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Abstract

Evidence ofa periodic biorhythmis retained in tooth enaméh the form ofRetziws lines.
The periodicity of Retziudéines (RP) correlates withbody mass anthe scheduling oflife
history eventswhen compared betweesome mammaliaspecies. Tacorrelationhasled to
the development of thmter-specific HaverdHalberg Oscillation (HHO) hypothesis, which
holds great potential for studyirespects of fossil species biology froneeth Yet, our
understanding of if, or howhe HHOrelates tothuman skeletal growtis limited The goal
here is to_explore associations between the biorhythm and two hard tissuesrthai for
different times.during human ontogeny, within the context of the HHIGt, we investigate
the relationship oRPto permanent molar enamel tkitess and the underlyirttgily rate that
ameloblasts™secretenamel during childhood.Following this, we develop preliminary
research conducted on small samples of adult human botestiryg associations between
RP, adultfemoral length(as a proxy for &ined adult statureandcortical osteocyte lacunae
density (as a proxy for theate of osteocyteproliferatior). Results reveaRP is positively
correlatedwith enamel thicknessnegatively correlated with femoral lengthut weakly
associated withthe rate of enamel secretiomnd osteocyteproliferation. These new data
imply that a slower biorhythm predicts thicker enamel for children but shorter stature for
adults. Our resultsdevelop theintra-specific HHO hypothesis suggestingaththereis a
commonunderlying systemic biorhythm thaasa role inthefinal products ohumanenamel

and bone growth.
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Introduction

Biorhythms are cyclic changesam organism’s growth, development, or functiontingt are
driven by _andinternal biological ‘clockand synchronized througtenvironmental cues
(Hastings,,198). They have been linked tovariatiors in human bodytemperature,
metabolsm testosterone production, ovulatjcendrate of tooth eruptionReinbeg et al.,
1965; Littleand Rimmel, 1971; Sothern, 1974; Lee and Profitt, 1995; Garde et al). 2000
Human bath enametetairs evidence 6 periodic fluctuationghat occur as eamel forming
cells (secretory,ameladsts) deposit mineralising protein matr{Retzius, 1837; Asper,
1916).0ne of thesdluctuations manifestas cross striatiog, which areincremental enamel
markingsthat,corresponavith a circadian rhythm3chour and Poncher, 1937; Boyde, 1979,
1989; Risnes,"1986; Bromage 1991; Antoine et al., 2009; Lacruz et al., Zdiqjet al.,
2013) Another-longemperiod infradian rhythm leads toenamelRetzius lines(e.g., Dean,
1987; Risnes, 1990; Beynon, 199Retzius lines mark ‘layers’ of forming enamel that are
usuallyseparated by six to 12 days of growtthiimanpermanent teetffFig. 1), depending
upon the individualSchwartz et al., 2001; Reid and Dean, 2006; Reid and Ferrell, 2006;
Mahoney, 2008)The Havers Halberg Oscillation (HHO) hypothegigoposes thaRetzius
line periodicity (RP)the number of days betweadjacent Retzius lines a manifestatioof

a central infradian biorhythitinatregulateghe rate otbone cell proliferatiormandadult body
mass via metabolism with links to life history traits,when compared betweesome
mammalianspeciesBromage et al., 2009, 2012Much less is known about tipotential
role of this oseillatiorfor humanskeletalgrowth. Here, weextend our previousitra-specific
researchinig, the HHO in which we established associations betwdmmman deciduous
enamel growth and RfMahoney et al., 201&017). Weconstruct and test predictions about
the relationship oRP to human permanent enamel thickness and the undedgithgrate
that enamel formduring the childhood year8Ve develop preliminary research conducted on
small samples ohdulthumanbone (Bromage et al., 2045 by assessinthe relationship of
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adultfemoral lengthand theunderlying density of bone maintenance cells (osteociddRP.
Our goal is to exploréhe periodicity of the biorhythmagainsttwo hard tissues that form at
differentbut overlappindimes duringhuman ontogeny, within the context of #HelO.

Enamelbiorhythm s ofmammalsand the Havers-Halberg Oscillation hypothesis

Research intaelationshipsbetween theperiodicity of Retzius lines and somatigrowth

commereed in the 1990’svith those that suspected RP might relate to mammalian body size

(Dean,1995; Dean and Scandrett 1996). Soon after, studies established a significant inter

specific pasitivecorrelation letweenRP andaveragebody massn a selection oéxtant and

fossil mammalgSmith et al., 2003; Smith, 2008; Bromage et al., 200@t all primate

speciedollowed/this pattern (Hogg et al., 2015), and a lower rather than a higheidRéd

to a larger estimated body mass for three fossil species (8ezhetaal., 2002, 2005; Le

Cabec et al., 2017). Rbuer work reported intespecific associations between treriodicity

of the biorhythm and the schedulingliéé history traitsfor some primate speci¢Bromage

et al.,2012). The inter-specificHHO hypothesis developed out of these studies, and earlier

research on_ mammals (Mullender et al., 1996; Bromage et al., 2009, 2012).
Thebiolegical‘clock that regulates &zius lines isinknown Gven thatRP subdivides

into multiplesief/daily intervals, the supchiasnatic nucleus of the hypothalamus (SCiNJs

been identified a®ne likely contender(Bromage et al., 2012)The SCN is a source of

circadianrhythmic activity in mammalsRichter, 1965; Ralph et al., 1998uijino et al.,

2003),has been linketb the circadiarproduction of dentin (Ohtsukiaoya, 2001)andalso

has a role,irregulatingmetabolismvia the pituitary glandqWeaver, 1998; Kalsbeek et al.,

2011; Coomans et al.,, 20).3The HHO hypothesisdrew upon this biologicapathway

proposing thaiRetzius lineswere a manifestation of a longegveriod oscillation stemming

from the hypothalamus that employ®@N ‘machinery’ in its pathway to stimulgpéuitary

secretios that linled to metabolismpody massand primatelife history traits(Bromage et

al.,, 2012). Experimental research on domestic pigks aspects ofmetabolismto RP

(Bromage“et al., 2018. Further support for an intespecific HHO is provided by some

mammaliansspecies with slower metabolisms, and a larger body size combinadgkier

mean RPgrelative to those with smaller body size (Bromage et al. 2009).

Enamel biorhythms of humansand the Havers-Halberg Oscillation hypothesis
The idea thahumanenamel growth might be controlled by an underlying biolodiclaick’
is nota new one, as the presence of daily ecatgationsalong enamel prismisnplies that

secretory ameloblasts may be under circadian cowieolclock genes (maintainers of
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circadian rhythmsgluringamelogenesiéSchour and Poncher, 1937; Bromage, 1991; iAato
et al., 2009; Lacruz et al., 2012; Zheng et al., 2013). However, much less is known about the
potentialrole of thelongerperiod HHOfor humanenamelgrowth Recently we reported
links betweenRP, the width of enamel ‘layersdetween adjacent Retzilises andtwo
dimensional (2D), average and relative enamel thickneéshuman deciduous maxillary
second malarcrowns (din(Mahoney et al., 2016, 2017). We aldentified an association
between RP_and dnparacone aspformation time(Mahoneyet al., D16). The relationship
of RP todaily=enamel secretion rates (DSRs) was however less clear. When RP and DSRs
were calculated for dmin one homologous dental location and compared between
individuals there was a weakassociation between these variableslioney et al., 2017).
Prior toour researchenamel growtthad not been considered within the context of the HHO
hypothesis.Based upon our datave proposed that if RP is evidence tbe HHO, an
underlying=biorhythm that affects physiological systems (Bromage €t0419,2012), then
its influencesextends to enamel thicknass formation time of deciduousolarenamel but
wasless clearly associated witteciduousDSRs Mahoney et al., 2017). Up until nowo
study hasdetemined if there is a relationship betwe&P and humanpermanent molar
enamel thickness, or DSRs calculated for this tooth type.

Researclon four adulthumanshints ata negative correlation betweeddt statureand
RP (Bromagewet al., 20&p6 This shift away from thepositive corelationreported in inter
specificaresearchromammaian speciegsee abovejs to be expectedithin the context of
the HHO. Interspecifically, mammas with larger bodies tend to hawan extended growth
periodwith slowerrates of metabolism and assotgal cell proliferation which is eflected by
a highermean*RP gnd thus sloweoscillation of the biorhythmjelative to smaller bodied
speciegMuliender et al., 1996; Bromage et al., 2009Yithin humansthegrowth period is
constrained betwednirth and adulthoodso greater statuiis achieved byspeeding up’ the
biorhythm ¢educingthe periodicity),and thus increasingkeletal metabolism or the rate of
cell proliferation(Bromage et al., 269. Thus, ourcurrent understanding of tHéHO is
that interspecific scaling trends between RP and body size may be associated with alterations
in the duration.ef development, whereas within humaf®P may relate t@dult stature
throughvariation ingrowthrates(Bromage et al., 2009).

Preliminary sipportfor the HHO hypothesis within humanis provided by a study of
bone osteocyte lacunatensity Ot.Dn) (Bromage et al., 20H). Osteocytesare former
osteoblasts thdtecome trappeds they finish producingone matrix(e.g.,Palumbo et al.,

1990). Thesecells lave a complex functionalityhat includessensing mechanicéshear or
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strain)forces applied to bone, whi@ttivatesemodeling via the linked action of osteoblasts
and osteoclastge.g, Frost, 1987;Robling and Turner, 2002 Mullender et al., 207
Bonewald, 2007 Tatsumi et al.2007 Noble, 2008, detectingand initiatingmicro-damage
repair (e.g., Verborgt et al., 200Bermanet al.,2010); andin mineral homeostasig.g.,
Cullinane, 2002; Teti and Zallone, 200@akashima et gl2011) The Ot.Dn of healthy bone
can also varyswhen compartmpathological bone (e.g., Mullender et 2005 van Hove et
al, 2009. ‘In_addition to these potential influenc&3t.Dn cancorrespondwith body size
whereby Ot:Dnof the midshaft femurfrom 12 adut humansscaled positively witHfinal
attained adulstature (Bromage et al., 2046 This scaling relationshipuggests that the rate
of osteocyteproliferationis greater in talleadult individuals which isconsistent with the
hypothesisee@ffect of he HHO onhumanbody size.

Research questions and predictions

The background researgtrovides a foundation from which to formulate forgsearch
guestions, and from theg@edictionsthat will be tested by calculating®Rrom thin sections
of teethand comparing these values to measures of human skeletal growthre3dwch

guestons are-as'follows:

Do daily enamel secretion rates correlate with RP in permanent molars?

We have previgusly showRP does not exert aonsistentinfluence on thedaily rate that
ameloblasts_secrete structural matrix proteins as they increase the length of hydroxyapatite
crystallitesin deciduoussnamel(Mahoney et al., 2017)nstead,it seemsmore likely from
links we have reported, and by othdfsat theintra-specificHHO is related tahe end state

of enamelsgrowth(i.e., final enamel thicknessthrough formation time. These links
commenceassameloblasts secratdrix for an additional number of days between adjacent
Retzius linesleading to thickefenamel layers'with higher RP’s(Mahoney et al., 200.
Layers become thicker because ameloblasts do not greatly altdD#isias RP increases
when compared betweeouter lateral enamel regions dluman molarsfrom different
individuals Thicker layers accumulate lead to greater average enamel thickn@&ET) of

dn? crownswithshigher RP’s, relative to molars with lower RRahoney et al. 208).
Thickercrown enamel takes a longer period of time to forfior deciduous molar@ahoney
2011), and permanem¢eth (Dean et al., 2001).dfmation timeis correlated with RP, for
deciduous molaparacone cusgdlahoney et al., 2016nd for permanent mandibular canine
lateralenamel (Reid and Ferrell, 2006). Thus, unlike the HHO -speific predictiorfor

body masswhereRP links tofinal attained adulstaturethrough variation in growth rates
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(Bromage et al., 2009)ve suggesthat RPis notstronglyrelated tofinal enamel thickness

via daily enamel secretion ratéand is thus more likely to be relateddnamelformation

time). Thus, wepredicta weak association betwe&# andDSRsof permanent molars. To
examine the relationship between the circadian and the infradian rhythm in permanent
enamel, we separated outl5 M1’s from our sample, and calculated and carapRPs and

DSRs in oneshemologous locationaater lateraenamel of each crown.

Does permanent molar enamel thickness correlate with RP?

Two dimensional measurements AET from humandn? correlatel positively with RP

(Mahoney et al., 2016)Assumirg that RP is evidence afbiorhythm that affects multiple
physiological systems, including enamel growth, then we predict that its influelhestend

to permanent molar enamel thickne3$® test this predictionwe calculate2D AET and

enamel area (EAfor human permanent first (M1) and second molars (Kf@jn thin

sections and compare these values R¥s of the same teettBased pon findings for
deciduous_molarsRP of permanent molashould scale positively with oumeasures of

enamel thickness.

I sadult femoral length correlated with RP?

The intraspecific HHO predicts that greatadult height is achieved through a biorhythm
that is accelerate(Bromage et al. 20Ej, with a shorter periodicity To assess RP against
stature,we selected a sampfeyounger adult males with shorter femora, and compared these
to younger dult males with longer femora. We calculated RPdach male and compared
this value to histature(reconstructedrom femoral length The femur has been used within
regressiorequations for the pagftlyy years to reconstruct stature (e.g., Trotter, 190 see
methods)We.also compare RP to femoral length.

Isadult femoral length correlated with cortical bone osteocyte lacunae density?

The intraspecifie HHO predictshiat tallerhumans With longer femora grow more rapidly
with a fasterrate of osteocyteproliferation relative to shorter individualdData for 12
individuals indicag these faster rates are then maintained as ad@iribsnage et al., 20Hp.
As Ot.Dn carsometimes vary with age (e.g., Mullender et al., 1996) we subdividezhtieg
adult male sample into age groups and explored associations between Ot.Dstatung

within each group. We also assess Ot.Dn against adult femoral length, andRBainst
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M aterials and M ethods

Our samples areBuman skeletonfom one cemetery in Canterbury, Englaniat date to

the early 16th century AD (Hicks and Hicks, 200djstorical texts state that burials were
from a singlelower sociceconomic group that lived and worked in Canterband
represented*nepatastrophic mortalitfSomner 1703; Duncombe 1785; Brent 187@/e

have previously shown that tiperiodicity of the biorhythm can change in response to-non
specific'pathology (Mahoney, et al., 201&)e limited this type of variation in our data by

only selecing skeletonsand teethwithout skeletal or radiographic signs of pathology
drawing upon an extensive collection of accompanying radiographs that were produced at
Kent and Canterbury Hospital (Radiology Department) for any skeleton with suspected
trauma or'‘pathelogyAge-at-death is reconstructed fail skeletonssex is reconstructed for
adults (see Methods)hese collections areurated in theéSkeletal Biology Research Centre
University“of“Kent, UK. All sectioning adhered to the British Association of Bioldgica
Anthropolagy and Osteoarchaeology code of practice (2014). No permits were required for

this study as these are archaeological samples from beforetizafury AD.

Samples andtle chronology of skeletal growth

We selectedhreesamples ThroughoutRP is calculated for lateral enamelpgfrmaneniMi1
andM2. Lateral enamebf these tooth types forms betwesgproximatelyl.5 to 5.7 years of
age (Reid and Dean, 2006%amplesizes variedlepending upon the variables examined and
are given in the corresponding tables. One t¢aither M1 or M2)epresents one individual.

Raw data is-availabli@ Supporting Information.

a) The fitst sample wagiveniles (=40). We assesse®P againstdaily enamel secretion
rates andagainstenamel thicknessf the same molar§Ve chose juvenile&8yrs of age
for M1's; <13yrs for M2s) because enamel is often worn in adults, and this would have
affected our'measurements2id AET and EA Daily enamel se@tion rateof M1 and
M2 are,a measure of the ratewhichameloblastgreviously depos#d matrix during the
secretory phase @namel growthn the childhood yearsAverage enamel thickness and
EA of M1 and M2area measure of thend state ofhe secrtory stage of enamel growth

that isattained in childhood.
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b) The second sample wa®ung adult malesagedbetween 18 ta34yrs =27). We
assessed RP dieir M1 or M2 (representingher childhoodyearg, against theifemoral
cortical bone osteocyte lacan density, and final attaineddult stature Osteocyte
lacunar density in adult cortical bone likely represents a combination of lamellae
deposited during later ontogeny and in adulthoBohal attained adult stature is the end
state ofjlinear growtlof long bones via endochondral ossification over the course of
postnatal developmefitom birth to adulthoodin this study, we measure adult femoral
lengthras*a=proxy foattainedadult statureThe slight occlusal wear of someolars did
not affeetsour calculation of RP in lateral enamel, which is located cervicatdo on
the occlusal surfaceWe did not include older adults becausetladir greaterenamel
wear.

c) The third sample was aduttales, subdivided intdwo age groups (youngenales18-
34yrs,n=28;rolder males35-50yrs,n=94). We assessed femoradrtical Ot.Dn against
their estimated stature, and femoral length.

Sample prepardion for histology
We used [standard histological techniques (Bancroft and Gamble, 2008; Mahoney, 2008;
Miszkiewicz, 20B). Each tooth was embedded in polyester resin to reduce the risk of
splintering while sectioning. Using a diamewdfering blade (Buehler® IsoMet 4000
precision®saw), buccdingual sections captured the paracone and protocone of maxillary
molars and the protoconid and metaconid of mandibular permanent molars. Each s&stion w
mounted on._a_microscope slide, lapped using a graded series of grinding pads (Buehler®
EcoMet 300)to reveal incremental lines, polished with gu3aluminum oxide powder
(Buehler®Mero-Polish 11), placed in an ultrasonic bath to remove surface debris, dehydrated
through a series of alcohol baths, cleared (Histoclear®), and mounted with a caxvsenglip
xylene-based mounting medium (DPX®).

Dry, undecalcified bone measuringcm in depth was removed from the posterior
femoral midshaft cortex using a drill (Dremel Rotary®) with a circular metal bi&ag 2).
Only the posterior portion of the femoral diaphysis was used in order to keep thk overa
integrity-of the femur preserveir future research purposes. The bone was embedded in
epoxy resin, reduceith thicknesgBuehler® IsoMet 4000 precision saw), ground, polished,
and covesslippedfollowing the same procedures used to embed and prepare theTtaath

sections measured apgimately 10@um in depth.
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Retziusline periodicity

Using a highresolution microscope (Olympus® BX51), each sectwas examinedat
magnification 0-60x). Images were captured with a microscope digital camera (Olympus®
DP25) and.analyzed in CELL® Live Biology imaging software. We counted the number of
crossstriations alag aprism between severadjacent Retzius lines iouterlateral enamel

of M1 and*M2te determine the number of days between two adjaRettiuslines For
twelve thin-seectims, crossstriations were not clearly visiblend continuouslong prisms
between adjacent Retzius lines. For thesdve sectionswe divided the distance between
several adjacent Retzius lines by local mean daily secretion rates (e.g., Schwar208tal.
Mahoney et al.,/2007; Lacruz et al., 2008) did not include these sections in the analysis
of RP and=secretion ratesRetzius periodicity was recorded by S@d PM. Intraclass
correlation=ecoefficient of 0.996 (n= 40; 95% Cl= 0.92998; p=0.000) indicatesa high
degree of agreement betweabe two observers, with one differenoeRP calculationsThis

slide was removed from the study.

Enamel thickness
The2D AET in'mm was calculated by dividing the area of the ename(EEApby the length
of the dentirenamel junction (DEJ), which provides the average striightdistance

between the DEJ and outer enamel surface (Martin, 1983, 1985). EA is giveA.in mm

Enamel daily secretion rates

Secretion ratesm,um per daywere calculated for outeatieral enamel in the same region that

we recordedysRFie., avoiding inner and miénamelregionsas DSRs can varfrom one

region to the nexwithin a crown Lacruz and Bromage 2006 Rates were measured along

the long axis of an enamel prism. distancecorresponding to fivelays of enamel secretion

was measured, and then divided by five to yield a mean daily rate. The procedure was
repeated a minimum of six times in each region, which allowed a grand meanaadiue
standard deviation (SD) to be calcelkt The grand mean value wasmpaed to RP

calculated.in the same enamel region

Osteocytelacunae density

We use Ot.Dn as aroxy for the rate of(past) femoral corticalbone cell proliferation
Osteocyte lacunagensity data were collected as parad?hD project (Miszkiewicz, 2014)
We selectedemoral Ot.Dn, rather than osteon population densgy,that we couldlirectly
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test priorresearch gee above)Osteocyte lacunadensity is significantly correlated with
osteon population density this skeletal sampl@Miszkiewicz, 2016)Exploring associations
between Ot.Drandage, or at the initiation of remodeling (e.g., Metz et al., 2003), were not
aims of this study.

Using.a highresolution microscope (Olympus® BX5andOlympus DP25 microscope
camea) osteecyte lacurewere countedvithin secondary osteonal bone and interstitial bone.
Ot.Dn were, counted from a maximum of six main regions of inteRR&;(mag=10X, 2.44
mnY) positioned-adjacent to the periosteum, anddividled into smaller ROlsnfag=40X,

0.13 mnf)«(Fig=2). SeeMiszkiewicz (2016) for a detailed methodologf ROI's. Using
CELL® Live Biology Imaging software, all visible osteocyte laceirfancluding cavities
which appearetempty” or transpareftwere counted using a “touch coutdol (identical in
premise to_the "point count technique” recommended by Parfitt, 1983). Densities wer
calculatedsby-dividing the total number of osteocyte laelnyahe area of bone examined (in
mnt). We ackowledge thatutomated methods of osteocideunaedetection are available,
and ideally a whole long bone cressction should be examined (e.g. Hunter and Agnew,
2016). However, those techniques are better suited to fresh or “recent” bone willnéxce
microstructural ‘preservation. Given the laeological background (localised diagenetic
alteration of micreanatomy) of our sampleshere needed to be flexibility in our ROI
selection proecedures. This is because the ROl would sometimes have to be moved
fractionally to_avoidan area ofdiagenesis oobne that was affected kigphonomy.Clear

differences in osteocyte lacurdensities were observed across the salsele-ig. 2).

Stature estimationand femoral length

Femoral length /data were previously includedrobusticity index calculations asapt of
anotherproject_(Miszkiewicz and Mahoney, 2016), but correlations betw@eBn and
staturéfemur lengthare examinediere for the first time. The maximum length of each femur
was measured. by placing it flat on an osteometric hoants anatomical positiomwith the
posterior femoral aspect facing down. Femoral length was measured from the most superior
surface ofsthesfemoral head to the most distal surface of the medial condyle (Buikstra and
Ubelaker»2994). Standard, and most commonly used formulaedonstructing stature in
skeletal remains were used (Trotter, 1970; Wiital., 201). Thesewere specific to sex and
appropriate for individuals of European descent. Male stature was estimaed tlisi
regressiorequation: 2.3& femur maximun length in cm + 61.41 (+/3.27)(Trotter, 1970;

White et al., 2011).
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Sexdetermination and age-at-ceath
Sex determination was carried out using multgiendardnethodsto increase the accuracy
of thedetermination Werelied upon standard morphologicdlaracteristics of the pelvis and
cranium. The pelvic methods were based upon 25 morphological characteristics of éime hum
pelvis taken from Schwartz (1995), Ferembach et al., (1980), Krogman and Iscanai®86)
Phenice (1969)Cranial features icluded the mastoid process, supraorbital margin, mental
eminenceand nuchal cregBuikstraandUbelaker 1994). Wherdeterminations from cranial
and pelvicsfeatures conflicted, priority was giverthie pelvic criteria (Whitet al, 2011) In
the analyssy‘probable maleswereclassifiedas male

Age was estimated from agpecific morphology of the pubic symphysis, athe
auricular surface othe pelvis(e.g.,Meindl et al., 1985Lovejoy et al., 198p Two age

categories were constructed: younger achales 18-34 years; older aduthales35-50 years.

Analyses

Datawere@aralyzedin IBM SPSS®22 (2014).Eachvariablewas log-transformed. A one

sampleKolmogorov-Smirnoutestindicatedthat the distribution of the datdor eachvariable
wasnormal. Datafrom right andleft femora(onefemur was selectedrom eachindividual,

and eitherthe right or left depending upon preservationgre pooled.We analyzethe data
using linedrregressionstatigics. In Tables 1-2 we present the ’rvalue ¢oefficiert of

determination which measureshe proportion oexplainedvariation andwe alsoshowthe r
value (correlationcoefficient) which measureghe strength andlirection of the relationship
betweenvariables The residua) presentedas a percentagen the Tables is the error not

explainechy‘theregressiorequation.
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420

421 Results

422  Retziusline periodicity, enamel thicknessand secretion rates

423  Regressionstatisticsare in Table 1. Corresponding ata for the sample of juvenilesis
424  availablein. Suppating Information Table S1 When datafor all tooth typesare combined,
425 the enamelareas andAET of permanenimolar crowns vere significantly and positively
426  relatedwith RPyinereasingrom minimum valuesthatwereassociatedavith an RP of 6 days
427  to maximum valuesthat were associatedvith RP’s of 10 and 11 dayeespectively(Fig 3a.
428  Fig 4a). When'subdividedinto either M1’'s or M2’'s andre-analyzed RP was significantly
429 relatedto EA andAET (Table1). Whenfurther subdividednto upper orlower molars,RP
430  wassignificantlyrelatedto EA (Fig 4b-d). AET wasalsosignificantlyrelatedto RPfor each
431 upper andlower molar type exceptlower M2 where this relationship approached
432 significance(r’=0.287;p=0.072).

433 When15"permanentirst molarswere separatedrom the sample,and RPsand DSRs
434  weremeasuredndcomparedetweenthemolarsin one homologoukcationin outerlateral
435  enamelof eachcrown,therewasno consistenor significantassociatiorwith the periodicity
436  of Retziuslines

437

438  Retzus line periadicity, femoral length and osteocyte lacunadensity

439  Regressiorstatisticsarein Table 2. The corresponding datses for younger and oldemale
440 adultsareavailablein SupportingnformationTableS2andTableS3 Estimatedstature(and
441  femoral length)was significantly and negativelyrelatedwith RP §ig. 3b). The densityof
442  osteocytelacunae didchot relatesignificantly with RP (Table 2). Gsteocytelacunae density
443  wasnot significantly relatedto femorallength,or staturefor youngermales(Table 2). There
444  was a weak relationshipbetweenOt.Dn and staturethat approachedsignificancein older
445  malesthough thaesidualwashigh (>=0.030;p=0.089).

446

447  Discussion

448  This study.builds upon our previous work that examined relationships of RRntan
449  deciduousmelar enamelgrowth,and extends preliminary reseaialo associations between
450 RP and human aduliemoral corticalbone growth(Bromage et al., 20 Mahoney et al.,
451 2016, 201). We examined the relationship permanenmolardaily enamel secretion tes
452  to RP, and of osteocyte proliferation to RP. We find limited eviddoceither of these
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relationships but did find strongerevidence of linkages betwedRP, permanentmolar

enamel thicknessind stature.

Retziusline periodicity, enamel thicknessand secreion rates

Our data supparthe prediction thatthe periodicity of thebiorhythm is associated with
enamel thicknessvhen considered within amaller intraspecific scale, within humans.
However, & with deciduous molars (Mahoney, et al., 20¥p,wasmoreweakly associated
with DSRswhen compared betwe@ermaneniolarsfrom different individualsTherefore,
even thouglRPsis calculated by a count of cross striatimagiation in thebiorhythmis not
always associatedith the amountof matrix deposited byameloblasts in 24our period
(Fig. 5). Instead, it seems likely th&P canlink to the final enamelthickness of ehuman
crown throughformation time RPis related to the time taken tdorm part of a deciduous
and permanent:tooth crown (Reid and Ferrell, 2PRHhoney et al., 2016), and formation
time isrelata«to humanenamel thicknes@ean et al., 2001; Mahoney 201Thus, inter-
individual variation in the periodicity of theiorhythmmay have a clearer associatiwith
final enamethickness through the duratiaather than the daily ratd enamel growth. More
work is neededo understandf and how these developmental mechamsisthangewithin a
specieqFig 5).

The propesal thaaspects oknamel growthare controlled by a longeriod biological
‘clock with_an_infradian rhythmwhether it is the HHO via the SCof the brain, or a
different ‘peripheral’ independent ‘clock’ (Hastings, 1998), or even more than ond’‘cloc
(Newman and Poole, 1974, 1993), is a hypotheSist datafor humanpermanenteeth, and
deciduousteethi(Mahoney et al., 2016, 20}, 7provide support for this hypothesi$he
infradian rhythm(reflected by RPappears to havenassociation withinal enamel thickness
of a crown but is inconsistently related to ettdaily amount of enamel secreted by
ameloblasts as these cells respond ¢or@adian rhythm(reflected by cross striations)rhe
infradian rhyhm likely has a systemic origigs RP can alterwithin a single crownin
response to negpecific pathology Nlahoney et al.2017. The longetperiod rhythm is
intrinsic to enamel growth, not onlyelating to final enamel thicknessbut also the
microstructural components of enanfptisms) which can bereduced in size, or have an
altered morphology when assoeidtwith Retzius linegRisnes, 1990,1998; Li and Risnes,
2009. Perhaps therefore, the infradian rhytperiodicallymodifiesameloblast metabolism,
interfering with enamesecretionof ameloblastsleading to the altered prisetructurethat

can be associated with Retzius lines
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There is substantial residual in the relationship of RP to enamel thickredds 1), as
even the strongest correlatiomgplain just over half of the variation in our data. So, there are
other factors operating as well. Enartietkness is a product of severaéchanismsother
than those considered here, such as the number of active ameloblasts and theirslife span
(Grine and, Martin, 1988; Macho, 1995). We have only considered the rate that enamel grows
in thickness;=but Wwether the rate that enamel crowns extend in height (enamel extension
rates), as ‘epithelium cells differentiate into-preeloblasts down along the dertinamel
junctions(DEJ)yis linked to RP, has yet to be determiGadatelliSteinberg and colleagues
(2012) haveralready shown links between DEJ lengths and lateral enamel formatiodsme
RP is corrglated witenameformation timeqReid and Ferrell, 2006; Mahoney et al., 2016),
it would seem possible that extension rates can reldké®.

Retziuslinepperiadicity, femoral length, and osteocye lacunae density
Our data supporthe intra-specific HHO predictionthat taller adultwith longer femora)
have a lower RRBromage et al., 20H. Thus, the biorhythm oscillates with faster
periodicityintaller humans compared to those with shorter femokowever, wefound less
support for theprediction that taller adults maintaignificantly faster rates offemoral
osteocyteproliferation relative to shder adults Osteocyte density did not relati® stature
or femoral length amongst our sample yafung adultmales, though it appeared to be
trendingstowards significancevith a high residualamongstolder males(Table 2 and
footnotes). Mither did RP relate to Ot.Dn in a small sample Thus, the bichythm is
significantly, linked to adult stature, bubeither the biorhythm nor stature are linked to
osteocyte proliferann of the femur

Osteocyesshave a complex functionality (see Introduction) thaadidition to potential
influences’ of body sizeprobablyinfluences their distribution in cortical boreading to
significant variation in the numbers across the femoral shafiy., Carter et al. 2013, 2014).
For examplean anatomical region caadapt to mechanical loading, adding and removing
new lone tissuen response to loading or disuse (Wolff, 1892; Robling et al., 2B0d; et
al., 2003. Ourosteocyte lacunagata ardrom one anatomical region, the posterior femoral
mid-shaft,cortex, and just the spleriosteal pocket, which is where newnbois usually
deposited in response to excessive load (Robling et al., 2006). There is substantial inte
individual variation inOt.Dn values from this region (younger adulisgebetween 394.87
and 1307.69; middle aged adults between 305.77 and 1255d8g of this variation in

Ot.Dn probablyreflecs dfferences in femoral mechanical loading between individuals, as
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521 some aduls in our samplewould have been employed ithe physically demanding

522 occupations that were typical of lower seeionomic lifestles in medieval Canterbury

523  (Miszkiewicz and Mahoney, 2016).

524

525 Variation in adult stature isot strongly related to differences among individuals in the
526 rate of femoral, osteocyte proliferation, but it is related to RP (Table 2). This finding makes
527 sensefiRPuis linked to the duration in which stature is attaifeetpubertal growth velocity

528 differencesscanmunderlgdult stature differences within some populatid¢esy., Gasset990;

529 Gasseet aly»2001), but not all populatianinstead, the timingf the pubertal growth spurt

530 can contribute tothe age adult height is attained, for females compared to males (e.qg.,
531  Tanner, 1990; Roche, 1992; Gasser et al., 2000), and within the Biges dnd Taranger,

532 1991, Baer et al., 2006).ate maturing Swedish boys continued to grow between 18 to 25
533 years of agepattaining significantly greater growth in height during this period ander grea
534 final staturemeompared to early maturing boys whose height increased only slitgntgoa

535 18 (Hagg/@and Taranger, 199The Nurses’ Health Study (II) in the USA, which is based
536 upon large sample sizes, indicates that females with delayed puberty are older when they
537 attain their finalhand greater adult height, compared to females with a shorter adult stature
538 (Baer et al., Q06). Further researcmight explore potential linkages between the frequency
539 that the biorhythm oscillates aride age thaadult statures attained as tke duration of the

540 growth period may be an important link R for aspects of both enamel and bagrewth

541  Variation in growth velocitiegand Ot.Dn compared to RP amongst childreimouldalso be

542  examined
543

544  The biorhythm of human skeletal growth

545  The direction of the correlation between RP and enamel thickness is positivegainene
546 whenRP is related to statureOur dataimplies that achild from Canterburywith a slow

547  biorhythm/between birth and five or gnears of agattainedthickerdeciduous (Mahoney et
548 al., 2016) 'anermanent molar enamelompared to anotherhild with a faster biorhythm

549 that developed thinner enam@tig. 6). A child from the same populatiowith a fast

550  biorhythmsattaired a greater adult stature. These findings imply that the biorhythm may
551  coordinatedifferentaspects of human skeletal growterhaps a child with a slooscillation

552  attains thicker enamel bincreasng the duration of crown enamel growthearly on in

553  ontogeny, at the expense of subseqéemmbral growthin length and attained adult height.

554 Alternatively, he change in the direction of the correlatiorymeflect a biorhythm that

555 does not remain constant within an individual. We have previously shown that RP can change
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within an individualat theerd of the first poshatal yea(Mahoneyet al., 2017)The change
in RP, from deciduous to permanemblars,suggests thahe biorhythmproducesa sequence
of RPsfor an individual, rather than single andstatic value In the present studyye
focused orpermanenM1s andM2s, whoseenamelforms between birth anfive to six years
of age(Reid and,Dean, 2006t seems likely thaRP remainsconstant during thiagerange
within an individua] ascomparisondetweensmall samples of permanent anterior tebtt
form at about the same tinaspermanentnolars(FitzGerdd, 1998), as well asomparisons
betweenmolar-typeswithin four individuals (Reid et al., 1998)evealno variationin RP.
Whether thesperiodicity of the biorhythm changes in humans beyond 11 years of age, after
third molar crown enamdias formedis unknown Therefore the relationship we escribe
betweenRP during the early childhood yearsand adult stature might not describe this
relationshipin later ontogenyif RP changescloser to adulthood, pif bone modifies its

respomsetorthesbiorhythm with age.

Conclusion

We examined,the lationship of enamel secretion rates to evidence wbrhythm retained
in human geetlas Retziudine periodicity, and of cortical bone osteocyte pfetation to
Retzius periodicity We found only limited evidender eitherof these relationships, bute
did find'strengerevidence of linkages between RP gra&fmanent molar enamtickness
(end state.of"enamel growtlgndRP andfinal adult stature(end state of linear growtim
long bones) Our findings develop the intrapecific HHO hypothesissuggeting that the
biorhythmhas arole in human skeletal growth and the development of more tharhanke
tissue
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Table 1 Linearregression analyses of {Bgtzius periodicity against legnamel growth.

ENAMEL n Intercept Slope r? p Residual
ThicknessRPVv EA

All 40 0.755 0.569 0.697 0.486 <0.001* 55%
M1 25 0.826 0.489 0.615 0.378 0.001* 64%
M2 15 0.639 0.703 0.806 0.650 <0.001* 43%
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970

971

972

973

974

975

ThicknessRPv AET

All 40
M1 25
M2 15

Rate.RPVDSR

M1 15

-0.426

-0.391

-0.542

0.817

0.432 0.604 0.365
0.384 0.577 0.333
0.580 0.720 0.519
-0.098  0.009 0.000

0.002*

0.004*

0.002*

0.714

63%

68%

44%

98%

Tooth types: M1, permaneffitst molar; M2, permanensecondmolar. *Significant. EA:

Enamel area. AET: Average enamel thickness.DSR: Daily secretionrate. RP: Retzius

periodicitysRPWEA: Lower M1 (n=13): F= 0.491,p= 0.007*. UppeM1 (n=12): P= 0.633,
p= 0.001* “Lower M2 (n=12): = 0.603,p= 0.002*. RP v AET: Lower M1 (n=13): F=
0.338,p= 0.037* UppeM1 (n=12): = 0.482,p= 0.012*. Lower M2 (n=12): = 0.287,p=

0.072. UppeM2 excludedrom separatenalyds asn=3.
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BONE n Intercept Slope r r p Residual

Stature.RPv $

Younger M 27 2.309 -0.082 -0.417 0.213 0.015* 74%

Rate. RPv Ot.Dn

Younger M 10 3.232 -0.401  -0.370  0.159  0.326 90%
Rae. S vOL.Dr

Younger M 28 2.171 0.019 0.199 0.039  0.317 94%
OlderM 94 2.185 0.016 0.175 0.030  0.089 93%

Table 2Linear regression analyses of {Bgtzius periodicity against lelgone growth.

S: Estimatedstature RP: Retziusperiodicity.M: Males.Ot.Dn: Osteocytdacunaedensity.
®Femorallength.VRP: Young Mintercept=3.232, slope= -0.1357-0.492,p=0.020*.
Ot.Dn v femorallength: Young Mintercept=1.567, slope= 0.030, r=0.19850.317.0lder
M intercept=1.587,slope=0.025, r=0.176p=0.088.
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