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A M E R I C A N  J O U R N A L  O F  B O T A N Y

N E W S  &  V I E W S

                      Modern sequencing technology has led to a proliferation of whole-
genome sequences of chloroplasts in a growing number of plant 
lineages, bringing opportunities for comparisons that provide in-
sights into the evolutionary history of the plastomes and their host 
plants ( Jansen et al., 2007 ;  Doorduin et al., 2011 ). Amid the emerg-
ing literature in this area is a hypothesis that the small single copy 
(SSC) region is a “hotspot” for inversion events (sensu  Liu et al., 
2013 ) because diff erent orientations of the region have been re-
ported in relatively high frequencies among closely related taxa 
( Liu et al., 2013 ;  Walker et al., 2014 ). We would like to draw atten-
tion to a study by  Palmer (1983)  that bears heavily on this discus-
sion, yet has been overlooked by several authors of publications 
investigating whole-chloroplast genome sequence order, including 
one study by some of the authors of this letter ( Walker et al., 2014 ). 
Using restriction enzyme analyses,  Palmer (1983)  demonstrated 
that chloroplast DNA within individual plants exhibits a form of 
heteroplasmy in which the plastome exists in two equimolar states 
(i.e., inversion isomers) that diff er in the relative orientation of the 
small single copy (SSC) region. Since  Palmer (1983)  originally doc-
umented this phenomenon in  Phaseolus vulgaris , it has been con-
fi rmed in a wide variety of plant species ( Palmer, 1985 ), including 
algae ( Aldrich et al., 1985 ;  Bourne et al., 1992 ;  Linne von Berg and 
Kowallik, 1992 ;  Cattolico et al., 2008 ) and ferns ( Stein et al., 1986 ), 
and is now a well-accepted feature of chloroplast genomes (e.g., 
 Heinhorst and Cannon, 1993 ;  Doyle and Doyle, 1999 ). Nonetheless, 
this phenomenon has been overlooked in several recent analyses 
that have evaluated the orientation of the SSC region a phylogenetic 
context (e.g.,  Ibrahim et al., 2006 ;  Yang et al., 2010 ;  Liu et al., 2013 ; 

 Walker et al., 2014 ;  Zhang et al., 2014 ;  Wang et al., 2015 ). Th ese 
analyses compare the SSC orientation among lineages using a single 
plastome to represent each lineage and thus have missed the within-
individual variation that exists in this region. Currently, whole-
chloroplast genomes are published in GenBank without preference 
for the orientation of the SSC region, leading to apparent variation 
in the orientation of the SSC region  among  individuals that is actu-
ally due to chloroplast heteroplasmy  within  individuals ( Wolfe and 
Randle, 2004 ), as originally described by  Palmer (1983) . For exam-
ple, two sequences of  Lactuca sativa  that have been independently 
published (NC_007578 and DQ_383816) were entered with diff er-
ent orientations of the SSC region, which could be interpreted as 
a major inversion existing within the species if the investigators are 
not aware that two isomers naturally exist (e.g.,  Walker et al., 2014 ). 
Th is misinterpretation has now occurred in several studies (e.g., 
 Ibrahim et al., 2006 ;  Yang et al., 2010 ;  Liu et al., 2013 ;  Walker et al., 
2014 ;  Zhang et al., 2014 ;  Wang et al., 2015 ), leading to the hypoth-
esis that the SSC region is an inversion “hotspot” ( Liu et al., 2013 ). 
Experiments that attempted to use PCR to allegedly confi rm a single 
orientation of the SSC region within samples have likely perpetu-
ated this misconception (e.g.,  Nie et al., 2012 ;  Liu et al., 2013 ). 
Specifically, the reverse complementarity of the IR regions within 
chloroplast sequences, and the SSC regions between diff erent iso-
mers, inhibit the PCR approach (which relies on sequence orienta-
tion) from detecting the two diff erent isomers, giving the impression 
that individual plant lineages have only one isomer or the other 
(e.g.,  Liu et al., 2013 ). 

 To date, it is not entirely clear how the two SSC orientations are 
maintained within cells ( Maréchal and Brisson, 2010 ). Originally, it 
was proposed that the two states were the result of intramolecular 
recombination between the two inverted repeat (IR) regions that 
fl ank the SSC in the circular plastome ( Palmer, 1983 ). More recent 
data indicate that recombination-dependent DNA replication of 
the chloroplast genome in its linear (as opposed to circular) confor-
mation may provide the mechanism underlying fl ip–fl op recombina-
tion ( Oldenburg and Bendich, 2004 ). Regardless of the mechanism, 
it is misleading to refer to the SSC region as a “hotspot” for inversions 
because the two orientations of the SSC region occur regularly during 
the course of chloroplast DNA replication within individual plant 
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cells, rather than the relatively rare inversion events that can be used 
to distinguish distantly related lineages (e.g.,  Doyle et al., 1992 ,  1996 ). 
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