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SUMMARY: Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum,

which are usually collected on discretized grids with measurement errors. In order to accurately smooth noisy functional

observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the

Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced

model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through

Markov chain Monte Carlo methods. Compared to the standard Bayesian inference that suffers serious computational burden and

instability in analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability,
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while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in

a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids.

Simulation and real studies demonstrate that our method produces similar results to those obtainable by the standard Bayesian

inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and

high-dimensional observation grids when the standard Bayesian inference fails. In conclusion, our method can efficiently smooth

and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional

data analysis with Gaussian-Wishart processes.

KEY WORDS: Bayesian hierarchical model; basis function; functional data analysis; Gaussian-Wishart process; smoothing;
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1. Introduction1

Functional data — defined as realizations of random functions varying over a continuum (Ramsay2

and Silverman, 2005) — include a variety of data types such as longitudinal data, spatial-temporal3

data, and image data. Because functional data are generally collected on discretized grids with4

measurement errors, constructing functions from noisy discrete observations (referred to as5

smoothing) is an essential step for follow-up analysis (Ramsay and Dalzell, 1991; Ramsay and6

Silverman, 2005). However, the smoothing step has been neglected by most of the existing7

functional data analysis (FDA) methods, which integrate functional representations in the analysis8

models. For examples, functional data and effects are represented by basis functions in functional9

linear regression models (Cardot et al., 2003; Hall et al., 2007; Zhu et al., 2011), functional10

additive models (Scheipl et al., 2015; Fan et al., 2015), functional principle components analysis11

(Crainiceanu and Goldsmith, 2010; Zhu et al., 2014), and nonparametric functional regression12

models (Ferraty and Vieu, 2006; Gromenko and Kokoszka, 2013); as well as represented by13

Gaussian processes (GP) in Bayesian nonparametric models (Gibbs, 1998; Shi et al., 2007;14

Banerjee et al., 2008; Kaufman and Sain, 2010; Shi and Choi, 2011).15

On the other hand, most of the existing smoothing methods process one functional sample at a16

time, such as cubic smoothing splines (CSS) and kernel smoothing (Green and Silverman, 1993;17

Ramsay and Silverman, 2005). Consequently, when multiple functional observations are sampled18

from the same distribution, these methods of individual smoothing lead to less accurate results,19

by ignoring the shared mean-covariance functions. Alternatively, Yang et al. (2016) proposed20

a Bayesian hierarchical model (BHM) with Gaussian-Wishart processes for simultaneously and21

nonparametrically smoothing multiple functional observations and estimating mean-covariance22

functions, which is shown to be comparable with the frequentist method — Principle Analysis23

by Conditional Expectation (PACE) proposed by Yao et al. (2005b).24

BHM assumes a general measurement error model for the observed functional data {Yi(t); t ∈
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T , i = 1, · · · , n},

Yi(t) = Zi(t) + εi(t); Zi(·) ∼ GP (µZ(·),ΣZ(·, ·)), εi(·) ∼ N(0, σ2
ε ); σ

2
ε ∼ IG(aε, bε), (1)

µZ(·)|ΣZ(·, ·) ∼ GP

(
µ0(·),

1

c
ΣZ(·, ·)

)
, ΣZ(·, ·) ∼ IWP (δ, σ2

sA(·, ·)); σ2
s ∼ IG(as, bs);

where {Zi(t)} denotes the true functional data following the same GP distribution, IG denotes25

the Inverse-Gamma prior, IWP denotes the Inverse-Wishart process (IWP) prior (Dawid, 1981)26

for the covariance function, and (µ0(·), c, δ, A(·, ·), aε, bε, as, bs) are hyper-prior parameters to27

be determined. The IWP prior enables the BHM to analyze both stationary and nonstationary28

functional data with nonparametric covariance models. In addition, σ2
s provides the flexibility of29

estimating the scale of the covariance structure (A(·, ·)) in the IWP prior from the data. Because30

of the hierarchical representation of Zi(t) in (1), the proposed hierarchical model (1) can also be31

viewed as a generalization of the spatial random-effect GP regression model considered in Quick32

et al. (2013).33

However, just like the other GP based models, the BHM suffers serious computational burden34

and instability when functional data are observed on high-dimensional or random grids. To address35

this computational issue of GP based models, existing reduce-rank methods focus on kriging36

with partial data (Cressie and Johannesson, 2008; Banerjee et al., 2008), implementing direct37

low-rank approximations for the covariance matrix (Rasmussen and Williams, 2006; Quiñonero38

Candela et al., 2007; Banerjee et al., 2013), and using predictive processes (Sang and Huang,39

2012; Finley et al., 2015). Although these reduce-rank methods can be applied to the standard GP40

regression models (Shi et al., 2007; Banerjee et al., 2008; Kaufman and Sain, 2010) that only model41

group-level GPs with parametric covariance functions, they will greatly increase the complexity42

in BHM for handling signal-specific posterior GPs, mean GP, and the IWP prior. For example, the43

corrected predictive process methods (Sang and Huang, 2012; Finley et al., 2015) need to handle44

different residual processes for all functional observations, mean GP, and the IWP prior. Moreover,45

these low-rank methods require fairly large rank to perform well for high-dimensional data, which46
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results in high computational cost (Datta, Banerjee, Finley, and Gelfand, 2016). Stein (2014)47

further theoretically (using Kullback-Leibler divergence) proved that the low rank approximation48

performs poorly under particular settings.49

Here, we propose a novel Bayesian framework with Approximations by Basis Functions for50

the original BHM method, referred to as BABF, which is computationally efficient and stable51

for analyzing high-dimensional functional data. Basically, we approximate the underlying true52

functional data {Zi(t)} with basis functions, and derive an induced Bayesian hierarchical model53

for the basis-function coefficients from the assumptions of BHM (1). Then we conduct posterior54

inference for functional signals {Zi(t)} and mean-covariance functions (µZ(·),ΣZ(·, ·)), by55

Markov chain Monte Carlo (MCMC) under the induced model of basis-function coefficients,56

namely by MCMC in the basis-function space with a reduced rank. As a result, our BABF57

method not only improves the computational scalability over the original BHM, but also inherits58

the advantage of modeling the functional data and mean-covariance functions in a flexible59

nonparametric manner. In addition, because of basis function approximations, BABF can naturally60

handle functional data observed on random or uncommon grids.61

Thus, our basis function approximation approach has two-fold advantages: (i) Compared to the62

alternative reduce-rank approaches, it is easier to apply to Bayesian hierarchical GP methods that63

model individual levels of GPs (e.g., BHM). (ii) It induces a nonparametric Bayesian model with64

a Gaussian-Wishart prior for the basis-function coefficients, which is different from modeling the65

basis-function coefficients as independent variables as in the standard functional linear regression66

models (Cardot et al., 2003; Hall et al., 2007; Zhu et al., 2011) and functional additive models67

(Scheipl et al., 2015; Fan et al., 2015), and also different from directly modeling the basis-function68

coefficients in semiparametric forms as in Baladandayuthapani et al. (2008).69

By simulation studies with both stationary and nonstationary functional data, we demonstrate70

that BABF produces accurate smoothing results and mean-covariance estimates. Specifically, when71



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

4 Biometrics, 000 0000

functional data are observed on low-dimensional common grids, BABF generates similar results72

to those obtainable by BHM. When functional data are observed on high-dimensional or random73

grids, BHM fails because of computational issues, while BABF efficiently produces smoothed74

signal estimates with smaller root mean square errors (RMSEs) than the alternative methods75

(aforementioned CSS and PACE).76

Furthermore, using a real application with the sleeping energy expenditure (SEE) measurements77

of 106 children and adolescents (44 obese cases, 62 controls) over 405 time points (Lee et al.,78

2016), we show that BABF captures better periodic patterns of the measurements, producing79

more reasonable estimates for the functional signals and mean-covariance functions. Moreover,80

compared to the raw data and smoothed data by CSS and PACE, the smoothed data by BABF lead81

to better classification results for the SEE data.82

This paper is organized as follows: We provide the details of the BABF method and the83

corresponding posterior inference procedure in Section 2. We present simulation and real studies84

in Sections 3 and 4, respectively. Then we conclude with a discussion in Section 5.85

2. BABF method86

Because BHM (Yang et al., 2016) conducts MCMC on the pooled observation grid for handling87

uncommon grids, it has computational complexity O(np3m) with n samples, p pooled-grid points,88

and m MCMC iterations. To resolve the computational bottleneck issue for smoothing functional89

data with large pooled-grid dimension p by BHM, we propose our BABF method by approximating90

functional data with basis functions under the same model assumptions in (1).91

2.1 Approximation by basis functions92

First, we approximate the GP evaluations {Zi(τ )} by a system of basis functions (e.g., cubic

B-splines), with a working grid based on data density, τ = (τ1, τ2, · · · , τL)T ⊂ T , L << p.

Let B(·) = [b1(·), b2(·), · · · , bK(·)] denote K selected basis functions with coefficients ζi =
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(ζi1, ζi2, · · · , ζiK)T , then

Zi(τ ) =
K∑
k=1

ζikbk(τ ) = B(τ )ζi. (2)

Assuming K = L, we can write ζi = B(τ )−1Zi(τ ) as a linear transformation of Zi(τ ). Note that93

even if B(τ ) is singular or non-square, ζi can still be written as a linear transformation of Zi(τ )94

with the generalized inverse (James, 1978) of B(τ ). Consequently, the true signals {Zi(ti)} can95

be approximated by {B(ti)ζi} with given {ζi}.96

Next, we derive the induced Bayesian hierarchical model for the basis-function coefficients {ζi}.

Because ζi is a linear transformation of Zi(τ ) that follows a multivariate normal distribution

MN(µZ(τ ),ΣZ(τ , τ )) under the assumptions in (1), the induced model for ζi is

ζi ∼MN(µζ, Σζ); µζ = B(τ )−1µZ(τ ); Σζ = B(τ )−1ΣZ(τ , τ )B(τ )−T . (3)

Further, from the assumed priors of (µZ(·),ΣZ(·, ·)) in (1), the following priors of (µζ,Σζ) are97

also induced:98

µζ|Σζ ∼ MN
(
B(τ )−1µ0(τ ), cΣζ

)
; (4)

Σζ ∼ IW (δ, σ2
sB(τ )−1A(τ , τ )B(τ )−T ). (5)

Then, we can estimate ({Zi(·)}, µZ(·),ΣZ(·, ·)) by a Gibbs-Sampler (Geman and Geman, 1984)99

with computation complexity O(nK3m) under the above induced model of {ζi}. Details of the100

Gibbs-Sampler (MCMC) are provided in Section 2.3.3. We take the corresponding averages of the101

posterior MCMC samples as our Bayesian estimates, whose uncertainties can easily be quantified102

by the MCMC credible intervals.103

2.2 Hyper-prior and basis-function selections104

Before describing the MCMC sampling procedure, we first discuss the issues of selecting105

hyper-priors, basis functions, and the working grid for the BABF method.106

To set hyper-priors, we use the same data-driven strategy as BHM (Yang et al., 2016).107

Specifically, we set µ0(·) as the smoothed sample mean, and c = 1, δ = 5 for uninformative priors108
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of the mean-covariance functions. We set A(·, ·) as a Matérn covariance function (Matérn, 1960)109

for stationary data, or as a smooth covariance estimate for nonstationary data (e.g., PACE estimate,110

smoothed empirical estimate). A heuristic Bayesian approach is used for setting the values of111

(aε, bε, as, bs), by matching hyper-prior moments with the empirical estimates.112

Although the induced model makes BABF robust with respect to the selected basis functions113

and working grid, appropriately selected basis functions and working grid will help improve114

the performance of BABF. The general strategies of selecting basis functions for interpolating115

over the working grid apply here, e.g., selecting Fourier series for periodic data, B-splines for116

GP data, and wavelets for signal data. Our choice of B-splines is widely used by GP regression117

methods (Rasmussen and Williams (2006); Shi et al. (2007)). For constructing the basis functions118

of B-splines, the optimal knot sequence for best interpolation at the working grid τ can be obtained119

using the method developed by Gaffney and Powell (1976); Micchelli et al. (1976); de Boor (1977),120

and implemented by the Matlab function optknt. The working grid τ can be chosen to represent121

data densities over the domain, such as given by the
(

1
L+1

, · · · , L
L+1

)
percentiles of the pooled122

observation grid. As for the dimension L of the working grid, one may try a few values with123

a small testing data set, and then select the optimal one with the smallest RMSE of the signal124

estimates.125

BABF inherits the advantage of nonparametrically smoothing without the necessity of tuning126

smoothing parameters, where the amount of smoothness in the posterior estimates is determined127

by the data and the IWP prior of the covariance function.128

2.3 Posterior inference129

For BHM (1), the joint posterior distribution of (Z, µZ ,ΣZ , σ
2
ε , σ

2
s) is130

f(Z, µZ ,ΣZ , σ
2
ε , σ

2
s |Y ) ∝ f(Y |Z, σ2

ε )f(Z|µZ ,ΣZ)f(µZ |ΣZ)f(ΣZ |σ2
s)f(σ2

ε )f(σ2
s), (6)

Z = {Z1(ti), · · · , Zn(tn)}, Y = {Y1(ti), · · · , Yn(tn)}.
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Equivalently, because of ζi = B(τ )−1Zi(τ ), the joint posterior distribution of (ζ,µζ,Σζ, σ
2
ε , σ

2
s)131

is132

f(ζ,µζ,Σζ, σ
2
ε , σ

2
s |Y ) ∝ f(Y |ζ, σ2

ε )f(ζ|µζ,Σζ)f(µζ|Σζ)f(Σζ|σ2
s)f(σ2

ε )f(σ2
s), (7)

ζ = {ζ1, · · · , ζn}, µζ = B(τ )−1µZ(τ ), Σζ = B(τ )−1ΣZ(τ , τ )B(τ )−T .

2.3.1 Full conditional distribution of ζi. From (7), we can see that

f(ζ|Y ,µζ,Σζ) ∝ f(Y |ζ, σ2
ε )f(ζ|µζ,Σζ).

Then the full conditional posterior distribution of ζi is derived as133

ζi|(Yi(ti),µζ,Σζ) ∼MN
[
mζi|Yi

, Vζi|Yi

]
; (8)

Vζi|Yi
=
(
B(ti)

TB(ti)
σ2
ε

+ Σ−1
ζ

)−1

, mζi|Yi
= Vζi|Yi

(
B(ti)

TYi(ti)
σ2
ε

+ Σ−1
ζ µζ

)
.

2.3.2 Full conditional distribution for µζ , Σζ . Conditioning on {ζi}, the posterior distribution

of (µζ , Σζ) is

f(µζ,Σζ|ζ1, . . . , ζn) ∝
n∏
i=1

f(ζi|µζ,Σζ)f(µζ|Σζ)f(Σζ),

where f(µζ|Σζ) and f(Σζ) are given by (4), (5). Therefore,134

µζ|(ζ1, . . . , ζn,Σζ) ∼MN
(

1
n+c

(
∑n

i=1 ζi + cB(τ )−1µ0(τ )) , 1
n+c

Σζ

)
; (9)

Σζ|(ζ1, . . . , ζn,µζ) ∼ IW (δ̃ζ , Ψ̃ζ), (10)

δ̃ζ = n+ 1 + δ, Ψ̃ζ =
∑n

i=1(ζi − µζ)(ζi − µζ)T+

c(µζ −B(τ )−1µ0(τ ))(µζ −B(τ )−1µ0(τ ))T + σ2
sB(τ )−1A(τ , τ )B(τ )−T .

2.3.3 MCMC procedure. We design the following Gibbs-Sampler algorithm for MCMC,135

which ensures computational convenience and posterior convergence.136

Step 0: Set hyper-priors (Section 2.2) and initial parameter values. Initial values for137

(µZ(τ ),ΣZ(τ , τ ), σ2
ε ) can be set as empirical estimates, which will induce the initial values for138

(µζ,Σζ) by (3).139
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Step 1: Conditioning on observed data Y and (µζ,Σζ, σ
2
ε ), sample {ζi} from (8).140

Step 2: Conditioning on ζ, update µζ and Σζ respectively from (9) and (10).141

Step 3: Conditioning on ({ζi},µζ,Σζ), approximate {Zi(ti), µZ(ti), ΣZ(ti, ti),

ΣZ(τ , ti),ΣZ(ti, τ ),ΣZ(τ , τ )} by

Zi(ti) = B(ti)ζi, µZ(ti) = B(ti)µζ, ΣZ(ti, ti) = B(ti)ΣζB(ti)
T ,

ΣZ(τ , ti)
T = ΣZ(ti, τ ) = B(ti)ΣζB(τ )T , ΣZ(τ , τ ) = B(τ )ΣζB(τ )T .

Step 4: Conditioning on Z and Y , update σ2
ε by

IG

(
aε +

1

2

n∑
i=1

pi, bε +
1

2

n∑
i=1

(Yi(ti)− Zi(ti))T (Yi(ti)− Zi(ti))

)
,

which is derived from

f(σ2
ε |Y1(t1), Z1(t1), · · · , Yn(tn), Zn(tn)) ∝

n∏
i=1

f(Yi(ti)|Zi(ti), σ2
ε )f(σ2

ε ).

Step 5: Given Στ = ΣZ(τ , τ ), update σ2
s by

σ2
s |Στ ∼ G

(
as +

(δ +K − 1)K

2
, bs +

1

2
trace(A(τ, τ )Σ−1

τ )

)
,

which is derived from

f(σ2
s |Στ ) ∝ f(Στ |σ2

s)f(σ2
s).

Generally, the posterior samples will pass the convergence diagnosis by potential scale reduction142

factor (PSRF) (Gelman and Rubin, 1992), with a fairly large number of MCMC iterations (e.g.,143

12,000 in our numerical studies).144

3. Simulation studies145

In the following simulation studies, we compared the BABF method with CSS (Green and146

Silverman, 1993), PACE (Yao et al., 2005a), Bayesian functional principle component analysis147

(BFPCA) (Crainiceanu and Goldsmith, 2010), standard Bayesian GP regression (BGP) (Gibbs,148

1998), and BHM (Yang et al., 2016). We considered scenarios with stationary and nonstationary149

functional data, common and random observation grids, Gaussian and non-Gaussian data. Because150
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both BFPCA and BGP are developed for common-grid scenarios, BHM has computational issues151

with a high-dimensional pooled-grid (the case with random grids), and BHM is known to be152

comparable with PACE (Yang et al., 2016); we compared all methods in the common-grid153

scenarios, but only compared BABF with CSS and PACE in the random-grid scenarios.154

Because simulation data were evenly distributed over the domain, we selected an equally spaced155

working grid with size L = 20 for BABF. CSS was applied to each functional observation156

independently with the smoothing parameter selected by general cross-validation (GCV). For157

BFPCA, we used the covariance estimate by PACE, and selected the number of principle functions158

subject to capture 99.99% data variance. For BGP, we assumed the Matérn model for the covariance159

function with stationary data, while fixing the covariance at the PACE estimate with nonstationary160

data. All MCMC samples consisted of 2, 000 burn-ins and 10, 000 posterior samples, and passed161

the convergence diagnoses by PSRF (Gelman and Rubin, 1992).162

3.1 Studies with common grids163

We generated 30 stationary functional curves (true signals) on the common equally-spaced-grid

with 40 points over T = (0, π/2), denoted by Z, from

GP (µ(t) = 3 sin(4t),Σ(s, t) = 5Materncor(|s− t|; ρ = 0.5, ν = 3.5)). (11)

Here, Materncor denotes the Matérn covariance function given by

Materncor(d; ρ, ν) =
1

Γ(ν)2ν−1

(√
2ν
d

ρ

)ν
Kν

(√
2ν
d

ρ

)
, d > 0, ρ > 0, ν > 0,

where ρ is the scale parameter, ν is the order of smoothness, Γ(·) is the gamma function, andKν(·)164

is the modified Bessel function of the second kind. The noise terms {εij} were generated from165

N(0, σε =
√

5/2), such that the signal to noise ratio (SNR) was 2 (resulting in a relatively high166

volume of noise in the simulated data). The observed noisy functional data curves were given by167

Y = Z + ε.168

Similarly, we generated 30 nonstationary functional curves on the same equally-spaced-grid with169

size L = 40, from a nonstationary GP X̃(t) = h(t)X(s(t)) (i.e., a nonlinear transformation170
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of a stationary GP), where X(·) denotes the GP in (11) and h(t) = t + 1/2, s(t) = t2/3.171

Noisy observation data were obtained by adding noises from N(0, σε =
√

5/2) to the generated172

nonstationary GP data (true signals).173

We repeated the simulations 100 times, and calculated the RMSEs of the estimates of signals174

{Zi(t)}, mean function µZ(t), covariance surface ΣZ(t, t), and residual variance σ2
ε (t denotes175

the common observation grid). The average RMSEs (with standard deviations among these 100176

simulations) for stationary and nonstationary data are shown in Table 1, where the CSS estimates of177

(µZ ,ΣZ) are sample estimates with pre-smoothed signals by CSS, and average RMSEs are omitted178

if the parameters are not directly estimated by the corresponding methods, such as (µZ ,ΣZ , σ
2
ε ) for179

BFPCA, σ2
ε for CSS.180

Table 1 shows that BGP produces the best estimates for the signals and residual variance (with the181

lowest RMSEs), while BHM and BABF give the second best estimates for the signals and residual182

variance, as well as the best estimates for the mean-covariance functions. With nonstationary data183

of common grids, BGP and PACE produce the best covariance estimates, while BABF produces184

closely accurate covariance estimates, as well as the best estimates for the signals, mean function,185

and residual variance. Because of stable computations with nonstationary data, our BABF method186

produces better estimates than BHM. In addition, the CSS and BFPCA methods produce the least187

accurate estimates (with the highest RMSEs) for both stationary and nonstationary data, which188

demonstrates the advantage of simultaneously smoothing and estimating functional data as in BGP,189

BHM, and BABF.190

[Table 1 about here.]191

Figure 1 (a, b, c, d) shows that all three Bayesian methods produce similarly accurate estimates192

for the functional signals and mean function of common grids. With nonstationary data, our BABF193

method produces the best signal estimates (Figure 1(b)). As for the functional covariance estimates194

(Web Figure 1), the parametric estimate by BGP is a Matérn function because of the assumed195
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true Matérn model, but with underestimated diagonal variances. Practically, a wrong covariance196

model is usually assumed in BGP, which is likely to produce estimates with large errors and wrong197

structures. In contrast, the nonparametric methods such as BHM and BABF are more flexible and198

applicable for estimating the covariance function of real data.199

In addition, we examined the coverage probabilities of the 95% pointwise credible intervals (CI)200

generated by BGP, BHM, and BABF, for the functional signals and mean-covariance functions201

(Web Table 1). For functional signals, BGP results in the highest coverage probability with202

stationary data (0.9483 vs. 0.9217, 0.9208), but the lowest coverage probability with nonstationary203

data (0.8350 vs. 0.9450, 0.8742). All methods have similar coverage probabilities for the functional204

mean (∼ 0.7), where the relatively low coverage probabilities are due to the narrow 95% confidence205

intervals. As for the covariance, the coverage probability by BGP is significantly lower than the206

ones by BHM and BABF for both stationary (0.000 vs. 0.7869, 0.7869) and nonstationary data207

(0.3819 vs. 0.9913, 0.9938), because BGP underestimates the diagonal variances.208

In summary, with common grids, GP based Bayesian regression methods (BGP, BHM, and209

BABF) produce better smoothing and estimation results, compared to estimating mean-covariance210

functions using the pre-smoothed functional data by CSS. Moreover, the results by BABF are at211

least similar to the ones by BHM, and better with nonstationary data.212

3.2 Studies with random grids213

For this set of simulations, we generated 30 true functional curves from the stationary and214

non-stationary GPs as in Section 3.1, with observational grids (L = 40) that were randomly215

(uniformly) generated over T = (0, π/2). Raw functional data were then obtained by adding216

noises from N(0,
√

5/2) to the true signals. We compared our BABF method (using an equally217

spaced working grid τ1×20 ⊂ T ) with CSS and PACE, by 100 simulations.218

Table 2 presents the average RMSEs of the signals, residual variance, and mean-covariance219

functions (evaluated on the equally-spaced grid over T with length 40), along with the standard220
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deviations from 100 simulations in the parentheses. It is shown that our BABF method (with lowest221

RMSEs) performs consistently better than CSS and PACE for signal and mean estimates, with both222

stationary and nonstationary data of random grids.223

[Table 2 about here.]224

[Figure 1 about here.]225

Figure 1 (e, f) shows that BABF produces the best signal estimates in the random-grid226

scenarios. This is because CSS smooths functional samples independently; PACE only uses limited227

information per pooled-grid point; while BABF borrows strength across all observations through228

basis function approximations. For both stationary and nonstationary functional data, PACE and229

BABF give closely accurate mean estimates, while CSS gives the least accurate mean estimate230

(Figure 1 (g, h)). In addition, PACE produces the roughest covariance estimate (Web Figure 2),231

for only using limited information on the pooled-grid points. The BABF coverage probability of232

the covariance is 0.9506 for stationary data and 0.8550 for nonstationary data, showing the good233

performance of our BABF method.234

In summary, with random grids, our BABF method produces the best signal and mean estimates,235

compared to CSS and PACE. Although the sample covariance estimate using the pre-smoothed236

data generated by CSS has the lowest RMSE for nonstationary data, the analogous estimate using237

the more accurately smoothed data generated by BABF will have at least similar RMSE.238

3.3 Studies about robustness239

To test the robustness of our BABF method for handling non-Gaussian data, we further simulated240

stationary functional data from a non-Gaussian process, 0.2(X(t)2−1)+X(t), which is a modified241

Hermite polynomial transformation of the GP X(t) in (11). We simulated functional data with242

n = 30, random grids (p = 40) over T = (0, π/2), and noises from N(0,
√

5/2). Compared to243

CSS, our BABF method has RMSE 0.4278 vs. 0.7092 for the signal estimates, 0.1271 vs. 0.4992244
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for the functional mean estimate, and 0.4417 vs. 0.8886 for the functional covariance estimate.245

These results demonstrate that our BABF method is robust for analyzing non-Gaussian functional246

data. In addition, we note that it is crucial to select a correct prior structure, A(·, ·) in (1), of247

the covariance function. In general, we suggest using the Matérn model for stationary data and a248

smoothed covariance estimate by PACE for nonstationary data.249

3.4 Goodness-of-fit diagnostics250

In addition to model fitting, we considered goodness-of-fit diagnosis of the proposed BABF251

method. Specifically, we applied the goodness-of-fit diagnosis method using pivotal discrepancy252

measures (PDMs) (Yuan and Johnson, 2012) on the residuals, εi(t) = Yi(t)−Zi(t), in the Bayesian253

hierarchical model (1) on which BABF is based. Following the method proposed by Yuan and254

Johnson (2012), we constructed PDMs using standardized residuals from the posterior samples in255

MCMC. The PDM follows a chi-squared distribution under the null hypothesis that the residuals256

follow the N(0, σ2
ε ) distribution (i.e., global goodness-of-fit for the Bayesian hierarchical model).257

In all simulation studies, the p-values of testing the null hypothesis of global goodness-of-fit for258

the Bayesian hierarchical model are greater than 0.25, providing no evidence of lack-of-fit.259

4. Application on real data260

We analyzed a functional dataset from an obesity study with children and adolescents (Lee et al.,261

2016), by the Children’s Nutrition Research Center (CNRC) at Baylor College of Medicine. This262

study estimated the energy expenditure (EE in unit kcal) of 106 children and adolescents (44 obese263

cases, 62 nonobese controls) during 24 hours with a series of scheduled physical activities and a264

sleeping period (12:00am-7:00am), by using the CNRC room respiration calorimeters (Moon et al.,265

1995). We only analyzed the sleeping energy expenditure (SEE) data measured at 405 time points266

during the sleeping period. This real SEE data set provides a good example of high-dimensional267
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common grids. The goal of this study was to discover different data patterns between obese cases268

and controls, providing insights about obesity diagnosis.269

We applied CSS, PACE, and BABF on this SEE functional data. Specifically, CSS was applied270

independently per sample with a smoothing parameter selected by GCV; PACE was applied with271

common grid [1 : 405]; and BABF was applied with the equally spaced working grid over [1 : 405]272

with size L = 30. Both PACE and BABF were applied separately for the functional data of obese273

and nonobese groups. Figure 2 (a, b) shows that CSS produces the roughest signal estimates,274

leading to the roughest mean-covariance estimates (Figures 2 (c, d); Web Figures 3 and 4). Both275

PACE and BABF produce smoothed signal estimates and mean-covariance estimates. The mean276

estimate by BABF has better periodic patterns than the one by PACE (Figures 5 (c, d)), and the277

BABF estimates of the correlations between two apart time points are less than the PACE estimates278

(Web Figure 4).279

[Figure 2 about here.]280

Further, we applied the goodness-of-fit test (Yuan and Johnson, 2012) to the residuals from281

the BABF method (one test per functional sample). Although the residual means are consistently282

close to 0, the p-values for 52% functional curves are less than 0.05/n, suggesting evidences of283

lack-of-fit with Bonferroni correction (Bonferroni, 1936) for multiple testing. This is because the284

residual variances of this real data are no longer the same across all observations. To address the285

issue of lack-of-fit for this SEE data, we need to assume sample-specific residual variances in the286

Bayesian hierarchical model (1), which is beyond the scope of this paper but will be part of our287

future research.288

Despite the lack-of-fit issue for this real data application by BABF, the smoothed data are still289

improved over the raw data and the smoothed data by alternative methods for follow-up analyses.290

Using the classification analysis as an example, we next illustrate the advantage of using the291

smoothed data by BABF for follow-up analyses. Considering the SEE data of obese and nonobese292
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children as two classes, we used the leave-one-out cross-validation (LOOCV) approach to evaluate293

the classification results for using the raw data, and the smoothed data by CSS, PACE, and BABF.294

Basically, for each sample curve, we trained a SVM model (Cortes and Vapnik, 1995) using the295

other sample curves, and then predicted if the test sample was an obese case. The error rate (the296

proportion of misclassification out of 106 samples) is 48.11% for using the raw data, 40.57%297

for using the smoothed data by CSS, and 36.79% for using the smoothed data by PACE, and298

33.02% for using the smoothed data by BABF. The smoothed data by our BABF method lead299

to the smallest error rate. Thus, we believe using the smoothed data by BABF will be useful for300

follow-up analyses.301

5. Discussion302

In this paper, we propose a computationally efficient Bayesian method (BABF) for smoothing and303

estimating mean-covariance functions of high-dimensional functional data, improving upon the304

previous BHM method by Yang et al. (2016). Our BABF method projects the original functional305

data onto the space of selected basis functions with reduced rank, and then conducts posterior306

inference through MCMC of the basis-function coefficients. As a result, BABF method not only307

retains the same advantages as BHM, such as simultaneously and nonparametrically smoothing308

and estimating mean-covariance functions, but also provides additional computational advantages309

of scalability, efficiency, and stability.310

With n functional observations, a pooled observation grid of length p, and m MCMC iterations,311

BABF reduces the computational complexity from O(np3m) to O(nK3m), and the memory usage312

from O(p2m) to O(K2m), by MCMC in the basis-function space with reduced rank K << p.313

For examples, using a 3.2 GHz Intel Core i5 processor, BABF only costs about 3 minutes for314

n = 30, K = 20, and m = 12, 000, and about 9 minutes for n = 44, K = 30, and m = 12, 000.315

Although BABF (with 12, 000 MCMC iterations) takes about 4x longer time than PACE, BABF316

provides complementary credible intervals to quantify the uncertainties of the posterior estimates,317
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as well as basis function representations for the nonparametric estimates of functional signals318

and mean-covariance functions. Moreover, BABF produces more accurate results than PACE for319

functional data observed on random grids.320

Both simulation and real studies demonstrate that BABF performs similarly to BHM and other321

Bayesian GP regression methods with functional data observed on low-dimensional common grids,322

and that BABF outperforms the alternative methods (e.g., CSS and PACE) with functional data323

observed on random grids or high-dimensional common grids. In addition, the real application324

shows that the classification analysis using the smoothed data by BABF produces the most accurate325

results.326

For now, BABF assumes the same mean-covariance functions and residual variance for327

functional data, both of which are not true for most of the real data. Despite the model inadequacy,328

the smoothed data by BABF are still useful for follow-up analyses as shown in the real application329

of SEE data. To make the method more flexible for real data analysis, one might assume330

group-specific mean-covariance functions and sample-specific residual variances. This is beyond331

the scope of this paper and will be part of our future research.332

In conclusion, BABF greatly improves computational scalability and decreases the memory333

usage required by the standard MCMC procedure used in BHM, while efficiently smoothing334

functional data and estimating mean-covariance functions in a nonparametric way. By335

implementing MCMC with the induced model of basis-function coefficients, BABF provides one336

solution for the computational bottleneck of general Bayesian GP regression methods, especially337

for analyzing high-dimensional functional data (e.g., spatial-temporal data) with Gaussian-Wishart338

processes. It is noteworthy to see that BABF coincides with the idea of using least squares339

with basis functions as linear regressors, as mentioned by Stein (2014), which provides an340

alternative approach from the scalable (dynamic) nearest neighbor GP models by constructing341
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a sparsity-inducing prior for the covariance function (Datta, Banerjee, Finley, and Gelfand, 2016;342

Datta, Banerjee, Finley, Hamm, and Schaap, 2016).343

6. Supplementary Materials344

Web Figures and Tables referenced in Sections 3 and 4, as well as Web Appendices including345

example MATLAB scripts, example data sets, and a README file for numerical studies in346

this paper are available at the Biometrics website on Wiley Online Library. A software for347

implementing the BHM and BABF methods is freely available at https://github.com/348

yjingj/BFDA (Yang and Ren, 2016).349
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(g)  Stationary mean estimates of random grids
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(h) Nonstationary mean estimates of random grids

Figure 1. Example smoothed functional data of common grids in (a, b), mean estimates of
common grids in (c, d), example smoothed functional data of random grids in (e, f), and mean
estimates of random grids in (g, h), along with 95% pointwise CIs by BABF.



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

23

0 100 200 300 400

0.6

0.8

1

1.2

1.4

1.6

1.8
(a) One example nonobese signal

Raw

CSS

PACE

BABF

BABF 95%CI

0 100 200 300 400

0.6

0.8

1

1.2

1.4

1.6

1.8
(b) One example obese signal

0 100 200 300 400
0.7

0.8

0.9

1

1.1

1.2
(c) Mean estimates for nonobese signals
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(d) Mean estimates for obese signals

Figure 2. Example smoothed functional data in (a, b) and mean estimates in (c, d), along with
95% pointwise CIs by BABF, for the real SEE data.
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Table 1
Simulation results with common grids: average RMSEs and corresponding standard deviations (in parentheses) of {Zi(t)}, µ(t),

ΣZ(t, t), and σ2
ε produced by CSS, PACE, BFPCA, BGP, BHM, and BABF. Average RMSEs are omitted if the corresponding

parameters are not directly estimated. Two best results are bold for each parameter.

CSS PACE BFPCA BGP BHM BABF

Stationary
{Zi(t)} 0.4808 0.4553 0.5657 0.4020 0.4067 0.4073

(0.0213) (0.0268) (0.0550) (0.0219) (0.0207) (0.0204)
µ(t) 0.4757 0.4194 - 0.3982 0.3961 0.3961

(0.1347) (0.1593) - (0.1527) (0.1538) (0.1535)
Σ(t, t) 1.0017 1.0375 - 1.0988 0.9601 0.9590

(0.3079) (0.2850) - (0.4934) (0.2902) (0.2913)
σ2
ε - 0.0764 - 0.0460 0.0491 0.0483

- (0.0516) - (0.0327) (0.0357) (0.0352)
Nonstationary
{Zi(t)} 1.0271 0.5185 0.6314 0.5183 0.5759 0.5133

(0.00463) (0.0255) (0.0632) (0.0265) (0.0227) (0.0227)
µ(t) 0.9446 0.5782 - 0.5387 0.5530 0.5356

(0.1509) (0.2095) - (0.2090) (0.2038) (0.2094)
Σ(t, t) 1.9635 1.9751 - 1.9733 2.0296 1.9768

(0.8386) (0.8160) - (0.6831) (0.6891) (0.7835)
σ2
ε - 0.0810 - 0.1472 0.2432 0.0692

- (0.0541) - (0.0879) (0.0644) (0.0492)
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Table 2
Simulation results with random grids: average RMSEs and corresponding standard deviations (in parentheses) of {Zi(t)}, µ(t),

ΣZ(t, t), and σ2
ε by CSS, PACE, and BABF. Average RMSEs are omitted if the corresponding parameters are not directly

estimated. Best results are bold for each parameter.

Stationary Nonstationary

CSS PACE BABF CSS PACE BABF

{Zi(t)} 0.4839 1.4141 0.4079 1.0137 2.6300 0.6832
(0.0229) (0.1424) (0.0219) (0.0511) (0.2876) (0.0576)

µ(t) 0.4229 0.4196 0.3690 0.9905 0.6157 0.5920
(0.1471) (0.1290) (0.1302) (0.1888) (0.2160) (0.2138)

Σ(t, t) 1.0445 1.4089 1.0054 1.6403 2.4120 2.2090
0.4313 (0.3502) (0.3286) (0.6086) (0.6497) (0.4506)

σ2
ε - 0.1900 0.0509 - 0.4007 0.2209

- (0.1818) (0.0387) - (0.2960) (0.1189)


