of yeast Vps38) (Liang et al., 2006; Itakura et al., 2008; Sun et al., 

2008). While some data suggest that the UVRAG-associated PtdIns3K complex is involved in 

autophagosome formation (Liang et al., 2006), other reports suggest that it may act in later stages 

of autophagosome development (Liang et al., 2008). Another study found that siRNA 

knockdown of UVRAG in HeLa cells does not affect macroautophagy (Itakura et al., 2008). It is 

clear that further work is required to fully understand the role of UVRAG in the endocytic and 

macroautophagic pathways. 

 Regulation of the PtdIns3K complex occurs largely through proteins that interact with 

BECN1, which is essential for macroautophagy (Liang et al., 1999; Zeng et al., 2006). The 

antiapoptotic protein BCL2 binds BECN1 and prevents its interaction with PIK3C3, thus 

inhibiting macroautophagy (Liang et al., 1998; Furuya et al., 2005; Pattingre et al., 2005). 

Another BECN1-binding protein, KIAA0226/Rubicon, inhibits PIK3C3 activity in UVRAG-

associated PtdIns3K complexes (Figure II.4) (Matsunaga et al., 2009; Zhong et al., 2009). Two 

positive regulators of the PtdIns3K complex are AMBRA1 (which directly binds BECN1) and 

SH3GLB1/Bif-1 (which interacts with BECN1 through UVRAG, and may be involved in 

generating membrane curvature) (Fimia et al., 2007; Takahashi et al., 2007; Takahashi et al., 

2009). Very little is known, however, about upstream events regulating the constituents of the 

various PtdIns3K complexes.  

 In yeast, there are several proteins that bind to PtdIns3P generated by the Vps34 complex. 

Of these, Atg18 and Atg21 have a role in macroautophagy and localize to the PAS (Krick et al., 

2008). Mammalian cells express two Atg18 orthologs, WIPI1 and WIPI2, which are also 

involved in macroautophagy and associate with phagophores during amino acid starvation by 

binding to PtdIns3P (Jeffries et al., 2004; Proikas-Cezanne et al., 2004; Polson et al., 2010). 
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Another PtdIns3P-binding protein in mammalian cells is the zinc finger, FYVE containing 1 

(ZFYVE1/DFCP1), which associates with PtdIns3P-enriched omegasomes (Axe et al., 2008). 

The precise functions of WIPI1/2 and ZFYVE1 in macroautophagy are still unknown. 

III.B.3 Elongation 

The ubiquitin-like enzymes 

 In both yeast and mammals, there are two conjugation systems involving ubiquitin-like 

(UBL) proteins that contribute to the expansion of the phagophore (Weidberg et al., 2011). The 

first system involves formation of the Atg12–Atg5-Atg16 complex. In yeast, the UBL protein 

Atg12 is covalently conjugated to Atg5 in a manner dependent on the E1 activating enzyme Atg7 

and the E2 conjugating enzyme Atg10 (Kim et al., 1999; Shintani et al., 1999; Ohsumi, 2001). 

This process differs from ubiquitination in that the conjugation of Atg12 to Atg5 is irreversible 

and does not require an E3 ligase enzyme (Geng and Klionsky, 2008). Following Atg12–Atg5 

conjugation, Atg16 binds to Atg5 noncovalently and dimerizes to form a larger complex (Kuma 

et al., 2002). Mammalian orthologs of this system, ATG5, ATG12 and ATG16L1, have been 

identified, and function as in yeast (Figure II.5) (Ohsumi, 2001; Mizushima et al., 2003). The 

mammalian ATG12–ATG5-ATG16L1 complex associates with the phagophore membrane, but 

dissociates following autophagosome completion (Mizushima et al., 2001; Mizushima et al., 

2003). One way in which this complex is regulated is through the Golgi protein RAB33A, which 

can bind to and inhibit ATG16L1 (Itoh et al., 2008). Additionally, ATG5, ATG7, and ATG12 

are inhibited through acetylation by the acetyltransferase KAT2B/p300 (Lee and Finkel, 2009).  

 The second UBL system involved in phagophore expansion is the Atg8/LC3 system. This 

conjugation pathway in yeast begins with processing of Atg8 by the cysteine protease Atg4 to 

expose a glycine residue at the C terminus of Atg8 (Kirisako et al., 2000). The E1-like enzyme 
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Atg7 activates the processed Atg8 and transfers it to the E2-like enzyme Atg3 (Ichimura et al., 

2000). Finally, the C-terminal glycine of Atg8 is covalently conjugated to the lipid 

phosphatidylethanolamine (PE). The Atg12–Atg5 conjugate, which may act as an E3 ligase, 

facilitates this final step (Ichimura et al., 2000; Hanada et al., 2007; Fujita et al., 2008). Atg8–PE 

is membrane-associated, but can be released from membranes as a result of a second Atg4-

mediated cleavage (Kirisako et al., 2000). The mechanism of regulation of the second Atg4-

dependent processing event, referred to as deconjugation, is not known; however, this appears to 

be an important step in macroautophagy because defects in cleavage result in partial autophagic 

dysfunction (Nair et al., 2012). 

 Mammalian homologs of the Atg8/LC3 system function much like their yeast 

counterparts (Figure II.6) (Geng and Klionsky, 2008). Unlike yeast, which have only one Atg4 

and one Atg8, mammals have four isoforms of ATG4 and several Atg8-like proteins, the latter of 

which are divided into the LC3 and GABARAP subfamilies (Hemelaar et al., 2003; Mariño et 

al., 2003; Weidberg et al., 2010). Whereas both subfamilies can localize with autophagosomes 

(Kabeya et al., 2004), it has been proposed that they function at different steps in phagophore 

elongation and completion, with the LC3 subfamily acting prior to the GABARAP subfamily 

(Weidberg et al., 2010). Among the Atg8-like proteins in mammals, LC3 has been the best 

characterized. The ATG4-processed form of LC3 is referred to as LC3-I and the PE-conjugated 

form is called LC3-II (Geng and Klionsky, 2008). Lipidation of LC3 in mammalian cells is 

accelerated under conditions of nutrient starvation or other types of stress (Kabeya et al., 2000). 

While the mechanism of the conjugation system of Atg8/LC3 is well understood, the precise role 

of Atg8/LC3 in macroautophagy is still unclear. Atg8, and to some extent LC3 (Tanida et al., 

2005; Martinet et al., 2006), shows a substantial increase in synthesis during macroautophagy 
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induction (Kirisako et al., 1999), and in yeast this is a determining factor in autophagosome size 

(Xie et al., 2008). 

Atg9 and membrane recruitment 

 Another protein thought to function in elongation of the phagophore is the 

transmembrane protein ATG9. In yeast, Atg9 may cycle between the PAS and peripheral sites 

(Reggiori et al., 2004). These peripheral sites are referred to as Atg9 reservoirs or 

tubulovesicular clusters (TVCs). The TVCs may be direct membrane precursors to the PAS, and 

thus to phagophores (Mari et al., 2010; Nair et al., 2011). The movement of Atg9 is dependent 

on the Atg1-kinase complex as well as multimerization of Atg9 (Reggiori et al., 2004; He et al., 

2008). The abilities of Atg9 to traffic and multimerize are necessary for autophagosome 

formation, suggesting that these properties of Atg9 contribute to a role for this protein in 

recruiting membrane to the expanding phagophore (Reggiori et al., 2004; He et al., 2008). 

 The mammalian homolog of Atg9 (ATG9) is also seen to shift localization within the cell 

and is proposed to have a similar role in membrane recruitment (Young et al., 2006). Under 

nutrient-rich conditions, ATG9 localizes to the trans-Golgi network and late endosomes (Young 

et al., 2006). When cells are starved for nutrients, however, ATG9 colocalizes with 

autophagosomal markers (Young et al., 2006). This cycling to autophagosomes is dependent on 

both ULK1 and PtdIns3K activity and is negatively regulated by MAPK14/p38α (Young et al., 

2006; Webber and Tooze, 2010). The exact function of ATG9 in the cell, and how the ULK1 

complex regulates ATG9 movement, are poorly understood. 

III.B.4 Autophagosome completion and fusion 

 In what is perhaps the least understood step of macroautophagy, the expanding 

phagophore must eventually mature and close to form a completed autophagosome, which 
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traffics to and fuses with an endosome and/or lysosome, becoming an autolysosome. Movement 

of autophagosomes to lysosomes is dependent on microtubules (Monastyrska et al., 2009). 

Fusion of autophagosomes with endosomes involves the protein VTIlB (Atlashkin et al., 2003). 

UVRAG, which can associate with the PtdIns3K complex, can activate the GTPase RAB7, 

which promotes fusion with lysosomes (Jäger et al., 2004; Liang et al., 2008). It has also been 

suggested that components of the SNARE machinery, such as VAM7 and VAM9, have a role in 

fusion (Fader et al., 2009; Furuta et al., 2010). Recent work has identified another SNARE, 

syntaxin 17 (STX17), which localizes to completed autophagosomes and is required for fusion 

with the endosome/lysosome through an interaction with SNAP29 and the endosomal/lysosomal 

SNARE VAMP8 (Itakura et al., 2012). 

III.C Regulation of macroautophagy 

 Macroautophagy helps cells respond to a wide range of extra- and intracellular stresses 

including nutrient starvation, the presence/absence of insulin and other growth factors, hypoxia, 

and endoplasmic reticulum stress (Figure II.7) (He and Klionsky, 2009). Two pathways involved 

in nutrient starvation are regulated by the cAMP-dependent protein kinase A (PKA) and TOR 

pathways, which sense primarily carbon and nitrogen, respectively (Stephan et al., 2010). In 

yeast, PKA is an inhibitor of macroautophagy under nutrient-rich conditions (Budovskaya et al., 

2004). In mammals, this inhibition occurs at least partially through the phosphorylation of LC3 

by PKA (Cherra et al., 2010). For its role in nitrogen sensing, MTORC1 is positively regulated 

by the presence of amino acids. Amino acids regulate RAG proteins, RAS-related small GTPases 

that activate MTORC1 (Kim et al., 2008; Sancak et al., 2008). There is thought to be some 

crosstalk between the carbon- and nitrogen-sensing pathways, based on studies that demonstrated 

that mammalian PKA can phosphorylate, and thus activate, MTORC1 (Mavrakis et al., 2006; 
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Blancquaert et al., 2010). PKA can also indirectly activate MTORC1 through inactivation of the 

AMP-activated protein kinase (AMPK) (Djouder et al., 2010). 

 AMPK is not simply a substrate of PKA. It is the major energy-sensing kinase in the cell 

and responds to intracellular AMP/ATP levels to regulate a variety of cellular processes, 

including macroautophagy (Meley et al., 2006; Alers et al., 2012). AMP and ATP have opposite 

effects on the activity of AMPK, with AMP binding activating the kinase activity of AMPK 

(Hardie, 2007). When activated by low energy levels, AMPK can phosphorylate and activate the 

TSC1/2 complex, which indirectly inhibits the activity of MTORC1 (Inoki et al., 2003). 

Alternatively, AMPK can directly inhibit MTORC1 (Gwinn et al., 2008; Yang and Klionsky, 

2010). Several studies have also reported that AMPK can phosphorylate and activate ULK1 to 

induce macroautophagy (Lee et al., 2010; Egan et al., 2011; Kim et al., 2011; Shang et al., 

2011). The modulation of macroautophagy by energy sensing is conserved in yeast where Snf1, 

the yeast ortholog of AMPK, serves as a positive regulator (Huang and Snider, 1995; Wang et 

al., 2001).  

 It has also been observed that an increase in cytosolic Ca2+ concentrations resulting from 

ER stress causes calcium/calmodulin-dependent kinase kinase 2, beta (CAMKK2/CaMKKβ) to 

activate AMPK and induce macroautophagy (Høyer-Hansen et al., 2007). Another way in which 

ER stress can induce macroautophagy is through unfolded protein response (UPR) signaling. 

Accumulation of unfolded proteins in the ER can be caused by a variety of cellular stressors, and 

induces macroautophagy in both yeast and mammals. However, the role of macroautophagy in 

response to ER stress seems to vary, with some studies reporting that it enhances cell survival, 

while others suggest that it may result in autophagic cell death (Ding et al., 2007; He and 

Klionsky, 2009). 
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 Additional signals that cause the induction of macroautophagy include hypoxia and the 

absence of growth factors. Even in the presence of adequate nutrients, the absence of growth 

factors leads to the induction of macroautophagy (Lum et al., 2005). Both growth factor 

concentrations and hypoxia regulate macroautophagy at least in part through MTORC1, and 

hypoxia can inhibit MTORC1 even in the presence of adequate nutrients and growth factors 

(Arsham et al., 2003; Alers et al., 2012). Given its complex regulation by a variety of cellular 

signaling pathways, the involvement of MTORC1 in the regulation of macroautophagy is a very 

intriguing and active area of research, and is discussed in greater detail in another review in this 

forum series. 

III.D Selective macroautophagy and cellular maintenance 

 While nonspecific macroautophagy can be induced in response to nutrient or energy 

deprivation to enable cell survival, macroautophagy can also be highly specific, and in this mode 

functions more in cell maintenance and homeostasis (Chen and Klionsky, 2011; Isakson et al., 

2012). Specific autophagic cargoes can include, but are not limited to peroxisomes, 

mitochondria, and ubiquitinated proteins (Weidberg et al., 2011; Lee et al., 2012; Till et al., 

2012).  

 The selective macroautophagic degradation of peroxisomes, termed pexophagy, is 

important for a majority of the turnover of peroxisomes under normal growth conditions 

(Huybrechts et al., 2009). For example, in mouse livers, macroautophagy is responsible for 

degradation of 70-80% of the peroxisomal mass (Yokota and Dariush Fahimi, 2009). 

Peroxisomes can also be degraded under starvation conditions, during which they can be 

specifically recognized by autophagosomes through binding of LC3-II to PEX14, a component 
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of the peroxisomal translocon complex found on the peroxisomal membrane (Hara-Kuge and 

Fujiki, 2008). Given the role of peroxisomes in a variety of metabolic functions and the negative 

effects of peroxisomal dysfunction on human health, pexophagy has an important role in 

maintaining proper cellular physiology (Till et al., 2012). 

 Mitophagy is another type of selective macroautophagy that involves the selective 

degradation of mitochondria, and has been shown to be important in mammals not only for 

steady-state turnover of these organelles (Tal et al., 2007), but also for the development of 

certain cell types and the clearance of damaged mitochondria (Kim et al., 2007; Schweers et al., 

2007; Kundu et al., 2008). For example, in order for mammalian red blood cells to mature, 

mitophagy is used to remove mitochondria from the immature cells (Kundu et al., 2008; Zhang 

et al., 2009; Mortensen et al., 2010). During this process, it is thought that a mitochondrial outer 

membrane protein called BNIP3L/NIX interacts through a WXXL-like motif (also called the 

LC3-interacting region) with LC3 and GABARAP on the expanding phagophore, allowing for 

recognition (Figure II.8) (Youle and Narendra, 2011).  

 The clearance of damaged mitochondria, however, is thought to proceed in a slightly 

different way. In this case, the cytosolic E3 ubiquitin ligase PARK2/Parkin is recruited to 

damaged mitochondria by the mitochondrial outer membrane kinase PINK1, whereupon PARK2 

ubiquitinates mitochondrial substrates, leading to mitophagy (Youle and Narendra, 2011). In 

healthy mitochondria, PINK1 is imported into the mitochondrial inner membrane, and 

subsequent cleavage by mitochondrial processing peptidase (PMPCB) and presenilin associated, 

rhomboid-like protease (PARL) leads to its eventual degradation. This prevents the accumulation 

of PINK1 on the mitochondrial outer membrane, which would otherwise lead to mitophagy of 

healthy mitochondria (Jin et al., 2010; Meissner et al., 2011). The genes encoding both PINK1 
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and PARK2 are mutated in autosomal recessive Parkinson disease (Kitada et al., 1998; Valente 

et al., 2004), emphasizing the importance of mitophagic clearance of damaged mitochondria in 

maintaining cellular, and thus organismal, health.  

 Another mechanism used by the cell to identify cargo for selective degradation by 

macroautophagy involves ubiquitination. The ubiquitin-binding protein SQSTM1/p62 targets 

intracellular bacteria for degradation by a specific type of macroautophagy called xenophagy 

(Zheng et al., 2009). SQSTM1 is also important for the clearance of ubiquitinated protein 

aggregates by acting as an adaptor protein that interacts with LC3-II to target aggregates for 

macroautophagy-specific degradation in a process termed aggrephagy (Vadlamudi et al., 1996; 

Bjørkøy et al., 2005; Øverbye et al., 2007). NBR1 and OPTN are other receptors that function in 

targeting ubiquitinated proteins or pathogens to autophagosomes (Kirkin et al., 2009b; Wild et 

al., 2011). 

Conclusions 

 Given the wide array of extra- and intracellular signals that can regulate autophagy and 

the range of possible cargos, it is not surprising to learn that autophagy has been implicated in 

various aspects of human health and pathophysiology. Several of these topics will be explored in 

depth in other reviews in this forum series. One area that especially warrants further study is the 

regulatory network controlling macroautophagy. While several key regulators of 

macroautophagy have been identified, it is likely that many regulatory factors are not yet 

defined. Even in the case of relatively well-characterized regulators, such as MTORC1, the 

relevant downstream targets are not completely known, as is true for most of the kinases that 

control macroautophagy, and very little information is available with regard to the 

complementary phosphatases. Similarly, the crosstalk among the different regulatory pathways 
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has not been well elucidated. The identification and characterization of such factors will be 

important in the development of therapeutics targeting regulatory proteins; without a deeper 

understanding of how the cell integrates various extracellular and intracellular signals into a 

cohesive macroautophagic response, it is difficult to predict how the regulatory network will 

function when perturbed by therapeutics. 

 Along these lines, potentially interesting targets for therapeutic applications include 

ULK1/2, ATG3, ATG4, ATG7, ATG10 and PIK3C3/VPS34. The crystal structures of most of 

these proteins have been determined from various organisms (Sugawara et al., 2005; Yamada et 

al., 2007; Satoo et al., 2009; Miller et al., 2010; Hong et al., 2011; Noda et al., 2011; Hong et 

al., 2012), and, importantly, they have clearly defined functions and functional motifs, making 

them interesting targets for rational drug design. Further elucidation of the individual steps of 

macroautophagy, additional structural studies, and a more complete knowledge of the role of this 

process in different disease conditions will provide a better understanding of this integral cellular 

process, and can guide the development of improved methods and/or drugs for the treatment of 

autophagy defects related to human disease.  
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Figure II.1. Three types of autophagy in mammalian cells.  
Macroautophagy relies on de novo formation of cytosolic double-membrane vesicles, 
autophagosomes, to sequester and transport cargo to the lysosome. Chaperone-mediated 
autophagy transports individual unfolded proteins directly across the lysosomal membrane. 
Microautophagy involves the direct uptake of cargo through invagination of the lysosomal 
membrane. All three types of autophagy lead to degradation of cargo and release of the 
breakdown products back into the cytosol for reuse by the cell. See the text for details. 
 



60 

 
 
Figure II.2. Morphology of macroautophagy.  
Nucleation of the phagophore occurs following induction by the ULK1/2 complex. Elongation of 
the phagophore is aided by the ATG12−ATG5-ATG16L1 complex, the class III PtdIns3K 
complex, LC3-II, and ATG9. Eventually, the expanding membrane closes around its cargo to 
form an autophagosome and LC3-II is cleaved from the outer membrane of this structure. The 
outer membrane of the autophagosome will then fuse with the lysosomal membrane to form an 
autolysosome. In some instances, the autophagosome may fuse with an endosome, forming an 
amphisome, before fusing with the lysosome. The contents of the autolysosome are then 
degraded and exported back into the cytoplasm for reuse by the cell. See the text for details. This 
figure was modified from figure 1 in Yang, Z, Klionsky DJ. Eaten alive: a history of 
macroautophagy. Nat Cell Biol 12(9): 814-22, 2010. 
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Figure II.3. The induction complex consists of ULK1/2, ATG13, RB1CC1, and C12orf44.  
Under nutrient-rich conditions, MTORC1 associates with the complex and inactivates ULK1/2 
and ATG13 through phosphorylation. During starvation, MTORC1 dissociates from the complex 
and ATG13 and ULK1/2 become partially dephosphorylated by as yet unidentified phosphatases, 
allowing the complex to induce macroautophagy. RB1CC1/FIP200 and C12orf44/ATG101 are 
also associated with the induction complex and are essential for macroautophagy. 
RB1CC1/FIP200 may be the ortholog of yeast Atg17, whereas the function of 
C12orf44/ATG101 is not known. This figure was modified from figure 1 in Yang Z, Klionsky 
DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell 
Biol 22: 124-31, 2010.  
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Figure II.4. The activity of the class III PtdIns3K complex is regulated by subunit 
composition.  
The ATG14 complex (ATG14-BECN1-PIK3C3-PIK3R4) is required for macroautophagy. It can 
be positively regulated by AMBRA1 and negatively regulated by BCL2 binding to BECN1 and 
preventing association with the complex. The UVRAG (UVRAG-BECN1-PIK3C3-PIK3R4) 
complex is involved in the endocytic pathway and also participates in macroautophagy. 
SH3GLB1/Bif-1 positively regulates this complex by binding UVRAG. The KIAA0226/Rubicon 
complex (KIAA0226-UVRAG-BECN1-PIK3C3-PIK3R4) negatively regulates macroautophagy. 
This figure was modified from figure 1 in Yang Z, Klionsky DJ. Mammalian autophagy: core 
molecular machinery and signaling regulation. Curr Opin Cell Biol 22: 124-31, 2010. 
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Figure II.5. ATG12–ATG5-ATG16L1 conjugation complex.  
The ubiquitin-like protein ATG12 is irreversibly conjugated to ATG5 in an ATG7- and ATG10-
dependent manner. ATG7 and ATG10 function as E1 activating and E2 conjugating enzymes, 
respectively. The ATG12–ATG5 conjugate binds ATG16L1 through ATG5. ATG16L1 
dimerizes and allows association with the phagophore, promoting membrane expansion. 
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Figure II.6. The LC3 conjugation system.  
LC3 is processed by ATG4 to reveal a C-terminal glycine (LC3-I). ATG7, an E1-like enzyme, 
activates LC3-I and transfers it to the E2-like enzyme ATG3. The ATG12–ATG5-ATG16L1 
complex may participate as an E3 ligase in the conjugation of phosphatidylethanolamine (PE) to 
LC3-I to create LC3-II, which can associate with the phagophore. LC3-II can subsequently be 
cleaved by ATG4 to release LC3 (deconjugation). 
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Figure II.7. Regulation of macroautophagy.  
Three of the major kinases that regulate macroautophagy are cAMP-dependent protein kinase A 
(PKA), AMP-activated protein kinase (AMPK), and mechanistic target of rapamycin complex 1 
(MTORC1). These kinases, along with proteins such as TSC1/2 and calcium/calmodulin-
dependent kinase kinase 2, beta (CAMKK2), respond to a variety of intracellular and 
extracellular signals to regulate macroautophagy. Green arrows indicate activation of a target and 
red bars indicate inhibition of a target. See the text for details. This figure was modified from 
figure 4 of Chen Y, Klionsky, DJ. The regulation of autophagy – unanswered questions. J Cell 
Sci 124: 161-70, 2011. 
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Figure II.8. Two mechanisms of mitophagy.  
Mitochondria are cleared from maturing red blood cells through a mechanism involving 
autophagic recognition of mitochondria through a BNIP3L-LC3 interaction. During removal of 
damaged mitochondria, PARK2 binds to PINK1 on the mitochondrial surface and ubiquitinates 
mitochondrial outer membrane proteins, which may then bind SQSTM1, a receptor that interacts 
with LC3. In either case, the interaction with LC3 leads to sequestration by the phagophore and 
eventual degradation. This figure was modified from figure 2 of Youle RJ, Narendra DP. 
Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12: 9-14, 2011. 
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Chapter III 

A newly characterized vacuolar serine carboxypeptidase, Atg42/Ybr139w, is required for 

normal vacuole function and the terminal steps of autophagy in the yeast Saccharomyces 

cerevisiae3 

Abstract 

 Macroautophagy (hereafter autophagy) is a cellular recycling pathway essential for cell 

survival during nutrient deprivation that culminates in the degradation of cargo within the 

vacuole in yeast and the lysosome in mammals, followed by efflux of the resultant 

macromolecules back into the cytosol. The yeast vacuole is home to many different hydrolytic 

proteins and while few have established roles in autophagy, the involvement of others remains 

unclear. The vacuolar serine carboxypeptidase Prc1 (carboxypeptidase Y) has not been 

previously shown to have a role in vacuolar zymogen activation and has not been directly 

implicated in the terminal degradation steps of autophagy. Through a combination of molecular 

genetic, cell biological, and biochemical approaches, we have shown that Prc1 has a functional 

homolog, Ybr139w, and that cells deficient in both Prc1 and Ybr139w have defects in 

autophagy-dependent protein synthesis, vacuolar zymogen activation, and autophagic body 

breakdown. Thus, we have demonstrated that Ybr139w and Prc1 have important roles in 

proteolytic processing in the vacuole and the terminal steps of autophagy. 

 

                                                 
3 This chapter has been submitted for publication in Molecular Biology of the Cell. All 
experiments were completed by Katherine Parzych.   
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Introduction 

The vacuole in the yeast Saccharomyces cerevisiae is analogous to the mammalian 

lysosome and performs a variety of functions including metabolite storage and maintenance of 

pH and ion homeostasis, but it is perhaps best known as the major degradative organelle of the 

cell (Klionsky et al., 1990; Thumm, 2000). Autophagy is an intracellular recycling pathway that 

depends on the vacuole for degradation of various substrates (Reggiori and Klionsky, 2013). 

Upon induction of autophagy by nutrient stress conditions such as nitrogen starvation, transient 

double-membrane compartments, called phagophores, form de novo to envelop cellular contents. 

The phagophore expands, and upon completion forms an autophagosome. Autophagosomes 

traffic to the vacuole, where the outer membrane of the autophagosome fuses with the vacuolar 

membrane, releasing the inner membrane-bound compartment, now termed the autophagic body, 

into the vacuolar lumen. The autophagic body and its contents are broken down and released 

back into the cytosol for reuse by the cell (Reggiori and Klionsky, 2013). 

Although autophagy has attracted substantial attention over the past two decades, and 

defects in this process are associated with a wide array of diseases, relatively little attention has 

been focused on the final steps of this process—breakdown of the autophagic cargo, and efflux 

of the resulting macromolecules. As a degradative organelle, the vacuole is home to many 

hydrolases, responsible for degrading a wide array of substrates, including proteins, 

carbohydrates, lipids, and nucleic acids (Klionsky et al., 1990; Epple et al., 2001; Teter et al., 

2001). As with the final breakdown process in general, the biosynthesis and function of 

vacuolar/lysosomal hydrolases has been largely ignored in recent years, yet there are clearly 

many unanswered questions about hydrolase function. For example, several of these enzymes 

appear to have redundant activities: the yeast vacuole contains at least two carboxypeptidases 
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and two aminopeptidases (Klionsky et al., 1990; Van Den Hazel et al., 1996; Hecht et al., 2014); 

however, it is likely that each of these enzymes has at least some unique substrates and 

specificities. In fact, the absence of a single lysosomal hydrolase often results in a disease 

phenotype (Kaminskyy and Zhivotovsky, 2012). As one example, patients with the disease 

galactosialidosis exhibit a deficiency of the multifunctional lysosomal hydrolase CTSA 

(cathepsin A) (Hiraiwa, 1999). CTSA functions as a carboxypeptidase and has structural 

homology to, and similar substrate specificity as, the yeast vacuolar serine carboxypeptidase 

Prc1 (carboxypeptidase Y) (Hiraiwa, 1999).  

In yeast, two resident vacuolar proteases in particular, Pep4 (proteinase A) and Prb1 

(proteinase B), are critical for the final steps of autophagy, in part because they play a role in the 

activation of many of the other zymogens present in the vacuole lumen (Van Den Hazel et al., 

1996). Cells deficient in these proteases show an accumulation of autophagic bodies in the 

vacuole (Takeshige et al., 1992). Additionally, cells lacking Pep4 display decreased survival in 

nitrogen starvation conditions (Teichert et al., 1989; Tsukada and Ohsumi, 1993). During times 

of nutrient stress, cells will increase expression of Pep4, Prb1, and Prc1 to cope with the 

increased demand for autophagic recycling (Klionsky et al., 1990; Van Den Hazel et al., 1996). 

Thus far, Prc1 has not been shown to have a role in autophagy, as there is no accumulation of 

autophagic bodies in the vacuoles of Prc1-deficient cells during nitrogen starvation (Takeshige et 

al., 1992). However, this may be due to the presence of a functionally-redundant homolog; the 

vacuole contains one other putative serine carboxypeptidase, Ybr139w, which shows a high 

degree of similarity to Prc1 at the amino acid level; the other known vacuolar carboxypeptidase, 

Cps1, is a zinc metallopeptidase (Nasr et al., 1994; Huh et al., 2003; Baxter et al., 2004; Hecht et 

al., 2014). Microarray and northern blotting analysis show that YBR139W expression is induced 
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in nitrogen-poor conditions or following rapamycin treatment (Scherens et al., 2006). In one 

study examining the synthesis of phytochelatins, peptides that bind excess heavy metal ions, 

deletion of YBR139W had little-to-no effect on synthesis, whereas deletion of PRC1 resulted in 

moderate inhibition (Wünschmann et al., 2007). However, deletion of both genes abolished 

phytochelatin synthesis altogether (Wünschmann et al., 2007). This finding suggests that there 

may indeed be some functional redundancy between these two proteins. Thus, it is possible that 

no autophagy phenotype has yet been seen in Prc1-deficient cells due to a compensatory effect 

by Ybr139w.  

We set out to determine whether Ybr139w is a functional homolog of Prc1 and whether 

either, or both, of these proteins participate in the terminal steps of autophagy. We demonstrate 

that the absence of both of these proteins results in defects in the maturation of several vacuolar 

hydrolases, lysis of autophagic bodies in the vacuole, and maintenance of the amino acid pool 

during nitrogen starvation conditions. Additionally, there is functional redundancy between Prc1 

and Ybr139w as regards these phenotypes. 

Results 

Ybr139w is a resident vacuolar glycoprotein 

 As can be inferred from the absence of a standard name, Ybr139w has been essentially 

uncharacterized. A previous large-scale study of protein localization indicated that Ybr139w 

localized to the vacuole, similar to Prc1 (Huh et al., 2003). To verify this localization, we tagged 

the carboxy terminus of Ybr139w with GFP and examined its intracellular distribution using 

fluorescence microscopy. In both growing and starvation conditions, Ybr139w-GFP localized to 

the vacuole and displayed a diffuse signal throughout the lumen, similar to Prc1-GFP (Figure 

III.1A). Similarly, in the pep4∆ strain, where most proteolytic processing is blocked, localization 
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was diffuse throughout the vacuole lumen, suggesting that Ybr139w is a soluble, rather than 

membrane-associated, protein (Figure III.1A). 

 Western blot analysis of protein extracts from cells expressing Ybr139w-GFP showed 

that the GFP tag was cleaved from Ybr139w in both growing and starvation conditions in a 

Pep4-dependent manner (Figure III.1B). Many chimeric GFP-tagged proteins that are delivered 

to the vacuole display a similar phenotype, that is, cleavage of intact GFP from the remainder of 

the protein (Shintani and Klionsky, 2004; Kanki and Klionsky, 2008); the GFP moiety is 

relatively resistant to degradation, and the appearance of the free GFP band serves as an 

indication of vacuolar delivery. Thus, the liberation of GFP from Ybr139w-GFP is another line 

of evidence suggesting that Ybr139w is exposed to the proteolytic environment of the vacuole. 

Together, these results suggest that, similar to Prc1, Ybr139w is a resident vacuolar protein.  

 As with many of the vacuolar proteases, Prc1 is a glycoprotein (Klionsky et al., 1990; 

Van Den Hazel et al., 1996). Prc1 is N-glycosylated at Asn124, Asn198, Asn279, and Asn479 

(Hasilik and Tanner, 1978a, b; Winther et al., 1991) (Figure III.1C). Based on BLAST 

alignment, two of these sites, Asn198 and Asn279, are conserved in Ybr139w as Asn163 and 

Asn242. To determine whether Ybr139w is glycosylated at these sites, we mutated them to 

glutamine and looked for a change in gel mobility using western blotting. Mutation of the 

predicted glycosylated residues resulted in a reduction in apparent molecular weight of 

approximately 5 kDa, which would correspond to the average mass of two glycosylation sites 

(Figure III.1D). This observation suggests that Ybr139w is glycosylated at these two conserved 

sites. 

prc1∆ ybr139w∆ cells exhibit defects in vacuolar function 
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 One important function of the yeast vacuole during autophagy is to generate a pool of 

free amino acids to be used in the synthesis of proteins. During nitrogen starvation, cellular 

amino acid levels decrease drastically but are largely recovered after 3-4 h (Onodera and 

Ohsumi, 2005; Müller et al., 2015); this recovery is dependent on autophagy, and is required to 

support the increased synthesis of various proteins (Onodera and Ohsumi, 2005; Müller et al., 

2015). One such protein that displays a substantial increase in synthesis under autophagy-

inducing conditions is Ape1 (aminopeptidase I), a resident vacuolar hydrolase that is delivered to 

the vacuole through the cytoplasm-to-vacuole targeting (Cvt) pathway (Harding et al., 1995; 

Gasch et al., 2000). Under conditions of nitrogen starvation, Ape1 is dependent on the release of 

amino acids from the vacuolar pool for its increased synthesis (Onodera and Ohsumi, 2005; 

Yang et al., 2006). Thus, the level of Ape1 during starvation serves as a useful marker for 

vacuolar function and recycling of amino acids. Accordingly, we monitored the synthesis of this 

protein when cells were shifted from growing to starvation conditions. Whereas a robust increase 

in Ape1 occurred in wild-type cells upon nitrogen starvation, this was markedly reduced in 

prc1∆ ybr139w∆ double-knockout cells (Figure III.2A), suggesting a defect in the generation or 

efflux of the vacuolar amino acid pool in these cells; considering the soluble nature of Ybr139w 

and its similarity to Prc1, the former seems most likely. We also noted that the proteolytic 

processing of the precursor form of Ape1 (prApe1) was substantially delayed in prc1∆ 

ybr139w∆ cells (Figure III.2A) (Hecht et al., 2014). The prc1∆ ybr139w∆ double-knockout cells 

accumulated prApe1, similar to proteolytically-deficient pep4∆ cells (Figure III.2, B and C). In 

contrast, neither the prc1∆ nor the ybr139w∆ single null strain displayed a defect in the synthesis 

or processing of prApe1 (Figure III.2B), suggesting that there is at least some degree of 

functional redundancy between Prc1 and Ybr139w. 
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 Another marker for vacuolar recycling of amino acids is Prb1, which, like Ape1, is 

upregulated during nitrogen starvation and is synthesized as a zymogen (Klionsky et al., 1990; 

Van Den Hazel et al., 1996; Hecht et al., 2014). Prb1 undergoes a self-catalyzed N-terminal 

cleavage event in the ER followed by glycosylation, resulting in a 40-kDa species (proPrb1) 

being delivered to the vacuole (Nebes and Jones, 1991; Hirsch et al., 1992; Van Den Hazel et al., 

1996).  Once in the vacuole, it undergoes two more cleavage events, this time at the C terminus. 

The first cleavage is Pep4-mediated and results in a 37-kDa intermediate species (Moehle et al., 

1989), which we have termed intPrb1 (Figure III.2D). The second cleavage event results in the 

31-kDa mature form of Prb1 (Moehle et al., 1989). Similar to the Ape1 biosynthesis defects seen 

in the prc1∆ ybr139w∆ strain, Prb1 levels were lower and proteolytic processing was reduced 

compared to the wild type (Figure III.2, E and F). The migration pattern of Prb1 in the prc1∆ 

ybr139w∆ double-knockout strain, however, was not identical to that seen in the pep4∆ strain 

(Figure III.2E); the pep4∆ mutant showed a mix of the proPrb1 and intPrb1 precursors, whereas 

prc1∆ ybr139w∆ cells accumulated intPrb1 and the mature Prb1, suggesting that the initial 

cleavage event in the vacuole depends on Pep4, but that subsequent maturation requires the 

activity of these carboxypeptidases, at least for maximal efficiency; neither of these steps 

appeared to be completely blocked in pep4∆ or prc1∆ ybr139w∆ cells, respectively, suggesting 

the possibility of less efficient compensatory processing mechanisms. The defect in protein 

synthesis and processing of prApe1 and intPrb1 were complemented by addition of either 

YBR139W or PRC1 genes to the prc1∆ ybr139w∆ strain (Supplementary figure III.S1). Based on 

these data, we conclude that Ybr139w and Prc1 share some functional redundancy and in cells 

lacking both of these proteins, vacuolar function is impaired, as demonstrated by effects on 
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protein synthesis under starvation conditions and proteolytic processing of certain zymogens. 

Ybr139w is a serine carboxypeptidase 

To determine whether Ybr139w exhibited serine carboxypeptidase activity similar to 

Prc1, we sought to assess potential serine carboxypeptidase activity through mutagenesis of the 

predicted Ybr139w active site. Serine proteases have a catalytic triad consisting of a serine, 

histidine, and aspartate (Kraut, 1977). In Prc1, these residues are at positions Ser257, Asp449, 

and His508 (Stennicke et al., 1996). Mutation of either Ser257 or His508 to alanine drastically 

reduces the activity of Prc1 (Bech and Breddam, 1989; Stennicke et al., 1996), whereas mutating 

Asp449 has only a minor effect (Stennicke et al., 1996). The analogous residues in Ybr139w are 

Ser219, Asp425, and His474 (Nasr et al., 1994). Mutation of all three predicted active site 

residues to alanine abolished enzymatic activity, as evidenced by the inability of the mutated 

Ybr139w to complement the prApe1- and intPrb1-processing defects in prc1∆ ybr139w∆ cells 

(Figure III.3, A and B); although we detected partial processing of intPrb1, a similar result was 

seen with the non-transformed prc1∆ ybr139w∆ strain, or the double-knockout strain 

transformed with an empty vector. Mutation of individual residues showed only a partial block in 

enzymatic activity (Figure III.3, C and D). These results suggest that Ybr139w functions as a 

serine carboxypeptidase, similar to Prc1. 

We next used a complementary in vitro biochemical assay to measure the 

carboxypeptidase Y activity of various mutants. Hydrolysis of the Prc1 peptide substrate N-(3-

[2-furyl]acryloyl)-Phe-Phe-OH (FA-Phe-Phe-OH) added to cell lysates results in a decrease in 

absorbance at 337 nm (Caesar and Blomberg, 2004; Gombault et al., 2009). As expected, wild-

type cells showed a decrease in absorbance over time, indicative of carboxypeptidase Y activity 

in the cell lysates (Supplementary figure III.S2). Deletion of PRC1 or both PRC1 and YBR139W 
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almost completely abolished carboxypeptidase Y activity, whereas deletion of YBR139W alone 

had little-to-no effect. We propose that the observed results are due to a difference in substrate 

specificity between Prc1 and Ybr139w. 

prc1∆ ybr139w∆ cells are defective in the terminal steps of autophagy 

Because prc1∆ ybr139w∆ cells showed a clear defect in vacuolar function, we next 

wanted to determine whether autophagy was affected in these cells. Atg8 is an autophagic 

protein that becomes conjugated to a phosphatidylethanolamine (PE) lipid moiety in the 

cytoplasm (Ichimura et al., 2000). Atg8–PE is present on both sides of the phagophore, and the 

protein that is localized to the concave side becomes trapped within the completed 

autophagosome (Kirisako et al., 1999). This population of Atg8–PE is delivered into the vacuole 

within the autophagic body and is degraded during autophagy, but accumulates in the vacuoles 

of pep4∆ cells (Klionsky et al., 2007). We analyzed the potential role of Prc1 and Ybr139w in 

the vacuolar turnover of Atg8 by western blot. In wild-type cells, relatively little Atg8 or Atg8–

PE is detected because the protein is degraded in the vacuole (Figure III.4A). In contrast, pep4∆ 

cells displayed the expected accumulation of this protein. In fact, pep4∆ cells accumulated both 

non-lipidated Atg8 and Atg8–PE. Atg8 synthesis increases during starvation (Kirisako et al., 

1999); it is possible that the ineffective generation of amino acids from vacuolar hydrolysis in 

the absence of Pep4 results in a continued starvation signal, causing further upregulation of Atg8 

synthesis, and the small size of the protein may leave it relatively insensitive to the limited pool 

of free amino acids. Deletion of PRC1 caused no change in Atg8/Atg8–PE accumulation as 

compared to wild-type, whereas the ybr139w∆ strain showed a slight reduction in total 

Atg8/Atg8-PE (Figure III.4A). In contrast to the single mutants, the prc1∆ ybr139w∆ double 

mutant showed a substantial accumulation of Atg8/Atg8–PE, comparable to that of the pep4∆ 
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strain.  Reintroduction of the PRC1 gene into the prc1∆ ybr139w∆ strain fully complemented 

this phenotype, whereas reintroduction of the YBR139W gene could only partially complement 

(Supplementary figure III.S3A); there was still a substantial accumulation of Atg8–PE 

suggesting a continued partial starvation response. This finding demonstrates that the vacuolar 

serine carboxypeptidases participate in terminal steps of autophagy and further supports 

functional overlap between these two proteins.  

Given that Prb1 cleaves the propeptide from prApe1 in the vacuole in a Pep4-dependent 

manner (i.e., Prb1 is the direct processing enzyme, but its activation requires Pep4) (Klionsky et 

al., 1992; Van Den Hazel et al., 1996), it is possible that the observed defects in prApe1 

maturation in pep4∆ and prc1∆ ybr139w∆ cells (Figure III.2, A-C) are a result of the defects in 

Prb1 processing in these strains (Figure III.2, E and F). However, a previous observation that 

cells deficient in Pep4 or Prb1 accumulate autophagic bodies in the vacuole upon nitrogen 

starvation suggests another possible explanation (Takeshige et al., 1992). In addition to delivery 

via the Cvt pathway (Harding et al., 1995), prApe1 can be delivered to the vacuole through 

nonspecific autophagy (Scott et al., 1996). We hypothesized that inefficient maturation of 

prApe1 in pep4∆ and prc1∆ ybr139w∆ cells (Figure III.2, A-C) resulted from impaired lysis of 

autophagic bodies in the vacuole, preventing exposure of this zymogen to the proteolytic 

environment of the vacuolar lumen. We investigated whether autophagic bodies accumulate in 

the vacuole in prc1∆ ybr139w∆ cells by examining the localization of GFP-Atg8. In growing 

conditions, GFP-Atg8 appears primarily as a single perivacuolar punctum that corresponds to the 

phagophore assembly site (Kim et al., 2002). During nitrogen starvation, GFP-Atg8 is delivered 

to the vacuole via autophagy (Suzuki et al., 2001). In wild-type cells that undergo normal 

breakdown of autophagic bodies within the vacuole, GFP from GFP-Atg8 appears as a diffuse 
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signal throughout the vacuolar lumen. However, if breakdown of autophagic bodies is impeded, 

such as in a pep4∆ strain, the GFP signal appears punctate within the vacuole, which corresponds 

to the presence of intact autophagic bodies (Kim et al., 2001; Klionsky et al., 2007). The deletion 

of PRC1 or YBR139W alone resulted in the presence of diffuse vacuolar GFP-Atg8 fluorescence 

upon nitrogen starvation, similar to wild-type cells (Figure III.4, B and C). In contrast, deletion 

of both genes showed an accumulation of GFP-Atg8 puncta in the vacuole, similar to, but not as 

severe as the pep4∆ strain (Figure III.4, B and C). This result suggests that at least one of the 

serine carboxypeptidases, Ybr139w or Prc1, must be present for efficient lysis of autophagic 

bodies in the vacuole lumen.  

Due to its roles in vacuolar function and the terminal steps of autophagy, we propose to 

rename YBR139W as ATG42.  

Discussion 

In this work, we set out to characterize the putative Prc1 homolog Atg42/Ybr139w and to 

determine whether either, or both, of these proteins are involved in the terminal steps of 

autophagy. Through fluorescence microscopy and western blotting, we demonstrated that, 

similar to Prc1, Atg42/Ybr139w is a resident soluble vacuolar glycoprotein (Figure III.1). 

Moreover, Atg42/Ybr139w was shown to be a serine carboxypeptidase (Figure III.3), based on 

mutation of predicted active site residues that were identified through alignment with Prc1. 

However, we suggest that Atg42/Ybr139w may have a slightly different substrate specificity 

than Prc1, as prc1∆ cells showed an inability to break down the Prc1 substrate FA-Phe-Phe-OH, 

despite the presence of Atg42/Ybr139w (Supplemental figure III.S2). 

We also found that at least one of these proteins is required for regeneration of the 

vacuolar amino acid pool during starvation, as demonstrated by the reduced synthesis of Ape1 in 



88 

atg42∆/ybr139w∆ prc1∆ mutant cells (Figure III.2A). Loss of both Atg42/Ybr139w and Prc1 

also resulted in decreased maturation of the vacuolar zymogens prApe1 and intPrb1 (Figure III.2, 

B-C and E-F). Our results regarding the maturation defects of Prb1 in the atg42∆/ybr139w∆ 

prc1∆ strain in particular provide further information regarding the proteolytic processing of this 

protein. The second cleavage of the Prb1 zymogen, which occurs in the vacuole (conversion of 

intPrb1 to Prb1; Figure III.2D), was previously reported to be Prb1-dependent (i.e., 

autocatalytic), because the Prb1 inhibitor chymostatin inhibits processing (Mechler et al., 1988). 

Also, the intPrb1 species accumulates in cells with the prb1-628 allele, in which Ala171 is 

changed to Thr; this mutation is thought to possibly interfere with the Prb1 active site (Moehle et 

al., 1989; Nebes and Jones, 1991). However, our data suggest that the second cleavage event is 

at least partially dependent on Atg42/Ybr139w and/or Prc1.  

The vacuolar breakdown and efflux steps of autophagy are mediated by a host of 

hydrolases and permeases, including Pep4 and Prb1. Evidence of this exists in the accumulation 

of autophagic bodies in the vacuoles of Pep4- and Prb1-deficient cells (Takeshige et al., 1992). It 

was previously thought that Prc1 had no involvement in autophagy because deletion of the PRC1 

gene had no effect on autophagic body formation in the vacuole (Takeshige et al., 1992). 

However, our work suggests that the role of Prc1 in autophagy was previously obscured due to 

compensatory activity by the homolog Atg42/Ybr139w in Prc1-deficient cells, and that both 

Prc1 and Atg42/Ybr139w do in fact participate in the terminal steps of autophagy. Analysis of 

prc1∆ or atg42∆/ybr139w∆ single mutant strains would seem to support the previous notion that 

neither of these genes are required for autophagy; Atg8 protein is turned over as in wild-type 

cells (Figure III.4A), and GFP-Atg8 fluorescence is diffuse within vacuoles during nitrogen 

starvation (Figure III.4B), suggesting efficient lysis of autophagic bodies within the vacuole. 
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However, the atg42∆/ybr139w∆ prc1∆ double mutant was strikingly similar to the autophagy-

deficient pep4∆ strain; there was a marked accumulation of Atg8 protein (Figure III.4A), 

suggesting a defect in protein turnover, and GFP-Atg8 appeared primarily as punctate clusters 

within the vacuole, indicating an accumulation of autophagic bodies and a defect in autophagic 

body lysis (Figure III.4, B and C). 

It is unclear from our results how Atg42/Ybr139w and Prc1 function in the breakdown of 

autophagic bodies in the vacuole. As previously mentioned, autophagic bodies accumulate in 

Prb1- and Pep4-deficient cells (Takeshige et al., 1992), so one possibility is that the defects in 

Prb1 maturation seen in the atg42∆/ybr139w∆ prc1∆ strain are responsible for this block. 

Accumulation of autophagic bodies also occurs in cells lacking the vacuolar lipase Atg15 (Epple 

et al., 2001; Teter et al., 2001). How Atg15 activity is regulated in the vacuole remains 

unknown, but it has been previously speculated that, similar to many other vacuolar proteins, it 

may be activated through proteolytic processing (Teter et al., 2001). Further study is required to 

understand this activation and whether Atg42/Ybr139w, Prc1, and Prb1 are involved. The 

cascade of events that combines vacuolar acidification, zymogen activation, and the lipase Atg15 

to result in autophagic body breakdown remains poorly understood; however, its importance 

cannot be overlooked—without these critical terminal events, autophagy cannot complete its 

recycling of macromolecules to support protein synthesis and survival during starvation. 

Materials and Methods 

Strains and Media 

 Yeast strains and plasmids used in this study are listed in Table 1 and Table 2, 

respectively. C-terminal tagging with GFP (Longtine et al., 1998) and gene disruption 

(Gueldener et al., 2002) were performed using a PCR-based method. Due to slight overlap 
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between the YBR139W gene and the chromosomal autonomously replicating sequence, we did 

not delete the entire gene, but instead deleted nucleotides coding for the first 491 of 508 amino 

acids. We refer to this truncation as ybr139w∆ for simplicity. Site-directed mutagenesis of 

plasmid-borne YBR139W was done using a standard method (Zheng et al., 2004).  

Cells were cultured in rich medium (YPD; 1% yeast extract, 2% peptone, 2% glucose) or 

synthetic minimal medium (SMD; 0.67% yeast nitrogen base, 2% glucose, and auxotrophic 

amino acids and vitamins as needed) as appropriate. Autophagy was induced by shifting cells in 

mid-log phase from growth medium to nitrogen starvation medium (SD-N; 0.17% yeast nitrogen 

base without ammonium sulfate or amino acids, 2% glucose) for the indicated times. All cells 

were grown at 30˚C. 

Protein Extraction and Immunoblot Analysis 

 Protein extraction and immunoblotting were performed as previously described 

(Yorimitsu et al., 2007). PVDF membranes were stained with Ponceau S to monitor protein 

transfer prior to immunoblotting. 

 Antisera to Ape1 and Atg8 were used as described previously (Klionsky et al., 1992; 

Huang et al., 2000). The anti-Pgk1 antiserum was a generous gift from Dr. Jeremy Thorner, 

University of California, Berkeley. The anti-Prb1 antiserum was a generous gift from Dr. 

Elizabeth Jones (Moehle et al., 1989). Additional antisera used were anti-PA (Jackson 

Immunoresearch), anti-YFP (Clontech, JL-8), rabbit anti-mouse (Jackson Immunoresearch), and 

goat anti-rabbit (Fisher Scientific). 

Fluorescence microscopy 

For FM 4-64 (Life Technologies) vacuole membrane staining, cells were grown to mid-

log phase in SMD complete medium or SMD medium lacking selective nutrients at 30˚C. Cells 
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(0.75 OD600 units) were collected by centrifugation at 855 x g for 1 min; pellets were 

resuspended in 100 µl growth medium and stained with 30 µM FM 4-64 for 30 min at 30ºC, 

agitating every 10 min. Cells were then washed 2 times with 1 ml growth medium or starvation 

medium (SD-N), resuspended in 1 ml growth medium or SD-N, and incubated at 30ºC for either 

1 h (growth medium) or 2 h (starvation medium) before imaging. 

Carboxypeptidase Y activity assay 

 Samples were prepared and carboxypeptidase Y activity was determined similar to the 

method described in Caesar and Blomberg (Caesar and Blomberg, 2004). Briefly, cells were 

lysed by glass bead disruption in MES buffer (50 mM MES, 1 mM EDTA, pH 6.5). Cell debris 

was pelleted and the supernatant (lysate) was collected. The BCA assay was used to determine 

the protein concentration of the lysates.  

 Hydrolysis of the carboxypeptidase Y substrate N-(3-[2-furyl]acryloyl)-Phe-Phe (FA-

Phe-Phe-OH; Bachem) was measured over time in MES buffer. Reactions contained 200 µg/ml 

lysate and 1 mM FA-Phe-Phe-OH (dissolved in methanol) and were incubated at room 

temperature. Hydrolysis of FA-Phe-Phe-OH was measured by reading the absorbance at 337 nm. 

Statistical analysis 

 Where appropriate, a one-sample t-test was used to determine statistical significance. 
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Figure III.1. Ybr139w is a soluble vacuolar glycoprotein. 
(A) The localization of Ybr139w-GFP and Prc1-GFP was examined in wild-type (KPY382 and 
KPY384) and pep4∆ (KPY383 and KPY385) cells in growing and starvation conditions. FM 4-64 
was used to label the vacuole limiting membrane. DIC, differential interference contrast. Scale bar: 
5 µm. (B) GFP is cleaved from Ybr139w-GFP in a PEP4-dependent manner. Wild-type (KPY382) 
and pep4∆ (KPY383) cells expressing chromosomally-tagged Ybr139w-GFP were grown to mid-
log phase in YPD and then shifted to starvation conditions for the indicated times. Protein extracts 
were resolved by SDS-PAGE and blotted with anti-YFP antibody as described in Materials and 
Methods. Pgk1 is used as a loading control. (C) Schematic representation of Prc1 and Ybr139w. 
Gray box, signal peptide; black box, propeptide; numbers, glycosylated residues; *, predicted. (D) 
pep4∆ (TVY1) cells expressing wild-type Ybr139w-PA (pKP105) or Ybr139wN163,242Q-PA 
(pKP110) were grown to mid-log phase in SMD-URA, cells were harvested and protein extracts 
were analyzed as in (B) using antibodies to protein A. 
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Figure III.2. Vacuolar function is impaired in cells lacking PRC1 and YBR139W. 
(A) Wild-type (SEY6210) and prc1∆ ybr139w∆ (KPY325) cells were grown to mid-log phase in 
YPD medium and then shifted to starvation conditions for the indicated times. Protein extracts 
were analyzed by western blot using antiserum to Ape1. The positions of precursor (pr) and mature 
Ape1 are indicated. (B and E) Wild-type (SEY6210), prc1∆ (KPY301), ybr139w∆ (KPY323), 
prc1∆ ybr139w∆ (KPY325), and pep4∆ (TVY1) cells were grown to mid-log phase in YPD and 
then shifted to starvation conditions for 3 h. Cells were harvested and protein extracts were 
analyzed by western blot using antiserum to Ape1 (B) or Prb1 (E). The positions of the precursor 
(pro), intermediate (int), and mature forms of Prb1 are indicated. (C) Quantification of results in 
(B). Percent Ape1 was calculated as amount of Ape1/total Ape1 (Ape1 + prApe1). Average of 
three experiments. Error bars, standard deviation; ns, not significant. (D) Schematic representation 
of Prb1 processing in the vacuole. See text for details. (F) Quantification of results in (E). Average 
of three experiments. Percent Prb1 was calculated as amount of Prb1/total Prb1 (Prb1 + intPrb1 + 
proPrb1). Average of three experiments. Error bars, standard deviation. 
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Figure III.3. Ybr139w is a serine carboxypeptidase. 
(A and B) prc1∆ (KPY301), prc1∆ ybr139w∆ (KPY325), and prc1∆ ybr139w∆ cells with 
integrated empty vector (KPY332), YBR139W (KPY336), or YBR139WS219,D415,H474A (KPY418) 
genes were grown to mid-log phase in YPD medium and then shifted to starvation conditions for 3 
h. Cells were harvested and protein extracts were analyzed by western blot using antiserum to 
Ape1 (A) or Prb1 (B). (C and D) prc1∆ (KPY301), and prc1∆ ybr139w∆ cells with integrated 
empty vector (KPY332), YBR139W (KPY336), YBR139WS219A (KPY404), YBR139WD415A 
(KPY416), or YBR139WH474A (KPY406) genes were grown to mid-log phase in YPD and then 
shifted to starvation conditions for 3 h. Cells were harvested and protein extracts were analyzed by 
western blot using antiserum to Ape1 (C) or Prb1 (D).  
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Figure III.4.  Cells lacking PRC1 and YBR139W are defective in the terminal steps of 
autophagy. 
(A) Wild-type (SEY6210), prc1∆ (KPY301), ybr139w∆ (KPY323), prc1∆ ybr139w∆ (KPY325), 
and pep4∆ (TVY1) cells were grown to mid-log phase in YPD medium and then shifted to 
starvation conditions for 3 h. Cells were harvested and protein extracts were analyzed by western 
blot using antiserum to Atg8. (B) Wild-type (SEY6210), pep4∆ (TVY1), prc1∆ (KPY301), 
ybr139w∆ (KPY323), and prc1∆ ybr139w∆ (KPY325) cells expressing GFP-Atg8 from a plasmid 
were grown in SMD-TRP medium to mid-log phase. Cells were stained with FM 4-64 for 30 min 
to label the vacuole and chased in either SDM-TRP for 1 h (growing) or SD-N for 2 h (starvation) 
before imaging. DIC, differential interference contrast. Scale bar: 5 µm. (C) Quantification of 
results in (B). Cells with GFP-Atg8-positive vacuoles were divided into four categories based on 
the appearance of the GFP signal as indicated. Wild-type, n = 183 cells; pep4∆, n = 475 cells; 
prc1∆ ybr139w∆, n = 309 cells. 
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Table III.1. Strains used in this study. 
Strain   Genotype      Source   
KPY301  SEY6210 prc1∆::his5     this study 
KPY323  SEY6210 ybr139w∆::LEU2     this study 
KPY325  SEY6210 prc1∆::his5 ybr139w∆::LEU2   this study  
KPY332  KPY325 + pKP112     this study 
KPY334  KPY325 + pKP113     this study 
KPY336  KPY325 + pKP115     this study 
KPY350  SEY6210 + pRS406     this study 
KPY351  KPY325 + pRS406      this study 
KPY382  SEY6210 YBR139W-GFP(S65T)-His3MX6  this study  
KPY383  TVY1 YBR139W-GFP(S65T)-His3MX6  this study  
KPY384  SEY6210 PRC1-GFP(S65T)-His3MX6  this study  
KPY385  TVY1 PRC1-GFP(S65T)-His3MX6   this study  
KPY404  KPY325 + pKP129      this study 
KPY406  KPY325 + pKP131      this study 
KPY416  KPY325 + pKP133     this study 
KPY418  KPY325 + pKP134      this study 
KPY420  KPY325 + pKP135 (isolate #1)   this study 
KPY421  KPY325 + pKP135 (isolate #4)   this study 
KPY422  KPY325 + pKP136 (isolate #1)    this study 
KPY423  KPY325 + pKP136 (isolate #4)    this study 
SEY6210  MATα leu2-3,112 ura3-52 his3-∆200 trp1-∆901    

suc2-∆9 lys2-801; GAL              (Robinson et al., 1988)  
TVY1   SEY6210 pep4∆::LEU2    (Gerhardt et al., 1998)  
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Table III.2. Plasmids used in this study. 
Plasmid  Genotype       Source  
pGFP-Atg8 (414)               (Abeliovich et al., 2003) 
pKP105  pRS416-YBR139Wp-YBR139W-PA-ADH1t    this study 
pKP110  pRS416-YBR139Wp-YBR139WN163,242Q-PA-ADH1t    this study 
pKP112  pRS406-GFP-ADH1t      this study 
pKP113  pRS406-PRC1p-PRC1-GFP-ADH1t    this study 
pKP115  pRS406-YBR139Wp-YBR139W-GFP-ADH1t  this study 
pKP129  pRS406-YBR139Wp-YBR139WS219A-GFP-ADH1t  this study 
pKP131  pRS406-YBR139Wp-YBR139WH474A-GFP-ADH1t  this study 
pKP133  pRS406-YBR139Wp-YBR139WD415A-GFP-ADH1t  this study 
pKP134  pRS406-YBR139Wp-YBR139WS219,D415,H474A-GFP-ADH1t  this study 
pKP135  pRS406-YBR139Wp-YBR139W-PA-ADH1t   this study 
pKP136  pRS406-PRC1p-PRC1-PA-ADH1t    this study 
pRS406            (Sikorski and Hieter, 1989) 
  
 
 
 
 
 



98 

 
 
Supplemental Figure III.S1.  Reintroduction of PRC1 or YBR139W complements protein 
processing defects in prc1∆ ybr139w∆ mutants. 
(A and B) Wild-type (SEY6210), prc1∆ ybr139w∆ (KPY325), and prc1∆ ybr139w∆ cells with 
integrated empty vector (KPY332), PRC1 (KPY334), or YBR139W (KPY336) genes were grown 
to mid-log phase in YPD medium and then shifted to starvation conditions for 3 h. Protein extracts 
were resolved by SDS-PAGE and blotted with antiserum to Ape1 (A) or Prb1 (B). Pgk1 is used as 
a loading control.  
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Supplemental Figure III.S2. Prc1, but not Ybr139w, is required for Carboxypeptidase Y 
activity. 
Wild type (SEY6210), prc1∆ (KPY301), ybr139w∆ (KPY323), and prc1∆ ybr139w∆ (KPY325) 
cells were grown to mid-log phase in YPD medium. Cell lysates were collected and protein 
concentration was determined using the BCA assay. Lysate (200 µg) or cell-free buffer (control) 
was combined in a reaction with 1 mM FA-Phe-Phe-OH substrate. Absorbance at 337 nm was 
measured every 30 min. The value for the 0 h time point was set to 1.0 and subsequent absorbance 
measurements were normalized to the initial measurement for each sample. N = 3.  
 



100 

 
 
Supplemental Figure III.S3. Reintroduction of PRC1 or YBR139W complements autophagy 
defects in prc1∆ ybr139w∆ mutants. 
(A) Wild-type (SEY6210), prc1∆ ybr139w∆ (KPY325), and prc1∆ ybr139w∆ cells with integrated 
empty vector (KPY332), PRC1 (KPY334), or YBR139W (KPY336) genes were grown to mid-log 
phase in YPD medium and then shifted to starvation conditions for 3 h. Protein extracts were 
resolved by SDS-PAGE and blotted with antiserum to Atg8. Pgk1 is used as a loading control. (B) 
Wild-type (KPY350), prc1∆ ybr139w∆ (KPY351), and prc1∆ ybr139w∆ cells with integrated 
YBR139W (KPY420 and KPY421) or PRC1 (KPY422 and KPY423) genes were grown to mid-log 
phase in YPD medium and then shifted to starvation conditions for 3 h. Cells were harvested and 
protein extracts were analyzed as in (A) using antiserum to Ape1 (upper panel) or Prb1 (middle 
panel). (C) Wild-type (KPY350) and prc1∆ ybr139w∆ cells with an integrated empty vector 
(KPY351), YBR139W (KPY421), or PRC1 (KPY423) genes and all expressing GFP-Atg8 from a 
plasmid were grown in SMD-TRP medium to mid-log phase. Cells were stained with FM 4-64 to 
label the vacuole limiting membrane for 30 min and chased in either SDM-TRP medium for 1 h 
(growing) or SD-N for 2 h (starvation) before imaging. DIC, differential interference contrast. 
Scale bar: 5 µm. 
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Chapter IV 

Conclusions and Future Directions 

 The work presented in this dissertation identifies Atg42/Ybr139w as a functional 

homolog of the vacuolar serine carboxypeptidase Prc1 and sheds new light on the overlapping 

functions of these proteases in the activation of vacuolar zymogens and breakdown of autophagic 

bodies. These new findings also raise interesting questions and provide grounds for future 

studies. 

Comparative studies of Atg42/Ybr139w and Prc1 

There is clear functional redundancy between Prc1 and Atg42/Ybr139w. As described in 

chapter III, only when cells are lacking both of these proteins are defects in Prb1 processing, 

Ape1 synthesis, and autophagic body breakdown observed. Additionally, whereas deletion of 

either gene reduces synthesis of phytochelatin peptides and the breakdown of glutathione (GSH), 

only when both are deleted is there complete abrogation of these two functions (Wünschmann et 

al., 2007; Wünschmann et al., 2010). It is as yet unclear why there are two vacuolar serine 

carboxypeptidases, Prc1 and Atg42/Ybr139w. Continued comparative studies will help to further 

define both their redundant and distinct intracellular functions.  

Prc1 has broad substrate specificity, but preferentially cleaves between hydrophobic 

amino acids (Hayashi, 1976; Jung et al., 1999). The substrate specificity of Atg42/Ybr139w is 

currently unknown. In chapter III, I described the results of an in vitro carboxypeptidase Y 

(CPY) activity assay using the synthetic Prc1 substrate N-(3-[2-furyl]acryloyl)-Phe-Phe-OH 

(FA-Phe-Phe-OH) (Caesar and Blomberg, 2004; Gombault et al., 2009). Whereas cells lacking 
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PRC1 failed to degrade the synthetic substrate, deletion of ATG42/YBR139W had no effect. This 

may indicate that Atg42/Ybr139w has different substrate specificity than Prc1. S. cerevisiae has 

one additional serine carboxypeptidase, Kex1, a Golgi-localized integral membrane protein 

(Cooper and Bussey, 1989, 1992), that may provide a clue as to the substrate specificity of 

Atg42/Ybr139w. While Kex1 has two tracts of homology to Prc1, including the active site 

serine, Kex1 has different substrate specificity, preferentially cleaving between basic Arg and 

Lys residues (Dmochowska et al., 1987; Cooper and Bussey, 1989; Latchinian-Sadek and 

Thomas, 1993).  

Additional clues as to divergent functions may lie in the differences and similarities in 

transcriptional regulation of the PRC1 and ATG42/YBR139W genes. Comparative analysis of the 

800-base pair promoter regions directly upstream of both genes using the YEASTRACT 

database reveals the presence of predicted binding sites for 32 different predicted transcription 

factors; 7 are unique to the PRC1 promoter, 12 are unique to the ATG42/YBR139W promoter, 

and 13 are found in both promoter regions (Teixeira et al., 2014). Here I will discuss several 

differences of note that may prompt future studies. 

Unique to the PRC1 promoter region are predicted DNA binding sites for the 

transcription factors Abf1, Stp1, and Stp2. Abf1 is considered a general regulatory factor due to 

its involvement in a diverse array of regulatory functions, including control of ribosome protein 

gene expression in response to nutrient starvation or TORC1 inactivation (Fermi et al., 2016, 

2017). Additionally, Abf1, Stp1, and Stp2 are involved in induction of Bap3, a branched-chain 

amino acid permease, in response to extracellular amino acids (de Boer et al., 1998; de Boer et 

al., 2000). 
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There are several predicted transcription factor binding sites in the ATG42/YBR139W 

promoter that are of interest. There are 4 sites predicted to be bound by Gcn4, which is 

responsible for induction of a variety of genes during amino acid starvation, including genes 

involved in amino acid transport and biosynthesis, peroxisome biogenesis, glycogen synthesis, 

and autophagy (Natarajan et al., 2001).  There is one predicted binding site for Swi5 and its 

paralog Ace2; activity of Swi5, and likely Ace2, is regulated by Pho85 and Cdc28 (Moll et al., 

1991; O'Conallain et al., 1999; Measday et al., 2000), both of which also regulate glycogen 

synthesis and autophagy (François and Parrou, 2001; Wang et al., 2001). Of particular interest is 

a Yap1-binding site in the ATG42/YBR139W promoter region, which further supports a role for 

Atg42/Ybr139w in GSH catabolism and phytochelatin synthesis, which occurs in response to 

exposure to heavy metals (Wünschmann et al., 2007; Wünschmann et al., 2010). Yap1-deficient 

cells are hypersensitive to cadmium (Wu et al., 1993). Transcriptional regulation of genes 

encoding both Gsh1 (γ-glutamylcysteine synthetase), which is involved in the first step of GSH 

biosynthesis (Kistler et al., 1990), and Ycf1, which imports glutathione-S-conjugates into the 

vacuolar lumen (Li et al., 1996), is dependent on Yap1 and confers cadmium tolerance (Wemmie 

et al., 1994; Wu and Moye-Rowley, 1994). Yap1 also regulates GSH1 transcription in response 

to depletion of the GSH pool (Wheeler et al., 2003), H2O2-induced oxidative stress (Stephen and 

Jamieson, 1997), and to some degree in response to arsenic stress (Menezes et al., 2008). YCF1 

induction in response to arsenic stress is also Yap1-dependent (Menezes et al., 2004). 

Interestingly, ATG42/YBR139W expression is also upregulated in response to arsenate treatment 

(Menezes et al., 2008).  

 Whether the transcription factors discussed here do in fact regulate transcription of PRC1 

or ATG42/YBR139W has yet to be determined. 
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Zymogen activation cascade 

 While previously thought to be an autocatalytic event (Mechler et al., 1988; Nebes and 

Jones, 1991), the work presented in chapter III demonstrates that the presence of either Prc1 or 

Atg42/Ybr139w is required for efficient processing of Prb1 from an intermediate form to the 

mature enzyme. However, it is also known that Prc1 maturation depends on Prb1 function, as an 

intermediate form of Prc1 accumulates in Prb1-deficient cells (Mechler et al., 1987). More work 

must be done to fully dissect the sequence of events leading to processing and maturation of both 

Prb1 and Prc1. Prb1 processing is not fully blocked in the atg42/ybr139w∆ prc1∆ strain. What 

accounts for this residual processing? Is it Prb1-mediated, or is another protease involved? Is it 

this residual activity that allows for Prc1 processing? Does this Prc1 processing lead to more 

processing of Prb1, beginning a processing amplification loop between Prb1 and Prc1? Is 

Ybr139w also proteolytically activated and if so, how does this factor in to the Prb1-Prc1 

processing relationship? 

 Overall, these findings and questions encourage further characterization of the entire 

zymogen processing and activation cascade within the vacuole. As Prb1 processing is impaired 

in the atg42/ybr139w∆ prc1∆ strain, what effects will be seen on Prb1-dependent processing 

targets such as Pho8 and Ape3 in this strain (Yasuhara et al., 1994; Merz and Wickner, 2004)? 

Ppn1 activity is also dependent on proteolytic activation, as there is no Ppn1 activity in cells 

lacking Pep4, Prb1, and Prc1 (Sethuraman et al., 2001), but the protease(s) directly responsible 

for this activation have yet to be determined.  Also, for many vacuolar zymogens, it is not clear 

whether processing by Pep4 and/or Prb1 is direct or indirect and whether additional proteases 

may be involved. 
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Lysis of autophagic bodies and effects on substrate degradation 

Lysis of autophagic bodies within the vacuole lumen allows autophagic cargo to be 

broken down by the vast array of hydrolases present in the vacuole. Cells lacking Pep4 or Prb1 

show an accumulation of autophagic bodies in the vacuolar lumen upon nitrogen starvation 

(Takeshige et al., 1992). Both mitochondria and peroxisomes, cargoes of selective 

macroautophagy, can be observed within intact autophagic bodies in cells defective for 

autophagic body breakdown (Epple et al., 2003; Okamoto et al., 2009). RNA degradation can 

occur in the vacuole in an autophagy-dependent manner (Frankel et al., 2017). In pep4∆ prb1∆ 

cells, the breakdown to nucleosides is impaired (Huang et al., 2015). It is unclear whether this is 

due to failure of autophagic body breakdown, failure to process the vacuolar phosphatase Pho8 

to its active form (Klionsky and Emr, 1989), or a combination of both. 

The results presented in chapter III indicate that autophagic body breakdown is also 

defective in cells lacking Prc1 and Atg42/Ybr139w, and that this has an effect on amino acid 

recycling and protein synthesis. It is therefore likely that deletion of both PRC1 and 

ATG42/YBR139W will also affect breakdown of other autophagic substrates, both selective and 

non-selective. Alongside investigating Prc1- and Atg42/Ybr139w-dependent breakdown of 

additional autophagic cargoes, it may be worthwhile to investigate whether other vacuolar 

proteases have effects on autophagic body breakdown in conjunction with the further 

characterization of the zymogen activation cascade. 

 Whereas Pep4, Prb1, Prc1, and Atg42/Ybr139w all have a role in autophagic body 

breakdown, it is unlikely that they are acting on the autophagic bodies themselves. It is more 

likely that they are acting through the lipase Atg15, which is also required for breakdown of Cvt 

bodies and autophagic bodies (Epple et al., 2001; Teter et al., 2001). It is currently unknown 
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how Atg15 is regulated within the vacuole. However, as Pep4, Prb1, Prc1, and Atg42/Ybr139w 

have been shown to have roles in vacuolar zymogen activation, it may be that Atg15 is also 

synthesized as a zymogen that depends on these proteases (and possibly others) for proper 

activation. Further study of the regulation and potential proteolytic activation of Atg15 will be 

important for understanding the terminal events of autophagy.  

 In studies of lipophagy, it was demonstrated that breakdown of lipid droplets is largely 

dependent on Atg15, but that lipase activity is not completely abrogated in Atg15-deficient cells 

(van Zutphen et al., 2014). It will therefore be of interest to determine the identity of other 

vacuolar lipases and characterize their roles in turnover of lipid droplets as well as other 

autophagic cargoes. 

Characterization of additional proteases 

 The work presented in this dissertation indicates that many important biological functions 

of vacuolar proteases may have been obscured in the past due to the presence of uncharacterized 

or poorly characterized homologs. Using BLAST (Basic Local Alignment Search Tool) to search 

for possible homologs of Cps1 identified Yol153c, a predicted integral membrane 

metallocarboxypeptidase, which has approximately 56.9% amino acid sequence identity with 

Cps1 (The UniProt Consortium, 2017). A BLAST search for Prb1 homologs identified Ysp3, 

which has 58.4% identity with Prb1 and is a predicted serine endopeptidase (Finn et al., 2017; 

The UniProt Consortium, 2017). Localization of Ysp3 in large-scale studies has been reported in 

both the endoplasmic reticulum and vacuolar lumen (Sarry et al., 2007; Yofe et al., 2016); 

however, the GFP tag used to visualize the protein at the ER was fused to the N terminus (Yofe 

et al., 2016), which is predicted to contain a signal sequence, perhaps preventing Ysp3 from 

reaching its intended location; thus, further study is required. While it does not arise via BLAST 
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search, Dap2 has homology to Ste13, a protease which cycles between the trans-Golgi network 

and endosomes, is also annotated as being a vacuolar membrane protein, and is involved in 

proteolytic activation of α-factor (Fuller et al., 1988; Johnston et al., 2005; 

The UniProt Consortium, 2017). Further study will be required to understand the relationship 

between Dap2 and Ste13. 

 As mentioned in chapter I, there are several predicted vacuolar proteases that have yet to 

be characterized. Pff1 is a vacuolar membrane protein with a predicted metalloprotease domain 

facing the vacuolar lumen (Hecht et al., 2013). Ecm14 also localizes to the vacuole and is a 

predicted zinc-dependent carboxypeptidase (Huh et al., 2003; The UniProt Consortium, 2017). 

For both of these proteins, activity, substrate specificity, proteolytic processing, and biological 

function have yet to be determined. Ynl115c localizes to the vacuolar membrane and has a 

predicted α/β-hydrolase fold (Huh et al., 2003; Finn et al., 2017). This fold is found in a large 

family of structurally related enzymes with wide-ranging functions including lipases and a 

variety of peptidases (Holmquist, 2000). Further study will be required to determine the function 

of Ynl115c. There are also several large-scale studies that identify other potential proteins of the 

vacuolar membrane and lumen that may warrant investigation (Sarry et al., 2007; Wiederhold et 

al., 2009). 

Final Perspectives 

The actions of vacuolar/lysosomal hydrolases and transporters are critically important in 

maintaining cellular health and survival, yet there are many existing gaps in our knowledge of 

these enzymes and their intracellular functions, especially concerning vacuolar proteolysis. It is 

my hope that the work presented herein will increase understanding of vacuolar proteases and 

reinvigorate efforts to reexamine and characterize these proteins, as well as the mechanisms of 
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vacuolar substrate degradation and efflux, in order to further our knowledge of vacuolar 

function. 
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