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Direct Visualization of Formylpeptide Receptor Binding
on Rounded and Polarized Human Neutrophils:

Cellular and Receptor Heterogeneity
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We have used light microscope autoradiography to visualize binding of the formylhexa.
peptide, N-formyl-norleucyl-leucyl-phenylalanyl-norleucyl-(1251)tyrosyl-Iysine to rounded
and spontaneously polarized human polymorphonuclear leukocytes. These cells pos-
sess receptors known to bind with high specificity and great avidity to the chemotactic
formylpeptides. Cells adherent to glass slides were exposed to (1251)-hexapeptide at 4#{176}C,
fixed, and autoradiographed. Hexapeptide binding was studied over the biologically
active range of peptide concentrations varying from 0.63 nM to 10 nM and autoradio-
graphic silver grains counted on 200 rounded or 50 polarized cells at each concentration.
Examination of histograms plotted from these data revealed for rounded cells: 1 ) two
major peaks at each concentration indicating the existence of two neutrophil subpopu-
lations, the predominant subpopulation binding one-half as much formylpeptide (peak I)
as the other (peak II); 2) progressively increasing proportions of cells in peak II as the
free hexapeptide concentration increased. Accordingly, at 0.63 nM hexapeptide, peak II
comprised only 8% of the total cell number, whereas at 10 nM this peak represented
35% of the total cells. This suggested that different types of receptors may exist In the
two cell subpopulations (high/low affinity or high/low negative cooperatlvlty) and that
these receptor types were expressed differentially on these subpopulations. Thus, ccl-
lular heterogeneity within the neutrophil population and receptor heterogeneity among
hexapeptide receptors on an individual cell were both observed here. Each of these may
significantly affect neutrophil functional responses to the chemotactic formylpeptides
and may explain, at least in part, the curvilinearity in the Scatchard plots of formylpep-
tide receptor binding that has recently been reported.

At higher concentrations of peptide (� 5 nM), spontaneously polarized PMN bound
hexapeptide more or less uniformly over the entire cell surface. However, at lower
concentrations, hexapeptide binding was markedly shifted toward the cell anterior. As a
group, polarized PMN bound similar total quantities of hexapeptide, as did rounded PMN
at each peptide concentration tested. Receptors displaying high. and low-affinity char-
acteristics were, however, distributed asymmetrically over the cell surface, with the
high-affinity type receptors predominantly on the anterior one-half of the cell. Such an
asymmetric distribution may serve to initiate or perpetuate cell locomotion.
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INTRODUCTION

Polymorphonuclear leukocytes (PMN) are highly
phagocytic components of the immune system that re-

spond chemokinetically and chemotactically to soluble
bacterial factors [4,27,41]. PMN must continually moni-

tor and respond to such soluble chemotactic stimuli in

order to detect concentration gradients of soluble factors

and also to initiate and to perpetuate stimulated and direc-

tional locomotion. These activities are mediated by cell
surface receptors that bind certain specific classes of

chemotactic molecules [34,42]. Among these factors are

the naturally occurring formylmethionylpeptides [2,55],

a group of molecules now known to be the NH2-terminal
post-translational clip products of nascent bacterial pro-
teins as well as bacterial signal peptides. Purified syn-
thetic analogues of these naturally occurring bacterial
substances are also potent leukocyte chemoattractants

[21,24,41,42].
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In the past, suspensions of PMN isolated from any

given individual were considered to be rather homoge-
neous with respect to chemoattractant binding. However,

this notion must be reassessed in light of recent evidence

that PMN populations are quite heterogeneous [6,7,

8, 10,35,37]. Subpopulations of leukocytes have been re-

ported, each of which expresses its own characteristic

number of receptors for formylpeptide chemoattractants.

In addition, recent findings suggest that PMN receptors

for formylpeptides and those for leukotriene B4 may also

express more than one binding affinity for ligand

[9, 17, 19,36,40]. Such heterogeneity within the PMN

population and among the formylpeptide receptors them-

selves has been shown indirectly, using receptor-binding
kinetics or flow cytometry. Using these techniques, it has

only recently been possible to determine that cell hetero-

geneity and formylpeptide receptor heterogeneity coexist
within the same population of cells [23]. We have dem-

onstrated both types of heterogeneity in populations of

human PMN binding the formylpeptide chemoattractant,

formyl-norleucyl-leucyl-phenylalanyl-norleucyl-(’ 251)ty-

rosyl-lysine. This heterogeneity has been visualized di-

rectly using light microscope autoradiographic methods.

Our results indicate that both cell and receptor binding

heterogeneity occur simultaneously in populations of hu-

man PMN.

Several types of membrane receptors exhibit inherent

anteroposterior asymmetric distributions on the cell sur-

face of motile leukocytes [38,47,50-53]. Such asymme-

tries may facilitate motility-related activities such as

phagocytosis, receptor-mediated endocytosis, and chem-

otaxis in these cells. Transcellular asymmetries of for-

mylpeptide receptors across the cell surface of rounded

or polarized PMN might play a significant role in modu-

lating the cell’s initial or continued response to chemotac-

tic stimuli. We have examined the occurrence and

distribution of hexapeptide receptors on the surface of

spontaneously polarized PMN using a range of hexapep-

tide binding concentrations. At high binding concentra-

tions (� 5 nM), hexapeptide was found to bind more or

less uniformly over the entire cell surface. However, at

lower concentrations (� 2.5 nM), hexapeptide bound

asymmetrically, predominantly over the anterior half of

polarized PMN.

MATERIALS AND METHODS

Isolation of Human Peripheral PMN

Whole peripheral blood drawn from healthy volunteers

into tubes containing EDTA was allowed to undergo

gravity sedimentation for 45 mm at room temperature.

The leukocyte-rich plasma was drawn off and then di-

luted 1:1 with buffer containing 140 mM NaCl, 10 mM

KCI, 10 mM HEPES, 5 mM glucose, and 2 mg/mi

bovine serum albumin, pH 7.4 (HBS). This suspension

was gently layered onto 1 ml of lymphocyte separation
medium (Bionetics, Kensington, MD), and the discontin-

uous gradient centrifuged at 500 x g for 5 mm in a

clinical centrifuge. The supernatant was aspirated, the
cell pellet resuspended in HBS containing 2 mM EDTA,

and this suspension centrifuged momentarily in an Ep-

pendorf centrifuge. Erythrocytes in the cell pellet were

lysed by hypotonic shock and the PMN rinsed three times

in HBS containing EDTA. Cells were then stored at 4#{176}C

until use. Cell preparations contained more than 95%

polymorphonuclear leukocytes, with the remaining cells

being predominantly eosinophils [50,51].

Exposure to lodinated Hexapeptide

PMN suspended in 25 j.il HBS containing 1 mM MgSO4

and 0.2 mM CaCI2 were placed onto acid-cleaned glass

microscope slides in a humidified chamber for 5 mm at

37#{176}C.Subsequently, 25 j�l of (‘251)-labeled hexapeptide

(2,000 Ci/mmole) in the same buffer was added to each

slide and the slides with adherent cells incubated further
at 4#{176}Cfor 15 mm. N-formyl-norleucyl-leucyl-phenyl-

alanyl-norleucyl-tyrosyl-lysine (Peninsula Laboratories,

Belmont, CA) was iodinated at the tyrosine position us-

ing carrier-free 1125 by the chloramine-T method as de-

scribed previously [13-15, 22]. The binding charac-

teristics (i.e. , saturation curves, reversibility of binding,

equilibrium conditions) of this probe have been reported

previously [28]. The final concentrations of (1251)-hexa-

peptide used were 10 nM , 5 nM , 2 .5 nM, 1 .25 nM , and

0.63 nM. In addition, control experiments for nonspe-

cific binding were performed in which unlabeled hexa-
peptide (1 ,000-fold excess) was added simultaneously

with iodinated hexapeptide. Upon completion of this in-

cubation, all slides and adherent PMN were rinsed

quickly in two changes of HBS and once in HBS lacking
bovine serum albumin. Slides were then submerged in

cold fixative solution containing 1.5% glutaraldehyde,

1.0% paraformaldehyde, and 0.1 M cacodylate, pH 7.2.

Autoradiography and Sampling Procedures
Cells were fixed overnight, rinsed in 0.1 M cacodylate

buffer, in Dulbecco’s modified Eagle’s medium, in cac-

odylate buffer again, and then dehydrated in graded

ethanols to 80% ethanol. Cells were then rehydrated, and

slides were dipped in Kodak NTB-2 emulsion (diluted

1:5 with distilled water), air dried, and stored for 3 days

at 4#{176}Cin the dark. Exposed autoradiographs were devel-

oped using Kodak D-19, fixed, stained in eosin and cresyl
violet, and coverglasses affixed using Permount

[52]. Localization of radioactive sources by this method
was generally good, with the great majority of exposed

silver grains lying very close to the cell surface (within 1

/2m) [5,32]. Grains overlying the cell contours seen by

phase contrast were counted, whereas grains lying more

than 1 �m outside this profile were considered to be

background and not cell associated.
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Cells were examined and photographed using a Nikon

Optiphot microscope equipped with an Olympus OM-2n

camera. Phase-contrast optics were used to determine

cell morphology and dark-field optics to visualize and

count silver grains associated with the cells. For recep-

tor-binding studies on rounded PMN, grains associated

with 200 cells were counted for each experimental group.

Three experiments were performed and duplicate slides

were run for each hexapeptide concentration.

Polarized cells were identified using phase contrast

optics and their overall length measured using an eye-

piece reticle. This length was halved and the micrometer

line corresponding to this midpoint used to distinguish

the anterior or front half of the cell from the posterior or

rear half of the cell. This midpoint was usually found to

lie at the posterior boundary of the nucleus. Grains over

each half of the PMN were counted and the ratio of

grains on the front:rear of the cells calculated. Fifty

polarized cells in each group were assessed, three sepa-

rate experiments were performed, and duplicate slides

were run for each hexapeptide concentration.

Our method for dividing PMN into anterior and pos-

tenor halves was based upon the spatial sensing hypoth-

esis for chemotaxis [1,27,34]. According to this model,

cells sense concentration gradients of chemoattractants

by differential occupancy of receptors across the cell

surface. Thus, the distance from the leading edge to the

trailing uropod tip may well affect the cell’s capacity to

sense a concentration gradient or to respond appropri-

ately to a chemotactic factor [3 1] . Since the anteroposte-

nor distance may be a physiologically significant param-

eter, our division of PMN simply into anterior and pos-

terior halves should provide some measure of this

parameter.

This method does not compensate for possible differ-

ences in the amount of plasma membrane, in organelle

distributions within the PMN, or possible differences in

adhesion between the front and rear of these cells. Al-

though such factors are undoubtedly important in initiat-

ing and perpetuating chemokinesis and chemotaxis

[42,43,45,46], their exact significance in these activities

is unproven. Nevertheless, this method was expeditious

and provided useful information without exceeding the

resolution of the autoradiographic technique [5,32,52].

Statistical Analyses

For rounded PMN, frequency distribution histograms

were generated from these grain counts (using ABSTAT,

Anderson-Bell’s statistics package), with the abscissa

representing the amount of hexapeptide bound to individ-

ual cells within the leukocyte population and the ordinate

representing the number of frequency of cells in the

population exhibiting a given level of hexapeptide bind-

ing. These histograms were then analyzed using PEAK-

FIT (EMF Software, Knoxville, TN). This program fits

data to one or multiple Gaussian peaks by a non-linear

least-squares method using the Simplex algorithm. The

number of population means, their values, and variances

were first approximated by eye from the frequency dis-

tribution to establish a starting point for the fit. The

program then defined the normal curve(s) that most

closely fit the experimental data. Usually 100-300 curve

fining operations and refinements were required for the

program to obtain the closest fit. Goodness of fit for

single or multiple peaks, mean values, standard devia-

tions, and peak areas were calculated; F tests comparing

the fit for distributions having one or two peaks were

performed using PEAKFIT [25,26].

For polarized cells, grains were counted on the front

and rear halves of 50 cells at each hexapeptide concentra-

tion. These values were then compared using paired t-

tests. The ratio of grains on the front: rear halves of cells

exposed to 10 nM iodinated hexapeptide was calculated.

This ratio was then compared to similar ratios calculated

for polarized cells exposed to other concentrations of

hexapeptide using the Mann-Whitney U-test. In addition,

the total number of grains counted on polarized cells at

each concentration of iodinated hexapeptide was com-

pared to that obtained for rounded cells at these same

concentrations using chi-square.

RESULTS

Receptor Saturation Experiments: Rounded Cells

Human PMN exposed to (I’25)-labeled hexapeptide

bound substantial amounts of peptide to their cell surface

(Figs. 1, 2). The silver grain counts seen after 3 days

exposure ranged from an average of 7. 8 grains/cell at

0.63 nM iodinated hexapeptide to 41 .2 grains/cell at 10

nM iodinated hexapeptide. Nonspecific binding of hexa-

peptide plus emulsion background silver grains never

exceeded an average of 0.6 grains/cell (i.e., 2-8% of

total). Figure 3 shows a saturation curve of the data

obtained from these experiments. As can be seen, bind-

ing approached saturation at high hexapeptide concentra-

tions such that an overall 16-fold increase in hexapeptide

concentration was accompanied by a 5-fold increase in

hexapeptide binding to PMN. As expected, the rate of

increase in binding was gradually reduced at higher hex-

apeptide concentrations. In individual experiments, a dis-

tinct tendency for large variances in the cell population

with regard to the number of grains per cell was also

noted. However, between experiments the variance was

considerably smaller. As a result, we further examined

individual cells within the population to determine whether

the amount of hexapeptide binding per cell was described

by a normal curve.
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Fig. 1. Light micrographs of rounded, nonmotile human PMN
exposed to 10 nM (a, b) or 5 nM (c, d) (125I)-hexapeptlde for 15
mm at 4#{176}C.Cells exposed simultaneously to 10 nM (1251)-hexa-
peptide and 10 LM unlabeled hexapeptide are shown in e and f.
Cell monolayers were viewed using phase-contrast optics (left
column) or dark-field optics (right column) to accentuate the
silver grains. Controls for nonspecific binding and emulsion

background (e, f) are virtually free of silver grains. On the other
hand, many grains are seen overlying cells exposed to 10 nM
labeled formylpeptide (a, b), and somewhat fewer over cells
exposed to 5 nM hexapeptide (c, d). A cell exhibiting a particu-
larly large number of grains is seen in the top panel (a, b)
(arrow). Such cells are characteristic of those found in peak II
of Figure 4. Magnification bar = 10 �m.
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Fig. 2. Phase contrast (left) and dark-field (right) mlcrographs of rounded PMN
exposed to 2.5 nM (a, b), 1.25 nM (c, d), or 0.63 nM (125l)-hexapeptide (e, f). As the
concentration of labeled hexapeptide was decreased, the number of grains over the
PMN also declined. Magnification bar = 10 1zm.
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Hexapeptide Binding to PMN in the Sample
Population

The silver grains associated with 200 PMN were

counted for cells exposed to 0.63, 1.25, 2.5, 5.0, or 10

nM (V25)-hexapeptide. Histograms generated from this

data are shown in Figure 4 and summarized in Table 1.

For cells at each binding concentration of iodinated hex-

apeptide, bimodal distributions of hexapeptide binding

clearly emerged. The PEAKFIT program showed that

the fit for two peaks was significantly better in each case

than the fit for a single peak (see Table 1). The relative

numbers of cells in each subpopulation (peaks I and II)

varied, depending on the initial binding concentration of

hexapeptide, but the bimodal character of the curves was

still evident.
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FIg. 3. Saturation plot for hexapeptide binding to human PMN
generated from light microscope autoradiograph grain counts.
The cells were exposed to (‘25l)-hexapeptide for 15 mm at 4#{176}C,
fixed, autoradiographed, and the grains overlying 200 cells
counted. The mean numbers of grains/cell were calculated for
subpopulations seen at each concentration of hexapeptide
(mean ± SD). The means for the subpopulatlon binding larger
amounts of hexapeptide (peak II, A), means for the subpopu-
latlon binding lesser amounts of hexapeptide (peak I, U), and
overall population means (#{149})are shown. Hexapeptide binding
was also assessed in the presence of 1 ,000-fold excess unla-

beled hexapeptide (0).

It seems evident from these data that there are two

distinct subpopulations of PMN within a suspension or

monolayer of cells. The ratio of the mean grain counts

per cell for the two PMN subpopulations seen is more or

less constant at about 0.50. One of these subpopulations

seems to bind approximately twice as much hexapeptide

as does the other. These two subpopulations seemed to

be distinct and separate in regard to the amount of hexa-

peptide bound, but otherwise they exhibited very similar

saturation characteristics (see Fig. 3). Seligmann et al

[35] have also demonstrated the occurrence of cellular

heterogeneity using flow cytometry. In their study, about

40% of the PMN population displayed membrane depo-

larization in the presence of formyl-methionyl-leucyl-

phenylalanyl-lysine, and this subpopulation showed about

25 % more formylpeptide binding than the nonresponding

subpopulation. At 10 nM hexapeptide, we saw 35% of

the PMN population binding about 100% more hexapep-

tide. Differences in experimental conditions (notably,

temperature and length of time allowed for binding) may

account for this discrepancy.

Furthermore, the proportion of cells in each peak var-

ied depending on the initial concentration of hexapeptide

present during binding. PMN from the subpopulation

having more binding per cell (peak II) comprised 8% of

the total population at 0.63 nM (�25I)-hexapeptide, 15%

at 1.25 nM, 18% at 2.5 nM, 21% at 5 nM, and 35% at

10 nM. This progression of increasing cell frequencies

may indicate that the cells in peak II are expressing a

different type of binding site for hexapeptide, which is

only expressed fully as the hexapeptide concentration is

increased toward saturation. One possibility in this re-

gard is that receptors having different affinities or a

single receptor having high- and low-affinity states might

exist (see Fig. 5). The aforementioned similarities in the

saturation characteristics of both subpopulations might

TABLE 1. Autoradiogra phic Grain Counts for Neutrophils Exposed to V arying Concentrations of (125I)�

Hexapeptide

(‘251)-hexapeptide

concentration (nM)

Grains/cell (mean ± SEM)0 Ratio of means

(peak I/peak II) P’Peak I (%) Peak II (%)

10 34.5 ± 5.5 (65)b 64.1 ± 3.7 (35) 0.54 <.005

5 22.0 ± 3.4 (79) 42.7 ± 2.5 (21) 0.52 <.0001
2.5 15.9 ± 2.9 (82) 32.6 ± 2.8 (18) 0.49 <.05

1.25 12.3 ± 2.1 (85) 25.6 ± 1.8 (15) 0.48 <.03

0.63 7.2 ± 1.2 (92) 15.3 ± 0.5 (8) 0.47 <.04

aGrains associated with 200 cells were counted at various concentrations of (‘251)-hexapeptide. Using these grain counts,

histograms were generated using ABSTAT, and these frequency distributions were analyzed using PEAKFIT computer

analysis. Two subpopulations of PMN were demonstrated at each concentration of labeled hexapeptide tested. For details

of these procedures see Materials and Methods section.
bThe percentage of the total cells in each subpopulation.

cComparison of F ratios (from PEAKFIT) for experimental population distribution with theoretical normal distribution

having either one or two peaks. P = probability that simpler model (one-peak model) is preferred.
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Fig. 4. Histograms showing the frequency of cells and the
amount of hexapeptide bound by cells (grains/cell) exposed to
different concentrations of (‘25l)-hexapeptide. Two hundred
cells were counted, and they appear to fall Into two subpopu-
lations. At 10 nM hexapeptide (a), one subpopulation has a
mean of 35.5 (peak I) and the other a mean of 64.1 (peak II)
grains/cell (arrows). At 5 nM (125l)-hexapeptide (b), a prominent
peak or subpopulation having a mean of 22.0 and a smaller
subpopulation having a mean of 42.7 grains/cell are evident
(arrows). At 2.5 nM (1251)-hexapeptide (c), the predominant sub-
population of cells shows a mean grain count of 15.9, while the

tend to favor this latter interpretation. On the other hand,

Marasco et al [23] have demonstrated negative coopera-

tivity among the formylpeptide receptors of rat [neutro-

phil plasma membranes and on whole rat neutrophils

Marasco, W.A., Feltner, D.E., and Ward, P.A., unpub-

lished results]. Heterogeneity in the expression of such
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B

smaller subpopulation displays a mean grain count of 32.6
grains/cell (arrows). For cells exposed to 1.25 nM (125l)-hexa-
peptide during binding (d), approximately 85% of the popula-
tion is found in a subpopulation having a mean grain count of
12.3, while the remaining cells is In a subpopulation having a
mean grain count of 25.6 grains/cell (arrows). For cells exposed
to 0.63 nM (‘25l)-hexapeptide (e), only 8% of the population
remained in the second peak with a mean grain count of 15.3
grains/cell. Ninety-two percent of the PMN were found in the
other subpopulation and the mean number of grains associated
with these cells dropped to 7.2 grains/cell (arrows).

the progressively decreasing cell frequencies seen here.

Accordingly, it might be argued that cells in peak II

express little receptor negative cooperativity relative to

cells found in peak I.
The morphological appearance of PMN from both sub-

populations (peak I and peak II) was also compared (see

Fig. 1). There was some variation in the relative degree
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Fig. 5. Schematic representation of possible mechanisms for
receptor heterogeneity in human PMN. When binding occurs at
a given hexapeptide concentration (e.g., 10 nM), some recep-
tors may bind peptide avidly (right column) while others bind it
poorly (left column). Such heterogeneity is generally attributed
to the occurrence of receptors having either different affinities
(a, b) or different degrees of destabilizing interactions, that is,
negative cooperativity (d). Differences in receptor affinities may
be generated as a result of either the existence of two distinctly
different receptors each with different affinities for hexapep-
tide (a) or perturbations of a single receptor type by some
outside Influence (b) altering its hexapeptide binding capacity.
On the other hand, destabilizing receptor interactions may af-
fect hexapeptide binding even to a single class of hexapeptide
receptors. Such receptor-receptor interactions might become
significant when receptors lie in close proximity to one an-
other. These destabilizing conditions might occur as the result
of inherent receptor clustering (C) or plicated, Irregular mem-
brane conformations (d) existing locally on the cell surface.

of cell flattening and in the nuclear stain intensity

throughout the PMN population, but these differences

did not seem to correlate with differences in the hexapep-

tide binding. No differences in the sizes of the cells or in

the nuclear morphology between the two groups were

observed. Thus, cells in each of the two subpopulations

showed no morphologic differences correlating with the

observed differences in hexapeptide binding (a cell from

peak II is seen in Fig. I at arrow).

Hexapeptide Distribution on Polarized PMN

PMN exposed to (‘25I)-hexapeptide at 4#{176}Cfor 15 mm
were studied to determine the distribution of silver grains

on spontaneously polarized or motile cells. Many silver

grains were seen on cells exposed to 10 nM hexapeptide,

and the grains seemed to be distributed somewhat uni-

formly on the cell surface of polarized PMN (Fig. 6a,

b). Fewer grains were seen on cells exposed to 5 nM

hexapeptide, but the grains were still distributed some-

what uniformly over the entire cell surface (Fig. 6c, d).

However, as the concentration of iodinated hexapeptide

was decreased further, the distributiopn of grains shifted.

Cells exposed to 2.5 nM (125I)-hexapeptide displayed

grains predominantly over the anterior half of the cell

(Fig. 7a, b). At lower concentrations of hexapeptide

(Fig. 7c-f) this same phenomenon became more appar-

ent. Increasingly, receptors occurred on the front half of

each cell, while fewer appeared on the rear half. The

numbers of nonspecific and background grains were al-

ways very low (Figure 7g, h).

Grain counts performed on polarized PMN are seen in

Table 2. Polarized cells exposed to 0.63, 1.25, 2.5, 5, or

10 nM (I’25)-hexapeptide were studied, and grains on the

front and rear halves of each cell were counted as de-

scribed in the Methods section. Fifty cells were studied

in each group for each experiment, and three experiments

were performed. At 5 and 10 nM concentrations, PMN

exhibited a slight anterior tendency in their distribution

of hexapeptide binding sites. As a result, the ratio of

grains counted on the front : rear of these cells was slightly

elevated (1 .41 for cells at 10 nM and 1 .37 for cells at 5

nM). At lower concentrations of hexapeptide, however,

a much greater anteriorward shift in the distribution of

grains on polarized PMN occurred. Cells exposed to

0.63, 1,25, or 2.5 nM hexapeptide bound less peptide,

of course, but the ratio of grains seen on the front:rear

of these cells was dramatically increased (2.86 at 2.5

nM, 3.33 at 1.25 nM, and 4.00 at 0.63 nM). The ratios

of grains counted front:rear for cells exposed to 2.5 nM

or less hexapeptide were significantly different (P <

.001, Mann-Whitney U-test) from those obtained for

cells exposed to 5 or 10 nM hexapeptide. In addition,

when the grain counts on the front and rear of cells were

compared, there were statistically significant differences

(P < .002, paired t-tests) seen at each concentration of

peptide used.

In the studies described here, we examined sponta-

neously polarized cells, and these cells were studied

using uniform fields (i.e., not gradients) of the chemoat-

tractant f-Nle-Leu-Phe-Nle-Tyr-Lys. It might be argued

that spontaneously polarized cells are unusual in some

respect and may not represent the population of cells that

are ordinarily stimulated by chemoattractants. These cells

represented less than 4% of the entire PMN population,
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Fig. 6. Phase-contrast (left) and dark-field (right) microscopy showing sponta-
neously polarized human PMN (arrows). Cells were exposed to (1251)-labeled hexapep-
tide at 10 nM (a, b), 5 nM (c, d), or at 10 nM in the presence of 10 �M unlabeled
hexapeptide (e, f). At both 5 and 10 nM hexapeptide, silver grains appeared over the
entire cell surface, with only a slight tendency toward the anterior of the cell. Cells
exposed to labeled and excess unlabeled hexapeptide showed very few cell-associ-
ated grains. Magnification bar = 10 �m.
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TABLE 2. Hexapeptide B inding on Polarized Human PMN

(‘25I)-hexapeptide

concentration (nM)

Grains/cells (mean ± SEM)

Ratio

(15 mm at 4#{176}C) PMN front” PMN rear” (front/rear) ph

10 18.6 ± 2.6 13.2 ± 3.7 1.41 -

5 17.2 ± 2.3 12.6 ± 2.8 1.37 >20

2.5 13.4 ± 1.4 4.7 ± 2.6 2.86 <.001

1.25 8.1 ± 0.8 2.4 ± 1.8 3.33 <.001

0.63 4.8 ± 1.2 1.2 ± 1.4 4.00 <.001

lOnM + 0.2 ± 0.1 0.2 ± 0.1 - -

10 aM cold

hexapeptide

“Polarized PMN were transected with a line between the leading edge and trailing uropod tip. Grains over each half of

the cell were then counted.

Three separate experiments were run: 50 cells were counted for each data point in each experiment.

When the number of grains at the front of each PMN was compared with that at the rear of each PMN using paired t-

tests, values were found to be significantly different at the P <.002 for each concentration of labeled hexapeptide used.
bEach ratio was compared to that calculated for 10 nM hexapeptidc binding concentration using Mann-Whitney U-test.

and the cause for their polarization or apparent motility

is not known. The polarization ofthese cells might reflect

previous stimulation by chemokinetic factors encoun-

tered during cell isolation or substrate adhesion. As a

result, cell surface components such as the formylpeptide

receptor might be redistributed over the cell surface in

response to cell polarization. Similar secondary redistri-

bution and resulting asymmetries of unoccupied recep-

tors have been described previously for Fc and C3b

receptors, and possible mechanisms for their occurrence

have been discussed elsewhere [50,51].

On the other hand, these polarized cells may represent

a small subpopulation of PMN that is particularly sensi-

tive to chemokinetic or chemotactic stimuli. Increased

sensitivity to chemoidnetic activation might result from

an unusually large or small number of receptors for

chemoattractant or an unusual distribution of receptors

on the cell surface. However, it appears that these spon-

taneously polarized cells are not unique with respect to

their total hexapeptide binding. The total amount of hexa-

peptide bound to polarized cells was about the same as

that bound to rounded cells in the general population at

the same hexapeptide concentration (Table 3).

Fig. 7. Phase-contrast (left) and dark-field (right) autoradio-
graphs of cells exposed to (1251)-hexapeptide. PMN were cx-
posed to 2.5 nM (a,b), 1.25 nM (c, d), or 0.63 nM (e, f) iodlnated
hexapeptide, or to 2.5 nM (125l)-hexapeptide with a 1,000-fold
excess of unlabeled hexapeptide (g, h). Polarized cells treated
with 2.5 nM labeled hexapeptide displayed many silver grains
over the anterior half of each cell. Polarized PMN exposed to
either 1 .25 nM (arrow) or 0.63 nM (1251)-hexapeptide exhibited
fewer grains overall, but these grains were distributed predom-
inantly over the anterior half of each cell with very few grains
seen over the uropod region. Magnification bar = 10 �m.

DISCUSSION

The results of our experiments using light microscope

autoradiography to quantitate the amount of hexapeptide

binding to human PMN are, in general, very similar to

those obtained by conventional radioligand binding meth-

ods [23 , 28, Walter and Marasco, unpublished data].

However, while data from autoradiographic studies can

be used to generate saturation-type curves for hexapep-

tide binding, it is much more useful for studying the

formylpeptide binding characteristics of individual cells

within the PMN population. Used in this way, certain

aspects of this binding can be studied to great advantage.

Cellular and Receptor Heterogeneity on
Rounded PMN

In the present study, all ligand-receptor interactions

occurred at 4#{176}C,so that any active cellular responses to

hexapeptide binding were greatly diminished or absent.

As a result, inherent binding capacity is demonstrated

such that binding is not a function of ongoing receptor

clustering, membrane perturbation, endocytosis, or exo-

cytosis. Under these conditions, there appear to be two

basic mechanisms (Fig. 5) by which the observed differ-

ences in receptor binding may evolve. 1) Differences in

receptor affinities: such differences might be attributed

to either two entirely distinct receptors having different

affinities (Fig. 5a) or to a single receptor exhibiting two

different conformations (Fig. Sb). 2) Negative coopera-

tivity among receptors: steric interference or other de-

stabilizing interactions might occur among formylpeptide

receptors under certain conditions . Increased inherent

receptor clustering (cross-linking) (Fig. Sc) or certain

membrane configurations (Fig. Sd) could cause poor

accessibility of the peptide receptor or interference in

hexapeptide binding to its receptor.
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TABLE 3. Hexapeptide Bi nding on Rounded and Polarized
Human PMN

(‘25I)-hexapeptide

(15 mm at 4#{176}C)

Grains/cell (mean ± SEM)”

Rounded cells Polarized cells

10 41.3 ± 5.2 31.8 ± 6#{149}7b

5 26.3 ± 3.4 29.8 ± 4.6

2.5 18.8 ± 2.8 18.1 ± 4.0

1.25 14.3 ± 1.8 10.5 ± 2.4

0.63 7.8 ± 1.0 6.0 ± 2.0

10 nM + 10 �M cold 0.5 ± 0.2 0.4 ± 0.2

hexapeptide

2.5 nM + 2.5 zM cold 0.6 ± 0.3 0.5 ± 0.2

hexapeptide

0.63 nM + 0.63 �zM cold 0.6 ± 0.2 0.6 ± 0.2

hexapeptide

“Total number of silver grains associated with 200 rounded cells or

50 polarized cells were counted. Three separate experiments were

run.

‘l’he mean grain counts calculated for rounded and polarized cells at

each hexapeptide concentration were compared using chi-square.

Values at each concentration were not significantly different.

lOnM HEXAPEPTIDE 0.63 nM HEXAPEPTIDE

fl High-Affinity Hexapeptide Receptor
(or low negative cooperativity)

� Low-Affinity Hexapeptide Receptor
(or high negative cooperativity)

Hexapeptide

Fig. 8. Diagram representing formylhexapeptide receptor dis-
tribution and hexapeptide binding on spontaneously polarized
PMN. High-affinity or low negative cooperativity receptors are

distributed primarily over the anterior half of the polarized cell.
Low-affinity/high negative cooperativity receptors may be dis-
tributed more uniformly or only on the posterior half of the cell.
Thus, at high concentrations of hexapeptide (> 2.5 nM), much
hexapeptide would bind to both the anterior and posterior
halves of the PMN. As the concentration of free chemoattrac-
tant decreased, the amount of hexapeptide binding to the low-
affinity/high negative cooperativity receptors on the posterior
half of the cell would decrease rapidly, while the amount of
hexapeptide binding to the receptors on the anterior half of the
cell would decrease at a comparatively low rate. As a result,
hexapeptide would bind asymmetrically over the PMN cell sur-
face with an Increasing proportion on the anterior half of the
cell.

The occurrence of receptor heterogeneity (high- and

low-affinity binding states or differences in negative co-

operative interactions) for the formylpeptide chemotaxis

receptor may result from the interaction of the cytoskel-

eton with the cell surface (see Fig. Sb). Such interactions

might cause the expression of the high-affinity receptor

state, whereas receptors not interacting with the cyto-

skeleton might remain as low-affinity binding sites for

hexapeptide. Jesaitis et al [15] have described the forma-

tion of high-affinity formylpeptide receptor complexes

associated with detergent-insoluble “cytoskeletons” of

human granulocytes. White et al [54] have shown that

actin becomes associated with such “cytoskeletons” after

cells are stimulated with formylpeptide. However, at pre-

sent, no direct or indirect linkages between the cytoskel-

eton and surface formylpeptide receptors have been

demonstrated.

Populations of PMN are also known to exhibit hetero-

geneity in their rates of locomotion [12], immunoglobulin

G Fc receptor expression and Fc receptor-mediated activ-

ity [16,56], membrane potential responsiveness to for-

mylpeptide [35] , cell density [30] , and cell surface

antigens [3 ,37]. The observed variability or heterogene-

ity in the numbers of receptors expressed by PMN within

the sample population may then have functional signifi-

cance. Certain subpopulations of PMN may be more

effective in detecting or transducing chemotactic stimuli

as a result of the cellular or receptor heterogeneity of

chemotaxis receptors on the cell surface. Consequently,

some PMN may respond to formylpeptide at lower con-

centrations than do other PMN, and this subpopulation

of cells may also exhibit lower thresholds for chemotactic

deactivation or for degranulation.

Receptor Heterogeneity on Polarized PMN

The distribution of hexapeptide bound to polarized

cells differed, depending on the concentration of hexa-

peptide to which the cells were exposed during binding.

At high concentrations, hexapeptide bound to receptors

across the entire cell surface, although with some appar-

ent tendency toward the anterior half of the cell. How-

ever, at lower concentrations, hexapeptide bound pri-

manly to receptors lying on the anterior half of the cell.

These data suggest that high- and low-affinity hexa-

peptide receptors may be expressed asymmetrically on

the surface of spontaneously polarized PMN (see Fig. 8).

High-affinity formylhexapeptide receptors evidently lie

predominantly over the anterior half of polarized cells

and low-affinity receptors mainly over the rear or poste-

rior half of each PMN. Thus at lower hexapeptide con-

centrations (< SnM), hexapeptide would bind pref-

erentially to the front of polarized PMN, whereas at high

hexapeptide concentrations (� S nM) hexapeptide would

bind somewhat more uniformly over the cell surface.
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Studies by Snyderman and co-workers [17,40,57] in-

dicated that the leukocyte formylpeptide receptor may

exist in two partially interconvertible affinity states. The

high-affinity state enhances chemotaxis and depresses

lysosomal enzyme secretion, whereas the low-affinity

state depresses chemotaxis and enhances enzyme secre-

tion. The existence of two such receptor states is entirely

consistent with the data presented here. The conversion

between these two affinity states is apparently regulated

by guanine nucleotides [18] and by agents that alter

membrane fluidity [57] . Fluctuations in local calcium and

cyclic nucleotide levels are also known to occur in PMN

stimulated by chemoattractants [7,39] . Global or local

alterations such as this may affect the affinity of nearby

formylpeptide receptors, inducing the asymmetric distri-

bution of high-affinity receptors described here.

The asymmetric distribution of hexapeptide receptors

described here might aid in directed locomotion by am-

plifying differential transcellular binding occurring in

formylpeptide concentration gradients [11 ,3 1] . It may
promote random or perpetuate directed locomotion by
restricting binding of chemotactic stimuli to a particular

region of the cell surface. This might create apparent

gradients across the cell surface, even without actual

chemical diffusion gradients. In either case, local activa-

tion of the motile apparatus might occur in regions of

increased chemoattractant binding. Formylpeptide bind-

ing to leukocytes is known to induce changes in actin

conformation [49] and in the occurrence and distribution

of microtubules [20,44] . In addition, several cytoskeletal
proteins have been shown to be asymmetrically distrib-

uted in polarized leukocytes [20,29,43,48]. Such asym-
metric activation of the cytoskeleton probably functions

in initiating or imparting directionality to cell locomotion.

These data may also help reconcile differences between

our published data [52] and that of Sullivan et al [47]

regarding formylpeptide receptor distributions on the

surface of PMN . Although both of these studies em-

ployed rabbit peritoneal PMN, substantially different ex-
perimental procedures were employed, and the results

seemed somewhat contradictory. However, we used

nearly saturating concentrations of hexapeptide in our

initial study, resulting in almost uniform distributions of

hexapeptide over the cell surface. The formylpeptide

concentration used by Sullivan et al was not stated but

may well have been subsaturating. Assuming that rabbit

PMN display heterogeneity in binding formylpeptide

similar to that shown here for human PMN, Sullivan et

al may have observed only the binding of high-affinity

receptors over the anterior half of each cell. The remain-

ing low-affinity receptors would not be seen at subsatur-

ating formylpeptide concentrations.

The data presented here may also help explain why

high concentrations of chemotactic factor tend to reduce

rather than stimulate directed locomotion [28,331. At

high concentrations, formylpeptide would bind to high-

and low-affinity receptors over the entire cell surface,

such that PMN could not sense or respond appropriately

to a gradient of chemoattractant. At lower concentra-

tions, a certain proportion of the high-affinity receptors

would be occupied and the low-affinity receptors largely

unoccupied. Since the high-affinity receptors (at least)

are distributed asymmetrically over the cell, they may

promote the sensing of hexapeptide concentration gra-

dients and the subsequent locomotory response. This

apparent asymmetry in hexapeptide receptor binding may
be unique to spontaneously polarized PMN. However, it

seems probable that similar asymmetries will be found in

cells stimulated by specific chemokinetic agents or cells

oriented in chemotactic gradients. We are currently in-

vestigating these possibilities.

In this study, we have shown that rounded human PMN

exhibit both receptor and cellular heterogeneity with re-

spect to the formylpeptide receptor and that sponta-

neously polarized PMN display asymmetric arrays of

these receptors across their cell surfaces. The resulting
asymmetric binding of hexapeptide might stimulate cell

polarization and locomotion by amplifying differences in

concentration gradients across the cell surface. Such

asymmetries might then promote random locomotion or

perpetuate directed locomotion by providing preferred
sites for chemotactic factor binding and, consequently,

local activation of the motile apparatus.
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