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ABSTRACT 

Rationale, aims and objectives: Randomization ensures that treatment groups do not differ 

systematically in their characteristics, thereby reducing threats to validity that may otherwise 

explain differences in outcomes. Large observed imbalances in patient characteristics may 

indicate that selection bias is being introduced into the treatment allocation process. We 

introduce classification tree analysis (CTA) as a novel algorithmic approach for identifying 

potential imbalances in characteristics and their interactions when provisionally assigning each 

new participant to one or the other treatment group. The participant is then permanently assigned 

to the treatment group that elicits either no, or less, imbalance than if assigned to the alternate 

group.   

Method: Using data on participant characteristics from a clinical trial, we compare three different 

treatment allocation approaches: permuted block randomization (the original allocation method), 

minimization, and CTA. Treatment allocation performance is assessed by examining balance of 

all 17 patient characteristics between study groups for each of the allocation techniques. 

Results: While all three treatment allocation techniques achieved excellent balance on main 

effect variables, CTA further identified imbalances on interactions, and in the distributions of 

some of the continuous variables. 

Conclusions: CTA offers an algorithmic procedure that may be used with any randomization 

methodology to identify and then minimize linear, non-linear, and interactive effects that induce 

covariate imbalance between groups. Investigators should consider using the CTA approach as a 

This article is protected by copyright. All rights reserved.



real-time complement to randomization for any clinical trial to safeguard the treatment allocation 

process against bias. 
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1. INTRODUCTION 

The randomized controlled trial (RCT) is considered the gold standard study design because 

randomization ensures that treatment groups do not differ systematically in their characteristics. 

However, the randomization process may still produce between-group differences that may 

explain observed differences in outcomes, and thus constitute a threat to statistical conclusion 

validity [1,2]. 

 A common approach for assessing the effectiveness of the randomization process is to 

examine the balance (i.e. comparability between distributions) of observed baseline 

characteristics among study groups [3,4]. Whereas a few small imbalances are expected by 

chance, larger imbalances may be indicative of selection bias in the treatment allocation process. 

The latter case necessitates the use of techniques that model the treatment assignment to adjust 

for these imbalanced characteristics that otherwise compromise causal interpretation of the 

results (see for example, [5-9]).  

 Given the large investment and organizational complexity required to properly conduct 

an RCT, it is prudent for study administrators to employ strategies throughout the entire trial that 

safeguard the treatment allocation process against systematic bias. Minimization is a strategy 

specifically designed to reduce imbalances between treatment groups on a predefined set of 

categorized patient characteristics [10,11]. It is implemented after the first participant enrolled in 

the study is randomly assigned to a treatment group, and allocates each subsequent participant to 

the treatment arm that minimizes the imbalance on one or more of the selected characteristics, 
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cumulatively until that point in time. The procedure allows for probabilistic treatment allocation 

(where 1.0 means that the patient is always assigned to the group that minimizes imbalances, and 

0.50 is equivalent to a coin flip) as well as the ability to assign weights to characteristics deemed 

more important than others (e.g. variables thought to be prognostic of the outcome)[11].  

 In a systematic review of the minimization literature, Scott et al [12] report that in the 

majority of cases, minimization outperforms simple randomization in achieving balanced groups 

(particularly when trial sample sizes are small), and it holds an advantage over stratified 

randomization methods due to its ability to incorporate more prognostic factors. Moher et al [3] 

contend that minimization offers the only acceptable alternative to randomization, while 

Treasure and MacRae [13] assert that minimization is actually superior to randomization. 

 In this paper, we introduce classification tree analysis (CTA) [14,15] as a novel and more 

robust approach to minimizing imbalances. CTA is a machine learning algorithm that can 

identify potentially complex patterns in the data that distinguish patients assigned to the different 

treatment arms in a clinical trial. In contrast to existing techniques that require the investigator to 

determine which variables to include, how to categorize continuous and multi-categorical 

variables, and which variables should be interacted (if any), CTA performs all these functions 

algorithmically, and if/as necessary, revises the allocation as each new participant is enrolled in 

the trial to minimize imbalances. 

 This paper is organized as follows. In the Methods section we describe the data used in 

the current study, provide a brief introduction to CTA, and explain the analytic framework used 
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to minimize imbalances on patient characteristics. The Results section reports and compares the 

results of the proposed CTA approach (which is implemented as a complement to 

randomization) to that of the original block randomization, and to the commonly-used 

minimization algorithm proposed by Pocock & Simon [11]. The Discussion section describes the 

specific advantages of the CTA approach over existing approaches and considers potential 

limitations. 

2. METHODS 

2.1 Data 

We use data from a parallel-group, stratified, clinical trial that examined whether a 

comprehensive, hospital-based, transitional care intervention reduces readmissions for 

participants with congestive heart failure (CHF) and chronic obstructive pulmonary disease 

(COPD) [16]. The intervention involved nurses implementing motivational interviewing-based 

health coaching to improve patients’ health behaviors, which in turn was expected to empower 

patients to better manage their own health care and reduce unplanned readmissions [17-19]. For 

the present study, we limit our analysis to the CHF cohort (N=257), for which baseline 

characteristics include: demographic variables (gender, age, insurance type, living conditions); 

patient activation measure (PAM) score; prior year hospital utilization (admissions, average 

length of stay, and emergency department visits) both for CHF as well as for all causes; average 

length of stay for the index hospitalization; and the presence of seven key comorbidities (COPD, 
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cerebrovascular disease, acute myocardial infarction, diabetes, renal disease, chronic pain, and 

obesity).  

2.2 Brief introduction to classification tree analysis (CTA) 

In its simplest form, CTA is an optimal discriminant analysis (ODA) model [20]. For any given 

application, the ODA algorithm identifies the cutpoint for an ordered attribute (independent 

variable), or the assignment rule for a categorical attribute, that most accurately (optimally) 

discriminates between two (or more) categories of the class (dependent) variable [21]. This 

entails computing the effect strength for sensitivity (ESS) obtained using every possible cutpoint 

along the continuum of values (or every possible rule) to classify sample observations. ESS is the 

mean sensitivity obtained over class categories at the cutpoint (or via the rule) used to classify 

observations, standardized to a 0%-100% scale on which 0% represents the level of accuracy 

expected by chance; 100% represents perfect accuracy; and negative values indicate accuracy 

worse than expected by chance. By definition, the optimal model uses the assignment rule that 

yields the greatest ESS value. Statistical significance is assessed via permutation probability, and 

validity analyses (e.g., jackknife, hold-out) are conducted to estimate potential cross-

generalizability of the model in correctly classifying new subjects that may differ in their 

characteristics compared to subjects in the original sample [14,22]. CTA constructs optimal 

models by chaining multiple ODA models together [23]. CTA models classify observations into 

one of two or more subgroups represented as model endpoints (terminal nodes) called “strata” 

because the sample is stratified into subgroups that are homogeneous within, and heterogeneous 
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between, the different endpoints defined by the attributes and corresponding optimal 

cutpoints/rules selected by the CTA model [14,24]. 

2.3 Analytic approach 

This study compares the efficacy of three different treatment allocation approaches for producing 

treatment cohorts that are balanced on observed baseline characteristics.  

2.3.1. Permuted block randomization  

The first treatment allocation approach is the original randomization process used in Linden & 

Butterworth [16] and serves as the basis for comparison. Prior to study commencement, a 

randomization sequence was generated to allocate participants to treatment arms using random 

permuted blocks [25]. There were four strata (two hospitals and two disease conditions) and five 

permuted blocks allocated in equal proportions, with a minimum size of two and maximum size 

of ten. The treatments were allocated in a 1:1 ratio, with 18 extra allocations provided to 

maintain the integrity of the final block in each stratum. The allocation sequence was concealed 

via sequentially-numbered, opaque sealed envelopes. After each participant signed the consent 

form and provided baseline information, the envelope was opened by study staff in their 

presence, simultaneously revealing the treatment allocation to both participant and study staff. 

2.3.2. Minimization  

The second treatment allocation approach applies the Pocock & Simon [11] minimization 

technique, which requires all variables (“factors”) to be categorized. Given that there is no rule-
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of-thumb regarding how best to categorize continuous variables, we generated categories with 

relatively few levels that maintain sufficient sample size. The seven continuous variables were 

categorized as follows. Age was categorized into four age-bands: 20-39; 40-59; 60-79; 80+. 

Patient Activation Measure (PAM) scores were categorized into 3 quantiles: 16.5-47.4; 49.9 - 

56.4; 60-100. All-cause hospitalizations were categorized into four levels: 1, 2, 3, and 4+. All-

cause emergency department visits were categorized into five levels: 0, 1, 2, 3, and 4+. CHF-

specific hospitalizations were categorized into four levels: 0, 1, 2, 3. CHF-specific length of stay 

was categorized into four levels: 0; 1-3; 4-6; 7+. And finally, the length of stay of the index 

admission was categorized into three levels: 1-3; 4-6; 7+. All categorical variables were left in 

their original number of levels. 

 Each study participant was assigned to treatment in the same sequence in which they 

were originally enrolled in the trial. Each of the 257 participant’s 17 factors were entered into the 

Stata user-written command RCT_MINIM [26], with the first participant randomly assigned to 

treatment, and all subsequent participants automatically allocated to the treatment arm that 

produced the least imbalance between groups. No weights were utilized in the computations, 

given the extensive number of variables available and the belief that they all have prognostic 

value. 

2.3.3. CTA-based minimization  

The original study randomization sequence (see Section 2.3.1) served as the basis for the CTA 

approach. This ensures that the treatment assignment process cannot be deciphered (and the 

This article is protected by copyright. All rights reserved.



allocation process potentially compromised), even if CTA indicates that changes to individual 

allocations must be made along the way. The first 6 participants were randomized according to 

the original sequence, because a minimum sample of 7 is needed to identify a statistically 

significant model [14]. 

 Commencing with the 7th participant, a CTA model was sought in which the 17 

independent variables (in their original measurement scale) were used to discriminate between 

treatment groups -- including all six participants enrolled in the trial thus far, and including the 

7th participant allocated to the treatment arm by block randomization sequencing. If no CTA 

model could be generated (i.e. indicating that no imbalances were found across any variable or 

interactions between subsets of variables), then the participant was assigned to the treatment 

group as was originally intended. However, if a CTA model could be generated, then the 

participant was provisionally given the alternate treatment assignment and a CTA model was 

again sought. If no CTA model could be generated under this provisional assignment, then the 

participant would be permanently allocated to this treatment arm. In the case where a CTA 

model could be generated for both provisional treatment assignments, then the participant would 

be permanently allocated to the arm that elicited the CTA model with the lowest ESS value 

(indicating that this treatment assignment was less biased than the alternate assignment). This 

process was repeated sequentially for each of remaining individuals in the study. 
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 To maximize expositive clarity, CTA models generated by the process are provided to 

illustrate interactive and parabolic imbalances that were identified, and corrected, by the CTA 

approach. 

2.4 Performance metrics for treatment allocation approaches 

To assess the performance of the three treatment allocation approaches, we examine how well 

each one avoided imbalances in baseline characteristics between treatment groups for the total 

study population, using two different methods.  

 First, we apply the conventional method of testing for differences, using χ2 tests for 

categorical variables and t-tests for continuous variables.  

Second, we apply the method described by Linden & Yarnold [27] that uses ODA to 

assess balance of characteristics between groups. In contrast to conventional tests for difference 

in means (or proportions), the ODA approach is insensitive to skewed data and outliers, and it 

additionally identifies a cutpoint (or rule) along the distribution of the characteristic that 

distinguishes between treatment assignments. The underlying assumption is that if treatment 

groups cannot be distinguished based on the distribution of each characteristic, then the treatment 

allocation was successful. In this framework, sensitivity, specificity, and ESS are used as balance 

diagnostics. 

3. RESULTS 
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Table 1 presents the baseline characteristics of the study population, under all three treatment 

allocation methods. As shown, there is virtually no difference among methods in achieving close 

balance between treatment groups using conventional statistical tests. 

 Table 2 presents the baseline characteristics of the study population under all three 

treatment allocation methods, analyzed using ODA. Summary values represent the cutpoint (or 

rule) on the characteristic. Sensitivity is presented for the intervention group, and specificity is 

presented for the group assigned to usual care (control condition). All three allocation methods 

achieved balance for all of the characteristics under study (as indicated by a consistently weak 

ESS across all characteristics, and supported by non-statistically significant P values > 0.05). 

With the exception of age, ODA identified the same cutpoint for all characteristics in the CTA 

approach and in the original block randomization (with similar sensitivity/specificity values), 

while identifying different cutpoints (and sensitivity/specificity values) for the minimization 

technique. In all, CTA identified eight cases of imbalance, all of which were successfully 

eliminated in the following (subsequent) step of the procedure. 

 Figure 1 illustrates four cases in which CTA identified imbalanced characteristics when 

provisionally assigning a new patient to the pre-specified (via the original permuted block 

randomization) treatment arm. As shown, these imbalances were due to interactions between 

variables or a parabolic function of a single variable. In Figure 1a, an interaction was identified 

between a participant’s living condition and gender, while Figure 1b illustrates an interaction 

between a participant’s number of prior year hospital days for CHF and the length of stay of the 
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index hospitalization. Figures 1c and 1d both indicate that age has a non-linear relationship with 

treatment assignment 

3. DISCUSSION 

Although CTA has been recently applied to observational study data for improving causal 

inference [24,27-33], this paper focuses on its use in support of participant assignment in clinical 

trials. Using data from a permuted block randomized RCT [16], on the basis of conventional 

criteria we found that both minimization and CTA methods achieved balance on observed 

characteristics equally as well as the randomization method employed in the original study.   

 However, the CTA approach offers several key advantages over the other two methods 

that are not readily apparent from the baseline characteristics tables. First, CTA inherently finds 

interactions and nonlinear (e.g. parabolic) effects among variables that are unlikely to be 

identified manually (Figure 1). As a result, CTA ensures that balance is achieved not only in 

main effects, but also in all possible non-linear and interactive effects -- which could also serve 

to limit statistical conclusion validity. 

Second, whereas minimization requires the investigator to create categories for 

continuous variables (or rules for categorical variables) the resulting cutpoints (assignment rules) 

are unlikely to yield the maximum-possible discrimination between groups. In contrast, CTA 

intrinsically identifies the maximally-accurate cutpoint (rule) for each variable, ensuring that 

variables are optimally categorized to maximize accurate discrimination of participants in 

different groups [14]. 
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Third, as new participants are enrolled in the study, CTA attempts to identify new models 

based on updated variable cutpoints (or rules) and new interactions. Thus, CTA is a dynamic 

assignment process, whereas minimization relies strictly on the factors as they were originally 

conceived. Finally, the CTA approach integrates with any randomization sequencing procedure 

(e.g. the permuted block randomization process used in the present study), which mitigates 

concerns that treatment assignment derived using CTA may be predicted with certainty, and thus 

potentially manipulated (which in turn, will impact the validity of study outcomes). This 

advantage is verified by reviewing Table 2, which shows nearly identical values (for all metrics) 

were derived for the CTA and the block randomization approaches. 

 While the CTA approach has clear advantages, it also shares some of the same potential 

limitations as the minimization technique when compared to conventional randomization 

methods. First, implementation of the procedure is naturally more complex than simply 

generating the randomization sequence prior to initiation of the study. CTA requires real-time, 

manual entry of each new participant’s characteristics into the software in order to determine 

treatment assignment. While this process is mechanically straight-forward, it does necessitate 

that an administrator is available when participants are enrolled into the study. Another potential 

limitation is that a perfectly non-confounded allocation sequence may not be possible. In this 

case, the outcome model should be adjusted for the non-random covariates (and interactions) 

identified in the allocation procedure in order to obtain accurate results. This concern has been 
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raised in the context of the minimization technique [12], and the use of CTA-based propensity 

scores to make such adjustments was recently demonstrated [32]. 

4. CONCLUSION 

In summary, this paper introduces a novel machine learning approach for minimizing imbalances 

on patient characteristics between treatment groups in randomized trials. This approach offers 

several advantages over existing approaches, such as an algorithmic procedure to identify 

variables and interactions that induce imbalance, identifying the optimal (maximum-accuracy) 

cutpoints (or classification rules) on those variables, and integrating with any randomization 

procedure to ensure validity of the study outcomes. Therefore, investigators should consider 

using the CTA approach as a real-time complement to randomization for any clinical trial as a 

means of safeguarding the treatment allocation process against selection bias. 
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Table 1. Baseline characteristics of study participants, assigned to treatment under three different allocation methods 
 
  Block randomization   Minimization   Classification Tree Analysis   

Characteristic Treatment 
(N = 129) 

Control  
(N = 128) P Treatment 

(N = 129) 
Control 
(N = 128) P Treatment 

(N = 125) 
Control 
 (N = 132) P 

Female 64 (49.6) 66 (51.6) 0.75 64 (49.6) 66 (51.6) 0.75 62 (49.6) 68 (51.5) 0.76 
Age, mean (SD) 67.16 (13.38) 69.55 (12.64) 0.14 68.49 (13.03) 68.22 (13.08) 0.87 67.30 (13.12) 69.35 (12.91) 0.21 
Insurance          

1. Medicare 92 (71.3) 96 (75.0) 0.69 93 (72.1) 95 (74.2) 0.70 88 (70.4) 100 (75.8) 0.35 
2. Medicaid 10 (7.8) 7 (5.5)  7 (5.4) 10 (7.8)  10 (8.0) 7 (5.3)  
3. Commercial 14 (10.9) 16 (12.0)  16 (12.4) 14 (10.9)  13 (10.4) 17 (12.9)  
4. None 13 (10.1) 9 (7.0)  13 (10.1) 9 (7.0)  14 (11.2) 8 (6.1)  

Living Conditions          
1.With spouse/caregiver 88 (68.2) 88 (68.8) 0.69 87 (67.4) 89 (69.5) 0.71 83 (66.4) 93 (70.5) 0.56 
2. Alone 40 (31.0) 37 (28.9)  39 (30.2) 38 (29.7)  41 (32.8) 36 (27.3)  
3. Other 1 (0.8) 2 (1.6)  2 (1.6) 1 (0.8)  1 (0.8) 2 (1.5)  
4. Homeless 0 (0.0) 1 (0.8)  1 (0.8) 0 (0.0)  0 (0.0) 1 (0.8)  

PAM, mean (SD) 54.73 (14.93) 53.83 (12.87) 0.60 53.17 (13.44) 55.41 (14.36) 0.20 54.99 (15.00) 53.61 (12.85) 0.43 
Admissions, mean (SD) 1.87 (1.44) 1.71 (1.29) 0.36 1.81 (1.44) 1.77 (1.29) 0.78 1.86 (1.44) 1.73 (1.30) 0.45 
ED visits, mean (SD) 0.84 (1.86) 0.70 (1.60) 0.54 0.82 (1.87) 0.72 (1.58) 0.63 0.80 (1.77) 0.74 (1.70) 0.79 
CHF admissions, mean (SD) 0.46 (0.65) 0.40 (0.59) 0.45 0.46 (0.67) 0.40 (0.57) 0.45 0.46 (0.65) 0.40 (0.59) 0.48 
CHF hospital days, mean (SD)  2.02 (3.69) 2.04 (4.00) 0.97  1.91 (3.19)   2.15 (4.41) 0.63 2.02 (3.73) 2.04 (3.96) 0.98 
LOS index, mean (SD) 5.33 (4.70) 5.14 (3.80) 0.72 5.32 (4.23) 5.16 (4.32) 0.76 5.24 (4.67) 5.23 (3.87) 0.99 
COPD 49 (38.0) 42 (32.8) 0.39 46 (35.7) 45 (35.2) 0.93 48 (38.4) 43 (32.6) 0.33 
CEVD 64 (49.6) 53 (41.4) 0.19 58 (45.0) 59 (46.1) 0.86 62 (49.6) 55 (41.7) 0.20 
Chronic pain 29 (22.5) 23 (18.0) 0.37 28 (21.7) 24 (18.8) 0.56 28 (22.4) 24 (18.2) 0.40 
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Diabetes 64 (49.6) 54 (42.2) 0.23 59 (45.7) 59 (46.1) 0.95 61 (48.8) 57 (43.2) 0.37 
AMI 33 (25.6) 35 (27.3) 0.75 33 (25.6) 35 (27.3) 0.75 32 (25.6) 36 (27.3) 0.76 
Renal disease 44 (34.1) 32 (25.0) 0.11 38 (29.5) 38 (29.7) 0.97 42 (33.6) 34 (25.8) 0.17 
Obesity 54 (41.9) 44 (34.4) 0.22 50 (38.8) 48 (37.5) 0.84 52 (41.6) 46 (34.8) 0.27 
Abbreviations: PAM, Patient Activation Measure; ED, Emergency Department; CHF, Congestive Heart Failure; COPD, chronic obstructive pulmonary disease; 
CEVD, cerebrovascular disease; AMI, acute myocardial infarction; LOS, length of stay. Values reported as No. (%) unless otherwise noted.  

Table 2: Baseline characteristics of study participants, assigned to treatment under three different allocation methods, evaluated using 
Optimal Discriminant Analysis (ODA). Values represent cut-points (or assignment rules for categorical measures) on the 
characteristic, and values in parentheses represent sensitivity (for treatment) and specificity (for controls), as a percent. 
 
  Block randomization  Minimization Classification Tree Analysis 

Characteristic Treatment 
(N=129) 

Control 
(N=128) ESS P< Treatment 

(N=129) 
Control 
(N=128) ESS P< Treatment 

(N=125) 
Control 
(N=132) ESS P< 

Age < 74.6 
(73.64) 

> 74.6 
(38.28) 11.92 0.30 > 64.4 

(69.77) 
< 64.4 
(36.72) 6.49 0.94 < 59.1 

(27.20) 
> 59.1 
(84.09) 11.29 0.36 

Female = 1 
(50.39) 

= 0 
(51.56) 1.95 0.81 = 0 

(50.39) 
= 1 
(51.56) 1.95 0.81 = 1 

(50.40) 
= 0 
(51.52) 1.92 0.80 

Insurance = 2,4 
(17.83) 

= 1,3 
(87.50) 5.33 0.62 = 3,4 

(22.48) 
= 1,2 
(82.03) 4.51 0.74 = 2,4 

(19.20) 
= 1,3 
(88.64) 7.84 0.30 

Living cond.  = 2 
(31.01) 

= 1,3,4 
(71.09) 2.1 0.86 > 1 

(32.56) 
= 1 
(69.53) 2.09 0.88 = 2 

(32.80) 
= 1,3,4 
(72.73) 5.53 0.44 

PAM > 58.2 
(34.88) 

< 58.2 
(75.00) 9.88 0.33 < 51.4 

(54.26) 
> 51.4 
(54.69) 8.95 0.43 > 58.2 

(36.00) 
< 58.2 
(75.76) 11.76 0.19 

Admissions > 2 
(18.60) 

< 2 
(85.94) 4.54 0.71 > 5  

(3.88) 
< 5 
(97.66) 1.53 0.99 > 2 

(18.40) 
< 2 
(85.61) 4.01 0.77 

ED visits > 1 
(17.83) 

< 1 
(86.72) 4.55 0.69 > 1 

(17.05) 
< 1 
(85.94) 2.99 0.92 > 2 

(17.60) 
< 2 
(86.36) 3.96 0.75 

CHF admits > 0 
(38.76) 

= 0  
(65.62) 4.38 0.59 > 1  

(6.98) 
< 1 
(96.09) 3.07 0.77 > 0 

(38.40) 
= 0 
(65.15) 3.55 0.67 
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CHF days > 1 
(38.76) 

< 1 
(67.97) 6.73 0.49 > 1 

(37.21) 
< 1 
(66.41) 3.62 0.93 > 1 

(38.40) 
< 1 
(67.42) 5.82 0.62 

LOS index < 5 
(69.77) 

> 5 
(35.16) 4.92 0.91 > 5 

(37.21) 
< 5 
(71.87) 9.08 0.36 < 5 

(70.40) 
> 5 
(35.61) 6.01 0.77 

COPD = 1 
(37.98) 

= 0 
(67.19) 5.17 0.44 = 1 

(35.66) 
= 0 
(64.84) 0.5 0.99 = 1 

(38.40) 
= 0 
(67.42) 5.82 0.37 

CEVD = 1 
(49.61) 

= 0 
(58.59) 8.21 0.21 = 0 

(55.04) 
= 1 
(46.09) 1.13 0.9 = 1 

(49.60) 
= 0 
(58.33) 7.93 0.22 

Chronic pain = 1 
(22.48) 

= 0 
(82.03) 4.51 0.44 = 1 

(21.71) 
= 0 
(81.25) 2.96 0.65 = 1 

(22.40) 
= 0 
(81.82) 4.22 0.45 

Diabetes = 1 
(49.61) 

= 0 
(57.81) 7.42 0.27 = 0 

(54.26) 
= 1 
(46.09) 0.36 0.99 = 1 

(48.80) 
= 0 
(56.82) 5.62 0.38 

AMI = 0 
(74.42) 

= 1 
(27.34) 1.76 0.78 = 0 

(74.42) 
= 1 
(27.34) 1.76 0.78 = 0 

(74.40) 
= 1 
(27.27) 1.67 0.78 

Renal = 1 
(34.11) 

= 0 
(65.62) 9.11 0.14 = 0 

(70.54) 
= 1 
(29.69) 0.23 0.99 = 1 

(33.60) 
= 0 
(74.24) 7.84 0.18 

Obesity = 1 
(41.86) 

= 0 
(65.62) 7.49 0.25 = 1 

(38.76) 
= 0 
(62.50) 1.26 0.91 = 1 

(41.60) 
= 0 
(65.15) 6.75 0.31 

 
Abbreviations: PAM, Patient Activation Measure; ED, emergency department; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; 
CEVD; cerebrovascular disease; AMI, acute myocardial infarction; LOS, length of stay; ESS, effect strength for sensitivity. 
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Figure 1:  Interactive (1a, 1b) and parabolic (1c, 1d) CTA models identified for imbalanced subsamples. 
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