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  39 

New findings  41 

What is the central question of this study? 42 

• Sestrin and p62 are stress inducible proteins involved in many cellular processes, 43 

including suppressing oxidative stress and regulating autophagy. It is unclear how 44 

acute and chronic resistance exercise affects these proteins in human skeletal muscle.  45 

 46 

What is the main finding and its importance? 47 

• This study shows that 2 h post-exercise, phosphorylation of p62Ser403 was 48 

downregulated, while there was a mobility shift of Sestrin2, indicative of increased 49 

phosphorylation. Both Sestrin2 and p62Ser403

Abstract  53 

 are transiently regulated, and may be 50 

functionally involved in the adaptive regulatory mechanisms elicited by intense 51 

resistance exercise in human skeletal muscle. 52 
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Sestrins (1, 2, 3) are a family of stress-inducible proteins capable of attenuating oxidative 54 

stress, regulating metabolism and stimulating autophagy. Sequestosome1 (p62), is also a 55 

stress-inducible multifunctional protein acting as a signalling hub for oxidative stress and 56 

selective autophagy. It is unclear whether Sestrin and p62Ser403 are regulated acutely or 57 

chronically by resistance exercise or training in human skeletal muscle. Therefore, the acute 58 

and chronic effects of resistance exercise on Sestrin and p62 in human skeletal muscle were 59 

examined through two studies. In Study 1, nine active men (22.1 ± 2.2 years) performed a 60 

bout of single-leg strength exercises and muscle biopsies were collected before, 2, 24 and 48 61 

h after exercise. In Study 2, ten active men (21.3 ± 1.9 years) strength trained for 12 weeks (2 62 

days per week) and biopsies were collected pre and post training. Acutely, 2 h post-exercise, 63 

phosphorylation of p62Ser403

 73 

 was downregulated, while there was a mobility shift of Sestrin2, 64 

indicative of increased phosphorylation. 48 h post-exercise, the protein expression of both 65 

Sestrin1 and total p62 increased. Chronic exercise had no impact on the gene or protein 66 

expression of Sestrin2/3 or p62, but Sestrin1 protein was upregulated. These findings 67 

demonstrated an inverse relationship between Sestrin2 and p62 phosphorylation after a single 68 

bout of resistance exercise, indicating they are transiently regulated. Contrarily, 12 weeks of 69 

resistance training increased protein expression of Sestrin1, suggesting that despite the strong 70 

sequence homology of the Sestrin family, they are differentially regulated in response to 71 

acute resistance exercise and chronic resistance training.         72 

Introduction  74 

Physical activity, particularly resistance exercise (RE), is an intense muscle stressor that 75 

stimulates adaptive regulation of numerous nutrient and antioxidant-sensitive pathways (Egan 76 

& Zierath, 2013). Although mechanisms regulating muscle protein synthesis have been well 77 

studied (Dreyer et al., 2006), the complex signalling pathways regulating autophagy in 78 

response to RE (Fry et al., 2012) and RE-induced oxidative stress (Çakır-Atabek et al., 2015) 79 

remains elusive.  80 

Sestrins are a family of stress-inducible proteins that have multi-functional roles including 81 

attenuating oxidative stress, regulating mammalian target of rapamycin complex 1 82 

(mTORC1) and stimulating autophagy (Lee et al., 2013). Mammals have three Sestrin genes 83 

(SESN1/2/3) that are regulated differently. Whereas Sestrin1 and 2 are regulated by p53, 84 

Sestrin3 is regulated by forkhead box O (FOXO) (Parmigiani & Budanov, 2016). Sestrin2 85 
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shows intrinsic oxidoreductase activity (Budanov et al., 2004); however, it was later shown 86 

that this is not required for its antioxidant functioning (Woo et al., 2009). In circumstances of 87 

increased oxidative stress, Sestrin1 and 2 prevent reactive oxygen species (ROS) 88 

accumulation by inducing selective autophagic degradation of Kelch-like ECH-associated 89 

protein (Keap1), an inhibitor of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2), thereby 90 

upregulating Nrf2-dependent antioxidant gene transcription (Bae et al., 2013). Sestrin2 has 91 

also been proposed as a leucine sensor (Parmigiani et al., 2014; Wolfson et al., 2016) and in 92 

vitro analysis has identified it as a phosphoprotein, which in response to leucine deprivation, 93 

is phosphorylated and interacts with GTPase-activating protein activity towards Rags 2 94 

(GATOR2) to inhibit mTORC1 activation (Kim et al., 2015; Kimball et al., 2016). Sestrin3, 95 

however, is upregulated in the skeletal muscle of type 2 diabetic patients (Nascimento et al., 96 

2013) and maintains insulin sensitivity in overfed mice via protein kinase B (Tao et al., 97 

2015). 98 

p62 is a stress-inducible protein involved in oxidative stress and autophagic clearance of 99 

polyubiquitinated proteins (Katsuragi et al., 2015). Autophagy is an evolutionarily conserved 100 

process that recycles protein aggregates and malfunctioning organelles. Macroautophagy, 101 

microautophagy and chaperone-mediated autophagy are the three main forms of autophagy 102 

(Tanida, 2011). p62 plays an important role in selective macroautophagic protein 103 

degradation. It binds to ubiquitinated proteins and microtubule-associated protein 1 light 104 

chain 3 (LC3), allowing it to recruit these proteins to autophagosomes, which fuse with 105 

lysosomes for protein degradation (Lamark et al., 2009). It has been shown that 106 

phosphorylation of p62 at Serine 403 (Ser403) plays a critical role in selective 107 

macroautophagy, because phosphorylating p62Ser403

Included in the complex functionality of Sestrin2 is its interaction with p62 (Ro et al., 2014). 111 

In vitro, Sestrin2 associates with p62 and Unc-51-like protein kinase 1 (ULK1), forming a 112 

complex that induces ULK1 to phosphorylate p62

 stabilises the association between p62 108 

and ubiquitinated protein, which enables efficient autophagosome formation (Matsumoto et 109 

al., 2011).      110 

Ser403 (Ro et al., 2014). Phosphorylated 113 

p62Ser403 enhances its binding affinity to Keap1 (Matsumoto et al., 2011), thereby initiating 114 

autophagosome formation around the cargos, which ultimately leads to selective autophagic 115 

degradation of Keap1, hence freeing Nrf2 and enabling its translocation to the nucleus to 116 

upregulate antioxidant gene expression (Ichimura et al., 2013).  117 
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Sestrins are also critical regulators of muscle aging (Budanov et al., 2010). Genetic ablation 118 

of Drosophila Sestrin (dSesn), induces the early onset of skeletal muscle degeneration and 119 

accumulated defective mitochondria (Lee et al., 2010). Resistance training (RT) is one of the 120 

most important strategies to prevent muscle wastage (Sanchis-Gomar et al., 2011) however, 121 

no studies have assessed the effects of RT on Sestrin in human. To date, there is only 122 

evidence of endurance exercise increasing the protein expressions of Sestrin2 and 3 in mouse 123 

skeletal muscle which occurs in conjunction with an increase in autophagy (Liu et al., 2015; 124 

Lenhare et al., 2017). Whether the three mammalian Sestrin proteins differentially control 125 

skeletal muscle function and which plays a more important role on human muscle health is 126 

unclear. Similarly, it remains unknown whether Sestrin and p62Ser403 are regulated acutely or 127 

chronically by RE and RT respectively in human skeletal muscle. Therefore, this study aimed 128 

to measure how acute RE affects Sestrin2 and p62Ser403

Materials and Method  133 

 phosphorylation and examined the 129 

effects of RE on the protein and mRNA expression of Sestrin paralogs. Separately, the 130 

chronic effects of 12 weeks of RT on Sestrin protein and gene expression were also 131 

investigated.   132 

Ethics Approval 134 

All participants were informed of the requirements and potential risks of the studies prior 135 

providing their written informed consent. The experimental procedures adhered to the 136 

standards set by the latest version of the Declaration of Helsinki and were approved by the 137 

Human Research Ethics Committee of The University of Queensland. 138 

 139 

Study Design 140 

Subjects in this study were a subset of a larger trial (Roberts et al., 2015). In both studies, all 141 

participants had at least 12 months of experience in strength training and were familiar with 142 

all exercises used in the studies. In the acute study, nine physically active trained men (22.1 ± 143 

2.2 years old) completed a bout of single-leg strength exercise. 8 repetitions maximum (RM) 144 

strength of unilateral knee extension (71 ± 12.0 kg) and unilateral 45° leg press (299 ± 44.8 145 

kg) for both legs was assessed 4-5 days prior to experimental exercise bout. At the same time, 146 

familiarisation for the single-leg squats and walking lunge exercise was performed. On the 147 
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day of the trial, the RE bout included  six sets of 45° leg press and knee extensions at 148 

8,8,10,12,10 and 10 RM, and three sets of single-leg squats and walking lunges at 12 RM.  149 

In the chronic study, ten trained men (21.3 ± 1.9 years old) participated in a 12 week lower 150 

body resistance training programme with training twice a week, separated by 72 h. Muscle 151 

strength for training load prescription was assessed 10-14 days before the first training 152 

session. Bilateral 45° leg press (348 ± 80 kg), knee extension (88 ± 9 kg) and knee flexion 153 

(75 ± 11 kg) 1 RMs were determined. For the training session, the loads were set to include 154 

fatigue at 8, 10 and 12 RM and weights for walking lunges corresponded to a proportion of 155 

each participant’s pre-training body mass (PTBM) (79.2 ± 4.4kg). Each training session was 156 

approximately 45 min and included six sets of 45° leg press at 8,8,10,12,10,10 RM and three 157 

sets of knee extension and flexion at 12 RM. Three sets of walking lunges were also 158 

performed with week 1 to 3 having 20% of PTBM, and an additional 5 kg added 159 

progressively every 3 weeks. Additionally, three sets of plyometrics exercises comprising of 160 

countermovement drop jumps, slow eccentric squat jumps, split lunge jumps and 161 

countermovement box jumps were performed at 50% of lunge load. In both studies, after 162 

each exercise session, participants completed active recovery by cycling on a stationary 163 

bicycle at a low, self-selected intensity for 10 min.  164 

To control for post-exercise diet, in the acute study, participants consumed a standardised 165 

meal 2 h before the pre-exercise biopsy and consumed 30 g of whey protein before the 166 

recovery period. The participants then fasted until the 2 h biopsy, after which they consumed 167 

another 30 g of whey protein. Muscles biopsies from the vastus lateralis were collected 168 

before, 2, 24, and 48 h post-exercise. In the chronic study, biopsies were collected 4-5 days 169 

before the first training session and post-training biopsies were collected 6-7 days after the 170 

last training session in a fasted-state. All muscle samples were snap frozen in liquid nitrogen 171 

and stored at -80°C until further analysis.  172 

 173 

Western blotting  174 

25 mg of muscle biopsies were homogenised with RIPA lysis buffer (Millipore, Temecula, 175 

CA, USA) with added HaltTM protease and phosphatase inhibitor cocktail (Thermo Scientific, 176 

MA, USA). After centrifugation, supernatants were collected and total protein concentration 177 

was determined using the PierceTM BCA Protein Assay Kit (Thermo Scientific).  Equal 178 

amounts of protein were boiled in Laemmli buffer at 95°C for 5 min. 20 μg of protein was 179 
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separated by SDS-PAGE and transferred to PVDF membranes (Bio-Rad Laboratories, Inc., 180 

CA) using the semidry Trans-Blot TurboTM device (Bio-Rad). Membranes were incubated 181 

with the following primary antibodies, total p62, Sestrin1 and 3 (Abcam, ab56416, ab103121 182 

and ab97792 respectively), Sestrin2 (ProteinTech, 10795-1-AP) and p62Ser403 

 191 

(GeneTex, 183 

GTX128171) (all at 1:1,000 dilution, except Sestrin1 which is at 1: 100) overnight and the 184 

appropriate anti-rabbit or anti-mouse secondary antibodies (Jackson ImmunoResearch 185 

Laboratories, PA) linked to horseradish peroxidase (1:10,000) for 1 h at room temperature. 186 

The membranes were exposed on a ChemiDoc image device (Bio-Rad) using enhanced 187 

chemiluminescence reagent (ECL Select kit; GE Healthcare Ltd., Little Chalfont, UK). Bands 188 

were quantified using ImageJ software (NIH, Bethesda, MD). Western blot data was 189 

normalised to the housekeeping protein GAPDH (Abcam, ab36840) (1: 10,000).  190 

Sestrin2 Electrophoretic Mobility 192 

To allow for resolution of Sestrin2 into multiple electrophoretic forms as previously 193 

demonstrated  in (Kimball et al., 2016), samples were electrophoresed through 8% 194 

polyacrylamide gels (acrylamide-bis-acrylamide, 19:1). When human embryonic kidney cells 195 

(HEK293) were incubated in complete medium, Sestrin2 separated into three bands: α, β and 196 

γ. However, when incubated in leucine deficient medium, there was a mobility shift of the 197 

protein, resulting in the appearance of a slower migrating δ band (Kimball et al., 2016). To 198 

provide evidence that the multiple electrophoretic bands represented different phosphorylated 199 

forms of Sestrin2, Kimball et al treated samples with lambda protein phosphatase, which led 200 

to a shift in the migration of Sestrin2 into a single band, suggesting additional bands 201 

represented multiply phosphorylated forms of the protein. Mass spectrometry analysis of 202 

immunoprecipitates of endogenous Sestrin2 further confirmed it as a phosphoprotein as three 203 

phosphorylation sites: Thr232, Ser249 and Ser279 were identified  (Kimball et al., 2016). In 204 

the present study, to measure the intensity of Sestrin2 phosphorylation, the abundance of the 205 

slowest migrating δ-form of Sestrin2 was taken as phosphorylation. It is known that 206 

phosphorylation results in the protein migrating at a higher, apparent molecular mass 207 

(Wegener & Jones, 1984; Peck, 2006). Total Sestrin2 protein was recorded as the expression 208 

of all forms of Sestrin2 (δ, γ, β and α-form). 209 

 210 

RNA extraction and quantitative real-time PCR  211 
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Following the manufacturer’s instructions from the AllPrep® DNA/RNA/miRNA Universal 212 

Kit (QIAGEN GmbH, Hilden, Germany), total RNA was extracted from 20 mg of muscle 213 

biopsies. 1500 ng of input RNA was then used for cDNA synthesis using High-Capacity 214 

RNA-to-cDNATM kit (Life Technologies, Carlsbad, CA). Messenger RNA (mRNA) was 215 

measured by RT-PCR on a LightCycler 480 II (Roche Applied Science, Penzberg, Germany) 216 

using SYBR Green I Master Mix (Roche Applied Science). Target mRNAs were SESN1, 217 

SESN2, SESN3 and p62. Primers were designed using BLAST software (Ye et al., 2012) with 218 

sequences in Table 1. Relative fold changes were determined using the 2-ΔΔCT method 219 

(Schmittgen & Livak, 2008). To compare the basal expression levels of the different Sestrin 220 

paralogs, 2-ΔCT

 226 

 was used. The geometric mean of three reference genes was used for 221 

normalisation (Vandesompele et al., 2002). The recently proposed human reference genes 222 

(Eisenberg & Levanon, 2013), chromosome 1 open reading frame 43 (C1orf43), charged 223 

multivesicular body protein 2A (CHMP2A) and ER membrane protein complex subunit 7 224 

(EMC7) were identified as the least variable and used as reference genes (Table 1).  225 

Statistical analysis  227 

To measure differences across time in the acute study, one way repeated measures ANOVA 228 

was performed using SigmaPlot (Systat 218 Software Inc., San Jose). Holm-Sidak post-hocs 229 

were used where appropriate to compare post-exercise values to baseline with significance set 230 

at P < 0.05. For the chronic study, time differences were conducted using a paired Student’s t 231 

test. To compare the basal differences of all three Sestrins, one way ANOVA was used. All 232 

values are presented as means ± SEM. 233 

Results  234 

Acute Exercise  235 

Sestrin2 phosphorylation (assessed by the mobility shift of the δ-band) was higher 2 h after 236 

exercise (p<0.001) (Fig 1A), whereas the phosphorylation of p62Ser403 was reduced 2 h after 237 

exercise (P<0.001) (Fig 1E). No difference was observed in the total protein expression of 238 

Sestrin2 (Fig 1B), but its mRNA expression (SESN2) increased 2 h post-exercise (P=0.015) 239 

(Fig 2A). There were no changes in the mRNA expressions of SESN1, SESN3 and p62 (Fig 240 

2B-D), and protein expression of Sestrin3 (Fig 1D). However, the protein expression of 241 

Sestrin1 and total p62 increased 48 h post-exercise (p=0.025 and p=0.031 respectively) (Fig 242 
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1C, F). Basal mRNA expression of SESN1 was significantly more abundant than SESN2 243 

(p<0.001) or SESN3 (p=0.043). SESN3 was also more abundant than SESN2 (p=0.043) (Fig 244 

3A).   245 

 246 

Chronic Exercise  247 

The phosphorylation states of Sestrin2 and p62 were unchanged following RT (Fig 4A, E). 248 

Also no changes in protein and mRNA expressions of Sestrin2, Sestrin3 and total p62 were 249 

observed (Fig 4B, D, F). However, Sestrin1 protein was increased with RT (p=0.026) (Fig 250 

4C). Similar to the acute study, prior to training, the mRNA expression of SESN1 was 251 

significantly more abundant than SESN2 (p<0.001). SESN3 was also more abundant than 252 

SESN2 (P=0.05) (Fig 3B).   253 

Discussion  254 

The present study confirmed the role of Sestrin2 as a phosphoprotein (Ro et al., 2014; 255 

Kimball et al., 2016; Nikonorova et al., 2017) and extended previous findings to show it is 256 

responsive to acute RE in human skeletal muscle. There was an electrophoretic mobility shift 257 

resulting in increased abundance of a slower migrating δ-band of Sestrin2, indicative of 258 

increased phosphorylation acutely following RE. Mirroring the time course of increased 259 

Sestrin2 phosphorylation, p62Ser403

 265 

 phosphorylation was transiently downregulated following 260 

RE. After 12 weeks of RT, resting total protein abundance and basal phosphorylation of 261 

Sestrin2 and p62 were unaltered. However, there was an increased Sestrin1 protein 262 

abundance, suggesting that despite the strong sequence homology of the Sestrin family, they 263 

are differentially regulated in response to RE and RT.  264 

Effect of Acute Exercise  266 

Following RE, mRNA expression of SESN2 increased 2 h post-exercise. Exposure of primary 267 

human myotubes to reactive oxygen species (H2O2) for 6 h also increased mRNA expression 268 

of SESN2 (Nascimento et al., 2013). Although RE is primarily an anabolic stimulus, it has 269 

been shown to be a potent inducer of acute oxidative stress (Polotow et al., 2017). Sestrins 270 

protect cells from oxidative stress and cellular damage, as their repression upregulated ROS 271 

production and induced genetic instability (Kopnin et al., 2007). The upregulation of SESN2 272 
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post-exercise may be an adaptation to protect skeletal muscle cells from exercise induced-273 

oxidative stress.  274 

There was also an increase in the relative amount of Sestrin2 present in the heavier δ-band at 275 

2 h, returning to pre-exercise levels by 24 h. Sestrin2 has been proposed as a leucine sensor 276 

(Parmigiani et al., 2014; Wolfson et al., 2016). In HEK293, increased leucine concentrations 277 

in the media resulted in a reduction of the relative amount of the δ-band, which promoted 278 

mTORC1 activation, as assessed by an increase in phosphorylation of p70S6K1Thr389 279 

(Kimball et al., 2016). In this study, participants consumed 30 g of whey protein before the 280 

recovery period. A reduction of the δ-band should be expected, however no inverse 281 

relationship between Sestrin2 phosphorylation and mTORC1 activation was observed. 282 

Conversely, the intensity of the δ-band increased and p70S6K1Thr389 

In contrast to Sestrin2 phosphorylation, p62

was highly 283 

phosphorylated 2 h post-exercise as demonstrated previously (Roberts et al., 2015). The 284 

discrepancy could be due to different tissue types and stimuli, as exercise is an intense muscle 285 

stressor that affects multiple pathways (Egan & Zierath, 2013). Further, there is limited 286 

evidence demonstrating action of leucine on Sestrin function in cells other than HEK293 and 287 

mouse fibroblasts (Chantranupong et al., 2014; Parmigiani et al., 2014; Wolfson et al., 2016). 288 

Thus, the nature of Sestrin2 leucine sensor properties is still under debate (Lee et al., 2016; 289 

Saxton et al., 2016). Therefore, future studies should aim to separate feeding or exercise 290 

stimuli with the aim of providing more insight to the possible in vivo functioning of Sestrin2 291 

phosphorylation.        292 

Ser403 phosphorylation was repressed 2 h post-293 

exercise. Under in vitro conditions, the association between Sestrin2, p62 and ULK1 294 

promotes ULK1-mediated p62Ser403 phosphorylation, resulting in selective degradation of 295 

polyubiquitinated cargos, such as Keap1 (Matsumoto et al., 2011; Ro et al., 2014). 296 

Degradation of Keap1 allows Nrf2 to be translocated to the nucleus to upregulate antioxidant 297 

gene expression (Ichimura et al., 2013). The acute post-exercise dephosphorylation of 298 

p62Ser403 observed in the current study could be suggestive of diminished ubiquitin-mediated 299 

selective macroautophagic protein degradation. Further, in agreement with the current study, 300 

RE has been shown to upregulate total p62, 24 and 48 h following exercise (Ogborn et al., 301 

2015), indicating that acute RE might be suppressing macroautophagy, as p62 accumulates 302 

when autophagy is inhibited (Mizushima et al., 2010). Additionally, by measuring the 303 

conversion of cytosolic microtubule-associated protein 1 (LC3B-I) to the autophagosomal 304 

membrane-associated form, LC3B-II, a marker of enhanced autophagy, it was demonstrated 305 
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that macroautophagy was depressed in both young and old adults following an acute bout of 306 

RE (Glynn et al., 2010; Fry et al., 2012).   307 

p62 has been found to be induced at the transcriptional level by ROS under cellular stress 308 

(Jain et al., 2010), therefore to evaluate the role of Sestrin2 and p62 in regulating oxidative 309 

stress, future studies should explore oxidative stress markers, Keap1 degradation, Nrf2 310 

upregulation and antioxidant response. As exercise influences multiple pathways, the present 311 

data does not allow for strong mechanistic conclusions regarding the role of Sestrin2 312 

phosphorylation in regulating p62Ser403 phosphorylation and its implication in redox 313 

homeostasis and selective autophagy. Due to limited available muscle tissues, co-314 

immunoprecipitation analyses were not undertaken, making it unclear whether there was a 315 

functional association between Sestrin2 and p62. Furthermore, a limitation of the study was a 316 

lack of control for feeding at the 24 and 48 h biopsies collections, which could have affected 317 

the result observed at these time points. Future studies should investigate the physical 318 

association between Sestrin2 and p62 and control for feeding at all time points. The present 319 

study demonstrated that following RE, a clear inverse relationship between the 320 

phosphorylation status of Sestrin2 and p62Ser403

 323 

 exists, and they are transiently regulated after 321 

RE, which may play a role in cellular adaptation in human skeletal muscle. 322 

Effect of Chronic Exercise  324 

Skeletal muscle is sensitive to both acute and chronic stresses associated with RE and RT. 325 

The mechanisms associated with the acute transient response to RE might be different 326 

compared to chronic adaptation which are measured in the rested state, since these responses 327 

are influenced by multiple factors including frequency of exercise, recovery period and 328 

training history of individuals (Abernethy et al., 1994). Literature on the relationship of 329 

Sestrin and exercise is limited. The current understanding is a single bout of aerobic exercise 330 

increased Sestrin2 protein in mice (Lenhare et al., 2017), while long-term endurance exercise 331 

increased the protein expression of Sestrin2 and 3 and basal level of muscle autophagy (Liu 332 

et al., 2015). In this study, long-term RT for 12 weeks did not alter the protein or mRNA 333 

expression of Sestrin2, 3 and total p62 or the basal phosphorylation status of Sestrin2 and 334 

p62Ser403. This could be due to the use of different exercise protocol, since different modes of 335 

exercise produce distinct myofibre adaptations, while RT increases strength and muscle fibre 336 

cross-sectional area, endurance exercise improves oxidative metabolism by increasing 337 
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mitochondrial content and capillary densities (Wilkinson et al., 2008). Interestingly, the 338 

protein expression of Sestrin1 increased significantly following RT and also 48 h following 339 

RE. However, direct comparison between the acute and chronic effects on Sestrin1 cannot be 340 

made, since fasting biopsies were collected in the present chronic study while in the acute 341 

study, biopsies were collected in the fed state.  342 

In agreement with a previous study, compared with Sestrin2 and 3, Sestrin1 is more 343 

abundantly expressed in skeletal muscle (Peeters et al., 2003). Silencing of Sestrin1 in human 344 

embryonic fibroblasts inhibited cell proliferation and accelerated cell senescence due to 345 

excess ROS production (Budanov et al., 2004). Moreover, studies from drosophila and mouse 346 

models provided a connection between Sestrins and muscle growth, as knockout of Sestrin 347 

resulted in muscle degeneration (Lee et al., 2010). Additionally, silencing Sestrin3 in human 348 

myotubes increased myostatin expression, which is a negative regulator of muscle growth 349 

(Nascimento et al., 2013). Recruited subjects demonstrated an increased in both strength and 350 

muscle mass after 12 weeks of training (Roberts et al., 2015). Taken together these 351 

observations suggest a potential link between Sestrin1 and the regulation of cell growth, 352 

which warrants further investigation to clarify the distinct roles played by each Sestrin family 353 

members in human skeletal muscle.  354 

 355 

Conclusion 356 

Sestrin and p62 are multifunctional proteins involved in many cellular processes, including 357 

suppressing oxidative stress, mTORC1 and autophagy regulation (Katsuragi et al., 2015; 358 

Parmigiani & Budanov, 2016). The present analysis demonstrated that while Sestrin family 359 

members share considerable sequence homology, each is regulated independently in response 360 

to RE. Sestrin3 was not affected by RE, whereas long-term training induced the protein 361 

expression of Sestrin1. In response to RE, there was a transient mobility shift of Sestrin2, 362 

indicative of increased phosphorylation. Mirroring this response, p62Ser403 phosphorylation 363 

was downregulated. It appears that both Sestrin2 and p62Ser403

 367 

 are transiently regulated, and 364 

may be functionally involved in the adaptive regulatory mechanisms elicited by human 365 

skeletal muscle after intense RE. 366 
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 568 

Table1. mRNA sequences. Forward and reverse sequences of analysed genes. 569 

  570 

Gene Sequence 

CHMP2A (Forward) CGCTATGTGCGCAAGTTTGT 

CHMP2A (Reverse) GGGGCAACTTCAGCTGTCTG 

C1orf43 (Forward) CTATGGGACAGGGGTCTTTGG 

C1orf43 (Reverse) TTTGGCTGCTGACTGGTGAT 
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EMC7 (Forward) GGGCTGGACAGACTTTCTAATG 

 

EMC7 (Reverse) CTCCATTTCCCGTCTCATGTCAG 

 

SESN1 (Forward) TTTCGTGTCCAGGACTATTGC 

SESN1 (Reverse) ACTGTCCCACATCTGGATAAAGG 

SESN2 (Forward) CAACCTCTTCTGGAGGCACTT 

SESN2 (Reverse) CCTGCTCAGGAGTCAGGTCA 

SESN3 (Forward) CAGGCAGCAACTTTGGGATTGT 

SESN3 (Reverse) AGACGCCTCTTCATCTTCCCTT 

p62 (Forward) GAATCAGCTTCTGGTCCATCGG 

 

p62 (Reverse) GCTTCTTTTCCCTCCGTGCT 

 571 

Figure 1. Effects of Acute Resistance Exercise on Sestrin and p62 protein. The relative 572 

abundance of Sestrin2 in δ-form (A); total Sestrin2 protein (B); Sestrin1 protein (C); Sestrin3 573 

protein (D); phosphorylation status of p62Ser403

 577 

 (E); and total p62 protein (F) following acute 574 

resistance exercise. Representative western blots (G). Data are expressed as fold change from 575 

rest and error bars represent SEM. *P<0.05 and ***P<0.001 vs. respective baseline samples. 576 

Figure 2. Effects of Acute Resistance Exercise on mRNA expression. The mRNA 578 

expression of SESN2 (A); SESN1 (B); SESN3 (C); and p62 (D). Data are expressed as fold 579 

change from rest and error bars represent SEM. *P<0.05 vs. respective baseline samples. 580 

 581 
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Figure 3. Basal expression of Sestrin paralogs. The basal mRNA expression of SESN1, 2, 3 582 

in the acute (A) and chronic (B) study. Data are expressed as means ± SEM. *** difference 583 

between SESN1 and SESN2 P<0.001, # difference between SESN1 and SESN3 P<0.05 and Ф 584 

difference between SESN3 and SESN2 P<0.05.     585 

 586 

Figure 4. Effects of Chronic Resistance Exercise on Sestrin and p62 protein. The relative 587 

abundance of Sestrin2 in δ-form (A); total Sestrin2 protein (B); Sestrin1 protein (C); Sestrin3 588 

protein (D); phosphorylation status of p62Ser403 (E); and total p62 protein (F). Representative 589 

western blots (G). Data are expressed as fold change from rest and error bars represent SEM. 590 

*P<0.05 vs. respective baseline samples.  591 
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