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Abstract16

Broadband USArray recordings of the July 21, 2007 western Brazil earthquake (MW =17

6.0; depth = 633 km) include high-amplitude signals about 40 s, 75 s, and 100 s after the18

P wave arrival. They are consistent with S-wave to P-wave conversions in the mantle be-19

neath northwestern South America. The signal at 100 s, denoted as S1750P, has the highest20

amplitude and is formed at 1750 km depth based on slant-stacking and semblance anal-21

ysis. Waveform modeling using axisymmetric, finite-difference synthetics indicates that22

S1750P is generated by a 10-km thick heterogeneity, presumably a fragment of subducted23

mid-ocean ridge basalt in the lower mantle. The negative polarity of S1750P is a robust24

observation and constrains the shear-velocity anomaly δVS of the heterogeneity to be neg-25

ative. The amplitude of S1750P indicates that δVS is in the range from -1.6% to -12.4%.26

The large uncertainty in δVS is due the large variability in the recorded S1750P ampli-27

tude and simplifications in the modeling of S1750P waveforms. The lower end of our es-28

timate for δVS is consistent with ab initio calculations by Tsuchiya [2011], who estimated29

that δVS of eclogite at lower-mantle pressure is between 0 and -2% due to shear softening30

from the post-stishovite phase transition.31

1 Introduction32

While seismic tomography has mapped the penetration of subducting lithosphere33

into the lower mantle on scales > 100 km [e.g., Grand et al., 1997; Fukao et al., 2001],34

array recordings of reflected or converted phases indicate fine-scale (10–100 km) struc-35

ture is present in the deep mantle [e.g., Shearer, 2007; Kaneshima, 2016]. S-to-P con-36

versions at depth x, denoted as SxP, are excellent probes for detecting layering or local-37

ized heterogeneity in the lower mantle beneath deep-focus earthquakes. These shear-wave38

conversions have been used to map small-scale seismic structure beneath the Marianas39

[e.g., Kaneshima & Helffrich, 1998], Tonga [e.g., Kaneshima, 2013; Li & Yuen, 2014; Yang40

& He, 2015], Indonesia [e.g., Kawakatsu & Niu, 1994; Niu & Kawakatsu, 1997; Vinnik41

et al., 1998; Vanacore et al., 2006], South America [e.g., Castle & van der Hilst, 2003;42

Kaneshima & Helffrich, 2010], and northeast China [Niu, 2014]. Kaneshima & Helffrich43

[1999] interpreted these small-scale, deep mantle heterogeneities as fragments of sub-44

ducted oceanic crust.45

We inspected Transportable Array (TA) and Canadian National Seismic Network46

(CNSN) waveforms from 41 deep-focus (> 300 km) earthquakes in South America since47
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1990. We detected high-amplitude SxP conversions only in recordings of the July 21,48

2007 MW = 6.0 (latitude = 8.1◦S; longitude = 71.3◦W; depth = 633 km) western Brazil49

earthquake (the Brazil earthquake from hereon). The Brazil earthquake had a dip-slip50

source mechanism with optimal downward radiation of SV-polarized shear-waves. The51

absence of clear S-P conversions in waveform data from other events is likely due to the52

unique focal mechanism of the Brazil earthquake.53

Previous studies have modeled the amplitude and polarity of S-P conversions [e.g.,54

Vinnik et al., 1998; Kaneshima & Helffrich, 1999; Niu, 2014]. In this paper we analyze55

broadband regional network waveforms by 2D finite difference modeling at periods longer56

than 2 seconds. The broadband recording of S1750P at stations from the TA and CNSN57

elucidates the signal polarity and amplitude. By forward waveform modeling, we put con-58

straints on the thickness and the shear velocity of the anomalous structure in the deep59

mantle responsible for generating S1750P.60

2 SxP conversions in the lower mantle beneath South America61

2.1 Wave geometry62

SxP is formed when the downward propagating S wave converts to a P wave at a63

discontinuity or heterogeneity in seismic velocity at depth x below the earthquake source.64

Beneath the Brazil earthquake, SxP conversions form in a high-velocity structure that we65

interpret as the Nazca lithosphere subducted beneath western South America (Figure 1).66

We can distinguish SxP from crustal reverberations and reflections off boundaries above67

the earthquake (i.e., p410P, s410P) or beneath the receivers (e.g., P410s, P660s) when its68

slowness can be determined using recordings from a wide-aperture network.69

2.2 Waveforms from North America70

More than 250 TA and CNSN stations in western North America recorded the Brazil71

earthquake between 56◦ and 73◦. The record section of vertical-component traces in Fig-72

ure 2a shows the ground velocity after alignment on the P-wave (at time 0). The seis-73

mic phases PcP and pP are reflections off the outer core and Earth’s surface, respectively.74

Three SxP signals at about 45 s, 75 s, and 100 s after the P arrival, are visible throughout75

the section.76
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The signals at 45 s, which may interfere with p410P, and at 75 s are S950P and S1250P,77

respectively. These conversions were formed about 3◦ off the great-circle path and have78

complex waveforms (see Figure S1).79

We interpret the impulsive arrival at 100 s as S1750P. Its arrival time decreases with80

increasing epicentral distance with respect to P, as expected for a SxP conversion.81

The vespagram in Figure 2b indicates that the slowness of S1750P is about 0.2 s/◦82

higher than predicted for a standard 1-D seismic model. This suggests that the S1750P con-83

version point is located further from the earthquake hypocenter than expected for a 1-D84

wave speed model. Semblance is a measure of coherent energy in a stack of data arriving85

from a common conversion point. By semblance analysis, following Kaneshima & Helf-86

frich [2003], we locate the conversion point of S1750P between 1700 and 1750 km depth87

within the sector of source azimuths of the TA and CNSN stations but about 400 km to88

the NW of the 1-D predicted conversion location (Figure 2c). This is consistent with the89

S1750P slowness and traveltime observed in Figure 2b.90

3 Waveform modeling91

The S1750P signal is recorded above noise level in 30 vertical displacement seis-92

mograms from the TA and CNSN. Figure 3 shows these waveforms and their sum after93

they have been aligned and scaled such that the SV wave, which converts into S1750P, has94

an amplitude equal to 1. The S1750P signal in each of these 30 records is comprised of a95

negative and a positive pulse separated by about 2 s, with varying amplitudes. The mean96

value of the peak-to-peak amplitude is 4.4% of the SV amplitude on the vertical compo-97

nent and the two-standard deviation of the amplitude is 3.4%.98

Computed waveforms indicate that the waveform shape of S1750P is due to the inter-99

ference of two S-to-P conversions at the upper and lower boundaries of a narrow velocity100

structure. These two conversions have opposite polarities. We model the heterogeneity101

that produces S1750P as a block centered on the ray-theoretical S1750P conversion point be-102

neath the earthquake (Figure 4a). The block has a thickness h and makes an angle α with103

the equatorial plane.104

We choose long blocks to avoid wave diffraction around them. We expect diffraction105

to reduce the amplitude of S1750P but it must be studied in 3-D. The S-wave velocity con-106

trast with respect to the ambient mantle is δVS . Our synthetics indicate that anomalies in107
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the P-wave velocity and density do not affect the S1750P waveform significantly See Figure108

S2.109

We model the stack of the 30 high-amplitude S1750P waveforms using synthetics110

computed with the PSVaxi method [e.g., Thorne et al., 2013], a finite-difference method111

similar to the SHaxi method developed by Jahnke et al. [2008]. PSVaxi allows us to com-112

pute the full seismic wavefield of P-SV motions with the correct 3-D geometric spread-113

ing for a model of seismic structure in the plane of the great-circle arc. The 2-D grid of114

heterogeneity is expanded to 3-D spherical geometry by rotating it around the radial axis115

passing through the seismic source. Our PSVaxi synthetics include signals up to frequen-116

cies of 0.5 Hz (i.e., a shortest dominant period of 2 s) but, due to the assumed axisymme-117

try, signals from off-azimuth wave propagation or SH-to-P conversions cannot be modeled.118

We compute synthetics for the PREM seismic model and for a 3-D model in which119

the block heterogeneity at 1750 km depth is embedded within PREM. In the PREM model,120

we replace the 220-km, 400-km and 670-km discontinuities by smooth gradients to sup-121

press reflections and conversions produced in the upper mantle. We subtract the PREM122

and 3-D waveforms to isolate the S1750P signals.123

Figures 4b and 4c compare the recorded S1750P signal (see Figure 3c) to synthetic124

waveforms for different block thicknesses h and shear-velocity anomalies δVS . The block125

thickness h controls the travel times of the entry and exit conversions and therefore the126

pulse width of S1750P. The synthetics for h = 2 km and h = 20 km clearly underesti-127

mate and overestimate the recorded pulse width, respectively (Figure 4b). We find the best128

match for h = 10 km and use this value in our modeling. The shear-velocity anomaly129

δVS of the block determines the polarity of δVS . A negative value for δVS is required to130

reproduce the down-and-up swing of S1750P (Figure 4c).131

Figure 5 compares the recorded peak-to-peak amplitude of 4.4 ± 3.4% to predicted132

amplitudes when varying δVS (in Figure 5a) and block angle α (in Figure 5b). The ampli-133

tude of S1750P depends linearly on δVS . A value of δVS = −7% produces a match between134

the computed and recorded mean peak-to-peak amplitude of S1750P but values of δVS be-135

tween -1.6% and -12.4% match the amplitude within its uncertainty range. The amplitude136

of S1750P depends on α in a non-linear manner. The predicted S1750P amplitude is highest137

when α ≈ 10◦. Changing α by 20◦ decreases the S1750P amplitude by as much as 30%.138
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4 Discussion and Conclusions139

If small-scale heterogeneities that produce high-amplitude SxP signals are indeed140

fragments of mid-ocean ridge basalt (MORB) subducted into the lower mantle, the analy-141

sis of SxP waveforms can place important constraints on the elastic properties and compo-142

sition of MORB at lower-mantle conditions.143

There is consensus that the density of MORB is 0.5% to 2% higher than the ambi-144

ent mantle over the entire lower mantle range [Irifune & Ringwood, 1987, 1993; Hirose145

et al., 1999; Litasov et al., 2004; Ricolleau et al., 2010; Irifune & Tsuchiya, 2015, e.g.,].146

However, high-pressure experiments on the elastic properties of MORB are challenging147

and available estimates are based on ab-initio modeling [e.g., Xu et al., 2008; Tsuchiya,148

2011; Kawai & Tsuchiya, 2012; Kudo, 2012].149

SiO2 is an important component in MORB and undergoes a phase transition from150

stishovite to an orthorhombic CaCl2 structure at mid-mantle conditions. Karki et al. [1997]151

first calculated from first principles the elastic parameters of stishovite and CaCl2 and152

found a decrease in shear velocity. Tsuchiya et al. [2004] predicted that silica would ex-153

ist in the CaCl2 structure at 75 GPa along the geotherm of a subducting slab. If present154

in subducting slabs, silica will undergo this phase transition and produce seismic hetero-155

geneities commonly observed near subduction zones.156

Tsuchiya [2011] estimated that VS is between 0 and 2% lower than the shear velocity157

of a pyrolitic mantle at a depth of 1750 km due to a post-stishovite transition. He found158

VP does not change appreciably. In constrast, Xu et al. [2008] did not include the effect of159

post-stishovite and reported that VS in a pyrolitic mantle increases with increasing basalt160

fraction. The presence of aluminum in silica further softens both stishovite and CaCl2161

[e.g., Bolfan-Casanova et al., 2009; Lakshtanov et al., 2007]. Our observation occurs at162

75 GPa at a temperature range of 1200–2000 K, well within the P-T conditions of CaCl2163

estimated by Ono et al. [e.g., 2002]; Nomura et al. [e.g., 2010].164

The negative polarity of S1750P is a robust observation and implies that the hetero-165

geneity that produces this arrival has a lower shear velocity than the ambient mantle. The166

mean amplitude of S1750P indicates that δVS is between -1.6% and -12.4%. This estimate167

is uncertain because the recorded S1750P amplitude is highly variable and the modeling168

is influenced by the geometry and orientation of the heterogeneity. However, the lowest169
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value (i.e., -1.6%) for our estimate of δVS is consistent with the shear-velocity reduction170

of MORB at deep mantle pressures, estimated by Tsuchiya [2011] as shown in Figure 4.171

We therefore interpret S1750P as a S-wave to P-wave conversion by a small-scale, MORB172

fragment in a subducted slab in the lower mantle beneath the Brazil earthquake. The rela-173

tively low shear-velocity of the MORB fragment is evidence for shear softening due to the174

post-sitshovite phase transition in MORB in the deep mantle.175

Seismological modeling of S1750P can benefit from additional broadband recordings176

to constrain waveform polarity and amplitude variability. In addition, estimates of the seis-177

mic properties of subducted MORB in the lower mantle will improve if we can consider178

the effects of off-azimuth wave propagation and SH-to-P wave conversions contributing to179

S1750P. This requires computational resources that are currently not available to us.180
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dian National Seismic Network (CNSN) used in the analysis. The black line is great-circle arc through the
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(bottom) Geometric ray paths of P (solid line) and S1750P (dashed line) for an epicentral distance of 65◦. The

ray paths are superposed on a NW–SE oriented cross-section of the S40RTS model [Ritsema et al., 2011]

through the Brazil event and the TA and CNSN stations. Note that S1750P is formed within a high-velocity

anomaly in the lower mantle beneath South America.
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Figure 2. (a) Record section of velocity waveforms of the Brazil event aligned on the P-wave arrival (at

time 0). Labeled on top are the arrival times of the major phases P, PcP, pP, pPcP, and S-P conversions at

950 km, 1250 km and 1750 km depth. The conversion depths of S950P and S1250P are shallower depth than

expected for 1-D models for their traveltimes because these phases propagate off-azimuth for the Brazil earth-

quake (see Figure S1). (b) Vespagram of the absolute amplitude of the sum of waveforms as function of time

and signal slowness. The SxP slowness branch is indicated by a dashed line. (c) Map view of semblance

coefficients computed for a 0.5◦ × 0.5◦ × 50 km grid at 1650 km, 1700 km, 1750 km, and 1800 km depth.

The warmest colors indicate where semblance values are the highest. The dashed lines represent the station

azimuth range of the TA and CNSN stations with clear S1750P signals. The red circle at 1750 km depth is the

S1750P conversion point computed for a 1-D velocity structure.
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Figure 3. (a) Record section and (b) stacked displacement waveforms centered on S1750P from 30 TA and

CNSN stations. The large amplitude signal moving out with increasing distance is pP. (c) Sum of the dis-

placement waveforms. The grey envelope is two standard deviations wide and indicates amplitude variability

present in the data.
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Figure 4. (a) Illustration of the model. The heterogeneity responsible for forming S1750P is modeled as a

block at 1750 km depth with a thickness h that makes an angle α with the equatorial plane. It has a velocity

contrast δVS with respect to the ambient mantle. (b) Synthetic waveforms for h = 2 km, h = 10 km, and

h = 20 km. δVS = -10% in these simulations. (c) Synthetic waveforms for δVS = 10%, δVS = −10%, and

δVS = −5%. h = 10 km in these simulations. For all simulations in (b) and (c) α = 0◦, the epicentral distance

is 65◦, and the grey waveform is the stack of the recorded S1750P waveforms.
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Figure 5. Peak-to-peak S1750P amplitude normalized to the radial SV component as a function of (a) δVS

and (b) block angle α. The horizontal black line indicates the mean value of the amplitude. Its two grey en-

velopes are one- and two-standard deviations wide. Vertical black bars are predicted amplitudes with error

bars estimated from the minimum and maximum values for a range of epicentral distances.

333

334

335

336

–16–This article is protected by copyright. All rights reserved.



Figure 1.

This article is protected by copyright. All rights reserved.



2800

2600

2400

2200

2000

1800

1600

1400

1200

1000

800

600

400

200

−2.0% +2.0%

1750-km

670-km

S1750P

De
pt

h 
(k

m
)

Arc distance, α (º)
01020304080 70 5060

P

δVs

P SV

This article is protected by copyright. All rights reserved.



Figure 2.

This article is protected by copyright. All rights reserved.



0 20 40 60 80 100 120 140 160

55

60

65

70

75

Ep
ic

en
tr

al
 d

is
ta

nc
e 

(d
eg

)
P PcP pPcPpP

0 20 40 60 80 100 120 140 160

Time (s)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Sl
ow

ne
ss

 (s
/d

eg
)

(a)

(b)

PcP

P

pP

S1750P
S1000P

S1500P
S2000P

S950P* S1250P*

S1750PS950P* S1250P*

0

10 oS

10 oN

80 oW 70 oW 80 oW 70 oW80 oW 70 oW80 oW 70 oW
0

0.04

S1750P

1650 km 1800 km1700 km 1750 km

(c)

This article is protected by copyright. All rights reserved.



Figure 3.

This article is protected by copyright. All rights reserved.



56

58

60

62

64

66

68

70

E
p
ic

e
n
tr

a
l 
d
is

ta
n
ce

 (
d
e
g
re

e
s)

−25 −20 −15 −10 −5 0 5 10 15 20 25

Time (s)

(a)

(b)

(c)

This article is protected by copyright. All rights reserved.



Figure 4.

This article is protected by copyright. All rights reserved.



(a)

S

P

α

MantleOCIC

h

h = 2km

h = 10km

h = 20km

δVs = 10%

δVs = -10%

δVs = -5%

(b) (c)

δVs = -10% h = 10km

−5 0 5
Time (s)

−5 0 5
Time (s)

This article is protected by copyright. All rights reserved.



Figure 5.

This article is protected by copyright. All rights reserved.



−20−15−10−50

VS (% )

0

2 

4 

6 

8 

10 
Pe

ak
-t

o-
pe

ak
 A

m
pl

itu
de

 (%
)

2

h = 1 0km

VS = − 1 0 %

VS = − 5 %

VS = − 2 %

−15 −10 −5 0 5 10 15 20 25

 (de gre e s )

h = 1 0km

(a) (b)

σσ

δ

δ

δ

αδThis article is protected by copyright. All rights reserved.


	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5

