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Abstract

Purpose

Spectrally selective “prewinding” radiofrequency pulses can counteract B0 inhomogeneity in

steady-state sequences, but can only prephase a limited range of off-resonance. We propose

spectral-spatial small-tip angle prewinding pulses that increase the off-resonance bandwidth

that can be successfully prephased by incorporating spatially tailored excitation patterns.

Theory and Methods

We present a feasibility study to compare spectral and spectral-spatial prewinding pulses. These

pulses add a prephasing term to the target magnetization pattern that aims to recover an

assigned off-resonance bandwidth at TE. For spectral-spatial pulses, the design bandwidth is

centered at the off-resonance frequency for each spatial location in a field map. We use these

pulses in the small-tip fast recovery (STFR) steady-state sequence, which is similar to balanced

steady-state free precession (bSSFP). We investigate improvement of spectral-spatial pulses over

spectral pulses using simulations and STFR scans of a gel phantom and human brain.

Results

In simulation, spectral-spatial pulses yielded lower normalized root mean squared excitation

error than spectral pulses. For both experiments, the spectral-spatial pulse images are also

qualitatively better (more uniform, less signal loss) than the spectral pulse images.

Conclusion

Spectral-spatial prewinding pulses can prephase over a larger range of off-resonance than their

purely spectral counterparts.

Keywords:

RF pulse design; field inhomogeneity; phase prewinding; spectral-spatial pulses

Introduction

Inhomogeneity of the B0 field can cause spatially varying phase and signal loss in MRI. Spin-echo

(SE) sequences can realign static off-resonance effects, but require a second refocusing RF pulse

and may be unsuitable for short TR imaging or applications that are SAR limited (1). Assländer

et al. introduced spectral prewinding pulses to compensate for spin dephasing in rapid gradient

echo sequences (GRE), effectively combining the speed of GRE with the off-resonance robustness

of SE (2), for a restricted off-resonance bandwidth.

Recently, spectrally selective phase prewinding pulses were incorporated into the small-tip fast

recovery (STFR) steady-state sequence (3). The STFR sequence employs both a traditional “tip-

down” pulse and then a “tip-up” pulse that quickly returns the magnetization to the longitudinal

axis after free precession (4). STFR has mixed T2/T1 contrast and provides nearly equal signal
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level and tissue contrast in the human brain as balanced steady-state free precession (bSSFP). (5).

One challenge with bSSFP is that banding artifacts may occur (6) that can only be removed with

multiple acquisitions and phase cycling (7). With appropriately designed “tip-up” pulses, STFR

can potentially eliminate the banding artifact in a single acquisition (4).

However, purely spectral prewinding pulses can refocus a limited range of frequencies (2). This

paper proposes a spectral-spatial pulse that increases the effective prewinding bandwidth and mit-

igates the limitations of a purely spectral design. The key idea of this paper is to vary spatially

the pulse design criterion based on voxel-by-voxel bulk off-resonance. The resulting pulse accom-

modates a wider effective bandwidth, improving signal recovery in inhomogeneous objects. Our

proposed application for spectral-spatial STFR is brain imaging, where inhomogeneity in the B0

field is generally smoothly varying with a wide bandwidth.

In the following section we review spectral prewinding pulse design and introduce the extension

to spectral-spatial prewinding pulses. We then formulate our constrained pulse design optimiza-

tion problem under the small-tip angle (STA) approximation (8). Next, we outline pulse design

validation experiments in a phantom and in vivo human brain. We quantify performance with sub-

sequently defined metrics. Finally, we present simulation and experimental results for the phantom

and in vivo pulse designs.

Theory

Spectral Prewinding Pulse Design

After RF excitation, the phase accumulation of spin isochromats that occurs during a free

precession interval of length Tfree is

θfree = −2πfTfree [1]

where f denotes the off-resonance frequency (2). To compensate for this precession, a spectral

design (2,3) “prewinds” for phase by using the following target excitation pattern:

d(f) = αe2πi
Tfree

2
f .[2]

The spectral target pattern d is a function of flip-angle α and off-resonance frequency f . The phase

evolution is set to refocus at TE, which is half of Tfree in STFR sequences. The target excitation

pattern vector d = [d(f1), .., d(fNf
)]T consists of samples of Eq. [2] at Nf frequencies over some

bandwidth of interest.

Prewinding will be most effective if limited to one half of the unit circle, or a spread of less

than or equal to π. In previous experiments, we have noticed this relationship as an empirical
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off-resonance bandwidth limit. Therefore we use

bandwidth ≤ 1

Tfree
[3]

as a conservative upper limit for prewinding. Eq. [3] suggests that the widest bandwidth (range

of f values used in Eq. [2]) for refocusing is obtained with a minimal free precession time. Free

precession time is dictated by the data acquisition gradients which for certain applications and

resolution might be too long. For example, a plausible Tfree of 4 ms would conservatively allow

for ±125 Hz of refocusing and in some cases, this range is insufficiently wide to span the entire

bandwidth of off-resonance frequencies at highly inhomogeneous regions within the human brain.

Spectral-Spatial Prewinding Pulse Design

To overcome the bandwidth limitations of the purely spectral prewinding design in (3), we

propose a spectral-spatial RF pulse design approach that spatially adapts the spectral properties.

The addition of spatial information allows the RF pulse to encode spatially varying off-resonance

across the object. Even with a narrow design bandwidth, these pulses have the potential to track

larger ranges of off-resonance by changing the design center frequency at each spatial location,

provided these variations do not change too rapidly in space. Figure 1 illustrates this concept.

For the spectral approach, the target magnetization pattern d based on Eq. [2] for RF pulse

design was simply a 1D vector corresponding to a range of off-resonance frequencies. In contrast,

for the proposed spectral-spatial RF design approach, the target pattern is a function of two spatial

dimensions and a spectral dimension. This feasibility study used a non-slice-selective 2D slice. For

fully 3D imaging the spectral spatial pulse design would include three spatial dimensions and a

3D excitation trajectory. The target pattern d for spectral-spatial pulses consists of Nx ×Ny ×Nf

samples of

d(x, y, f) = αe2πi
Tfree

2
f [4]

where Nx and Ny are the number of samples in the x and y dimensions. The spatial aspect in this

design is captured by the diagonal weighting matrix W (used in Eq. [6] below) that has diagonal

elements corresponding to samples of the following 3D weighting function w(x, y, f):

w(x, y, f) =

1, |f −∆f(x, y)| ≤ L
2

0, otherwise
[5]

where ∆f(x, y) denotes the measured field map and L is the user-defined local target bandwidth

of the spectral-spatial pulse. In other words, L defines the local bandwidth that the spectral-
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spatial pulse uses to encapsulate the spatially varying off-resonance as illustrated by the shaded

red region in the bottom right of Figure 1. This combined spatial-spectral weighting is the unique

characteristic of the proposed approach. If the weights were set to unity everywhere, then the

spectral-spatial approach would revert to a pure spectral design. For additional exploration of

local bandwidth L and diagonal weighting matrix W please see Supporting Information Section A

provided with this paper. Supporting Table S1 and Supporting Figure S1 explain the supplementary

experiments; Supporting Table S2 and Supporting Figures S2-S3 present the results.

Methods

RF Pulse Design

Both purely spectral (2) and spectral-spatial pulses were designed using the small-tip angle

approximation (8) for a target 2D slice. The STA approximation facilitates RF pulse design by

establishing a linear Fourier relationship between RF waveform and transverse magnetization (9).

The tip-down pulse design target pattern d was defined for spectral pulses by Eq. [2] and for

spectral-spatial pulses by Eq. [4], where off-resonance frequencies f = [f1, ..., fNf
]T were sampled

from the off-resonance range measured in a field map. The tip-up pulses used simulated magne-

tization magnitude and phase at the end of free precession to assign the magnitude and phase of

the target tip-up pattern (3). The spectral-spatial pulse design used gradients played out during

the RF pulse that trace out a variable density spiral k-space trajectory repeated multiple times.

The speed and resolution of this trajectory permitted time between spirals to be spent at k-space

center where we found that large amounts of RF energy are deposited.

We design the RF pulse by solving the STA constrained optimization problem:

b̂ = argmin
b

||Ab− d||2W

s.t. CSAR||b||22∆t ≤ pmax

[6]

where b̂ is the optimized RF pulse, W is the diagonal weighting matrix composed of samples of

weighting function w(x, y, f) (Eq. [5]), CSAR is a conversion constant, and A is the small tip sys-

tem matrix with elements aj,n = iγM0e
2πi(rj ·kn)∆t. Here, vector rj = (xj , yj , fj) contains spatial

location samples (xj , yj) and frequency samples fj . Vector kn contains excitation k-space samples

(kx,n, ky,n,kf,n). For prewinding pulses, kf,n is simply the time-reversed vector for pulse length τ :

kf,n = tn − τ . The matrix A is very large so we use Nonuniform Fast Fourier Transform (NUFFT)

operations to perform matrix vector multiplications involving A (10).

Unlike traditional STA designs that penalize RF power with a regularization parameter (9), op-

timization problem Eq. [6] directly constrains the deposited RF power pmax. We set the constraint

pmax to a constant with units W/kg chosen conservatively from SAR estimates from previous ex-

periments using spectral pulses and the STFR sequence with the same TR. CSAR is a measured
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constant that converts the integrated RF pulse ||b||22∆t from G2 ·ms to W/kg for a particular TR.

We compute a 2D spectral-spatial pulse efficiently by minimizing Eq. [6] using approximately 100

iterations of the fast iterative shrinkage-thresholding algorithm (FISTA) (11).

Assuming a smoothly varying field map, we downsampled the x and y dimensions of the field

map from 120×120 by a factor of 4 in forming (xj , yj), and sampled off-resonance frequencies every

10 Hz. Spatial downsampling has negligible effects on the RF excitation accuracy given the low

resolution excitation k-space trajectories chosen for these pulse designs. The NUFFT matrix mul-

tiplication in Eq. [6] was implemented with the Michigan Image Reconstruction Toolbox, available

for download at http://web.eecs.umich.edu/∼fessler/.

Experiments

We performed the following experiments to examine if spectral-spatial prewinding pulses can

recover larger off-resonance bandwidths than purely spectral pulses. This was evaluated via sim-

ulation and experimentally in a gel phantom and the human brain in vivo. We also simulated a

non-prewinding hard pulse and compared to the spectral and spectral-spatial pulses in Supporting

Information Section B provided with this paper. Supporting Table S3 and Supporting Figures

S4-S6 show these results.

RF Pulse and Pulse Sequence

We performed all experiments with a birdcage single channel T/R head coil on a 3T GE

MR750 scanner (GE Healthcare, Waukesha, WI). Using a field map from a 2D slice, we designed

3 ms tip-down and tip-up pulses for the STFR sequence (TE/TR=3.648 ms/14.08 ms), where TE

is measured from the end of the RF pulse. For phantom experiments, we used a target flip angle of

α=19.6◦. For in vivo brain imaging we used target α=15.8◦ based on previous literature findings

showing optimal grey matter signal for STFR (4). For the gel phantom, we set pmax=2.2 W/kg

using CSAR=525 W/kg/G2/ms, and chose a stricter constraint of pmax=2.1 W/kg using CSAR=700

W/kg/G2/ms for the in-vivo brain scan where we assumed increased RF coil loading. These are

conservative power constraints below the SAR limitations within the head. The stopping criterion

for RF pulse convergence in the FISTA algorithm was set so that the maximum difference between

iterations normalized by the initialization pulse was less than 2−12 times the peak RF amplitude

limit of 0.2 Gauss.

We designed the RF pulses with MATLAB (The MathWorks, Natick, MA). All pulses were

designed online after the field map acquisition. The total time to estimate the object field map,

design the RF pulses, and export the files to the scanner was less than 5 min.
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Phantom Scans

For phantom scans, we taped a small piece of metal from a paperclip to the surface of a homoge-

nous gel ball phantom to induce B0 inhomogeneity. Two GRE scans (TE1/TE2/TR1/TR2/FA=

2.042 ms/4.342 ms/5.58 ms/7.88 ms/8.2◦) with distinct echo times (TE1,TE2) were collected using

a 3D readout with FOV = 240 mm × 240 mm × 296 mm and matrix size 120 × 120 × 74. We

used these two scans to generate a B0 field map that was estimated using the regularized method

described in (12). We then chose a 2D slice with an off-resonance range of just over ±100 Hz.

For the phantom experiment, we designed two types of spectral pulses: one that was designed

to cover the full bandwidth of off-resonance frequencies in the 2D field map, and another that cen-

tered the design at the mean off-resonance frequency and was restricted to the empirical bandwidth

threshold from Eq. [3]. For a readout FOV = 240 mm, matrix size 256, and ± 31.25 kHz BW, the

minimum free precession time was Tfree=7.296 ms which gives a spectral prewinding bandwidth

cutoff of ±68.5 Hz.

In preliminary simulations (not shown) we explored a variety of excitation k-space trajectories

and compared their performance in simulation. We found that revisiting k-space locations multiple

times offers more complete coverage of k-space, albeit at lower spatial resolution, which is desir-

able for pulses with both spectral and spatial profiles. Based on these initial findings, we designed

spectral-spatial pulses using two 2D variable density spiral (VDS) excitation k-space trajectories:

one with three alternating spirals with kxy,max=0.13 cycles
cm and the other with two alternating spirals

with kxy,max=0.20 cycles
cm . For all spectral-spatial pulses we defined the weighting function w(x, y, f)

with L =25 Hz (Eq. [5]). Therefore in total, two sets of spectral and two sets of spectral-spatial

prewinding tip-down/tip-up pulses were designed for the phantom.

Experimental magnitude and phase images are presented using the STFR sequence. Phase im-

ages are computed by subtracting the inherent coil phase estimated from the TE1 GRE scan used

for field map acquisition.

Human Scans

We also designed spectral and spectral-spatial pulses for a human volunteer's brain. Again,

the first step was to obtain a field map with two GRE scans (using the same TE and TR values

used in the phantom experiment) and select for pulse design a 2D slice with a significant range

of off-resonance. Here, pulse design characteristics (spectral design bandwidth and excitation tra-

jectory) were selected from the best spectral and best spectral-spatial pulses used in the phantom

experiment, based on their quantitative performance metrics defined in the section below. The

best spectral pulse was the pulse designed over the full off-resonance bandwidth, and the best

spectral-spatial pulse used a VDS trajectory with two alternating spirals and L = 25 Hz. Just two

pulses were designed to limit scan time for the human volunteer. We also compare the spectral and

spectral-spatial pulses to a simulated non-prewinding “hard” pulse with the same design flip angle

6
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α=15.8◦ and TE=3.648 ms.

Performance Metrics

Quantifying the excitation performance of the spectral-spatial RF pulses is nontrivial because we

aim to match a particular phase and magnitude pattern across both spatial and spectral dimensions.

Nevertheless the definitions of these metrics are critical for comparing various prewinding pulses.

We measured the performance by simulating the magnetization for each voxel within our region

of interest (ROI) at each frequency within the design bandwidth at that location. Magnetization

values were computed in two ways: using STA approximation of the magnetization mSTA ≈ Ab

and the magnetization obtained from full Bloch simulation, mBloch, with relaxation effects ignored

(T1 and T2 set to infinity). Our Bloch simulation results agreed with the STA approximation,

so we report only the Bloch simulation results here. We conducted the multidimensional Bloch

simulation on a voxel-by-voxel basis, accounting for within-voxel spin dephasing. We used a Gaus-

sian model of the intravoxel frequency distribution (13) with a standard deviation of σ=25 Hz (to

reflect mean literature R2* values (14), (15)) and a simulation spread of ±3σ. We evaluated the

magnetization at the echo time TE.

At TE, ideally all spins within each voxel should rephase and produce uniform excitation at the

target flip angle α. To quantify excitation accuracy we calculated the Excitation Normalized Root

Mean Squared Error (NRMSE)

Excitation NRMSE =

√
1

Nxy

∑Nxy

j=1

∣∣∣∑Ng

n=1 gnmn,j − sin(α)
∣∣∣2

sin(α)
. [7]

Here the length Ng vector g contains the weights defined by the Gaussian model of intravoxel

frequency distribution around the resonance frequency at each voxel; g is normalized to sum to 1.

We compare Bloch simulation magnetization to the unitless target magnitude sin(α). Under the

STA approximation, sin(α) is roughly equal to α.

Another quality metric for the pulse is transverse magnetization uniformity, or how well off-

resonance spins within the spectral bandwidth come to the same mean magnetization. Using the

simulated magnetization, we computed the mean magnitude across frequencies for each voxel, and

finally defined the total mean and percent deviation of the magnetization magnitude as

m̄ =
1

Nxy

Nxy∑
j=1

 Ng∑
n=1

gn |mn,j |

 [8]
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and

%σ =

√
1

Nxy

∑Nxy

j=1(
∑Ng

n=1 gn |mn,j |)− m̄)2

m̄
× 100% . [9]

We also calculated the NRMSE of the excitation magnitude compared to the target transverse

magnetization:

Magnitude NRMSE =

√
1

Nxy

∑Nxy

j=1(|
∑Ng

n=1 gnmn,j | − sin(α))2

sin(α)
. [10]

Finally, we also calculate the phase error to evaluate the effectiveness of “prewinding”. The

desired phase of the magnetization will be zero at the echo time. The phase RMSE is

Phase RMSE =

√√√√√ 1

Nxy

Nxy∑
j=1

∠
Ng∑
n=1

gnmn,j

2

. [11]

In conjunction, these various performance metrics provide insight into prewinding pulse perfor-

mance in simulation, identifying how well pulses perform and under what conditions they might

fail.

Results

Phantom Scans

Figure 2 shows the experimental field map used for spectral and spectral-spatial RF pulse

design for the phantom scans. This figure also shows designed tip-down RF pulse and gradient

waveforms for the two spectral (full bandwidth, theoretical bandwidth) and two spectral-spatial

(3 spirals, 2 spirals) pulses. The theoretical spectral bandwidth limit is set to ±68.5 Hz by the

empirical relationship described in Eq. [3] while the entire range of off-resonance in this slice is

≈ 218 Hz. All RF pulses designed were limited by the power constraint set in the optimization

problem. By simulating on-resonance spins, this led to a median simulated flip angle of α=14.8◦

and 15.3◦ for the spectral pulses with full and theoretical bandwidths, respectively, and α=17.1◦

and 17.9◦ for the spectral-spatial pulses with 3 and 2 spirals respectively (compared to the target

value of 19.6◦).

Figure 3 shows the Bloch simulated magnetization in the phantom normalized by the target

magnitude. Qualitatively, the simulations show a uniform magnetization magnitude slightly below

1. The RF pulses cannot exactly meet the nominal flip angle due to the active power constraint.

In these simulations we also see roughly uniform, zero magnetization phase except for areas of
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high off-resonance by the paper clip. The phase from the purely spectral pulse designed over the

theoretical bandwidth (Fig. 3a) performs particularly poorly, while the other spectral pulse and

both spectral-spatial pulses have closer-to-zero phase.

Table 1 reports the performance metrics under Bloch simulation for these four designs. The

spectral-spatial pulses outperform the purely spectral pulses overall. Spectral pulses suffer from

large phase errors seen in the excitation NRMSE (0.81 and 0.66) and phase RMSE (33.3◦ and

28.5◦). The spectral-spatial pulses have lower performance metric error while still maintaining high

mean magnitude, especially for the spectral-spatial pulse using a two-spiral variable density spiral

excitation trajectory. This pulse produces the lowest error in every case.

Figure 4 shows the experimental magnitude and phase images of the phantom for the four RF

pulses. Just like in simulation, these results demonstrate the improved quality of spectral-spatial

pulses compared to spectral pulses. The spectral-spatial magnitude images exhibit less signal loss

than the purely spectral magnitude images and the phase images are closer to zero for spectral-

spatial pulses, indicating more accurate prephasing.

Human Scans

The field map for the human brain slice used for pulse design had an off-resonance range

of about ±85Hz (Fig. 5). Figure 5 also shows the k-space of phase induced by off-resonance

with overlay of excitation k-space trajectory, the RF and gradient waveforms for the spectral and

spectral-spatial pulses designed for this slice, and simulated relative complex error (|mxy

sinα − 1|) for
the spectral-spatial pulse as a function of one spatial dimension and all frequencies. In this case

just one spectral and one spectral-spatial pulse were designed. Again, the RF pulses were limited

by the power constraint, and the median simulated on-resonance flip angle was α=8.6◦ and 14.9◦

for the spectral and spectral-spatial pulses, respectively. Figure 5b was computed as the 2D Fourier

Transform of exp(−2πiTE∆f(x, y)). In this subfigure, we see that the 2VDS excitation captures

the majority of the field map energy predominantly at the k-space center.

Figure 6 displays the Bloch simulated magnetization for the two prewinding RF pulse designs

and Table 2 reports performance metrics. Again, the spectral-spatial pulse outperforms the purely

spectral pulse for all metrics. Notably, the excitation NRMSE and phase RMSE drop from 0.54

and 25.2◦ in the spectral case to 0.18 and 7.0◦ in the spectral-spatial case, respectively.

Additional intuition about pulse performance can be gained by plotting error as a function

of spatial location. Figure 7 shows excitation and phase root squared error combined across all

simulated frequencies as a function of spatial location for the simulated hard pulse, purely spectral

pulse, and spectral-spatial pulse. In this plot, we can see that the hard pulse performs poorly, the

spectral pulse performs moderately well, and the spectral-spatial pulse performs best.

Figure 8 shows the in vivo experimental magnitude and phase images for the spectral and

spectral-spatial RF pulse. The spectral-spatial pulse magnitude image has less signal intensity

variation than the purely spectral pulse, while the spectral-spatial phase image is also closer to uni-

9
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formly zero. Therefore, qualitatively the spectral-spatial pulse has better off-resonance prewinding

capability than the spectral pulse.

Discussion

The principal idea behind spectral-spatial pulses is that the combination of spectral prewinding

with spatial encoding of off-resonance patterns using magnetic field gradients allows for improved

signal rephasing compared to purely spectral pulses alone, as shown in Fig. 1. This is useful because

purely spectral pulses are limited in the off-resonance bandwidth that can they can recover, which

is related to sometimes non-negotiable pulse sequence parameters such as flip angle and echo time.

We believe this new pulse has useful applications in the human brain, where off-resonance can vary

smoothly but cover a large range (bandwidth). This paper demonstrates the utility of spectral-

spatial pulses using a phantom and in vivo brain example with the STFR sequence. The STFR

sequence is useful for tailored RF pulses because the unique tip-up pulse helps accommodate any

magnetization error between the target pattern and Bloch simulated magnetization of the tip-down

pulse. This makes spectral-spatial prewinding pulses a good match to the STFR pulse sequence.

In the phantom experiment, Fig. 3 and Table 1 show dramatic qualitative and quantitative

improvement when comparing spectral-spatial to purely spectral prewinding pulses. In particular,

the excitation NRMSE, which captures the pulse’s ability to rephase intravoxel spin isochromats

with spectral prewinding, is roughly halved for both spectral-spatial excitation trajectory designs.

Furthermore, the experimental images (Fig. 4) confirm the simulation results and the spectral-

spatial pulses create more uniform images for the same flip angle design. The presence of slight,

darkened signal loss regions in the spectral-spatial phantom images might reflect the limited spatial

resolution of the spectral-spatial excitation k-space trajectory.

The in vivo experiments exhibited similar results. Again, the spectral-spatial pulse outper-

formed the purely spectral pulse as highlighted in Fig. 8 and Table 2, with excitation NRMSE

again reducing to half. There are significant visual differences between the in vivo images (Fig. 8).

The spectral-spatial pulse produces a brighter, more uniform magnitude image. The spectral-spatial

pulse magnitude image does not have notable areas of signal loss, in contrast to the darker rostral

region in the spectral magnitude image. In addition to prewinding performance improvements,

some of the brightness differences between these two pulses might also be attributed to the active

power constraint in the RF pulse design which may inhibit the RF pulse from realizing the nominal

flip angle. Both magnitude images exhibit bright cerebrospinal fluid (CSF) that is typical for the

mixed T2/T1 contrast of steady-state sequences like STFR and bSSFP (4). Additionally, the in

vivo phase images also illustrate the improved performance of spectral-spatial pulses. The phase

at TE is noticeably more uniform in the spectral-spatial pulse phase image compared to the purely

spectral phase image.

Despite their enhanced performance compared to purely spectral pulses, there are a few limi-

tations to spectral-spatial pulse design. First, the excitation k-space trajectory is restricted by the
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length of the RF pulse and gradient amplitude and slew rate limits. This often means that the ex-

citation trajectories do not extend very far into kxy, resulting in low excitation resolution. In many

cases, the off-resonance in the human brain varies slowly enough that with even low resolution the

spectral-spatial pulse can encode the spatially varying off-resonance. However, in regions where the

field map contains a steep off-resonance gradient, the spectral-spatial pulse will not fully capture

this transition and may perform no better than a purely spectral pulse. Furthermore, when moving

to 3D spectral-spatial designs, there will be further limitations in resolution, though this limitation

can be eased by using parallel excitation.

Although this paper explored spiral trajectories to understand how the trajectory affects spectral-

spatial pulse performance, by no means was this search exhaustive. There is still a need to better

understand the trade-off between k-space extent in kxy and other pulse design parameters such as

target bandwidth L. One possible way of addressing this problem is the joint design of optimal

k-space trajectories and RF pulses. In recent work by Sun et al. (16) and Davids et al. (17) the

joint design problem is considered for the application of inner-volume excitation. Joint optimization

of the k-space trajectory/gradient waveform is a natural extension of our RF pulse design problem.

Another important factor for spectral-spatial pulse design is that it must occur online. For the

results shown, the pulse design routine increased scan session duration minimally. Nevertheless it

is still possible that patients will move between field map scan and acquisition with the designed

pulse, compromising the spatially varying pulse design. Therefore reducing motion and time in the

scanner is critical. For purely spectral pulses, motion is less problematic because the pulses are not

spatially resolved.

The work presented here is a feasibility study that uses 3D readout for a pulse designed to a

particular 2D slice. For this concept to become practically useful, we will need to expand our design

to three spatial dimensions. One benefit of 3D spectral and spectral-spatial pulse designs is that they

can help account for field map variation in the slice dimension, but the higher dimensionality could

increase the online pulse design time significantly. An alternative experiment could be constructed

for a slice-selective spectral-spatial prewinding pulse. This is challenging because a third gradient

dimension, the slice-select gradient, is introduced. We imagine that “fast k-z” (20) or spokes (21)

trajectories could be used. Here, we would have to face the competing needs of high kz extent for

selecting relatively thin slices yet also producing enough spokes for moderate sampling in the kxy

plane.

We designed the spectral-spatial pulses using the small-tip angle approximation. Even though

the RF pulses may be designed for a certain low flip angle such as α = 15.8◦ as used in our

human experiments, the instantaneous flip during the RF pulse may be higher. In (3), Sun et al.

demonstrated that spectral pulses can exceed 90◦ when the integrated power is relatively high (or

Tikhonov regularization term is low). For spectral-spatial pulses, the presence of magnetic field

gradients makes the constraining of instantaneous flip angles more difficult; the flip angle is no

longer simply proportional to the integral of the RF pulse with time. However, the agreement

we observe between the STA model and Bloch simulation suggests that the STA approximation
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was adequate for these designs, perhaps due in part to our integrated power constrained design.

The need for the current RF pulse design approach to satisfy the STA approximation means that

spectral and spectral-spatial pulse designs should be monitored for flip angle violations, especially

when the target flip angle is high.

Here we designed spectral and spectral-spatial prewinding pulses with fixed constraints on inte-

grated power and found that spectral-spatial pulses performed with lower error for all quantitative

metrics. Conversely, we would expect that designing spectral and spectral-spatial pulses for the

same error values would result in the spectral-spatial pulses having lower integrated power. This

formulation might have useful applications when SAR deposition is the primary concern. Further-

more, we have only reported the equivalent SAR constraints from our RF pulse optimization as

reported on the scanner during imaging. In the future, we would like to have an efficient method

for estimating SAR deposition during the design of RF pulses so that the constraints are applied

directly in terms of W/kg.

Tailored RF pulses such as the spectral-spatial pulses explored in this paper depend on the

accuracy of the magnetic field gradients. Distortion and timing errors between gradients and RF

pulse is a common problem that can degrade excitation accuracy (18). In our experiments, we

pre-measured gradients using the method in (19) and did not notice significant deviation between

prescribed and measured excitation trajectories. However, as we design further spectral-spatial

pulses with other excitation trajectories it may become necessary to evaluate gradient errors and

perhaps adopt novel correction schemes such as that described in Harkins et al. (18).

In the future, we plan to extend our spectral-spatial pulse design to three spatial dimensions.

Another plan is to tailor the pulse design to the STFR sequence by adjusting the design for its

performance in the steady-state (whereas tip-down/tip-up pairs are currently designed for one cycle

of STFR). Finally, we will examine a number of clinical imaging applications such as optic nerve,

lung, or bowel imaging where these prewinding pulses might be particularly useful.

Conclusions

This paper has introduced a spectral-spatial phase prewinding RF pulse that extends the spectral

pulses introduced by Assländer et al. (2). These pulses can compensate for field inhomogeneity

induced phase by prewinding the phase such that, after excitation, spins refocus at the echo time.

While purely spectral pulses are limited to a modest off-resonance bandwidth, introducing excitation

k-space provides spatially varying off-resonance coverage. This approach can create a wider effective

recovery bandwidth that reduces signal loss. We demonstrated this concept by designing spectral-

spatial pulses with variable density spiral k-space trajectories. We compared spectral-spatial pulses

to their purely spectral counterparts with simulation, phantom studies, and in vivo human brain

studies using the STFR steady-state sequence. The results confirm that spectral-spatial pulses

do in fact improve recovery of signal loss due to off-resonance when compared to purely spectral

prewinding pulses.
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Figure Captions

Figure 1: 1D conceptual representation of purely spectral and spectral-spatial prewinding pulse
design. The left figure shows a typical human brain field map at a slice taken slightly above the
sinuses, containing a significant range of off-resonance. A 1D line profile across one y-location of
this field map is plotted in black on the right figures. The purely spectral pulse (center) does not
vary the target recovery bandwidth spatially, while the spectral-spatial pulse (right) does.
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Figure 2: (a) Ball phantom field map used to design spectral and spectral-spatial prewinding pulses.
(b-e) Tip-down RF pulse magnitude, phase, and excitation gradients for spectral pulses with (b)
±68.5Hz target bandwidth and (c) full field map off-resonance bandwidth, and 2D spectral-spatial
pulses with (d) 3VDS excitation trajectory and (e) 2VDS excitation trajectory. Only the Gx

waveform is shown. Further description of these VDS trajectories is found in the Methods section.
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Figure 3: Bloch simulated magnetization magnitude (top row) and phase (bottom row) at TE for
spectral pulses with (a) ±68.5 Hz target bandwidth and (b) full field map off-resonance bandwidth,
and 2D spectral-spatial pulses with (c) 3 variable density spiral (VDS) excitation trajectory and
(d) 2VDS excitation trajectory. The magnitude images are more uniform and the phase images are
closer to zero in the spectral-spatial simulations (c,d).
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Figure 4: Experimental magnitude (top row) and phase (bottom row) STFR images for spectral
pulses with (a) ±68.5 Hz target bandwidth and (b) full field map off-resonance bandwidth, and
2D spectral-spatial pulses with (c) 3VDS excitation trajectory and (d) 2VDS excitation trajectory.
Magnitude images are scaled differently for the spectral images and the spectral-spatial images to
facilitate visual comparison. As in the simulation, the magnitude images are more uniform and the
phase images are closer to zero for spectral-spatial pulses.
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Figure 5: (a) Human brain field map used to design spectral and spectral-spatial prewinding pulses
and (b) logarithm of zoomed k-space of phase induced by off-resonance with overlay of excitation
k-space trajectory, 2VDS. (c-d) Tip-down RF pulse magnitude, phase, and Gx excitation gradients
for (c) a spectral pulse designed with full field map off-resonance bandwidth and (d) a 2D spectral-
spatial pulse designed with the same 2VDS excitation trajectory used in the phantom experiments.
(e-f) Relative complex error |mxy

sinα − 1| for the spectral-spatial pulse as a function of frequency and
1D line profile across (e) all x at y =2.8 cm and across (f) all y at x =0.2 cm. The dashed white
lines represent the L = 25 Hz used as the local bandwidth for the spectral-spatial pulse, and the
dashed red lines represent the ±3σ =75 Hz bandwidth used in Bloch simulation. Further examples
of these plots are found in Supporting Info B.
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Figure 6: Bloch simulated magnitude (top row) and phase (bottom row) at TE for (a) a purely
spectral tipdown pulse and (b) a spectral-spatial tipdown pulse designed for the 2D field map in
Fig. 5(a). The spectral-spatial pulse suffers from less signal loss and obtains a flatter phase closer
to zero.
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Figure 7: Simulated error as a function of space. Excitation root squared error (top row) and phase
root squared error (bottom row) across a range of intravoxel frequencies (Gaussian distribution
over [−3σ : 3σ] with σ =25 Hz) over all spatial locations x, y for (a) the hard pulse, (b) the purely
spectral pulse, and (c) the spectral-spatial pulse. The excitation and phase errors are lowest in the
spectral-spatial case, and the same is true for the overall excitation NRMSE and phase RMSE.
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Figure 8: Experimental magnitude (top row) and phase (bottom row) images for (a) a spectral pulse
designed over full field map off-resonance bandwidth and (b) a 2D spectral-spatial pulse designed
with 2VDS excitation trajectory. Again, magnitude images are scaled differently for the spectral
images and the spectral-spatial images to help visual comparison. The spectral-spatial pulse yields
more uniform magnitude and closer to zero phase.

Supporting Figure S1: Four possible design weighting matrices W for spectral-spatial pulse
prewinding. In the top row, the intravoxel bandwidth spread is universally Ltotal(x, y) =25 Hz
at all locations. In the bottom this value varies spatially with the spread proportional to through-
plane gradient. In the left column, the values included in W are binary (0’s or 1’s). In the right
column, the values are weighted by a normalized Gaussian distribution. In the main paper, we
used the top left design weighting matrix.

Supporting Figure S2: Simulated magnitude images for all possible design weighting matrix and
simulation combinations presented in Table S1.

Supporting Figure S3: Simulated phase images for all possible design weighting matrix and simu-
lation combinations presented in Table S1.

Supporting Figure S4: Hard pulse simulation results. Top row: 2D field map (left), simulated
magnitude (center), and simulated phase (right). Middle row: relative complex error, relative
magnitude error, and absolute phase error for the 1D line profile magnitude across all x at y =2.8
cm. Bottom row: relative complex error, relative magnitude error, and absolute phase error for
profile across all y at y =0.2 cm. The dashed white lines represent the L =25 Hz used as the
local bandwidth for the spectral spatial pulse, and the dashed red lines represent the ±3σ = 75 Hz
bandwidth used in Bloch simulation. These plots are repeated for the spectral and spectral-spatial
pulses in Supp. Figs S5 and S6.
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Supporting Figure S5: Purely spectral pulse simulation results. Compare with Supp. Figs S4 and
S6.

Supporting Figure S6: Spectral-spatial pulse simulation results. Compare with Supp. Figs S4 and
S5.
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Tables

Pulse Design
Trajectory

Excitation
NRMSE

Phase
RMSE (◦)

Mean Mag. % St. Dev. Magnitude
NRMSE

Spectral
BW-limited,
±68.5 Hz

0.81 33.3 0.30 36.6 0.34

Spectral
full BW

0.66 28.5 0.18 26.6 0.48

Spectral-
spatial 3 VDS

0.41 23.4 0.28 18.9 0.24

Spectral-
spatial 2 VDS

0.38 23.0 0.29 10.6 0.18

Table 1: Bloch simulation performance metrics comparing two purely spectral and two spectral-
spatial RF pulse designs for a phantom with paper clip susceptibility. The target flip angle
α = 19.6◦ is approximately 0.34 radians. The best results are in bold.

Pulse Design
Trajectory

Excitation
NRMSE

Phase
RMSE (◦)

Mean Mag. % St. Dev Magnitude
NRMSE

Spectral
full BW

0.54 25.2 0.17 19.6 0.39

Spectral-
spatial 2 VDS

0.18 7.0 0.24 7.7 0.15

Table 2: Bloch simulation performance metrics comparing purely spectral and spectral-spatial RF
pulses designed using a 2D slice of a human brain field map. The target flip angle α = 15.8◦ is
approximately 0.28 radians. The best results are in bold.

Supporting Table S1: Possible combinations of design weighting matrices (columns) and simulation
methods (rows) for spectral-spatial pulse design. The original method presented in the main paper
is assigned the naming convention “BULUstd”.

Supporting Table S2: Performance metrics of all possible design weight matrix/simulation methods
tested. The first row “BULUstd” represents the weighting design matrix and simulation method
used in the main paper. The bold values represent the best performance.

Supporting Table S3: Performance metrics defined in paper as (Eq. [7-11]) for a simulated hard
pulse in comparison to purely spectral and spectral-spatial prewinding pulses. The bold values
represent the best performance.
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Supporting Information: Design of spectral-spatial phase prewinding pulses and their use

in small-tip fast recovery steady-state imaging

Sydney N. Williams1, Jon-Fredrik Nielsen1, Jeffrey A. Fessler2, Douglas C. Noll1

1. Department of Biomedical Engineering and 2. Department of Electrical Engineering and Computer

Science, University of Michigan, Ann Arbor, MI, USA

This document provides additional discussion and experimental results that supplement (1).

A. Local spectral-spatial bandwidth as a model for intravoxel dephasing

Spatially varying bandwidth

Choosing a local bandwidth L to design spectral-spatial pulses faces multiple competing demands. On one

hand, a wider bandwidth L might balance the competing needs of spatial resolution and pulse length, al-

lowing the prewinding pulse to capture larger range of off-resonance. On the other hand, a wider L could

increase SAR, making the RF optimization problem more challenging and lead to overall worse prewinding

performance. This section explores a few design considerations for local bandwidth L and concludes that

simply using a uniform L =25 Hz is sufficient for the spectral-spatial pulses designed in the paper.

One possible alternative is to adapt L to changing ∆B0 offset based on (2), which noted that there is pro-

portionality between off-resonance frequency f(x, y) and through-plane gradient gz. This can be expressed

as

gz = αf(x, y) [S–1]

where α is the proportionality constant. In (2), α was estimated from contiguous field maps as −2.03×10−4

G/cm/Hz. We therefore chose to explore through-plane contributions to intravoxel bandwidth spread using

α = −2× 10−4 G/cm/Hz. We did this by adapting the local bandwidth spatially considering through-plane

gradient effects (2) by applying the following equation:

Ltp(x, y) = γα∆z|∆f(x, y)| . [S–2]

Here Ltp(x, y) is the spatially varying local bandwidth attributed to the through-plane gradient, γ is the

gyromagnetic ratio, and ∆z = 0.4 cm was the slice thickness used in the 3D field map acquisition. We

also centered the field map ∆f(x, y) to a median value of 0 Hz. Using Eq. [S–2] alone would cause spatial

locations at or close to the median field map frequency to have a through-plane local bandwidth value of

about 0 Hz. Furthermore, at the farthest field map deviation value of 129 Hz, Eq. [S–2] would yield Ltp = 44
Hz. We chose to balance the contribution of through-plane gradient and the original uniform L = 25 Hz. We

associate the 25 Hz bandwidth with microscopic effects of T2* decay, whereas the through-plane dephasing

proportional to ∆B0 is related to macroscopic effects. These effects are largely independent and thus are

treated as orthogonal sources of bandwidth spread. This leads to a quadrature combination, so the final

spatially varying Ltotal(x, y) we investigated is:

Ltotal(x, y) =
√

(γα∆z|∆f(x, y)|)2 + 252 . [S–3]

We then incorporated this spatially varying bandwidth into the design through the weighting matrix. To
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design an RF pulse using Eq. [S–3], the weighting matrix W contained samples of

w(x, y, f) =

{

1, |f −∆f(x, y)| ≤ Ltotal(x,y)
2

0, otherwise .
[S–4]

See Supp. Fig. S1 for an illustration that compares Eq. [S–4] (Supp. Fig. S1 bottom row) to the original

fixed bandwidth design in Eq. [5] of (1) (Sup. Fig. S1 top row).

Gaussian weights in the design weighting matrix

These two implementations of W (spatially varying and uniform Ltotal(x, y)) are binary weighting matrices,

where the only weight values used are 0’s and 1’s. We also investigated using Gaussian weights instead of

binary weights in the design weighting matrix so it matches the Gaussian weight model used in calculating

the performance metrics, e.g., Excitation NRMSE. In this case, the values of w(x, y, f) included in the

matrix are scaled to normalized Gaussian weights as

w(x, y, f) =

{

g(f ;x,y)
max(g(f ;x,y)) , |f −∆f(x, y)| ≤ 3Ltotal(x, y)

0, otherwise
[S–5]

where g(f ;x, y) is the Gaussian weight at frequency f . We define g(f ;x, y) as

g(f ;x, y) =
1

Ltotal(x, y)
√
2π

exp

[

−(f̄(x, y)− f)2

2Ltotal(x, y)2

]

[S–6]

where f̄(x, y) is the mean frequency within the Ltotal(x, y) bandwidth region at location (x, y) and the

standard deviation Ltotal(x, y) can also be uniform or spatially varying for the Gaussian weights.

In total, we investigated the design of spectral-spatial pulses with 4 unique weighting matrices W: bi-

nary entries (Eq. [S–4]) with i) uniform Ltotal(x, y) =25 Hz intravoxel spread or ii) spatially varying spread

Ltotal(x, y) defined in Eq. [S–3], and Gaussian-weighted entries (Eq. [S–5]) with iii) uniform Ltotal(x, y) =25

Hz intravoxel spread and 25 Hz standard deviation or iv) spatially varying spread Ltotal(x, y) and spatially

varying standard deviation. Supporting Figure S1 illustrates these distinct design weighting matrices. Each

box of Supp. Fig. S1 represents a sampled frequency f and the plots are shown in spatial dimension x, y.

To further investigate this approach, all simulation results use a finer spectral sampling rate of ∆f =5 Hz

(∆f =10 Hz was used in (1)).

Spatially varying standard deviation in Bloch simulation

For completeness, we also considered a refinement of the simulation methods. In (1), we used an intravoxel

frequency spread in Bloch simulation spanning a [-3σ:10:3σ] Hz range, where σ =25 Hz defined the stan-

dard deviation of normalized Gaussian distribution weights g used to combine these simulation results. Just

like we considered spatially varying intravoxel widths for W of our spectral-spatial pulse design, we could

simulate over ranges with spatially varying standard deviation Ltotal(x, y) similar to Eq. [S–3]. Hence, we

now have two methods for multi-frequency Bloch simulation: normalized Gaussian weights with a uniform

standard deviation and a spatially varying standard deviation.
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Supporting Figure S1: Four possible design weighting matrices W for spectral-spatial pulse prewinding.

In the top row, the intravoxel bandwidth spread is universally Ltotal(x, y) =25 Hz at all locations. In the

bottom this value varies spatially with the spread proportional to through-plane gradient. In the left column,

the values included in W are binary (0’s or 1’s). In the right column, the values are weighted by a normalized

Gaussian distribution. In (1), we used the top left design weighting matrix.

Results

To facilitate our forthcoming discussion, Supporting Table S1 summarizes these design/simulation combi-

nations and provides shorthand variable naming conventions for each possible combination of design matrix

and simulation method.

Design Weighting Matrix Method

Binary W with

Uniform

Ltotal(x, y)

Binary W with

Varying

Ltotal(x, y)

Gaussian W with

Uniform

Ltotal(x, y)

Gaussian W with

Varying

Ltotal(x, y)

Simulation

Methods

Gaussian with

Uniform

Standard

Deviation

BULUstd BVLUstd GULUstd GVLUstd

Gaussian with

Varying

Standard

Deviation

BULVstd BVLVstd GULVstd GVLVstd

Supporting Table S1: Possible combinations of design weighting matrices (columns) and simulation meth-

ods (rows) for spectral-spatial pulse design. The original method presented in the main paper is assigned the

naming convention “BULUstd”.

We explored designing four sets of spectral-spatial pulses (using four weighting matrix methods) and simu-

lated their performance with both simulation methods for the fieldmap shown in Supp. Fig. S1. One of these

combinations, “BULUstd”, is used in (1) (albeit with 10 Hz rather than 5 Hz spacing for the design). Sup-

porting Table S2 lists the performance of all 8 design/simulation combinations with the naming conventions

provided in Supporting Table S1.
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Design/

Simulation

Method

Excitation

NRMSE

Phase

RMSE (◦)

Mean

Magnitude

% Magnitude

St. Dev.

Magnitude

NRMSE

BULUstd 0.18 7.4 0.24 7.8 0.14

BVLUstd 0.18 7.0 0.24 7.0 0.14

GULUstd 0.29 8.0 0.20 7.8 0.26

GVLUstd 0.32 8.1 0.20 11.1 0.31

BULVstd 0.21 8.8 0.24 11.4 0.17

BVLVstd 0.21 8.0 0.24 9.9 0.17

GULVstd 0.31 9.8 0.20 10.4 0.28

GVLVstd 0.33 9.3 0.20 12.5 0.31

Supporting Table S2: Performance metrics of all possible design weight matrix/simulation methods tested.

The first row “BULUstd” represents the weighting design matrix and simulation method used in (1). The

bold values represent the best performance.

We expected the performance metrics, particularly excitation NRMSE and phase RMSE, to worsen when

simulation methods went from using a Gaussian spread of intravoxel frequencies with uniform standard

deviation σ to a spatially varying spread where σ increased at areas of higher off-resonance due to through-

plane effects. Supporting Table S2 shows where performance drops slightly from design/simulation com-

binations ending in “XXUstd” to “XXVstd”. It was harder to predict how adjusting the design weighting

matrix would affect the spectral-spatial pulse performance. Supporting Table S2 reports decreases in per-

formance for design weighting matrices when adjusting from binary to Gaussian weight values (“BXX” to

“GXX”). There are negligible differences when comparing uniform and varying Ltotal(x, y) in the weight

matrix (“XULX” to “XVLX”). This is likely because changing the design weight matrix from binary to

Gaussian weights increases the support of W in the frequency dimension, resulting in a more challenging

RF design. The magnitude simulation images (Supp. Fig. S2) and phase simulation images (Supp. Fig. S3)

are visually consistent with the fact that the various design alternatives yield similar results but with a slight

decline for some explored methods for this particular slice.

In conclusion, we explored modifying the weighting matrix used in designing spectral-spatial pulses by i)

varying the design target bandwidth Ltotal(x, y) to reflect the proportionality between off-resonance and

through-plane gradient using references such as (2) and ii) varying the weights of the design weighting ma-

trix to be Gaussian rather than binary. We also went further and investigated simulation methods where we

varied the standard deviation of the Gaussian intravoxel spread of frequencies to be spatially varying with

off-resonance. After testing all possible combinations, we saw only small changes in simulation perfor-

mance metrics. It is possible that with higher spatial resolution excitation k-space trajectories we might see

greater gains with these modifications. However, this would also mean a longer RF pulse, so the potential

advantages of these changes is unclear.
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Supporting Figure S2: Simulated magnitude images for all possible design weighting matrix and simulation

combinations presented in Table S1.
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Supporting Figure S3: Simulated phase images for all possible design weighting matrix and simulation

combinations presented in Table S1.
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B. Hard pulse simulation and prewinding pulse performance over one fre-

quency and one spatial dimension

In (1) we compare spectral and spectral-spatial prewinding pulses, building on previous work in (3) and (4).

In this supporting information, we also compare these to the performance of a non-prewinding pulse. In this

case, we simulate a simple 500 µs hard rect pulse that has the same TE and flip angle as our human spectral

and spectral-spatial RF pulse designs (3.648 ms/ 16◦). Supporting Table S3 below reports performance met-

rics (Eq. [7-11] in main paper) for this hard pulse and the spectral and spectral-spatial pulses. As expected,

the hard pulse has a uniform magnetization appearance but does not reach the target magnitude (% magni-

tude standard deviation, magnitude NRMSE) and fails to acheive a flat phase profile since no prewinding

has occured (phase RMSE, excitation NRMSE).

Pulse Excitation

NRMSE

Phase

RMSE (◦)

Mean

Magnitude

% Magnitude

St. Dev.

Magnitude

NRMSE

Hard pulse 0.64 43.5 0.24 0.1 0.13

Purely spectral

pulse

0.54 25.2 0.17 19.6 0.39

Spectral-spatial

pulse

0.18 7.0 0.24 7.7 0.15

Supporting Table S3: Performance metrics defined in paper as (Eq. [7-11]) for a simulated hard pulse in

comparison to purely spectral and spectral-spatial prewinding pulses. The bold values represent the best

performance.

In addition to the performance metrics provided, we have created plots to demonstrate the performance of

prewinding pulses as a function of one spatial dimension and frequency before summation using Gaussian

weights. To do this, we selected a particular “y” location in the 2D in vivo field map and drew a line profile

spanning all “x” through it. We then examined the magnetization of both purely spectral and spectral-spatial

pulses across this line profile for all frequencies included in Bloch simulation. Finally, we repeated this same

process for one “x” location and the corresponding “y” line profile.

Supporting Figure S4 shows the magnetization simulations for one spatial dimension and all simulation

frequencies for the hard pulse. The simulations are presented in terms of relative complex error (|mxy

sinα
− 1|),

absolute phase error (|∠mxy|), and relative magnitude error (| |mxy |
sinα

− 1|). This diagram also shows the 2D

human field map, simulated magnitude, and simulated phase over all combined frequencies using a Gaus-

sian distribution with σ =25 Hz as described in the main paper. Supporting Figures S5 and S6 repeat these

plots for the purely spectral and spectral-spatial pulse, respectively.
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Supporting Figure S4: Hard pulse simulation results. Top row: 2D field map (left), simulated magnitude

(center), and simulated phase (right). Middle row: relative complex error, relative magnitude error, and

absolute phase error for the 1D line profile magnitude across all x at y =2.8 cm. Bottom row: relative

complex error, relative magnitude error, and absolute phase error for profile across all y at y =0.2 cm. The

dashed white lines represent the L =25 Hz used as the local bandwidth for the spectral spatial pulse, and the

dashed red lines represent the ±3σ = 75 Hz bandwidth used in Bloch simulation. These plots are repeated

for the spectral and spectral-spatial pulses in Supp. Figs S5 and S6.
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Supporting Figure S5: Purely spectral pulse simulation results. Compare with Supp. Figs S4 and S6.
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Supporting Figure S6: Spectral-spatial pulse simulation results. Compare with Supp. Figs S4 and S5.
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The hard pulse plots in Supp. Fig. S4 agree with the performance metrics in Supporting Table S3 in that the

pulse performs poorly with large absolute phase error and relative magnitude and complex error across all

space. As anticipated, the spectral-spatial pulse in Supp. Fig. S6 tracks the spatially varying off-resonance

while the purely spectral pulse in Supp. Fig. S5 does not. The purely spectral pulse has low phase error

values for some spatial locations, but with varying off-resonance it cannot enforce low relative complex

at all frequencies. Meanwhile, the spectral-spatial pulse maintains particularly low relative complex error

with spatial variation. We therefore conclude that both effective magnitude and phase performance (in other

words, the relative complex error) is what leads to effective prewinding. The summed frequency simulation

of these three pulses in the 2D simulated magnitude and phase images are consistent with these performance

differences as well.

Additional intuition about pulse performance can be gained by plotting “error” as a function of spatial

location. Figure 7 in the main paper shows excitation and phase root squared error combined across all sim-

ulated frequencies as a function of spatial location for the purely spectral pulse and spectral-spatial pulse.

There, we can easily see that the hard pulse performs very poorly, the spectral pulse performs moderately

well, and the spectral-spatial pulse performs has the lowest phase errors.
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