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Abstract

Iacobucci (2012) provides a conceptually appealing, readily implemented measure to assess mediation for a far wider range of data type
combinations than traditional OLS-based analyses permit. Here, we consider potential applications and extensions along several lines, particularly
in terms of random utility models, simulation-based estimation, and potential nonlinearities, as well as some methodological and cultural
impediments.
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Mediation analysis is a deservedly celebrated method in
social science generally (MacKinnon, Fairchild, & Fritz, 2007),
and marketing particularly (Iacobucci, 2008). For example, do
older consumers buy costlier cars owing to the accumulation of
experience, of capital, or merely of birthdays? Despite warnings
that statistical models are correlational, and the mantra that
“correlation does not imply causation”, what researchers hope to
fashion is a plausible causal story. That is, not just an indicator,
but a “because”. Mediation helps supply this satisfying link.

Iacobucci (2012) zeroes in on a weakness in that linkage, one
that owes to history and pedagogy as much as to methodology
proper. Students in the social sciences and consumer behavior
spend years steeped in the logic of classical statistics, which
undergirds experimental design and associated regression-based
techniques. Critical hypothesis tests typically need to be shoe-
horned into (asymptotic) z, t, χ2, or F distributions, though that
picture is slowly changing. In a mediation analysis, this works fine
so long as one sticks to OLS-based relationships among the X,M,
and Y variables; but plain vanilla OLS isn't appropriate for
categorical data. This is the problem Iacobucci (2012) addresses, in
an intuitive, easily applied manner, for binary mediators and
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outcomes. Although the paper does not dwell on derivations, it
does provide something equally illuminating: extensive simula-
tions, indicating when the method gives bankable answers.

The core of the matter at hand is conjuring up a well-behaved
test statistic. If we consider the usual schematic (e.g., Iacobucci's
Fig. 1), pre-standardize all variables to eliminate regression
intercepts, and ignore errors for the time being, we get something
like so:

Y ¼ cX

M ¼ aX

Y ¼ c′X þ bM :

Basic algebra suggests that cX=c′X+bM=c′X+abX, so that
c=c′+ab. Simple!

We are interested in what happens to c when the mediator,
M, intervenes, so we need a before–after statement; that is, one
about c−c′, which equals a ⋅b in the OLS framework. And this
is where the trouble begins: even when both a and b have
“nice” (limiting) t distributions, their product does not (having
instead a “product normal distribution”, more or less). Various
papers have addressed this, adding to the collective confusion.
If we pre-divide a and b above by their standard errors, there
by Elsevier Inc. All rights reserved.



1 In marketing, Zhao, Lynch, and Chen (2010) provide an extended critique
of assumptions underlying the Baron–Kenny analysis, as well as artifacts that
can arise via Sobel type tests, which are known to have low power.
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are three common forms of the main test for mediation;
chronologically:

Aroian (1947):

tatb
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2a þ t2b þ 1:
q

Goodman (1960):

tatb
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2a þ t2b−1:
q

Sobel (1982):

tatb
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2a þ t2b :
q

Complicating matters is that they are each often referred to
as “The Sobel Test” (see MacKinnon, Warsi, & Dwyer, 1995,
2002; MacKinnon, Lockwood, Hoffman, West, & Sheets,
2002, for additional detail). It is well-known that these are all
large-sample tests, where “large” is left to the discretion of the
researcher, but usually means at least moderate double-digits.
Their main point of disagreement is whether a “1” belongs in
the denominator, and what sign it should have. Clearly, the
Aroian statistic is the most “conservative”, the Goodman the
most inclusive; Iacobucci's (2012) novel extension hews
sensibly to the former.

Once again, all this at the service of obtaining a friendly
asymptotic distribution, in this case, a z or t. This made sense
three decades ago, when the most recent of these forms was
published. But that's fully twenty of those fabled 18-month
“Moore's Law” doublings in computational power: roughly a
million-fold, the same as nudging the moon to within a few
blocks. Why should we still be stranded in that primordial
computational universe?

The intervening and recent literatures have suggested two
alternatives, bootstrapping and Bayesian approaches, respective-
ly. Bootstrapping (Shrout and Bolger 2002; Preacher and Hayes
2008) is appealing when one has a classical statistical program
“hammer” and is willing to whack many nails: it requires no new
programming, solution concepts, or anything other than a bit of
(automated) persistence in the form of “resampling with
replacement”. It is a sensible strategy when computer horsepow-
er is cheap, but methods haven't fully caught up. The Bayesian
approach shines when methods do catch up. Despite being
sometimes fraught with Philosophy, the Bayesian approach is
conceptually simple; instead of maximizing a likelihood, take a
very large sample from it (perhaps with a “prior” tacked on).
This conceptual simplicity nearly instantly hits a wall in
implementation: conditional densities must be derived and
programmed, long “chains” (sometimes many) need to be run,
convergence must be monitored, “thinning” might be needed,
and notoriously finicky log-marginal-densities must be
calculated.
Researchers have enough trouble understanding their data
without all these headaches. So, why would they want to assess
mediation using Bayesian methods? For starters, it completely
solves the “product of coefficients” problem, in fact rendering it
trivial. If you want the distribution of the product of two
parameters, just multiply their samples together: done. In fact,
any function of multiple parameters is just a bit of arithmetic
away, no Hessians or Jacobians or limiting densities or new
assumptions in sight. Small or unbalanced samples present no
problems. Inference is exact. In our present scenario, that
means inference for the critical quantity in mediation, a ⋅b, is
exact, since we have its actual distribution. Programs like
WinBUGS (with an afternoon of acquaintance) and MlwiN
(with none at all) allow Bayesian analysis for the most common
“general linear models” (GLMs), with all the derivational
nastiness hidden under the hood. And even SAS in its most
recent incarnation (version 9) includes Bayesian estimation in
three of its most venerated modules, GENMOD, LIFEREG,
and PHREG.

Iacobucci (2012) is a welcome advance because it shows
behavioral researchers how to dramatically extend the range of
their analyses by sticking close to what they've done since Baron
and Kenny's (1986) overwhelmingly influential article.1 But
colleagues in the empirical modeling camp are already starting to
work mediation into their souped-up, custom-programmed
modeling frameworks. There appear to be two keys to this: (1)
realizing that GLM-based models posit a linear-additive
specification for mean effects; and (2) recognizing that because
product of coefficients can't be assumed z or t in real data,
adopting a simulation-based estimation technology, primarily
Bayesian, pays immediate dividends.

For example, Zhang, Wedel, and Pieters (2009) present what
appears to be the first mediation analysis in marketing proper
estimated using Bayesian techniques. They do the needed
yeoman's work of updating the classic mediation picture (their
Fig. 1) with latent instrumental variables for X (IVs),
M (mediator), Y (DV), and well as Z (controls). Far more
important from our perspective is that their estimation showcases
both bootstrapping and MCMC (Markov chain Monte Carlo, the
main technique in Bayesian analyses). Although their substan-
tive results are beyond the scope of this Comment, their
statistical findings (Table 2) are of clear interest: most of the
bootstrapped estimates and their standard errors appear inflated,
by around 10%. Additional studies will be required to see if this
generalizes, but the key point is how simple it is to perform
mediation analysis in a Bayesian setting: just multiply samples
for the two coefficients in question. And, again, such inferences
are exact; no additional assumptions or asymptotics in sight.
Researchers in other areas have also approached Iacobucci's
(2012) goal via simulation-based estimation. For example,
Elliott, Raghunathan and Li (2010) perform a Bayesian analysis
with dichotomous mediators and outcomes (recall that
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dichotomous X isn't a problem, even in the classical analysis,
since that's just a dummy variable).

But how is one to actually DO all this, without becoming a
stats geek and programmer? Fortunately, very recent work
addresses that, too. Imai, Keele, Tingley, and Yamamoto
(2010) report on their mediation package in the open-source
statistical language R, which allows for non-, semi-, and fully
parametric inference in the linear (e.g., Baron–Kenny) and
GLM frameworks. It uses both nonparametric bootstrap and
quasi-Bayesian estimation for nearly any combination of
{continuous, ordered, binary} mediators×{continuous, binary}
outcomes, “right out of the box”. We would also direct readers
to Woody's (2011) exceptionally detailed and practitioner-
oriented summary of mediation issues, estimation strategies
(Sobel, bootstrap, MCMC, and especially Structural Equations
Models), heterogeneity, and associated “best practices”.

As Iacobucci (2012) conveys, one remaining frontier is the
bestiary of categorical data types: multinomial, ordered, rank-
ordered, pick-k-of-n, “divide 100 points”, etc., and nefarious
combinations thereof. Multinomial data, with the sort of
“random utility” representation underlying logit-type models,
may lure us into believing we can “just multiply” Monte Carlo
samples for coefficients, analogously to Zhang et al. (2009) in
the linear case. While that may not be outwardly wrong—
dedicated simulation studies would need to assess this—it most
certainly would presume that the entire pattern of choices
among available options be used to explain mediation. But
what, instead, if it involved trade-offs just between one subset
of alternatives and its complement? The single coefficient in the
(logit) utility is not meant to detect such trade-offs, let alone
more subtle ones. The same sorts of issues arise for “exploded”
models commonly used for ranked data, which are likewise
based on a random utility formulation.

Another frontier involves the use of Structural Equation
Models, which have been well-covered elsewhere as they apply
to mediation (e.g., Cole and Maxwell 2003). SEMs allow such a
wide vista of relationships that they should be informed by prior
theory, not thoughtlessly and exhaustively run to converge upon
a best-fitting model. SEMs have been traditionally estimated
using classical methods, but Bayesian approaches are slowly
gaining traction (Lee 2007); notably, one major SEM program,
AMOS, has started to implement Bayesian estimation, a process
sure to accelerate. Very recent work (Wang and Zhang 2011)
applies Bayesian estimation in SEMs with censored data, e.g.,
web site visit logs covering a specific time period, thereby
omitting (censoring) anything before or after. Practically
speaking, difficulties arising from multiplying parameters may
soon become a relatively minor issue even in SEM-based
mediation analyses incorporating a variety of variable types as
both mediators (M) and outcomes (Y).

One last frontier that can only be covered very briefly here
concerns nonlinearity, specifically in terms of potential
interaction effects. In a series of papers devoted to the topic,
Pearl develops the “Mediation Formula,” which is claimed to
assess mediation for many data types in even highly nonlinear
models. In his own description (Pearl 2012), “The Mediation
Formula represents the average increase in the outcome Y that
the transition from X=x to X=x′ is expected to produce absent
any direct effect of X on Y.” Pearl (2001, 2012, and in many
others) illustrates the formula, which is estimable by ordinary
regression, for linear models, both with and without interaction,
for logit and probit models, and for when any or all of {X, Y,
M} are binary, the situation also addressed in Iacobucci (2012).
This presents a fertile avenue for future research, since
essentially all prior approaches have known problems when
the true model for Y is a linear function not only of X andM, but
of an interaction term XM as well.

In short, we live in interesting times with respect to
mediation. Simulation-based methods—in particular, those
relying on Bayesian estimation via data augmentation (Tanner
and Wong 1987; Edwards and Allenby 2003), which “fills in”
many data types to allow an underlying OLS-based represen-
tation—may soon allow researchers to assess mediation for
essentially any sort of variable, including censored, complex
categorical forms, interactions, and even to allow coefficient
heterogeneity (e.g., random effects or hierarchical models).
Until that day arrives, behavioral researchers need an intuitive,
reliable, implementable method that works with the main types
of data they encounter, and this is precisely what Iacobucci
(2012) provides.
References

Aroian, Leo A. (1947). The probability function of a product of two normally
distributed variables. Annals of Mathematical Statistics, 18, 265–271.

Baron, Reuben M., & Kenny, David A. (1986). The moderator–mediator variable
distinction in social psychological research: Conceptual, strategic, and
statistical considerations. Journal of Personality and Social Psychology,
51(6), 1173–1182.

Cole, David A., & Maxwell, Scott E. (2003). Testing mediational models with
longitudinal data: Myths and tips in the use of structural equation modeling.
Journal of Abnormal Psychology, 112, 558–577.

Edwards, Yancy, & Allenby, Greg (2003). Multivariate analysis of multiple
response data. Journal of Marketing Research, 40, 321–334.

Elliott, Michael R., Raghunathan, Trivellore E., & Li, Yun (2010). Bayesian
inference for causal mediation effects using principal stratification with
dichotomous mediators and outcomes. Biostatistics, 11, 353–372.

Goodman, L. A. (1960). On the exact variance of products. Journal of the
American Statistical Association, 55, 708–713.

Iacobucci, Dawn (2008). Mediation analysis. Thousand Oaks, CA: Sage.
Iacobucci, Dawn (2012). Mediation analysis and categorical variables: The final

frontier. Journal of Consumer Psychology [Fill In Issue Information].
Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2010). Causal mediation

analysis using R. In H. Vinod (Ed.), Lecture notes in statistics: Advances in
social science research using R (pp. 129–154). New York: Springer.

Lee, Sik-Yum (2007). Structural equation modeling: A Bayesian approach.
Chichester, UK: John Wiley and Sons.

MacKinnon, David P., Warsi, Ghulam, & Dwyer, James H. (1995). A
simulation study of mediated effect measures. Multivariate Behavioral
Research, 30(1), 41–62.

MacKinnon, David P., Lockwood, Chondra M., Hoffman, Jeanne M., West,
Stephen G., & Sheets, Virgil (2002). A comparison of methods to test
mediation and other intervening variable effects. Psychological Methods,
7(1), 83–104.

MacKinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007). Mediation analysis.
Annual Review of Psychology, 58, 593–614.

Pearl, Judea (2001). Direct and indirect effects. Proceedings of the seventeenth
conference on uncertainty in artificial intelligence (pp. 411–420). San
Francisco, CA: Morgan Kaufmann Publishers.



598 F.M. Feinberg / Journal of Consumer Psychology 22 (2012) 595–598
Pearl, Judea (2012). The mediation formula: A guide to the assessment of causal
pathways in nonlinear models. In C. Berzuini, P. Dawid, & L. Bernardinelli
(Eds.), Causality: Statistical perspectives and applications, chapter 12. : J.
Wiley.

Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies
for assessing and comparing indirect effects in multiple mediator models.
Behavior Research Methods, 40, 879–891.

Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental
studies: New procedures and recommendations. Psychological Methods, 7,
422–445.

Sobel, Michael E. (1982). Asymptotic confidence intervals for indirect effects
in structural equation models. In Samuel Leinhardt (Ed.), Sociological
methodology (pp. 290–312). San Francisco: Jossey-Bass.
Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by
data augmentation. Journal of the American Statistical Association, 82, 528–550.

Wang, Lijuan, & Zhang, Zhiyong (2011). Estimating and testing mediation
effects with censored data. Structural Equation Modeling, 18(1), 18–34.

Woody, Erik (2011). An SEM perspective on evaluating mediation: What every
clinical researcher needs to know. Journal of Experimental Psychopathology,
2(2), 210–251.

Zhang, Jie, Wedel, Michel, & Pieters, Rik (2009). Sales effects of attention to
feature advertisements: A Bayesian mediation analysis. Journal of
Marketing Research, 46, 669–681.

Zhao, Xinshu, Lynch, John G., Jr., & Chen, Qimei (2010). Reconsidering
Baron and Kenny: Myths and truths about mediation analysis. Journal of
Consumer Research, 37, 197–206.


