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Abstract

Evidence of a periodic biorhythm is retained in tooth enamel in the form of Retzius lines. The periodicity of

Retzius lines (RP) correlates with body mass and the scheduling of life history events when compared between

some mammalian species. The correlation has led to the development of the inter-specific Havers–Halberg

oscillation (HHO) hypothesis, which holds great potential for studying aspects of a fossil species biology from

teeth. Yet, our understanding of if, or how, the HHO relates to human skeletal growth is limited. The goal here is

to explore associations between the biorhythm and two hard tissues that form at different times during human

ontogeny, within the context of the HHO. First, we investigate the relationship of RP to permanent molar

enamel thickness and the underlying daily rate that ameloblasts secrete enamel during childhood. Following this,

we develop preliminary research conducted on small samples of adult human bone by testing associations

between RP, adult femoral length (as a proxy for attained adult stature) and cortical osteocyte lacunae density

(as a proxy for the rate of osteocyte proliferation). Results reveal RP is positively correlated with enamel

thickness, negatively correlated with femoral length, but weakly associated with the rate of enamel secretion

and osteocyte proliferation. These new data imply that a slower biorhythm predicts thicker enamel for children

but shorter stature for adults. Our results develop the intra-specific HHO hypothesis suggesting that there is a

common underlying systemic biorhythm that has a role in the final products of human enamel and bone growth.

Key words: daily enamel secretion rates; enamel thickness; osteocyte lacunar density; Retzius line periodicity;

stature.

Introduction

Biorhythms are cyclic changes in an organism’s growth,

development or functioning that are driven by an internal

biological ‘clock’ and synchronized through environmental

cues (Hasting, 1998). They have been linked to variations in

human body temperature, metabolism, testosterone pro-

duction, ovulation and rate of tooth eruption (Reinberg

et al. 1965; Little & Rummel, 1971; Sothern, 1974; Lee &

Profitt, 1995; Garde et al. 2000). Human tooth enamel

retains evidence of periodic fluctuations that occur as

enamel-forming cells (secretory ameloblasts) deposit miner-

alizing protein matrix (Retzius, 1837; Asper, 1916). One of

these fluctuations manifests as cross-striations, which are

incremental enamel markings that correspond with a circa-

dian rhythm (Schour & Poncher, 1937; Boyde, 1979, 1989;

Risnes, 1986; Bromage, 1991; Antoine et al. 2009; Lacruz

et al. 2012; Zheng et al. 2013). Another longer-period infra-

dian rhythm leads to enamel Retzius lines (Dean, 1987; Ris-

nes, 1990; Beynon, 1992). Retzius lines mark ‘layers’ of

forming enamel that are usually separated by 6–12 days of

growth in human permanent teeth (Fig. 1), depending

upon the individual (Schwartz et al. 2001; Reid & Dean,

2006; Reid & Ferrell, 2006; Mahoney, 2008). The Havers–Hal-

berg oscillation (HHO) hypothesis proposes that Retzius line

periodicity (RP), the number of days between adjacent Retz-

ius lines, is a manifestation of a central infradian biorhythm
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that regulates the rate of bone cell proliferation and adult

body mass via metabolism, with links to life history traits,

when compared between some mammalian species (Bro-

mage et al. 2009, 2012). Much less is known about the

potential role of this oscillation for human skeletal growth.

Here, we extend our previous intra-specific research into

the HHO in which we established associations between

human deciduous enamel growth and RP (Mahoney et al.

2016, 2017). We construct and test predictions about the

relationship of RP to human permanent enamel thickness

and the underlying daily rate that enamel forms during the

childhood years. We develop preliminary research con-

ducted on small samples of adult human bone (Bromage

et al. 2016a), by assessing the relationship of adult femoral

length and the underlying density of bone maintenance

cells (osteocytes) to RP. Our goal is to explore the periodicity

of the biorhythm against two hard tissues that form at dif-

ferent but overlapping times during human ontogeny,

within the context of the HHO.

Enamel biorhythms of mammals and the HHO

hypothesis

Research into relationships between the RP and somatic

growth commenced in the 1990s with those that suspected

RP might relate to mammalian body size (Dean, 1995; Dean

& Scandrett, 1996). Soon after, studies established a signifi-

cant inter-specific positive correlation between RP and aver-

age body mass in a selection of extant and fossil mammals

(Smith et al. 2003; Smith, 2008; Bromage et al. 2009). Not

all primate species followed this pattern (Hogg et al. 2015),

and a lower rather than a higher RP related to a larger esti-

mated body mass for three fossil species (Schwartz et al.

2002, 2005; Le Cabec et al. 2017). Further work reported

inter-specific associations between the periodicity of the

biorhythm and the scheduling of life history traits for some

primate species (Bromage et al. 2012). The inter-specific

HHO hypothesis developed out of these studies, and earlier

research on mammals (Mullender et al. 1996; Bromage

et al. 2009, 2012).

The biological ‘clock’ that regulates Retzius lines is

unknown. Given that RP subdivides into multiples of daily

intervals, the suprachiasmatic nucleus of the hypothalamus

(SCN) has been identified as one likely contender (Bromage

et al. 2012). The SCN is a source of circadian rhythmic activ-

ity in mammals (Richter, 1965; Ralph et al. 1990; Sujino

et al. 2003), has been linked to the circadian production of

dentin (Ohtsuka-Isoya et al. 2001), and also has a role in

regulating metabolism via the pituitary gland (Weaver,

1998; Kalsbeek et al. 2011; Coomans et al. 2013). The HHO

hypothesis drew upon this biological pathway proposing

that Retzius lines were a manifestation of a longer-period

oscillation stemming from the hypothalamus that employed

SCN ‘machinery’ in its pathway to stimulate pituitary secre-

tions that linked to metabolism, body mass and primate life

history traits (Bromage et al. 2012). Experimental research

on domestic pig links aspects of metabolism to RP (Bromage

et al. 2016b). Further support for an inter-specific HHO is

provided by some mammalian species with slower metabo-

lisms, and a larger body size combined with a higher mean

RP, relative to those with smaller body size (Bromage et al.

2009).

A B C

Fig. 1 Human first molar with lateral enamel highlighted (A), black arrow points to infradian Retzius line (B), white arrow points in direction of

prisms, with circadian cross-striations at right angles to the arrow (C).
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Enamel biorhythms of humans and the HHO

hypothesis

The idea that human enamel growth might be controlled

by an underlying biological ‘clock’ is not a new one, as the

presence of daily cross-striations along enamel prisms

implies that secretory ameloblasts may be under circadian

control via clock genes (maintainers of circadian rhythms)

during amelogenesis (Schour & Poncher, 1937; Bromage,

1991; Antoine et al. 2009; Lacruz et al. 2012; Zheng et al.

2013). However, much less is known about the potential

role of the longer-period HHO for human enamel growth.

Recently we reported links between RP, the width of

enamel ‘layers’ between adjacent Retzius lines, and two-

dimensional (2D) average and relative enamel thickness of

human deciduous maxillary second molar crowns (dm2;

Mahoney et al. 2016, 2017). We also identified an associa-

tion between RP and dm2 paracone cusp formation time

(Mahoney et al. 2016). The relationship of RP to daily

enamel secretion rates (DSRs) was, however, less clear.

When RP and DSRs were calculated for dm2 in one homolo-

gous dental location and compared between individuals

there was a weaker association between these variables

(Mahoney et al. 2017). Prior to our research, enamel growth

had not been considered within the context of the HHO

hypothesis. Based upon our data, we proposed that if RP is

evidence of the HHO, an underlying biorhythm that affects

physiological systems (Bromage et al. 2009, 2012), then its

influence extends to enamel thickness and formation time

of deciduous molar enamel, but was less clearly associated

with deciduous DSRs (Mahoney et al. 2017). Up until now,

no study has determined if there is a relationship between

RP and human permanent molar enamel thickness, or DSRs

calculated for this tooth type.

Research on four adult humans hints at a negative corre-

lation between adult stature and RP (Bromage et al.

2016a). This shift away from the positive correlation

reported in inter-specific research on mammalian species

(see above) is to be expected within the context of the

HHO. Inter-specifically, mammals with larger bodies tend to

have an extended growth period with slower rates of meta-

bolism and associated cell proliferation, which is reflected

by a higher mean RP (and thus slower oscillation of the

biorhythm) relative to smaller bodied species (Mullender

et al. 1996; Bromage et al. 2009). Within humans, the

growth period is constrained between birth and adulthood,

so greater stature is achieved by ‘speeding up’ the bior-

hythm (reducing the periodicity), and thus increasing skele-

tal metabolism or the rate of cell proliferation (Bromage

et al. 2016a). Thus, our current understanding of the HHO

is that inter-specific scaling trends between RP and body

size may be associated with alterations in the ‘duration’ of

development, whereas, within humans, RP may relate to

adult stature through variation in growth ‘rates’ (Bromage

et al. 2009).

Preliminary support for the HHO hypothesis within

humans is provided by a study of bone osteocyte lacunar

density (Ot.Dn; Bromage et al. 2016a). Osteocytes are for-

mer osteoblasts that become trapped as they finish produc-

ing bone matrix (Palumbo et al. 1990). These cells have a

complex functionality, that includes sensing mechanical

(shear or strain) forces applied to bone, which activates

remodeling via the linked action of osteoblasts and osteo-

clasts (Frost, 1987; Robling & Turner, 2002; Bonewald, 2007;

Mullender et al. 2005; Noble, 2008; Tatsumi et al. 2007);

detecting and initiating micro-damage repair (Verborgt

et al. 2000; Herman et al. 2010); and in mineral homeostasis

(Cullinane, 2002; Teti & Zallone, 2009; Nakashima et al.

2011). The Ot.Dn of healthy bone can also vary when com-

pared with pathological bone (Mullender et al. 2005; van

Hove et al. 2009). In addition to these potential influences,

Ot.Dn can correspond with body size, whereby Ot.Dn of

the mid-shaft femur from 12 adult humans scaled positively

with final attained adult stature (Bromage et al. 2016a).

This scaling relationship suggests that the rate of osteocyte

proliferation is greater in taller adult individuals, which is

consistent with the hypothesized effect of the HHO on

human body size.

Research questions and predictions

The background research provides a foundation from which

to formulate four research questions and, from these, pre-

dictions that will be tested by calculating RP from thin sec-

tions of teeth and comparing these values with measures of

human skeletal growth. The research questions are as fol-

lows.

Do DSRs correlate with RP in permanent molars?

We have previously shown that RP does not exert a consis-

tent influence on the daily rate that ameloblasts secrete

structural matrix proteins as they increase the length of

hydroxyapatite crystallites in deciduous enamel (Mahoney

et al. 2017). Instead, it seems more likely from links we

have reported, and by others, that the intra-specific HHO

is related to the end state of enamel growth (i.e. final

enamel thickness) through formation time. These links

commence as ameloblasts secrete matrix for an additional

number of days between adjacent Retzius lines, leading to

thicker ‘enamel layers’ with higher RPs (Mahoney et al.

2017). Layers become thicker because ameloblasts do not

greatly alter their DSRs as RP increases, when compared

between outer lateral enamel regions of human molars

from different individuals. Thicker layers accumulate lead-

ing to greater average enamel thickness (AET) of dm2

crowns with higher RPs, relative to molars with lower RPs

(Mahoney et al. 2016). Thicker crown enamel takes a

longer period of time to form, for deciduous molars

(Mahoney, 2011) and permanent teeth (Dean et al. 2001).

Formation time is correlated with RP, for deciduous molar

© 2017 Anatomical Society
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paracone cusps (Mahoney et al. 2016) and for permanent

mandibular canine lateral enamel (Reid & Ferrell, 2006).

Thus, unlike the HHO intra-specific prediction for body

mass, where RP links to final attained adult stature

through variation in growth rates (Bromage et al. 2009),

we suggest that RP is not strongly related to final enamel

thickness via DSRs (and is thus more likely to be related to

enamel formation time). Thus, we predict a weak associa-

tion between RP and DSRs of permanent molars. To exam-

ine the relationship between the circadian and the

infradian rhythm in permanent enamel, we separated out

n = 15 M1s from our sample, and calculated and compared

RPs and DSRs in one homologous location in the outer lat-

eral enamel of each crown.

Does permanent molar enamel thickness correlate with

RP?

Two-dimensional measurements of AET from human dm2

correlated positively with RP (Mahoney et al. 2016).

Assuming that RP is evidence of a biorhythm that affects

multiple physiological systems, including enamel growth,

then we predict that its influence will extend to perma-

nent molar enamel thickness. To test this prediction, we

calculate 2D AET and enamel area (EA) for human perma-

nent first (M1) and second molars (M2) from thin sections,

and compare these values with RPs of the same teeth.

Based upon findings for deciduous molars, RP of perma-

nent molars should scale positively with our measures of

enamel thickness.

Is adult femoral length correlated with RP?

The intra-specific HHO predicts that greater adult height is

achieved through a biorhythm that is accelerated (Bromage

et al. 2016a), with a shorter periodicity. To assess RP against

stature, we selected a sample of younger adult males with

shorter femora, and compared these with younger adult

males with longer femora. We calculated RP for each male

and compared this value with his stature (reconstructed

from femoral length). The femur has been used within

regression equations for the past 50 years to reconstruct sta-

ture (Trotter, 1970; see Materials and methods). We also

compare RP with femoral length.

Is adult femoral length correlated with cortical bone

Ot.Dn?

The intra-specific HHO predicts that taller humans (with

longer femora) growmore rapidlywith a faster rate of osteo-

cyte proliferation, relative to shorter individuals. Data for 12

individuals indicate these faster rates are then maintained as

adults (Bromage et al. 2016a). As Ot.Dn can sometimes vary

with age (Mullender et al. 1996), we subdivided our entire

adult male sample into age groups and explored associations

between Ot.Dn and stature within each group. We also

assess Ot.Dn against adult femoral length, and against RP.

Materials and methods

Our samples are human skeletons from one cemetery in Canterbury,

England, UK, that dates to the early 16th century AD (Hicks & Hicks,

2001). Historical texts state that burials were from a single lower

socio-economic group that lived and worked in Canterbury and rep-

resented non-catastrophic mortality (Somner, 1703; Duncombe &

Battely, 1785; Brent, 1879). We have previously shown that the peri-

odicity of the biorhythm can change in response to non-specific

pathology (Mahoney et al. 2017). We limited this type of variation

in our data by only selecting skeletons and teeth without skeletal

or radiographic signs of pathology, drawing upon an extensive col-

lection of accompanying radiographs that were produced at Kent

and Canterbury Hospital (Radiology Department) for any skeleton

with suspected trauma or pathology. Age-at-death is reconstructed

for all skeletons; sex is reconstructed for adults (see Materials and

methods). These collections are curated in the Skeletal Biology

Research Centre, University of Kent, UK. All sectioning adhered to

the British Association of Biological Anthropology and Osteoarchae-

ology code of practice (2014). No permits were required for this

study as these are archaeological samples from before the 19th Cen-

tury AD.

Samples and the chronology of skeletal growth

We selected three samples. Throughout, RP is calculated for lateral

enamel of permanent M1 and M2. Lateral enamel of these tooth

types forms between approximately 1.5 and 5.7 years of age (Reid

& Dean, 2006). Sample sizes varied depending upon the variables

examined and are given in the corresponding tables. One tooth (ei-

ther M1 or M2) represents one individual. Raw data are available in

Supporting Information.

1. The first sample was juveniles (n = 40). We assessed RP

against DSRs and against enamel thickness of the same

molars. We chose juveniles (< 8 years of age for M1s; < 13

years for M2s) because enamel is often worn in adults, and

this would have affected our measurements of 2D AET and

EA. DSRs of M1 and M2 are a measure of the rate at which

ameloblasts previously deposited matrix during the secre-

tory phase of enamel growth in the childhood years. The

AET and EA of M1 and M2 are a measure of the end state

of the secretory stage of enamel growth that is attained in

childhood.

2. The second sample was young adult males, aged between

18 and 34 years (n = 27). We assessed RP of their M1 or M2

(representing their childhood years) against their femoral

cortical bone Ot.Dn and final attained adult stature. Ot.Dn

in adult cortical bone likely represents a combination of

lamellae deposited during later ontogeny and in adulthood.

The final attained adult stature is the end state of linear

growth of long bones via endochondral ossification over

the course of postnatal development from birth to adult-

hood. In this study, we measure adult femoral length as a

proxy for attained adult stature. The slight occlusal wear of

some molars did not affect our calculation of RP in lateral

enamel, which is located cervical to wear on the occlusal

surface. We did not include older adults because of their

greater enamel wear.

3. The third sample was adult males, subdivided into two age

groups (younger males 18–34 years, n = 28; older males 35–

© 2017 Anatomical Society
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50 years, n = 94). We assessed femoral cortical Ot.Dn against

their estimated stature and femoral length.

Sample preparation for histology

We used standard histological techniques (Bancroft & Gamble,

2008; Mahoney, 2008; Miszkiewicz, 2016). Each tooth was embed-

ded in polyester resin to reduce the risk of splintering while section-

ing. Using a diamond-wafering blade (Buehler� IsoMet 4000

precision saw), buccal-lingual sections captured the paracone and

protocone of maxillary molars, and the protoconid and metaconid

of mandibular permanent molars. Each section was mounted on a

microscope slide, lapped using a graded series of grinding pads

(Buehler� Eco-Met 300) to reveal incremental lines, polished with a

0.3-lm aluminum oxide powder (Buehler� Micro-Polish II), placed

in an ultrasonic bath to remove surface debris, dehydrated through

a series of alcohol baths, cleared (Histoclear�) and mounted with a

coverslip using a xylene-based mounting medium (DPX�).

Dry, undecalcified bone measuring 1 cm in depth was removed

from the posterior femoral mid-shaft cortex using a drill (Dremel

Rotary�) with a circular metal blade (Fig. 2). Only the posterior por-

tion of the femoral diaphysis was used in order to keep the overall

integrity of the femur preserved for future research purposes. The

bone was embedded in epoxy resin, reduced in thickness (Buehler�

IsoMet 4000 precision saw), ground, polished, and cover-slipped fol-

lowing the same procedures used to embed and prepare the teeth.

Thin sections measured approximately 100 lm in depth.

RP

Using a high-resolution microscope (Olympus� BX51), each section

was examined at magnification (10–609). Images were captured

with a microscope digital camera (Olympus� DP25) and analyzed in

CELL� Live Biology imaging software. We counted the number of

cross-striations along a prism between several adjacent Retzius lines

in outer lateral enamel of M1 and M2 to determine the number of

days between two adjacent Retzius lines. For 12 thin sections, cross-

striations were not clearly visible and continuous along prisms

between adjacent Retzius lines. For these 12 sections, we divided

the distance between several adjacent Retzius lines by local mean

DSR’s, to determine RP between two adjacent lines (Schwartz et al.

2001; Mahoney et al. 2007; Lacruz et al. 2008). We did not include

these sections in the analysis of RP and DSRs. RP was recorded by SC

and PM. An intraclass correlation coefficient of 0.996 (n = 40; 95%

CI = 0.993–0.998; P = 0.000) indicates a high degree of agreement

between the two observers, with one difference in RP calculations.

This slide was removed from the study.

Enamel thickness

The 2D AET in mm was calculated by dividing the area of the

enamel cap (EA) by the length of the dentin–enamel junction (DEJ),

which provides the average straight-line distance between the DEJ

and outer enamel surface (Martin, 1983, 1985). EA is given in mm2.

DSRs

Secretion rates in lm per day were calculated for outer lateral

enamel in the same region that we recorded RP (i.e. avoiding inner

and mid enamel regions as DSRs can vary from one region to the

next within a crown: Lacruz & Bromage, 2006). Rates were mea-

sured along the long axis of an enamel prism. A distance corre-

sponding to 5 days of enamel secretion was measured, and then

divided by five to yield a mean daily rate. The procedure was

repeated a minimum of six times in each region, which allowed a

grand mean value and standard deviation (SD) to be calculated.

The grand mean value was compared with RP calculated in the

same enamel region.

Fig. 2 The figure illustrates the regions of interest (ROI) in the posterior mid-shaft femur (A). The sectioned cortical location is highlighted, with

approximate (not to scale) positioning of ROIs adjacent to the periosteum (these are placed on the superior region in the sectioned area only for

illustrative purposes in this figure, as we examined the removed cortical bone). The series of four histology images on the right show lower (B, and

magnified in C) and higher densities (D, and magnified in E) of osteocycte lacunae (white arrows).

© 2017 Anatomical Society
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Ot.Dn

We use Ot.Dn as a proxy for the rate of (past) femoral cortical bone

cell proliferation. Ot.Dn data were collected as part of a PhD project

(Miszkiewicz, 2014). We selected femoral Ot.Dn, rather than osteon

population density, so that we could directly test prior research (see

above). Ot.Dn is significantly correlated with osteon population

density in this skeletal sample (Miszkiewicz, 2016). Exploring associ-

ations between Ot.Dn and age, or at the initiation of remodeling

(Metz et al. 2003), were not the aims of this study.

Using a high-resolution microscope (Olympus� BX51 and Olym-

pus DP25 microscope camera), osteocyte lacunae were counted

within secondary osteonal bone and interstitial bone. Ot.Dn were

counted from a maximum of six main regions of interest (ROI; mag

= 109, 2.44 mm2) positioned adjacent to the periosteum, and sub-

divided into smaller ROIs (mag = 409, 0.13 mm2; Fig. 2; see Miszkie-

wicz, 2016 for a detailed methodology of ROIs). Using CELL� Live

Biology Imaging software, all visible osteocyte lacunae (including

cavities that appeared ‘empty’ or transparent) were counted using

a ‘touch count’ tool (identical in premise to the ‘point count tech-

nique’ recommended by Parfitt, 1983). Densities were calculated by

dividing the total number of osteocyte lacunae by the area of bone

examined (in mm2). We acknowledge that automated methods of

osteocyte lacunae detection are available, and ideally a whole long

bone cross-section should be examined (Hunter & Agnew, 2016).

However, those techniques are better suited to fresh or ‘recent’

bone with excellent microstructural preservation. Given the archae-

ological background (localized diagenetic alteration of micro-anat-

omy) of our samples, there needed to be flexibility in our ROI

selection procedures. This is because the ROI would sometimes have

to be moved fractionally to avoid an area of diagenesis or one that

was affected by taphonomy. Clear differences in Ot.Dn were

observed across the sample (Fig. 2).

Stature estimation and femoral length

Femoral length data were previously included in robusticity index

calculations as part of another project (Miszkiewicz & Mahoney,

2016), but correlations between Ot.Dn and stature/femur length

are examined here for the first time. The maximum length of each

femur was measured by placing it flat on an osteometric board, in

its anatomical position, with the posterior femoral aspect facing

down. Femoral length was measured from the most superior sur-

face of the femoral head to the most distal surface of the medial

condyle (Buikstra & Ubelaker, 1994). Standard and most commonly

used formulae for reconstructing stature in skeletal remains were

used (Trotter, 1970; White et al. 2011). These were specific to sex

and appropriate for individuals of European descent. Male stature

was estimated using the regression equation: 2.389 femur maxi-

mum length in cm + 61.41 (� 3.27) (Trotter, 1970; White et al.

2011).

Sex determination and age-at-death

Sex determination was carried out using multiple standard methods

to increase the accuracy of the determination. We relied upon stan-

dard morphological characteristics of the pelvis and cranium. The

pelvic methods were based upon 25 morphological characteristics

of the human pelvis taken from Schwartz (1995), Ferembach et al.

(1980), Krogman & Iscan (1986) and Phenice (1969). Cranial features

included the mastoid process, supraorbital margin, mental emi-

nence and nuchal crest (Buikstra & Ubelaker, 1994). When determi-

nations from cranial and pelvic features conflicted, priority was

given to the pelvic criteria (White et al. 2011). In the analyses, ‘prob-

able males’ were classified as male.

Age was estimated from age-specific morphology of the pubic

symphysis, and the auricular surface of the pelvis (Lovejoy et al.

1985; Meindl et al. 1985). Two age categories were constructed:

younger adult males, 18–34 years; older adult males 35–50 years.

Analyses

Data were analyzed in IBM SPSS� 22 (2014). Each variable was log-

transformed. A one-sample Kolmogorov–Smirnov test indicated

that the distribution of the data for each variable was normal. Data

from right and left femora (one femur was selected from each indi-

vidual, and either the right or left depending upon preservation)

were pooled. We analyze the data using linear regression statistics.

In Tables 1 and 2 we present the r2 value (coefficient of determina-

tion) that measures the proportion of explained variation, and we

Table 1 Linear regression analyses of log-RP against log-enamel growth.

Enamel n Intercept Slope r r2 P Residual

Thickness: RP vs. EA

All 40 0.755 0.569 0.697 0.486 < 0.001* 55%

M1 25 0.826 0.489 0.615 0.378 0.001* 64%

M2 15 0.639 0.703 0.806 0.650 < 0.001* 43%

Thickness: RP vs. AET

All 40 �0.426 0.432 0.604 0.365 0.002* 63%

M1 25 �0.391 0.384 0.577 0.333 0.004* 68%

M2 15 �0.542 0.580 0.720 0.519 0.002* 44%

Rate: RP vs. DSR

M1 15 0.817 �0.098 0.009 0.000 0.714 98%

Tooth types: M1, permanent first molar; M2, permanent second molar. *Significant. AET, average enamel thickness; DSR, daily secre-

tion rate; EA, enamel area; RP, Retzius periodicity. RP vs. EA: lower M1 (n = 13): r2 = 0.491, P = 0.007*.Upper M1 (n = 12): r2 = 0.633, P =

0.001*.Lower M2 (n = 12): r2 = 0.603, P = 0.002*.RP vs. AET: lower M1 (n = 13): r2 = 0.338, P = 0.037*.Upper M1 (n = 12): r2 = 0.482, P =

0.012*.Lower M2 (n = 12): r2 = 0.287, P = 0.072. Upper M2 excluded from separate analysis as n = 3.
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also show the r value (correlation coefficient) that measures the

strength and direction of the relationship between variables. The

residual, presented as a percentage in the tables, is the error not

explained by the regression equation.

Results

RP, enamel thickness and secretion rates

Regression statistics are shown in Table 1. Corresponding

data for the sample of juveniles are available in Table S1.

When data for all tooth types are combined, the EAs and

AET of permanent molar crowns were significantly and pos-

itively related with RP, increasing from minimum values

that were associated with an RP of 6 days to maximum val-

ues that were associated with RPs of 10 and 11 days, respec-

tively (Figs 3A and 4A). When subdivided into either M1s or

M2s and re-analyzed, RP was significantly related to EA and

AET (Table 1). When further subdivided into upper or lower

molars, RP was significantly related to EA (Fig. 4B–D). AET

was also significantly related to RP for each upper and

lower molar type, except lower M2 where this relationship

approached significance (r2= 0.287; P = 0.072).

When 15 permanent first molars were separated from the

sample, and RPs and DSRs were measured and compared

between the molars in one homologous location in outer

lateral enamel of each crown, there was no consistent or

significant association with the RP.

RP, femoral length and Ot.Dn

Regression statistics are shown in Table 2. The correspond-

ing data sets for younger and older male adults are avail-

able in Tables S2 and S3. Estimated stature (and femoral

length) was significantly and negatively related with RP

(Fig. 3B). The Ot.Dn did not relate significantly with RP

(Table 2). Ot.Dn was not significantly related to femoral

length, or stature for younger males (Table 2). There was a

weak relationship between Ot.Dn and stature that

approached significance in older males, though the residual

was high (r2= 0.030; P = 0.089).

Discussion

This study builds upon our previous work that examined

relationships of RP to human deciduous molar enamel

growth, and extends preliminary research into associations

between RP and human adult femoral cortical bone growth

(Bromage et al. 2016a; Mahoney et al. 2016, 2017). We

examined the relationship of permanent molar DSRs to RP,

and of osteocyte proliferation to RP. We find limited evi-

dence for either of these relationships, but did find stronger

evidence of linkages between RP, permanent molar enamel

thickness and stature.

RP, enamel thickness and secretion rates

Our data support the prediction that the periodicity of the

biorhythm is associated with enamel thickness when consid-

ered within a smaller intra-specific scale, within humans.

However, as with deciduous molars (Mahoney et al. 2016),

RP was more weakly associated with DSRs, when compared

between permanent molars from different individuals.

Therefore, even though RP is calculated by a count of cross-

striations, variation in the biorhythm is not always associ-

ated with the ‘amount’ of matrix deposited by ameloblasts

in 24-h periods (Fig. 5). Instead, it seems likely that RP can

link to the final enamel thickness of a human crown

through formation time. RP is related to the time taken to

form part of a deciduous and permanent tooth crown (Reid

& Ferrell, 2006; Mahoney et al. 2016), and formation time is

related to human enamel thickness (Dean et al. 2001;

Mahoney, 2011). Thus, inter-individual variation in the peri-

odicity of the biorhythm may have a clearer association

with final enamel thickness through the duration, rather

than the daily rate of enamel growth. More work is needed

to understand if and how these developmental mechanisms

change within a species (Fig. 5).

The proposal that aspects of enamel growth are con-

trolled by a long-period biological ‘clock’ with an infradian

rhythm, whether it is the HHO via the SCN of the brain or a

different ‘peripheral’ independent ‘clock’ (Hasting, 1998),

Table 2 Linear regression analyses of log-RP against log-bone growth.

Bone n Intercept Slope r r2 P Residual

Stature: RP vs. S†

Younger M 27 2.309 �0.082 �0.417 0.174 0.015* 74%

Rate: RP vs. Ot.Dn

Younger M 10 3.232 �0.401 �0.370 0.137 0.326 90%

Rate: S vs. Ot.Dn‡

Younger M 28 2.171 0.019 0.199 0.039 0.317 94%

Older M 94 2.185 0.016 0.175 0.030 0.089 93%

M, Males; Ot.Dn, osteocyte lacunae density; RP, Retzius periodicity; S, estimated stature.
†Femoral length vs. RP: young M intercept = 3.232, slope = �0.135, r = �0.492, P = 0.020*.
‡Ot.Dn vs. femoral length: young M intercept = 1.567, slope = 0.030, r = 0.199, P = 0.317. Older M intercept = 1.587, slope = 0.025,

r = 0.176, P = 0.088.
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or even more than one ‘clock’ (Newman & Poole, 1974,

1993), is a hypothesis. Our data for human permanent teeth

and deciduous teeth (Mahoney et al. 2016, 2017) provide

support for this hypothesis. The infradian rhythm (reflected

by RP) appears to have an association with final enamel

thickness of a crown, but is inconsistently related to the

daily ‘amount’ of enamel secreted by ameloblasts as these

cells respond to a circadian rhythm (reflected by cross-stria-

tions). The infradian rhythm likely has a systemic origin, as

RP can alter within a single crown in response to non-speci-

fic pathology (Mahoney et al. 2017). The longer-period

rhythm is intrinsic to enamel growth, not only relating to

final enamel thickness, but also the microstructural compo-

nents of enamel (prisms), which can be reduced in size or

have an altered morphology when associated with Retzius

lines (Risnes, 1990, 1998; Li & Risnes, 2004). Perhaps, there-

fore, the infradian rhythm periodically modifies ameloblast

metabolism, interfering with enamel secretion of amelo-

blasts, leading to the altered prism structure that can be

associated with Retzius lines.

There is substantial residual in the relationship of RP to

enamel thickness (Table 1), as even the strongest correla-

tions explain just over half of the variation in our data. So,

there are other factors operating as well. Enamel thickness

is a product of several mechanisms, other than those consid-

ered here, such as the number of active ameloblasts and

their life spans (Grine & Martin, 1988; Macho, 1995). We

have only considered the rate that enamel grows in thick-

ness, but whether the rate that enamel crowns extend in

height (enamel extension rates), as epithelium cells differ-

entiate into pre-ameloblasts down along the DEJ, is linked

to RP has yet to be determined. Guatelli-Steinberg et al.

(2012) have already shown links between DEJ lengths and

lateral enamel formation time. As RP is correlated with

enamel formation times (Reid & Ferrell, 2006; Mahoney

et al. 2016), it would seem possible that extension rates can

relate to RP.

RP, femoral length and Ot.Dn

Our data support the intra-specific HHO prediction that tal-

ler adults (with longer femora) have a lower RP (Bromage

et al. 2016a). Thus, the biorhythm oscillates with a faster

periodicity in taller humans, compared with those with

shorter femora. However, we found less support for the

prediction that taller adults maintain significantly faster

rates of femoral osteocyte proliferation, relative to shorter

adults. Osteocyte density did not relate to stature or

femoral length amongst our sample of young adult males,

though it appeared to be trending towards significance

with a high residual amongst older males (Table 2). Neither

did RP relate to Ot.Dn in a small sample. Thus, the bior-

hythm is significantly linked to adult stature, but neither

the biorhythm nor stature is linked to osteocyte prolifera-

tion of the femur.

Osteocytes have a complex functionality (see Introduc-

tion) that, in addition to potential influences of body size,

probably influences their distribution in cortical bone lead-

ing to significant variation in their numbers across the

femoral shaft (Carter et al. 2013, 2014). For example, an

anatomical region can adapt to mechanical loading, adding

and removing new bone tissue in response to loading or

disuse (Wolff, 1892; Robling et al. 2001; Burr et al. 2002).

Our osteocyte lacunae data are from one anatomical

region, the posterior femoral mid-shaft cortex, and just the

sub-periosteal pocket, which is where new bone is usually

deposited in response to excessive load (Robling et al.

2006). There is substantial inter-individual variation in Ot.Dn

values from this region (younger adults range between

Fig. 3 Plot of log-Retzius line periodicity (RP) against log-average

enamel thickness (AET) for all molar types combined n = 40 (A) and

the stature of young males n = 27 (B). Regression lines are fitted to

the data. Regression statistics are shown in Table 1. Corresponding

data sets are available in Supporting Information.
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394.87 and 1307.69; middle aged adults between 305.77

and 1255.13). Some of this variation in Ot.Dn probably

reflects differences in femoral mechanical loading between

individuals, as some adults in our sample would have been

employed in the physically demanding occupations that

were typical of lower socio-economic lifestyles in medieval

Canterbury (Miszkiewicz & Mahoney, 2016).

Variation in adult stature is not strongly related to differ-

ences among individuals in the rate of femoral osteocyte

proliferation, but it is related to RP (Table 2). This finding

makes sense if RP is linked to the duration in which stature

is attained. Pre-pubertal growth velocity differences can

underlie adult stature differences within some populations

(Gasser, 1990; Gasser et al. 2001), but not all populations.

Instead, the timing of the pubertal growth spurt can con-

tribute to the ‘age’ adult height is attained for females

compared with males (Tanner, 1990; Roche, 1992; Gasser

et al. 2000) and within the sexes (H€agg & Taranger, 1991;

Baer et al. 2006). Late maturing Swedish boys continued to

grow between 18 and 25 years of age, attaining signifi-

cantly greater growth in height during this period and a

greater final stature compared with early maturing boys

whose height increased only slightly after age 18 years

(H€agg & Taranger, 1991). The Nurses’ Health Study (II) in

the USA, which is based upon large sample sizes, indicates

that females with delayed puberty are older when they

Fig. 4 Plot of log-Retzius periodicity (RP) against log-enamel area (EA) with regression lines fitted to the data. All molar types combined n = 40

(A), which are separated into tooth types for lower first molars (B), upper first molars (C) and lower second molars (D). Upper second molars (n =

3) are excluded from separate analysis because of the small sample size. Regression statistics are shown in Table 1 and footnotes. Corresponding

data sets are available in Supporting Information.
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attain their final and greater adult height compared with

females with a shorter adult stature (Baer et al. 2006). Fur-

ther research might explore potential linkages between the

frequency that the biorhythm oscillates and the age that

adult stature is attained, as the duration of the growth per-

iod may be an important link to RP for aspects of both

enamel and bone growth within humans. Variation in

growth velocities (and Ot.Dn) compared with RP amongst

children should also be examined.

The biorhythm of human skeletal growth

The direction of the correlation between RP and enamel

thickness is positive, but negative when RP is related to sta-

ture. Our data imply that a child from Canterbury with a

slow biorhythm between birth and 5 or 6 years of age

attained thicker deciduous (Mahoney et al. 2016) and per-

manent molar enamel compared with another child with a

faster biorhythm that developed thinner enamel (Fig. 6). A

child from the same population with a fast biorhythm

attained a greater adult stature. These findings imply that

the biorhythm may coordinate different aspects of human

skeletal growth. Perhaps a child with a slow oscillation

attains thicker enamel by increasing the duration of crown

enamel growth early on in ontogeny, at the expense of sub-

sequent femoral growth in length and attained adult

height.

Alternatively, the change in the direction of the correla-

tion may reflect a biorhythm that does not remain constant

within an individual. We have previously shown that RP can

change within an individual at the end of the first post-

natal year (Mahoney et al. 2017). The change in RP, from

deciduous to permanent molars, suggests that the bior-

hythm produces a sequence of RPs for an individual, rather

than a single and static value. In the present study, we

focused on permanent M1s and M2s, whose enamel forms

between birth and 5–6 years of age (Reid & Dean, 2006). It

seems likely that RP remains constant during this age range

within an individual, as comparisons between small samples

of permanent anterior teeth that form at about the same

time as permanent molars (FitzGerald, 1998), as well as com-

parisons between molar types within four individuals (Reid

et al. 1998), reveal no variation in RP. Whether the periodic-

ity of the biorhythm changes in humans beyond 11 years of

age, after third molar crown enamel has formed, is

unknown. Therefore, the relationship we describe, between

RP during the early childhood years and adult stature,

might not describe this relationship in later ontogeny, if RP

changes closer to adulthood or if bone modifies its response

to the biorhythm with age.

Conclusion

We examined the relationship of enamel secretion rates to

evidence of a biorhythm retained in human teeth as RP,

and of cortical bone osteocyte proliferation to RP. We

found only limited evidence for either of these relation-

ships, but we did find stronger evidence of linkages

between RP and permanent molar enamel thickness (end

state of enamel growth), and RP and final adult stature

(end state of linear growth in long bones). Our findings

develop the intra-specific HHO hypothesis suggesting that

the biorhythm has a role in human skeletal growth and the

development of more than one hard tissue.
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Fig. 5 Cell mechanisms underlying different thicknesses of human

enamel layers. Long lines illustrate two adjacent Retzius lines (enamel

layer) in one outer lateral region of the crown. Short lines represent

daily cross-striations with either 3, 4 or 5 lm of enamel between adja-

cent striations, representing different daily enamel secretion rates

(DSR). Retzius periodicity (RP) increases from 6 days in (A) to 7 days in

(B). Layer (B) increases in width because ameloblasts have secreted

enamel for an extra day, relative to (A), but the DSR remains constant

(e.g. this study; Mahoney et al. 2017). Another developmental mecha-

nism is illustrated by (C) and (D). RP remains the same in both illustra-

tions. Layer (D) increases in width because of the greater DSR, relative

to (C), which might be expected when deciduous incisors are com-

pared with second molars along the tooth row of the same individual

(Mahoney, 2015).

Fig. 6 Hypothetical relationship between Retzius line periodicity (RP)

and final enamel thickness of a tooth crown, and final attained adult

stature.
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