Estimate of the rigidity of eclogite in the lower mantle from waveform modeling of broadband S-to-P wave conversions

2

Samuel M. Haugland^{1*}, Jeroen Ritsema¹ 3 Satoshi Kaneshima² Michael S. Thorne³ 5 Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA. ²Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan ³Department Geology and Geophysics, University of Utah, Salt Lake City, Utah, USA. **Key Points:** 9 Broadband seismometers in western North America recorded a S-to-P conversion at 10 1750 km depth beneath northwestern South America. 11 • Finite-difference waveform modeling suggests S₁₇₅₀P was formed by a 10-km thick 12 heterogeneity with a shear-velocity reduction between -1.6% and -12.4%. 13 · Our results are consistent with ab initio calculations of shear softening due to the 14 post-stishovite phase transition in subducted mid-ocean ridge basalt. 15

Corresponding author: Samuel Haugland, samhaug@umich.edu

16 Abstract

Broadband USArray recordings of the July 21, 2007 western Brazil earthquake (M_W = 17 6.0; depth = 633 km) include high-amplitude signals about 40 s, 75 s, and 100 s after the 18 P wave arrival. They are consistent with S-wave to P-wave conversions in the mantle be-19 neath northwestern South America. The signal at 100 s, denoted as S_{1750} P, has the highest 20 amplitude and is formed at 1750 km depth based on slant-stacking and semblance anal-21 ysis. Waveform modeling using axisymmetric, finite-difference synthetics indicates that 22 $S_{1750}P$ is generated by a 10-km thick heterogeneity, presumably a fragment of subducted 23 mid-ocean ridge basalt in the lower mantle. The negative polarity of $S_{1750}P$ is a robust 24 observation and constrains the shear-velocity anomaly δV_S of the heterogeneity to be neg-25 ative. The amplitude of $S_{1750}P$ indicates that δV_S is in the range from -1.6% to -12.4%. 26 The large uncertainty in δV_S is due the large variability in the recorded S₁₇₅₀P ampli-27 tude and simplifications in the modeling of S1750P waveforms. The lower end of our es-28 timate for δV_S is consistent with ab initio calculations by *Tsuchiya* [2011], who estimated 29 that δV_S of eclogite at lower-mantle pressure is between 0 and -2% due to shear softening 30 from the post-stishovite phase transition. 31

32 1 Introduction

While seismic tomography has mapped the penetration of subducting lithosphere 33 into the lower mantle on scales > 100 km [e.g., Grand et al., 1997; Fukao et al., 2001], 34 array recordings of reflected or converted phases indicate fine-scale (10-100 km) structure is present in the deep mantle [e.g., Shearer, 2007; Kaneshima, 2016]. S-to-P con-36 versions at depth x, denoted as SxP, are excellent probes for detecting layering or local-37 ized heterogeneity in the lower mantle beneath deep-focus earthquakes. These shear-wave 38 conversions have been used to map small-scale seismic structure beneath the Marianas 39 [e.g., Kaneshima & Helffrich, 1998], Tonga [e.g., Kaneshima, 2013; Li & Yuen, 2014; Yang 40 & He, 2015], Indonesia [e.g., Kawakatsu & Niu, 1994; Niu & Kawakatsu, 1997; Vinnik 41 et al., 1998; Vanacore et al., 2006], South America [e.g., Castle & van der Hilst, 2003; 42 Kaneshima & Helffrich, 2010], and northeast China [Niu, 2014]. Kaneshima & Helffrich 43 [1999] interpreted these small-scale, deep mantle heterogeneities as fragments of sub-44 ducted oceanic crust. 45

We inspected Transportable Array (TA) and Canadian National Seismic Network
(CNSN) waveforms from 41 deep-focus (> 300 km) earthquakes in South America since

⁴⁸ 1990. We detected high-amplitude SxP conversions only in recordings of the July 21, ⁴⁹ 2007 $M_W = 6.0$ (latitude = 8.1°S; longitude = 71.3°W; depth = 633 km) western Brazil ⁵⁰ earthquake (the Brazil earthquake from hereon). The Brazil earthquake had a dip-slip ⁵¹ source mechanism with optimal downward radiation of SV-polarized shear-waves. The ⁵² absence of clear S-P conversions in waveform data from other events is likely due to the ⁵³ unique focal mechanism of the Brazil earthquake.

Previous studies have modeled the amplitude and polarity of S-P conversions [e.g., *Vinnik et al.*, 1998; *Kaneshima & Helffrich*, 1999; *Niu*, 2014]. In this paper we analyze broadband regional network waveforms by 2D finite difference modeling at periods longer than 2 seconds. The broadband recording of $S_{1750}P$ at stations from the TA and CNSN elucidates the signal polarity and amplitude. By forward waveform modeling, we put constraints on the thickness and the shear velocity of the anomalous structure in the deep mantle responsible for generating $S_{1750}P$.

2 SxP conversions in the lower mantle beneath South America

2.1 Wave geometry

⁶³ SxP is formed when the downward propagating S wave converts to a P wave at a ⁶⁴ discontinuity or heterogeneity in seismic velocity at depth x below the earthquake source. ⁶⁵ Beneath the Brazil earthquake, SxP conversions form in a high-velocity structure that we ⁶⁶ interpret as the Nazca lithosphere subducted beneath western South America (Figure 1). ⁶⁷ We can distinguish SxP from crustal reverberations and reflections off boundaries above ⁶⁸ the earthquake (i.e., $p_{410}P$, $s_{410}P$) or beneath the receivers (e.g., $P_{410}s$, $P_{660}s$) when its ⁶⁹ slowness can be determined using recordings from a wide-aperture network.

70

61

62

2.2 Waveforms from North America

More than 250 TA and CNSN stations in western North America recorded the Brazil earthquake between 56° and 73°. The record section of vertical-component traces in Figure 2a shows the ground velocity after alignment on the P-wave (at time 0). The seismic phases PcP and pP are reflections off the outer core and Earth's surface, respectively. Three $S_x P$ signals at about 45 s, 75 s, and 100 s after the P arrival, are visible throughout the section.

The signals at 45 s, which may interfere with $p_{410}P$, and at 75 s are $S_{950}P$ and $S_{1250}P$, respectively. These conversions were formed about 3° off the great-circle path and have complex waveforms (see Figure S1).

We interpret the impulsive arrival at 100 s as $S_{1750}P$. Its arrival time decreases with increasing epicentral distance with respect to P, as expected for a SxP conversion.

The vespagram in Figure 2b indicates that the slowness of $S_{1750}P$ is about 0.2 s/° 82 higher than predicted for a standard 1-D seismic model. This suggests that the S₁₇₅₀P con-83 version point is located further from the earthquake hypocenter than expected for a 1-D 84 wave speed model. Semblance is a measure of coherent energy in a stack of data arriving 85 from a common conversion point. By semblance analysis, following Kaneshima & Helf-86 *frich* [2003], we locate the conversion point of S_{1750} P between 1700 and 1750 km depth 87 within the sector of source azimuths of the TA and CNSN stations but about 400 km to the NW of the 1-D predicted conversion location (Figure 2c). This is consistent with the 89 S₁₇₅₀P slowness and traveltime observed in Figure 2b.

3 Waveform modeling

91

The $S_{1750}P$ signal is recorded above noise level in 30 vertical displacement seismograms from the TA and CNSN. Figure 3 shows these waveforms and their sum after they have been aligned and scaled such that the SV wave, which converts into $S_{1750}P$, has an amplitude equal to 1. The $S_{1750}P$ signal in each of these 30 records is comprised of a negative and a positive pulse separated by about 2 s, with varying amplitudes. The mean value of the peak-to-peak amplitude is 4.4% of the SV amplitude on the vertical component and the two-standard deviation of the amplitude is 3.4%.

⁹⁹ Computed waveforms indicate that the waveform shape of $S_{1750}P$ is due to the inter-¹⁰⁰ ference of two S-to-P conversions at the upper and lower boundaries of a narrow velocity ¹⁰¹ structure. These two conversions have opposite polarities. We model the heterogeneity ¹⁰² that produces $S_{1750}P$ as a block centered on the ray-theoretical $S_{1750}P$ conversion point be-¹⁰³ neath the earthquake (Figure 4a). The block has a thickness *h* and makes an angle α with ¹⁰⁴ the equatorial plane.

We choose long blocks to avoid wave diffraction around them. We expect diffraction to reduce the amplitude of $S_{1750}P$ but it must be studied in 3-D. The S-wave velocity contrast with respect to the ambient mantle is δV_S . Our synthetics indicate that anomalies in

the P-wave velocity and density do not affect the S₁₇₅₀P waveform significantly See Figure
S2.

We model the stack of the 30 high-amplitude S₁₇₅₀P waveforms using synthetics 110 computed with the PSVaxi method [e.g., Thorne et al., 2013], a finite-difference method 111 similar to the SHaxi method developed by Jahnke et al. [2008]. PSVaxi allows us to com-112 pute the full seismic wavefield of P-SV motions with the correct 3-D geometric spread-113 ing for a model of seismic structure in the plane of the great-circle arc. The 2-D grid of 114 heterogeneity is expanded to 3-D spherical geometry by rotating it around the radial axis 115 passing through the seismic source. Our PSVaxi synthetics include signals up to frequen-116 cies of 0.5 Hz (i.e., a shortest dominant period of 2 s) but, due to the assumed axisymme-117 try, signals from off-azimuth wave propagation or SH-to-P conversions cannot be modeled. 118

¹¹⁹ We compute synthetics for the PREM seismic model and for a 3-D model in which ¹²⁰ the block heterogeneity at 1750 km depth is embedded within PREM. In the PREM model, ¹²¹ we replace the 220-km, 400-km and 670-km discontinuities by smooth gradients to sup-¹²² press reflections and conversions produced in the upper mantle. We subtract the PREM ¹²³ and 3-D waveforms to isolate the $S_{1750}P$ signals.

Figures 4b and 4c compare the recorded S₁₇₅₀P signal (see Figure 3c) to synthetic 124 waveforms for different block thicknesses h and shear-velocity anomalies δV_S . The block 125 thickness h controls the travel times of the entry and exit conversions and therefore the 126 pulse width of S₁₇₅₀P. The synthetics for h = 2 km and h = 20 km clearly underesti-127 mate and overestimate the recorded pulse width, respectively (Figure 4b). We find the best 128 match for h = 10 km and use this value in our modeling. The shear-velocity anomaly 129 δV_S of the block determines the polarity of δV_S . A negative value for δV_S is required to 130 reproduce the down-and-up swing of $S_{1750}P$ (Figure 4c). 131

Figure 5 compares the recorded peak-to-peak amplitude of $4.4 \pm 3.4\%$ to predicted amplitudes when varying δV_S (in Figure 5a) and block angle α (in Figure 5b). The amplitude of S₁₇₅₀P depends linearly on δV_S . A value of $\delta V_S = -7\%$ produces a match between the computed and recorded mean peak-to-peak amplitude of S₁₇₅₀P but values of δV_S between -1.6% and -12.4% match the amplitude within its uncertainty range. The amplitude of S₁₇₅₀P depends on α in a non-linear manner. The predicted S₁₇₅₀P amplitude is highest when $\alpha \approx 10^{\circ}$. Changing α by 20° decreases the S₁₇₅₀P amplitude by as much as 30%.

4 Discussion and Conclusions

If small-scale heterogeneities that produce high-amplitude SxP signals are indeed fragments of mid-ocean ridge basalt (MORB) subducted into the lower mantle, the analysis of SxP waveforms can place important constraints on the elastic properties and composition of MORB at lower-mantle conditions.

There is consensus that the density of MORB is 0.5% to 2% higher than the ambient mantle over the entire lower mantle range [*Irifune & Ringwood*, 1987, 1993; *Hirose et al.*, 1999; *Litasov et al.*, 2004; *Ricolleau et al.*, 2010; *Irifune & Tsuchiya*, 2015, e.g.,]. However, high-pressure experiments on the elastic properties of MORB are challenging and available estimates are based on ab-initio modeling [e.g., *Xu et al.*, 2008; *Tsuchiya*, 2011; *Kawai & Tsuchiya*, 2012; *Kudo*, 2012].

SiO₂ is an important component in MORB and undergoes a phase transition from stishovite to an orthorhombic CaCl₂ structure at mid-mantle conditions. *Karki et al.* [1997] first calculated from first principles the elastic parameters of stishovite and CaCl₂ and found a decrease in shear velocity. *Tsuchiya et al.* [2004] predicted that silica would exist in the CaCl₂ structure at 75 GPa along the geotherm of a subducting slab. If present in subducting slabs, silica will undergo this phase transition and produce seismic heterogeneities commonly observed near subduction zones.

Tsuchiya [2011] estimated that V_S is between 0 and 2% lower than the shear velocity 157 of a pyrolitic mantle at a depth of 1750 km due to a post-stishovite transition. He found 158 VP does not change appreciably. In constrast, Xu et al. [2008] did not include the effect of 159 post-stishovite and reported that V_S in a pyrolitic mantle increases with increasing basalt 160 fraction. The presence of aluminum in silica further softens both stishovite and CaCl₂ 161 [e.g., Bolfan-Casanova et al., 2009; Lakshtanov et al., 2007]. Our observation occurs at 162 75 GPa at a temperature range of 1200–2000 K, well within the P-T conditions of CaCl₂ 163 estimated by Ono et al. [e.g., 2002]; Nomura et al. [e.g., 2010]. 164

The negative polarity of $S_{1750}P$ is a robust observation and implies that the heterogeneity that produces this arrival has a lower shear velocity than the ambient mantle. The mean amplitude of $S_{1750}P$ indicates that δV_S is between -1.6% and -12.4%. This estimate is uncertain because the recorded $S_{1750}P$ amplitude is highly variable and the modeling is influenced by the geometry and orientation of the heterogeneity. However, the lowest

value (i.e., -1.6%) for our estimate of δV_S is consistent with the shear-velocity reduction of MORB at deep mantle pressures, estimated by *Tsuchiya* [2011] as shown in Figure 4. We therefore interpret S₁₇₅₀P as a S-wave to P-wave conversion by a small-scale, MORB fragment in a subducted slab in the lower mantle beneath the Brazil earthquake. The relatively low shear-velocity of the MORB fragment is evidence for shear softening due to the post-sitshovite phase transition in MORB in the deep mantle.

Seismological modeling of $S_{1750}P$ can benefit from additional broadband recordings to constrain waveform polarity and amplitude variability. In addition, estimates of the seismic properties of subducted MORB in the lower mantle will improve if we can consider the effects of off-azimuth wave propagation and SH-to-P wave conversions contributing to $S_{1750}P$. This requires computational resources that are currently not available to us.

181 Acknowledgments

_

This research was funded by the National Science Foundation under grant EAR–1644829. We acknowledge the University of Utah Center for High Performance Computing (CHPC) for computer resources and support. Michael S. Thorne was partially supported by NSF grant EAR–1401097. Seismic data have been provided by the Incorporated Research Institutions for Seismology (IRIS) and the Geological Survey of Canada. We thank Jennifer Jenkins and an anonymous reviewer for helpful comments. We thank Editor Noah Diffenbaugh for overseeing the editorial process.

Autho

189	References
190	Bolfan-Casanova, N., Andrault, D., Amiguet, E., & Guignot, N. (2009). Equa-
191	tion of state and post-stishovite transformation of Al-bearing silica up to
192	100GPa and 3000K. Physics of the Earth and Planetary Interiors, 174(1), 70-77.
193	https://doi.org/10.1016/j.pepi.2008.06.024
194	Castle, J. C., & van der Hilst, R. D. (2003). Searching for seismic scattering off mantle
195	interfaces between 800 km and 2000 km depth, Journal of Geophysical Research, 108,
196	2095. https://doi.org/10.1029/2001JB000286
197	Fukao, Y., S. Widiyantoro, & Obayashi, M. (2001). Stagnant slabs in the upper
198	and lower mantle transition region, Reviews of Geophysics, 39(3), 291-323.
199	https://doi.org/doi:10.1029/1999RG000068
200	Grand, S. P., van der Hilst, R. D., & Widiyantoro, S. (1997). High resolution global to-
201	mography: a snapshot of convection in the Earth. Geological Society of America Today,
202	7(4).
203	Hirose, K., Fei, Y., Ma, Y., & Mao, H. K. (1999). The fate of subducted basaltic crust in
204	the Earth's lower mantle. Nature, 397(6714), 53-56. https://doi.org/10.1038/16225
205	Irifune, T., & Tsuchiya, T. (2007). Mineralogy of the Earth-Phase Transi-
206	tions and Mineralogy of the Lower Mantle, Treatise on Geophysics, 2 33-62.
207	https://doi.org/10.1029/2012JB009696
208	Irifune, T., & Ringwood, A. E. (1987). Phase transformations in a harzburgite com-
209	position to 26 GPa: implications for dynamical behaviour of the subducting slab.
210	Earth and Planetary Science Letters, 86(2-4), 365-376. https://doi.org/10.1016/0012-
211	821X(87)90233-0
212	Irifune, T., & Ringwood, A. E. (1993), Phase transformations in subducted oceanic crust
213	and buoyancy relationships at depths of 600-800 km in the mantle. Earth and Planetary
214	Science Letters, 117(1-2), 101-110. https://doi.org/10.1016/0012-821X(93)90120-X
215	Jahnke, G., Thorne, M. S., Cochard, A., & Igel, H. (2008). Global SH-wave propa-
216	gation using a parallel axisymmetric spherical finite-difference scheme: application
217	to whole mantle scattering. Geophysical Journal International, 173(3), 815-826.
218	https://doi.org/10.1111/j.1365-246X.2008.03744.x
219	Kudo, Y., Hirose, K., Murakami, M., Asahara, Y., Ozawa, H., Ohishi, Y., & Hirao, N.
220	(2012). Sound velocity measurements of CaSiO 3 perovskite to 133GPa and implica-

tions for lowermost mantle seismic anomalies. Earth and Planetary Science Letters, 349, 221

222	1-7. https://doi.org/10.1016/j.epsl.2012.06.040
223	Kaneshima, S. (2013). Lower mantle seismic scatterers below the subducting Tonga slab:
224	Evidence for slab entrainment of transition zone materials. Physics of the Earth and
225	Planetary Interiors, 222, 35-46. https://doi.org/10.1016/j.pepi.2013.07.001
226	Kaneshima, S. (2016). Seismic scatterers in the mid-lower mantle. Physics of the Earth and
227	Planetary Interiors, 257, 105-114. https://doi.org/10.1016/j.pepi.2016.05.004
228	Kaneshima, S., & Helffrich, G. (1998). Detection of lower mantle scatterers northeast of
229	the Marianna subduction zone using short-âĂŘperiod array data. Journal of Geophysical
230	Research: Solid Earth, 103(B3), 4825-4838. https://doi.org/10.1029/97JB02565
231	Kaneshima, S., & Helffrich, G. (1999). Dipping low-velocity layer in the mid-lower
232	mantle: evidence for geochemical heterogeneity. Science, 283(5409), 1888-1892.
233	https://doi.org/10.1126/science.283.5409.1888
234	Kaneshima, S., & Helffrich, G. (2003). Subparallel dipping heterogeneities in the
235	midâĂŘlower mantle. Journal of Geophysical Research: Solid Earth, 108(B5).
236	https://doi.org/10.1029/2001JB001596
237	Kaneshima, S., & Helffrich, G. (2010). Small scale heterogeneity in the mid-lower mantle
238	beneath the circum-Pacific area. Physics of the Earth and Planetary Interiors, 183(1),
239	91-103. https://doi.org/10.1016/j.pepi.2010.03.011
240	Karki, B. B., Stixrude, L., & Crain, J. (1997). Ab initio elasticity of three highâĂŘ-
241	pressure polymorphs of silica. Geophysical Research Letters, 24(24), 3269-3272.
242	https://doi.org/10.1029/97GL53196
243	Kawai, K., & Tsuchiya, T. (2012). First principles investigations on the elasticity and
244	phase stability of grossular garnet. Journal of Geophysical Research: Solid Earth,
245	117(B2). https://doi.org/10.1029/2011JB008529
246	Kawakatsu, H., & Niu, F. (1994). Seismic evidence for a 920-km discontinuity in the
247	mantle. Nature, 371(6495), 301-305. https://doi.org/10.1038/371301a0
248	Lakshtanov, D. L., Sinogeikin, S. V., Litasov, K. D., Prakapenka, V. B., Hellwig, H.,
249	Wang, J., Li, J. (2007). The post-stishovite phase transition in hydrous alumina-
250	bearing SiO2 in the lower mantle of the Earth. Proceedings of the National Academy
251	of Sciences, 104(34), 13588–13590. https://doi.org/10.1073/pnas.0706113104
252	Li, J., & Yuen, D. A. (2014). Mid-mantle heterogeneities associated with Izanagi plate:
253	Implications for regional mantle viscosity. Earth and Planetary Science Letters, 385,
254	137-144. https://doi.org/10.1016/j.epsl.2013.10.042

255	Litasov, K., Ohtani, E., Suzuki, A., Kawazoe, T., & Funakoshi, K. (2004). Ab-
256	sence of density crossover between basalt and peridotite in the cold slabs
257	passing through 660 km discontinuity. Geophysical Research Letters, 31(24).
258	https://doi.org/10.1029/2004GL021306
259	Niu, F. (2014). Distinct compositional thin layers at mid-mantle depths beneath northeast
260	China revealed by the USArray. Earth and Planetary Science Letters, 402, 305-312.
261	https://doi.org/10.1016/j.epsl.2013.02.015
262	Niu, F., & Kawakatsu, H. (1997). Depth variation of the midâĂŘmantle seismic disconti-
263	nuity. Geophysical Research Letters, 24(4), 429–432. https://doi.org/10.1029/97GL00216
264	Nomura, R., Hirose, K., Sata, N., & Ohishi, Y. (2010). Precise determination of post-
265	stishovite phase transition boundary and implications for seismic heterogeneities in
266	the mid-lower mantle. Physics of the Earth and Planetary Interiors, 183(1), 104-109.
267	https://doi.org/10.1016/j.pepi.2010.08.004
268	Ono, S., Hirose, K., Murakami, M., & Isshiki, M. (2002). Post-stishovite phase boundary
269	in SiO2 determined by in situ X-ray observations. Earth and Planetary Science Letters,
270	197(3), 187-192. https://doi.org/10.1016/S0012-821X(02)00479-X
271	Ricolleau, A., Perrillat, J. P., Fiquet, G., Daniel, I., Matas, J., Addad, A., Guignot, N.
272	(2010), Phase relations and equation of state of a natural MORB: Implications for the
273	density profile of subducted oceanic crust in the Earth's lower mantle. Journal of Geo-
274	physical Research: Solid Earth, 115(B8). https://doi.org/10.1029/2009JB006709
275	Ritsema, J., Deuss, A. A., Van Heijst, H. J., & Woodhouse, J. H. (2011). S40RTS: a
276	degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, tele-
277	seismic traveltime and normal-mode splitting function measurements. Geophysical Jour-
278	nal International, 184(3), 1223-1236. https://doi.org/10.1111/j.1365-246X.2010.04884.x
279	Shearer, P. M. (2007). Deep Earth Structure-Seismic Scattering in the Deep Earth. Trea-
280	tise on Geophysics, 1.20.
281	Thorne, M. S., Zhang, Y., & Ritsema, J. (2013). Evaluation of 1âĂŘD and 3âĂŘD
282	seismic models of the Pacific lower mantle with S, SKS, and SKKS traveltimes
283	and amplitudes. Journal of Geophysical Research: Solid Earth, 118(3), 985-995.
284	https://doi.org/10.1002/jgrb.50054
285	Tsuchiya, T. (2011). Elasticity of subducted basaltic crust at the lower mantle pressures:
286	Insights on the nature of deep mantle heterogeneity. Physics of the Earth and Planetary
287	Interiors, 188(3), 142-149. https://doi.org/10.1016/j.pepi.2011.06.018

- ²⁸⁸ Tsuchiya, T., Caracas, R., & Tsuchiya, J. (2004). First principles determination of the
- ²⁸⁹ phase boundaries of highâĂŘpressure polymorphs of silica. *Geophysical Research Let*-
- 290 *ters*, 31(11). http://doi.org/10.1029/2004GL019649
- Vanacore, E., Niu, F., & Kawakatsu, H. (2006). Observations of the midâĂŘmantle dis-
- continuity beneath Indonesia from S to P converted waveforms. *Geophysical Research Letters*, 33(4). https://doi.org/10.1029/2005GL025106
- ²⁹⁴ Vinnik, L., Niu, F., & Kawakatsu, H. (1998). Broadband converted phases from
- ²⁹⁵ midmantle discontinuities. *Earth, Planets and Space*, 50(11–12), 987–997.
- ²⁹⁶ http://doi.org/10.1186/BF03352193
- Xu, W., Lithgow-Bertelloni, C., Stixrude, L., & Ritsema, J. (2008). The effect of bulk
- composition and temperature on mantle seismic structure. *Earth and Planetary Science*
- Letters, 275(1), 70–79. https://doi.org/10.1016/j.epsl.2008.08.012
- Yang, Z., & He, X. (2015). Oceanic crust in the mid-mantle beneath west-central Pacific
- subduction zones: evidence from S to P converted waveforms. Geophysical Journal In-
- ternational, 203(1), 541–547. https://doi.org/10.1093/gji/ggv314

Author Ma

Figure 1. (top) Source-receiver geometry of the July 10, 2007 western Brazil earthquake. The star indicates 303 the epicenter. The triangles indicate the locations of stations from the Transportable Array (TA) and the Cana-304 dian National Seismic Network (CNSN) used in the analysis. The black line is great-circle arc through the 305 Brazil event and the western US. The white circles on top are drawn every 15°. P-wave and SV-wave radiation 306 patterns are shown on the lower right. Green circles on the radiation pattern indicate the S1750P take-off di-307 rection. Yellow circles on P and SV radiation patterns indicate P and S wave take-off directions, respectively. 308 (bottom) Geometric ray paths of P (solid line) and S₁₇₅₀P (dashed line) for an epicentral distance of 65°. The 309 ray paths are superposed on a NW-SE oriented cross-section of the S40RTS model [Ritsema et al., 2011] 310 through the Brazil event and the TA and CNSN stations. Note that $S_{1750}P$ is formed within a high-velocity 311 anomaly in the lower mantle beneath South America. 312

Figure 2. (a) Record section of velocity waveforms of the Brazil event aligned on the P-wave arrival (at
time 0). Labeled on top are the arrival times of the major phases P, PcP, pP, pPcP, and S-P conversions at
950 km, 1250 km and 1750 km depth. The conversion depths of So50P and S1250P are shallower depth than
This article is protected by copyright. All rights reserved.

expected for 1-D models for their traveltimes because these phases propagate off-azimuth for the Brazil earth-

Figure 3. (a) Record section and (b) stacked displacement waveforms centered on $S_{1750}P$ from 30 TA and CNSN stations. The large amplitude signal moving out with increasing distance is pP. (c) Sum of the displacement waveforms. The grey envelope is two standard deviations wide and indicates amplitude variability present in the data.

Figure 4. (a) Illustration of the model. The heterogeneity responsible for forming $S_{1750}P$ is modeled as a block at 1750 km depth with a thickness *h* that makes an angle α with the equatorial plane. It has a velocity contrast δV_S with respect to the ambient mantle. (b) Synthetic waveforms for h = 2 km, h = 10 km, and h = 20 km. $\delta V_S = -10\%$ in these simulations. (c) Synthetic waveforms for $\delta V_S = 10\%$, $\delta V_S = -10\%$, and $\delta V_S = -5\%$. h = 10 km in these simulations. For all simulations in (b) and (c) $\alpha = 0^\circ$, the epicentral distance is 65°, and the grey waveform is the stack of the recorded S₁₇₅₀P waveforms.

Figure 5. Peak-to-peak $S_{1750}P$ amplitude normalized to the radial SV component as a function of (a) δV_S and (b) block angle α . The horizontal black line indicates the mean value of the amplitude. Its two grey envelopes are one- and two-standard deviations wide. Vertical black bars are predicted amplitudes with error bars estimated from the minimum and maximum values for a range of epicentral distances.

Author

This article is protected by copyright. All rights reserve

(a)

Peak-to-peak Amplitude (%)