Transactions of the American Fisheries Society 145:563–577, 2016 © American Fisheries Society 2016 DOI: 10.1080/00028487.2016.1145135

Supplement: Walleye Egg and Larval Density and Survival in a Great Lakes Tributary

Egg Density Results

Significant effects on peak mean egg density were detected for year ($F_{1, 24} = 76.76$, P < 0.01), site ($F_{5, 24} = 35.72$, P < 0.01), and the site × year interaction ($F_{5, 24} = 25.83$, P < 0.01; Figure S.1). In 2009, peak mean egg density at Croton Dam site 2 ($56,970 \text{ eggs/m}^2$) was significantly higher than densities at all other sites (Tukey's honestly significant difference [HSD] test: P < 0.01; Figure S.1, upper panel). Peak mean egg density at Thornapple site 2 ($9,425 \text{ eggs/m}^2$) during 2009 was significantly higher than densities at Croton Dam site 1 ($1,594 \text{ eggs/m}^2$), Henning Park site 1 (121 eggs/m^2), and Henning Park site 2 (85 eggs/m^2 ; Tukey's HSD test: P < 0.05; Figure S.1, upper panel). There were no significant differences in egg density among sites for 2010 (Figure S.1, lower panel). However, two sites had significantly lower peak mean egg densities in 2010 than in 2009 (Tukey's HSD test: P < 0.01; Figure S.1): Croton Dam site 2 ($56,970 \text{ eggs/m}^2$ in 2010) and Thornapple site 2 ($9,425 \text{ eggs/m}^2$ in 2009; 582 eggs/m² in 2010).

Week	2009	2010
Apr 1		1
Apr 8	1	3
Apr 15	3	4
Apr 22	4	4
Apr 29	3	2
May 5	4	3
May 12	2	1
May 19	2	2

Supplementary Table S.1. Number of nights of Walleye larval drift sampling per week during April and May 2009–2010 in the lower Muskegon River, Michigan.

Supplementary Table S.2. Estimated mean values (with coefficient of variation [CV, %] in parentheses) for water quality variables (DO = dissolved oxygen concentration) measured during weekly Walleye egg mat sampling events at six sites (Figure 1) in the Muskegon River during March 24–May 5, 2009 (n = 7), and March 22–April 26, 2010 (n = 6). Data were not collected at Thornapple site 2 in 2009 due to the loss of a gang of egg mats there after April 21. Turbidity was not measured at egg mat sites in 2010. Also shown are estimated mean values (with SE in parentheses) of water quality variables measured at three Walleye larval drift sites (Pine Street, Thornapple, and Maple Island Road; Figure 1) in the Muskegon River during March 31–May 15, 2009–2010; results of ANOVA tests examining the effects of drift sampling site, year, and the site × year interaction on water quality variables are reported. Significant *P*-values ($\alpha = 0.05$) are indicated in bold italics.

		Temperature	Velocity	Water	Conductivity			Turbidity
Year	Site or statistic	(°C)	(m/s)	depth (m)	$(\mu S/cm^2)$	pН	DO (mg/L)	(NTU)
			I	E <mark>gg mat sam</mark> j	pling			
2009	Croton Dam 1	6.7 (50)	0.57 (18)	0.80 (19)	292 (5)	8.0 (2)	11.2 (7)	3.84 (76)
	Croton Dam 2	6.5 (49)	0.87 (29)	0.71 (27)	292 (5)	7.9(1)	11.0 (7)	3.76 (64)
	Thornapple 1	6.8 (48)	0.56 (22)	0.79 (24)	300 (7)	7.9(1)	11.2 (7)	4.46 (61)
	Thornapple 2	5.2 (39)	0.97 (20)	0.85 (9)	306 (7)	8.0(1)	11.7 (4)	3.50 (61)
	Henning Park 1	7.1 (47)	0.87 (24)	0.70 (19)	302 (6)	8.0(1)	11.4 (6)	4.76 (54)
	Henning Park 2	7.1 (47)	0.46 (39)	0.93 (26)	302 (6)	8.0(1)	11.4 (7)	5.69 (53)
2010	Croton Dam 1	7.7 (40)	0.40 (10)	0.70 (20)	343 (5)	8.1 (0)	11.0 (10)	
	Croton Dam 2	7.8 (40)	0.40 (30)	0.70 (20)	348 (5)	8.1 (0)	11.1 (10)	
	Thornapple 1	8.4 (40)	0.40 (30)	0.60 (30)	353 (4)	8.2 (0)	11.6 (10)	
	Thornapple 2	8.6 (40)	0.50 (60)	0.80 (36)	352 (5)	8.3 (0)	11.5 (10)	
	Henning Park 1	9.1 (40)	0.60 (50)	0.70 (30)	362 (4)	8.3 (0)	11.8 (10)	
	Henning Park 2	9.3 (40)	0.50 (30)	0.60 (20)	361 (4)	8.4 (0)	12.1 (10)	
			I	rval drift saı	mpling			
2009	Pine Street	10.8 (0.6)	La	li vai ui iit sai	300 (4)	8.00 (0.03)	10.5 (0.2)	3.36 (0.71)
2009	Thornapple	10.2 (0.7)			292 (5)	7.97 (0.03)	10.5 (0.2)	3.89 (0.73)
	11	10.2 (0.7)			292 (3)	7.97 (0.03)	10.3 (0.2)	5.89 (0.75)
	Maple Island	11.9(0.7)			202 (4)	9.02(0.02)	10.5(0.2)	9.26(1.00)
	Road	11.8(0.7)			302 (4)	8.03 (0.02)	10.5(0.2)	8.36 (1.99)
2010	Average	10.9(0.4)			298 (3)	8.00 (0.01)	10.5(0.1)	5.25 (0.81)
2010	Pine Street	12.0 (0.3)			351 (5)	8.09 (0.02)	9.4 (0.2)	0.06 (0.04)

		Temperature	Velocity	Water	Conductivity			Turbidity
Year	Site or statistic	(°C)	(m/s)	depth (m)	$(\mu S/cm^2)$	pН	DO (mg/L)	(NTU)
	Thornapple	11.7 (0.3)			346 (4)	8.09 (0.03)	9.4 (0.1)	0.06 (0.03)
	Maple Island							
	Road	13.0 (0.4)			322 (10)	8.06 (0.03)	10.2 (0.2)	1.18 (0.28)
	Average	12.3 (0.2)			339 (5)	8.08 (0.02)	9.7 (0.1)	0.47 (0.13)
			ANOVA Rea	sults for larva	al drift sampling	g		
	F, year	8.232			74.25	12.581	28.840	36.270
	P, year	0.005			0.0001	0.0006	0.0001	0.0001
	F, site	3.211			2.470	0.192	2.984	5.804
	P, site	0.045			0.091	0.826	0.056	0.004
	F , site \times year	0.058			4.880	1.286	3.804	2.503
	P , site \times year	0.944			0.010	0.282	0.026	0.088

Supplementary Table S.3. Mean (with SE in parentheses) substrate composition (%) at sites of Walleye egg mat deployment (see Figure 1) in the lower Muskegon River, 2009–2010. Substrate size categories were based on a modified Wentworth scale (cobbles: \geq 64.0 mm; pebbles: \geq 16.0 mm and <64.0 mm; gravels: \geq 2.0 mm and <16.0 mm; fines: <2.0 mm). Three samples were randomly collected from each site during each year.

Site	Year	Cobble	Pebble	Gravel	Fines
Croton Dam 1	2009	0.0 (0.0)	40.8 (17.3)	38.8 (9.8)	20.4 (7.5)
	2010	0.0 (0.0)	16.6 (10.0)	48.6 (7.0)	34.7 (15.1)
Croton Dam 2	2009	15.1 (18.5)	62.4 (22.7)	14.7 (4.9)	7.8 (3.7)
	2010	0.0 (0.0)	48.9 (32.9)	23.9 (16.4)	27.2 (30.0)
Thornapple 1	2009	0.0 (0.0)	39.6 (20.7)	23.1 (2.3)	37.3 (21.3)
	2010	0.0 (0.0)	26.7 (16.4)	28.1 (2.9)	45.2 (16.1)
Thornapple 2	2009	10.9 (13.4)	73.3 (24.2)	10.1 (5.6)	5.7 (5.2)
	2010	10.9 (13.4)	74.4 (15.6)	11.0 (6.2)	3.7 (2.3)
Henning Park 1	2009	0.0 (0.0)	67.3 (7.6)	22.1 (4.1)	10.6 (5.5)
	2010	0.0 (0.0)	73.7 (7.9)	16.0 (5.9)	10.3 (2.1)
Henning Park 2	2009	13.3 (16.3)	77.8 (11.1)	7.0 (4.6)	1.9 (1.5)
_	2010	0.0 (0.0)	88.0 (6.1)	9.9 (5.3)	2.0 (1.3)

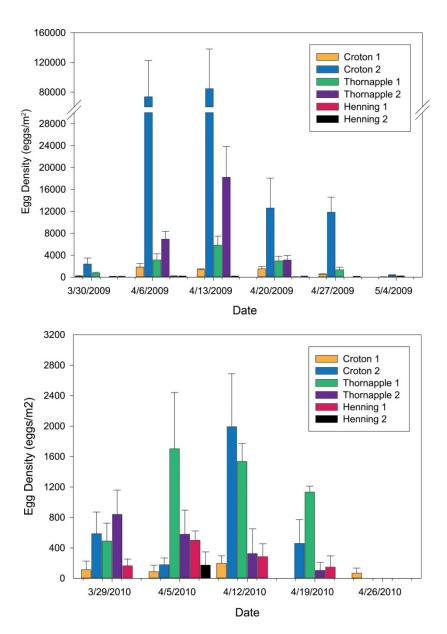
Supplementary Table S.4. Mean (with SE in parentheses) TL (mm) and weight (kg) of
spawning female Walleyes on days during the first 2 weeks of the spawning season in the
Muskegon River, 2009–2010. Significance tests detected differences in TL and weight between
weeks of the spawning season and between years.

				<i>F</i> or χ^2	
Year	Day	Value	n	statistic	Р
		Total leng	th		
2009	Apr 2	675 (8.9)	47	$F_{1,99} = 14.21$	0.000
	Apr 8	629 (8.4)	53		
	All	651 (6.5)	100		
2010	Mar 25	677 (6.3)	66	$F_{1,105} = 4.44$	0.03
	Mar 29	655 (8.1)	40		
	All	668 (5.1)	106		
2009 versus		~ /			
2010				$\chi^2 = 4.18$	0.04
		Weight			
2009	Apr 2	3.6 (0.13)	46	$F_{1,98} = 16.63$	0.000
	Apr 8	2.9 (0.13)	53	,	
	All	3.2 (0.98)	99		
2010	Mar 25	3.6 (0.11)	66	$F_{1, 104} = 5.76$	0.01
	Mar 29	3.2 (0.15)	39		
	All	3.5 (0.94)	105		
2009 versus		()			
2010				$F_{1,203} = 3.53$	0.06

Supplementary Table S.5. Annual estimates of Walleye spawner abundance (adult *N*; millions), larval abundance (larval *N*; millions), and larval survival rate (*S*; %) estimated for populations in selected Great Lakes tributaries. Estimates from Mion et al. (1998) include 95% confidence intervals in parentheses. Estimates from Pritt et al. (2013), DuFour et al. (2014), and the present study include 2.5% and 97.5% credible intervals in parentheses.

Tributary	Year	Adult N	Larval N	Larval S
Saginaw River,				
Michigan	1987		3 ^a	
-	1988		28 ^a	
Maumee River,				
Ohio	1993		20.4 (2.0) ^b	
	1994		$13.4(1.2)^{b}$	
	1995		24.8 (2.0) ^b	
	2010		29.5	33
			$(12.5 - 84.5)^{d}$	$(16-57)^{d}$
	2011	0.65	32.2	33
	-	$(0.43 - 1.44)^{c}$	$(20.8-52.1)^{d}$	$(17-56)^{d}$
	2012	0.54	(
	-	$(0.38-0.86)^{c}$		
Sandusky River,		(
Ohio	1993		3.2 (1.5) ^b	
	1994		$3.0 (0.2)^{b}$	
	1995		$0.8 (0.1)^{b}$	
Muskegon River,	- / / •		()	
Michigan	2003	0.04 ^e		
	2009		2.1	12.7
			$(1.3-3.8)^{\rm f}$	$(8.9-13.3)^{\rm f}$
	2010		14.8	47.3
	2010		$(9.4-27.7)^{\rm f}$	$(44.6-52.7)^{\rm f}$
a L 1 4 1 100 2			()=,)	(11.0 02.1)

^a Jude et al. 1992.


^b Mion et al. 1998.

^c Pritt et al. 2013.

^d DuFour et al. 2014.

^e Hanchin et al. 2007.

^fPresent study.

Supplementary Figure S.1. Mean (+SE) Walleye egg density on mats deployed at sites (see Figure 1) in the Muskegon River, Michigan, during 2009 (upper panel) and 2010 (lower panel). The *y*-axis scale differs between the panels.

SUPPLEMENTARY REFERENCES

- DuFour, M. R., J. J. Pritt, C. M. Mayer, C. A. Stow, and S. S. Quian. 2014. Bayesian hierarchical modeling of larval Walleye (*Sander vitreus*) abundance and mortality: accounting for spatial and temporal variability on a large river. Journal of Great Lakes Research 40(Supplement 3):29–40.
- Hanchin, P. A., R. P. O'Neal, R. D. Clark Jr., and R. N. Lockwood. 2007. The Walleye population and fishery of the Muskegon Lake system, Muskegon and Newaygo counties, Michigan, in 2002. Michigan Department of Natural Resources, Fisheries Special Report 40, Ann Arbor.
- Jude, D. J. 1992. Evidence for natural reproduction by stocked Walleyes in the Saginaw River tributary system, Michigan. North American Journal of Fisheries Management 12:386– 395.
- Mion, J., R. A. Stein, and E. A. Marschall. 1998. River discharge drives survival of larval Walleye. Ecological Applications 8:88–103.
- Pritt, J. J., M. R. DuFour, C. M. Mayer, P. M. Kocovsky, J. T. Tyson, E. J. Weimer, and C. S. Vandergoot. 2013. Including independent estimates and uncertainty to quantify total abundance of fish migrating in a large river system: Walleye (*Sander vitreus*) in the Maumee River, Ohio. Canadian Journal of Fisheries and Aquatic Sciences 70:803–814.