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Abstract: The production of eosinophil-specffic

chemotactic factors during allergic airway responses

may be a pivotal event resulting in eosinophil accu-

mulation, activation, and airway damage. Recent

studies have identified specific chemokines that may

play crucial roles in recruitment of eosinophils to the

site ofallergic reactions. In this study we have utilized

an established model ofschi�tosome egg antigen (SEA)

-mediated allergic responses to examine the role of

specffic C-C chemokines (macrophage inflammatory

protein-la (MIP-la), RANTES, and monocyte chemo-

aUractant protein-i (MCP-1)J in eosinophil recruit-

ment. We have previously identified a role for MIP-la

in eosinophil accumulation in the lung and airway dur-

ing allergic airway inflammation. We extend those

studies using in vitro eosinophil chemotaxis to estab-

lish that both MIP-1 a and RANTES are potent eosino-

phil chemotactic factors in lungs during allergic air-

way responses. Morphometric analysis demonstrated

a peribronchial accumulation of eosinophils within the

lungs beginning at 8 h, peaking at 24 h, and plateau-

ing at 48-96 h after allergen (SEA) challenge. Utiliz-

ing whole-lung homogenates from allergen-challenged

mice, in vitro eosinophil chemotactic assays demon-

strated significant increases in eosinophil chemotac-

tic activity with 8-h lung homogenates and peak ac-

tivity with samples from 24-h lung homogenates. These

data correlated with the morphometric analysis of pen-

bronchial eosinophil accumulation in situ. When lung

homogenates from allergen-challenged mice were pre-

incubated in vitro with antibodies specific for MIP-

la, RANTES, or MCP-1, a signfficant reduction in

eosinophil chemotaxis was observed with only MIP-la

and RANTES neutralization. Altogether, these studies

indicate that RANTES and MIP-la are major eosino-

phil chemotactic factors produced during allergic air-

way responses. J. Leukoc. Biol. 60: 573-578; 1996.
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INTRODUCTION

Allergic pulmonary diseases affect a significant proportion

of the population worldwide and include diseases such as

asthma [1J. The long-term pathological effects of asthma

have been attributed, in part, to infiltrating leukocytes that

surround the bronchus and infiltrate into the airway [2-41.
The immune response associated with asthma has been de-

scribed as having histopathological features of a chronic,

cell-mediated immune reaction, characterized by the infil-

tration of the bronchial mucosa with neutrophils, baso-

phils, eosinophils, macrophages, and lymphocytes [2].

Eosinophils have been reported to be the primary cell re-

sponsible for the induction of bronchial mucosal injury

and are thought to induce the bronchial obstruction asso-

ciated with the asthmatic response [5-14J.

The elicitation of leukocyte subsets has been attributed

to the production of several different chemotactic factors.

Specific neutrophil, mononuclear, and eosinophil chemo-

tactic cytokines (chemokines) have been identified. These

chemoattractants have been divided into two distinct super-

gene families, C-X-C (alpha) and C-C (beta) chemokines

[15, 16J. These divisions have been designated by the posi-

tion of the first two cysteine residues and reflect functional

differences. The C-X-C family of chemokines is primarily

chemotactic for neutrophils and is typified by interleukin-8

(IL-8). The C-C family of chemokines is primarily chemo-

tactic for mononuclear phagocytes, lymphocytes, and/or

eosinophils and contain closely related proteins that in-

dude monocyte chemoattractant protein-1,2,3 (MCP-1,2,3),

macrophage inflammatory protein-la (MIP-la), eotaxin,
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and RANTES [15]. The C-C family members are of particu-

lar interest in the allergic response because there appears

to be a strong correlation with the continued expression of

C-C chemokines and chronic diseases that feature mono-

nuclear and eosinophilic leukocyte recruitment [16]. In par-

ticular, eotaxin, MIP-iga, and RANTES may be important

in allergic airway responses for several reasons. These pro-

teins have been shown to be chemotactic for monocytes,

differentially chemotactic for lymphocyte subsets [17-19J,

and more importantly, chemotactic for eosinophils [20-

23]. With the use of the SEA-induced allergic airway

model we have previously demonstrated that MIP-la plays

an important role in eosinophil accumulation in vivo after

airway challenge [24J.

In this study the direct effect of C-C chemokines in eo-

sinophil accumulation during allergic airway inflammation

was examined. The data demonstrated that in vitro eosin-

ophil chemotactic activity in biological lung samples

reflected the peribronchial eosinophil accumulation in

vivo. Furthermore, the eosinophil chemotactic activity

could be nearly abrogated by preincubation of lung

samples from allergic mice with a specific anti-MIP-la or

anti-RANTES antibody, but not anti-MCP-1, in vitro, sug-

gesting that MIP-la and RANTES have important roles in

mediating eosinophil accumulation in this model.

MATERIALS AND METHODS

Animals

Female CBAIJ mice purchased from Jackson Laboratories (Bar Harbor,

ME) were maintained under standard pathogen-free conditions.

Egg isolation and soluble egg antigen (SEA)
protein preparation

Soluble egg antigens were prepared from acutely S. mansoni-infected

mice as previously described 1251. Briefly, eggs were isolated from livers

of infected mice after a 3-day incubation and ground on ice to release

the soluble antigens from the egg. The preparation was then spun in

an ultracentrifuge at 100,000 g for 2 h and the supernatant collected.

The antigens in the supernatant are primarily glycoproteins, which have

been characterized as inducing a Th2-type granulomatous response in

schistosomiasis f25, 26J.

Sensitization and induction of the airway response

To induce a Th2-type response the following procedure was established

in normal CBA/J mice as previously described L241. Briefly, the mice

were immunized intraperitoneally with 5000 isolated S. mansoni eggs

at days 0 and 7 of the protocol. On day 14 the mice were given an intra-

nasal challenge of 10 �tg of SEA in 10 p1 of phosphate-buffered saline

(PBS) to localize the response to the airway. This initial intranasal chal-

lenge with antigen induced little cellular infiltrate into the lungs of the

mice upon histological examination. Mice were then rechallenged 6 days

later by intratracheal administration of 10 �tg of SEA in 25 �tL of sterile

PBS or with PBS alone (vehicle). The mice were killed at various times

after the intratracheal challenge (1, 8, 24, 48, and 72 h) and the lungs

inflated and fixed in 10% buffered formalin. The magnitude of infiltra-

tion in both the vehicle control and SEA-challenged mice was examined

histologically. Only the SEA-challenged mice displayed a significant

inflammatory response, which included neutrophil and eosinophil infil-

tration as previously described [271.

Morphometric analysis of peribronchial eosinophils

Mice immunized and challenged with SEA or saline vehicle were pee-

served with 1 mL of 4% paraformaldehyde at various time points post-

challenge. The fixed lungs were embedded in paraffin and multiple

50-�tm step sections were differentially stained with Wright-Giemsa for

the identffication of eosinophils and viewed at l000x . The individual

eosinophils were counted from 100 high-power fields (HPF) per mouse
lung at each time point using multiple step sections of lung. To count

the eosinophils a strict criteria was followed. The eosinophils counted

were in juxtaposition to an airway. This assured the enumeration of only

those eosinophils within or immediately adjacent to an airway. The

inflammation observed in this model was nearly completely associated

with the airway with little or no alveolitis.

Lung homogenates

Isolated whole-lung tissue was homogenized on ice using a tissue-tearer

(Biospec Products, Racine, WI) for 30 s in 1 mL of PBS. The resulting

supernatant was isolated after a high-speed spin (10,000 g) and subse-

quent filtration through a 1.2-urn syringe filter (Gelman Sciences, Ann

Arbor, MI). The supernatant was then used in chemotactic assays at a

1:1 ratio with Hanks’ balanced saline solution (HBSS).

Isolation of eosinophils

Eosinophils were elicited by thioglycollate injection into the peritoneum

of S. man.soni egg antigen-sensitized mice. This protocol induces a pool

ofcirculating eosinophils to be recruited into the peritoneum. After 48 h

the mice were peritoneally lavaged and the cells collected. Cells were

suspended in RPMI-1640 supplemented with 5% fetal calf serum

(FCS), l0-� 2-ME, 2 mM sodium pyruvate, 20 mM L-glutamine, and
100 U and 100 mg/mL, respectively, of penicillin and streptomycin.

Adherent cell populations were removed by plastic adherence in tissue

culture dishes for 1 h. The nonadherent cells (eosinophils and lympho-

cytes) were collected, cytospinned, and differentially stained, and the

percentage of eosinophils counted. This procedure yields approximately

70-80% eosinophil pure populations to be used in the chemotaxis

assays, with the remainder of the cells primarily lymphocytic. The cells

can be easily differentiated morphologically on stained chemotaxis

filters by nuclei and granular staining techniques described above.

Chemotaxis assay

Chemotactic assays were performed as previously described [28J.

Briefly, 150 �tL of diluted (1:1) supernatant specimen, recombinant

chemokine, or HBSS (GIBCO, Grand Island, NY) were placed in dupli-

cate bottom wells of a blind-well chemotaxis chamber. A 3-tim pore size

polycarbonate filter (polyvinylpyrrolidone-free, Nucleopore Corp.) was

placed in the assembly and 250 p1 of peritoneal-eicited murine eosin-

ophil suspension (1 x 106/mL) was placed in the top chamber. Chemo-

taxis chamber assemblies were incubated at 37#{176}Cin humidified 95%

air/5% CO2 for 75 mm. The filters were removed, fixed in absolute

methanol, and stained with eosin and counterstained with 2% toluidine

blue (Sigma Chemical). Cells that had migrated through to the bottom

of the filter were counted in 10 HPFs (400 or 1000 x magnification).
Chemotaxis of eosinophils was expressed as the number of cells per

HPF. For neutralization experiments, conditioned media from both SEA-

and vehicle airway-challenged mice were preincubated with a 1:200 di-

lution of control, anti-RANTES, anti-MCP-l, or anti-MIP-la neutraliz-

ing anti-serum for 30 mm at 37 #{176}C,then assayed for cellular chemo-
tactic activity.

Production of antibodies specific for
murine C-C chemokines

Rabbit anti-munne MIP-la and MCP-1 antibodies were prepared by

multiple-site immunization of New Zealand White rabbits with recom-

binant murine MIP-la or MCP-l (Genzyme) in complete Freund’s adju-

vant (CFA). Rabbits were boosted with the appropriate recombinant

chemokine in incomplete Freund’s adjuvant (IFA). Polyclonal antibodies
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were titered by direct enzyme-linked immunosorbent assay (ELISA) and

specifically verified by the failure to cross-react to murine mIL-3,

mIL-la, munne tumor necrosis factor (mTNF), mMIP-la, IL-6, mMCP-

1, mMIP-1�3, hMCP-1, hIL-8, hRANTES, hMIP-la, hTNF, m-eotaxin,

h-eotaxin, and hMIP-fll.

Rabbit anti-murine RANTES was made using a synthetic peptide

from the C-terminus end of the murine RANTES sequence and was

generously supplied by Bruce Dorherty (Merck, Rahway, NJ). Poly-

clonal antibodies were titered by direct ELISA and specifically verified

by the failure to cross-react to mIL-3, mIL-la, mTNF, mMIP-la, IL-6,

mMCP-1, mMIP-1�1, hMCP-l, hIL-8, hRANTES, hMIP-la, hTNF, m-

eotaxin, h-eotaxin, and hMIP-1�1. Native murine RANTES is not pres-

ently available.

Statistics

Statistical significance was determined by analysis of variance with P <

0.05.

RESU LTS

Accumulation of eosinophils around the airways
of allergen-challenged mice

To determine the intensity of peribronchial eosinophil accu-

mulation within the lung, paraffin-embedded lung sections

from vehicle or allergen-challenged mice were differen-

tially stained specifically for eosinophils (Fig. 1). Morpho-

metric analysis of the inflamed airways demonstrated an

allergen-specific accumulation of eosinophils within chal-

lenged lungs. In SEA-challenged animals the eosinophil ac-

cumulation could first be observed at 8 h, peaked at 24 h,

and was maintained at 48 and 72 h post-challenge (Fig. 2).

In contrast, in vehicle control-challenged mice little or no

eosinophil accumulation was observed at any time point.

These data demonstrate an antigen-specific accumulation

of eosinophils peribronchially similar to previous results in

BAL fluid samples from SEA airway-challenged mice [26].

Induction of in vitro eosinophils chemotaxis
by C-C chemokines

Previous results have indicated that MIP-la, eotaxin, and

RANTES have chemotactic activity for eosinophils [20-

23] . To determine the effectiveness and concentration gra-

dient of MIP-1 a and eotaxin on mouse eosinophils, we per-

formed in vitro chemotactic assays using actively elicited

Fig. 1. Specific staining ofeosinophils accu-

mulated peribronchially in paraffin-embedded
lung sections from allergic mice 24 h after

allergen challenge. Lungs were removed at

specific time points after allergen (SEA)

challenge of mice and specifically stained

for eosinophils �magnification x 400 (A);

xl000 (B)1.

Time After SEA Challenge (Hrs)

Fig. 2. Morphometric analysis of eosinophil accumulation around the

airways of mice. Lungs were removed at various time points from mice

challenged with either specific allergen (SEA) or vehicle control. Paraffin-

embedded lungs were specifically stained for eosinophils. Eosinophils

directly surrounding or within airways were counted in 100 HPFflung.

Repeat experiments demonstrated similar results.

eosinophils from SEA-sensitized mice. As shown in Figure

3, MIP-la induced chemotaxis at 1 ng/mL, peaked at

10 ng/mL, and decreased slightly at 30 ng/mL, whereas

eotaxin also demonstrated an increase at 1 ng/mL, but

demonstrated only a modest increase at 10 and 30 ng/mL

when compared with MIP-la. When MCP-1, another C-C

chemokine, was tested in eosinophil chemotaxis, no chemo-

tactic activity was observed, even at high concentrations

(100 ng/mL; data not shown). Murine RANTES is not avail-

able for testing and human RANTES did not induce sig-

nificant chemotaxis in our assays (data not shown). Al-

though it appears that MIP-1 a is more potent, these studies

demonstrate that both MIP-la and eotaxin can specifically

induce murine eosinophil chemotaxis.
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chemokine concentration

Fig. 3. In vitro eosinophil chemotaxis to various doses of MIP-la and

eotaxin. Eosinophils were actively elicited from SEA-sensitized mice

with thioglycollate and SEA (10 �.tg/mL) to the peritoneum. Contaminat-

ing cell populations were removed from lavage fluid by lysis of red blood

cells and plate adherence of macrophages leaving 80-90% pure popu-

lation of eosinophils. Chemotaxis assays were performed in modified

Boyden chambers with the use of 3-rim pore filters. After 1 h at 37#{176}C

the filters were removed and differentially stained for eosinophils. Data

represents mean ± SE. Repeat experiments demonstrated similar re-

sults. *�D < 0.05; **�P < o�oo5�

Inhibition of allergic lung eosinophil chemotactic
activity by neutralization of C-C chemokines

To initially identify the time of peak chemotactic activity in

allergic lungs, whole-lung homogenates from various time

points post-allergen challenge, 8, 24, 48, and 72 h, were

utilized for in vitro chemotactic assays. Figure 4 illustrates

that eosinophil chemotactic activity was significantly in-

creased at 8 h, peaked at 24 h, and quickly declined in

48- and 72-h whole-lung homogenates. We have previ-

ously demonstrated that neutralization of MIP-la in vivo

inhibited eosinophil accumulation within the lungs and air-

ways of allergic mice [24]. To examine whether MIP-la

and other C-C chemokines had direct effects on eosinophil

chemotaxis, control, anti-MIP-la, anti-RANTES, or anti-

MCP-1 antibodies were added in vitro just before the

chemotaxis assay to the whole-lung homogenates from 8-

and 24-h untreated SEA-challenged mice (Fig. 5). In

these experiments results were observed that demonstrated

a significant decrease in eosinophil chemotaxis in both 8-

and 24-h whole-lung homogenates after treatment with anti-

MIP-la or anti-RANTES, but not anti-MCP-l. Altogether

these results indicate that MIP-la and RANTES are eosino-

phil chemotactic factors present within the lungs during

allergic airway responses and directly contribute to the

eosinophil accumulation.

DISCUSSION

The production of chemokines during allergic airway re-

sponses may contribute specifically to the influx of eosino-

phils. Eosinophils have been implicated as a major effector

cell inducing airway injury and subsequent late-phase re-

activity in asthmatics [1, 21. In this study we were interested

in the relative activity of known C-C chemokines on mouse

eosinophils. Supporting previous studies, both MIP-1 a and

eotaxin were found to be active in vitro for eosinophil che-

motaxis. Interestingly, MIP-1 a appeared to be more active

than eotaxin in our assays. The relative activity of specffic

C-C chemokines may vary greatly between species and

likely explain differences in results found between animal

and human cell populations. Using an established model

of allergic airway inflammation, we have previously demon-

strated that neutralization of MIP-1 a signfficantly reduced

the accumulation of eosinophils in vivo after an allergen

challenge [24]. Using this same model we have demon-

strated that the accumulation of eosinophils peribronchi-

ally in allergic mice correlates to chemotactic activity from

lung samples in vitro. Furthermore, the chemotactic activ-

ity was specifically attenuated when lung homogenates

Time After Allergen challenge (Hrs)

Fig. 4. In vitro eosinophil chemotaxis with whole-li’ �omogenates

from allergen-challenged mice. Whole lungs were hon .iized in 1 mL

PBS and the supernatant was diluted 1:2 before in vitro chemotactic

assays. The homogenates were then used as a chemotaxin in the bottom

well of a modified Boyden chamber with a 3-nm pore filter and 2 x
10� eosinophils. After 1 h the filters were removed, top side scraped

to remove excess eosinophils, fixed, stained, and counted under x400

magnification. Data represents mean ± SE from three different mice at

each time point.
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Fig. 5. In vitro eosinophil chemotaxis with whole-lung homogenates in-

dicates a direct role for MIP-la and RANTES, but not MCP-l. Whole

lungs from 8- (A) or 24-h (B) time points after allergen challenge were

homogenized in 1 mL PBS and the supernatant, diluted 1:2, was pee-

incubated for 30 mm with anti-MIP-la, anti-RANTES, anti-MCP-1, or

control antibody. The homogenates were then used as a chemotaxin in

the bottom well of a modified Boyden chamber with a 3-�tm pore filter

with isolated eosinophils. After 1 h the filters were removed, top side

scraped to remove excess eosinophils, fixed, stained, and counted under

x 400 magnffication. Normal and vehicle-challenged lungs had mini-

mat eosinophil chemotaxis of 3 ± 1 and 5 ± 3 eosinophils/HPF, respec-

tively. *P < 0.05.

from allergic mice were pretreated just before chemotaxis

in vitro with antibodies specific for MIP-la. In addition,

pretreatment of the lung homogenates with anti-RANTES,

but not anti-MCP-1, significantly reduced the chemotactic

activity. Altogether, these studies demonstrated that MIP-

1 a and RANTES during an allergic airway response in

mice were directly chemotactic for eosinophils. These re-

suits correspond well with in vitro data which demonstrate

that MIP-la and RANTES, but not MCP-1, are chemotactic

for eosinophils. Similar studies may be important to iden-

tify potential therapeutic targets for attenuating eosinophil

accumulation in and around the airway in human asthma.

A number of steps are required for the migration of

eosinophils into tissues from the vascular compartment.

The interaction of leukocytes with vascular endothelium is

a primary event that requires the expression of endothelial

cell-derived adhesion molecules [29-34J. The adhesion

A molecules facilitate leukocyte spreading on the endothe-

lium, allowing the transendothelial migration of the leuko-

cytes toward chemotactic gradients. In eosinophil migration

it appears that VLA-4IVCAM-1 interactions are extremely

important because blockage of these interactions attenu-

ates the eosinophil migration [351. The migration of the

eosinophils from the lumen of the vessel into the tissue sub-

sequently requires a chemotactic gradient that can be

supplied by a number of potential factors. These factors in-

elude inflammatory mediators such as complement split

products (C5a), leukotrienes, and platelet-activating factor.

However, these substances also have neutrophil chemo-

tactic activity and do not explain the preferential recruit-

ment of eosinophils during asthmatic/allergic responses.

Both MIP-la and RANTES have previously been de-

scribed as eosinophil chemotactic proteins that are prob-

ably responsible for eosinophil accumulation in vivo. For

example, the intradermal injection of RANTES into dogs

caused the accumulation of eosinophils and mononuclear

leukocytes, whereas other chemokines did not [22]. Like-

wise, a recent publication identified MIP-la as a major

eosinophil chemoattractant in mice [211. Other members

of the C-C chemokine family also have eosinophil chemo-

tactic properties. Eotaxin and MCP-3 have been identified

as potent eosinophil chemoattractant proteins and there-

fore have also been implicated in allergic responses [23,

361. The detection of eosinophil chemoattractant proteins

may serve to identify important targets in inflammation for

attenuation of allergic airway diseases. It is likely that a

number of these factors are involved in the overall recruit-

ment of eosinophils, however, the identification of preferen-

tial utilization of particular factors during allergic airway re-

sponses in vivo is crucial.

In addition to the chemokines, other cytokines have

demonstrated eosinophil recruitment activity. Lymphocyte

chemoattractant factor is produced by CD8� T cells, uti-

lizes CD4 molecules on cells, and appears to be an eosin-

ophil chemoattractant in vitro [37]. IL-2, a T cell growth

factor, also appears to have eosinophil chemokinetic activ-

ity [381, whereas IL-5, an eosinophil maturation and differ-

entiation factor, is not only directly chemotactic for eosin-

ophils, but also has the ability to prime eosinophils for

enhanced chemotactic responses to other factors [39].

Overall, the recruitment of eosinophils probably requires

several signals for maturation and activation followed by a

chemotactic gradient in tissue for the eosinophils to mi-

grate. In the present study we have utilized eosinophils that

were actively elicited by thioglycollate and specffic antigen

(SEA). It is therefore likely that the isolated eosinophils

have been exposed to multiple stimuli (IL-2, IL-5, etc.) that

allowed maturation and activation of the eosinophils before

chemotaxis in vitro. These conditions may be a common

circumstance that relates to the effective mechanism(s) of

enhanced eosinophil infiltration during chronic allergic re-

sponses in vivo.

The results of this study identify MIP-1 a and RANTES,

produced locally in the lungs after allergen challenge, as

direct chemotactic factors for eosinophils. These data ex-
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tend earlier observations and suggest that MIP-la and

RANTES are major chemotactic proteins involved in eosin-

ophil recruitment during allergic airway responses. Future

studies should identify other factors responsible for eosin-

ophil recruitment and determine the relative contribution

each has in the total eosinophil chemotactic activity during

the recruitment process.
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