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The role of Ellis-van Creveld 2(EVC2) in mice during cranial bone development. 
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ABSTRACT: 

EvC syndrome is a type of autosomal-recessive chondrodysplasia. Previous case studies 

in patients suggest abnormal craniofacial development, in addition to dwarfism and tooth 

abnormalities. To investigate how craniofacial development is affected in EvC patients, surface 

models were generated from micro-CT scans of control mice, Evc2 global mutant mice and Evc2 

neural crest-specific mutant mice. The anatomic landmarks were placed on the surface model to 

assess the morphological abnormalities in the Evc2 mutants. Through analyzing the linear and 

angular measurements between landmarks, we identified a smaller overall skull, shorter nasal 

bone, shorter frontal bone, and shorter cranial base in the Evc2 global mutants. By comparing 

neural crest-specific Evc2 mutants with control mice, we demonstrated that the abnormalities 

within the mid-facial regions are not accounted for by the Evc2 mutation within these regions. 

Additionally, we also identified disproportionate length to width ratios in the Evc2 mutants at all 

levels from anterior to posterior of the skull. Overall, this study demonstrates a more 

comprehensive analysis on the craniofacial morphological abnormalities in EvC syndrome and 

provides the developmental insight to appreciate the impact of Evc2 mutation within the neural 

crest cells on multiple aspects of skull deformities. 
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INTRODUCTION 

Ellis-van Creveld syndrome (EvC) is an autosomal-recessive chondrodysplasia 

(McKusick et al., 1964), with a wide spectrum of symptoms such as shorter limbs and ribs, 

hypomorphic nails and teeth, polydactyly, and cardiovascular malformations (Baujat and Le 

Merrer, 2007). Studies have identified EVC and EVC2 as causative genes, which are responsible 

for around two thirds of identified cases of EvC syndrome in humans (Ruiz-Perez et al., 2000; 

Ruiz-Perez et al., 2003). Genetic studies have also identified EVC2 / LIMBIN mutations in 

Japanese brown cattle (Takeda et al., 2002) and Tyrolean Grey cattle (Murgiano et al., 2014). In 

both cases, the affected cattle bear congenital dwarfism, suggesting a conserved function of 

EVC2 / LIMBIN during development among different species.  

EvC syndrome has been categorized as a ciliopathy due to the ciliary localization of the 

proteins encoded by EVC and EVC2 (Baujat and Le Merrer, 2007). Recently, WDR35 was 

reported as the potential third causative gene for EvC syndrome (Caparros-Martin et al., 2015), 

though the cells with WDR35 mutation have quite distinct characteristics. Biochemical studies 

indicated that EVC and EVC2 are N-terminal anchored transmembrane proteins, which are 

mutually required for their ciliary localizations (Dorn et al., 2012; Caparros-Martin et al., 2013). 

The EVC-EVC2 complex interacts with SMO, the Hedgehog signaling effector protein. This 

interaction at the base of primary cilium is required for transducing Hedgehog signaling (Dorn et 

al., 2012).  

Despite the reports on the function of EVC and EVC2 at the molecular level and the wide 

spectrum of clinical presentations in EvC patients, the existing documentations of the 

craniofacial manifestations of EvC syndrome are quite inconsistent. For example, the enlarged 

skull, depressed nasal bridge, mandibular prognathism characteristic of skeletal class III growth, 

Page 3 of 24

John Wiley & Sons, Inc.

The Anatomical Record

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
and skeletal open bite are reported in several cases of EvC patients (Ellis and van Creveld, 1940; 

Goor et al., 1965; Susami et al., 1999), while other reports indicated that facial development is 

normal (Varela and Ramos, 1996; Hanemann et al., 2010). These inconsistencies are possibly 

due to a large variation in the patients’ genetic background and/or the limited information on the 

craniofacial abnormalities in EvC patients. 

Previous reports have documented studies using mouse models to understand the 

pathophysiological mechanism leading to congenital abnormalities in EvC patients. For example, 

Evc2 mutant mice bear shortened limbs and abnormally developed teeth, which are similar to 

symptoms observed in EvC patients (Zhang et al., 2015; Zhang et al., 2016). Evc or Evc2 mutant 

mice were also used as models for understanding the craniofacial abnormalities. However, these 

works are either restricted to the cranial base at embryonic stages (Pacheco et al., 2012) or 

mainly focus on the skull deformities in the anterior-posterior dimension (Badri et al., 2016b). 

Interestingly, it is not known if the mid-facial defect identified in Evc2 mutant is due to the loss 

of Evc2 function within the mid facial region. In this study, to better understand the skull 

deformities in EvC patients, we use micro-CT based skull modeling to generate three-

dimensional surfaces models for the Evc2 mutant mice. Additionally we also compared the 

global mutant mice for Evc2 with the neural crest-specific mutants for Evc2 to understand the 

impact of the Evc2 mutation within the neural crest cells on multiple aspects of the skull 

deformities.  

 

 

METHODS and MATERIALS 

Animal Model 
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Animals were maintained and used in compliance with the Institutional Animal Care and 

Use Committee (IACUC) of the University of Michigan in accordance with the National 

Institutes of Health Guidelines for Care and Use of Animals in research and all experimental 

procedures were approved by the IACUC of the University of Michigan. Evc2 global and 

conditional mutant mice used in the current studies were generated by our group and reported 

previously (Zhang et al., 2015). Global mutant mice (hereafter Evc2 m) were obtained by 

crossing heterozygous male and female mice. Neural crest-specific Evc2 (hereafter Evc2 cko) 

mutant mice were generated by crossing Evc2 floxed mice (Zhang et al., 2015) and neural crest 

specific Cre mice (P0-Cre, C57BL/6J-Tg(P0-Cre)94Imeg (ID 148), provided by Dr. Kenichi 

Yamamura) (Yamauchi et al., 1999). Evc2 global mutant and floxed mice were maintained in a 

mixed background of C57BL6/J and 129S6. All mice were crossed and maintained in our semi-

closed mouse colony for at least 5 years.  

Histological Analysis  

Heads from mice with different genotypes at postnatal day 8 were collected and fixed in 

4% Paraformaldehyde overnight. They were then preserved in phosphate buffered saline (PBS) 

until micro-CT scanning was obtained on all skulls.  

Micro-CT (µCT) 

Micro-CT scanning of fixed skulls was taken at the University of Michigan using a 

micro-CT system (µCT100 Scanco Medical, Bassersdorf, Switzerland). Scan settings were as 

following: voxel size 12 µm, 55 kVp, 109 µA, 0.5 mm AL filter, and integration time 500 ms.   

Image Acquisition, Segmentation and Surface Models  
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To quantify the skull morphological differences among controls, Evc2 m and Evc2 cko at 

postnatal day 8, the surface models were first generated based on micro-CT data, as shown in Fig 

1. Digital Image and Communications in Medicine (DICOM) files/images obtained from micro-

CT were used to generate 3D model using ITK-SNAP (open-source software developed by 

grants and contracts from the U.S. National Institutes of Health, www.itksnap.org). 3D slicer 

(open-source software, www.slicer.org) was then used for placements of anatomical landmarks. 

Model superimpositions were carried out using 3D Slicer with the following landmarks on the 

occipital bones: right and left anterolateral tips of the interparietal bone, cross point between the 

median line and the line which connects left and right anterolateral tip of the interparietal bone, 

and posterior tip of the interparietal bone.  

Landmark Identification 

Overall, fifteen surface models were generated and 19 landmarks (Table 1) were placed 

on each sample for linear measurements in all three dimensions, for angular measurements 

(Table 2) and for width to length ratio calculations.  

Statistical Analysis 

The Mann–Whitney U test was done by SPSS 21.0 to evaluate the linear and angular 

measurements between controls and mutants. 

 

 

RESULTS 
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Generated Evc2 m and Evc2 cko (Zhang et al., 2015) had a gross morphology similar to 

those seen in EvC patients as well as in the Evc mutant mice (McKusick et al., 1964; Ruiz-Perez 

et al., 2007). In comparison to controls, both types of mutants showed shortened skull length, 

while the length of the skull is more severely affected in Evc2 m compared to Evc2 cko (Fig 1).  

For cranial base length I (Sp-Sos), erupted upper incisor length (MxAl-MxC), and total 

Cranial Base (A-Ba), we observed significant differences when comparing Evc2 m to control and 

comparing Evc2 cko to control (Table 3, Fig 2 B, C, D, and Fig 3 B). These results suggest that 

Evc2 function in the neural crest cells affects the development of these regions. In contrast, we 

observed no differences in the width of the nasal bone at the intersection with premaxillae (Xn-

Xn), parietal length (F-Pr), or viscerocranial height at basion (F-Ba) (Table 3), suggesting that 

these characteristics are not affected by Evc2 mutations. For skull length (A-Pri), nasal bone 

length (A-N), frontal bone length (N-F), zygomatic arch length (ZMx-ZT), viscerocranial length 

(F-MxAl), interparietal length (Pr-Pri), occipital bone length (Pri-Op), width of anterior 

zygomatic arch (ZMx-ZMx), width of posterior zygomatic arch (ZT-ZT), width of temporal bone 

(TP-TP), basioccipital length (Sos-Ba), cranial base length II (Sp-Ba), and viscerocranial height 

at Sos (F-Sos), we only detected significant differences between control and Evc2 m, but not 

between control and Evc2 cko (Fig 2 B-E, Fig 3 E, and Table 3), suggesting that Evc2 function in 

non-neural crest derived tissues may play a vital role in the development of these tissues. 

Overall, comparisons of the linear measurements between controls, Evc2 m, and Evc2 cko allow 

the identification of the origins of the tissues leading to the linear abnormalities during skull 

development. To examine if the shortened cranial base observed in the Evc2 m and Evc2 cko is 

due to early synchondrosis fusion, we generated the models including the cranial bases from the 
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CT scans (Fig 3 F, G and H). The CT scans clearly indicate early fusion of the intersphenoidal 

synchondrosis in the Evc2 m, but not in the controls or in Evc2 cko. 

Based on angular measurements comparing control with Evc2 m and control with Evc2 

cko, we observed no differences (Table 4) in cranial vault to cranial base III (F-Pri/Sp-Ba) or 

cranial vault to cranial base IV (F-Pri/Sos-Ba), suggesting that these characteristics are not 

affected by Evc2 mutations. For neurocranium to cranial base II (A-F/A-Ba), Cranial base to 

Vault I (N-F/F-Br), nasal bone to cranial base I (A-N/F-Ba), premaxilla to cranial base (MxAl-

F/F-Ba), upper incisors to cranial base (MxC-F/F-Ba), premaxilla to cranial vault (MxAl-F/Sp-

Ba), and upper incisors to cranial vault (MxC-F/F-MxAl), we observed significant differences 

when comparing Evc2 m to control and comparing Evc2 cko to control, suggesting that Evc2 

function in the neural crest-derived cells plays a vital role for the development of these tissues. 

For neurocranium to cranial base I (A-N/A-Ba), cranial base to Vault II (F-Pr/Pr-Pri), cranial 

vault to cranial base I (F-Pri/F-Ba), nasal bone to cranial base IV (A-N/Sp-Ba), and nasal bone to 

cranial vault (A-N/F-MxAl), we only detected significant differences (Table 4) between control 

and Evc2 m, but not between control and Evc2 cko. Overall, comparisons of the angular 

measurements between controls, Evc2 m, and Evc2 cko allow for the identification of the origins 

of the tissues leading to the angular abnormalities during skull development. 

In addition to the linear and angular measurements, we also accessed the width to length 

ratios. These ratio calculations were taken by using two individuals in the anterior half of the 

skull and two individuals in the posterior half of the skull divided by the total skull length. For 

the ratio at the premaxilla level, we only detected significant differences (Fig 4 B) in the 

comparison between control and Evc2 m, but not in the comparison between control and Evc2 

cko, suggesting that only Evc2 m bears a disproportionately wider skull at this level and Evc2 cko 
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does not. For the ratios at the anterior of zygomatic level, posterior of zygomatic level and 

temporal level, we detected significant differences (Fig 4 C, D and E) within comparisons of 

control with Evc2 m and control with Evc2 cko, suggesting that both Evc2 m and Evc2 cko bear a 

disproportionately wider skull at these three levels.  

To appreciate the overall skull differences in the anterior-posterior axis between control and 

Evc2 m and Evc2 cko, we generated the surface models for each genotype and superimposed the 

mutant skulls onto the control skulls (Fig. 5). Superimposition was anchored at the posterior end 

of the skull, because most of the deformities were identified in the anterior region. Consistent 

with the aforementioned linear and angular measurements, we observed most differences 

between control skulls and Evc2 m skulls in the anterior-posterior axis. Particularly, in the Evc2 

m skull, an apparent shallow mid-facial region is observed. On the other hand, minimal 

differences in the mid-facial region are observed when comparing control skulls with Evc2 cko. 

 

 

DISCUSSIONS 

Craniofacial abnormalities were previously documented and suggested by different EvC 

case studies (McKusick et al., 1964; Baujat and Le Merrer, 2007). To get more insight into how 

craniofacial development is affected in EvC syndrome, we carried out an investigation to 

understand the morphological abnormalities of EvC syndrome using 3D imaging software on 

Evc2 mutant mouse models. We also took advantage of a conditional deletion system to generate 

neural crest-specific Evc2 mutants, allowing us to trace the origin of morphological 

abnormalities during development. Overall, our studies demonstrated a more comprehensive 
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analysis of the craniofacial morphological abnormalities and provided the developmental insight 

to appreciate the origin of these abnormalities.  

EVC and EVC2, the proteins encoded by the two causative genes of EvC syndrome, form 

a protein complex at the base of primary cilium, which is mutually required for cilium 

localization and for transducing Hedgehog signaling (Dorn et al., 2012; Caparros-Martin et al., 

2013). At postnatal day 8, Evc2 m exhibited smaller skull size compared to the control group. 

The gross morphology demonstrated in the Evc2 mutant mice is similar both to phenotypes of 

Evc mutant mice (Ruiz-Perez et al., 2007; Pacheco et al., 2012; Badri et al., 2016b) and to 

symptoms observed in EvC patients (Ellis and van Creveld, 1940; McKusick et al., 1964). These 

facts suggest that the molecular pathological mechanism leading to craniofacial abnormalities in 

Evc2 mutant mice is the same as those in Evc mutant mice and in EvC patients.  

In the current studies, we identified that the skull length, nasal bone length, frontal bone 

length, incisor length, and total cranial base length are all significantly smaller in Evc2 m 

mutants than in controls at postnatal day 8. These observations are consistent with previous 

reports using different methods to study abnormal craniofacial development (Badri et al., 2016b) 

and abnormal tooth development (Zhang et al., 2015; Zhang et al., 2016). Our previous studies 

demonstrated that Evc2 is expressed in nearly all tissues in the skull (Badri et al., 2016a). Since 

the nasal and frontal bones are developmentally derived from neural crest cells, the reasonable 

speculation is that Evc2 function in the neural crest cells leads to shortened nasal and frontal 

bones. In contrast, the nasal bone length and frontal bone length in Evc2 cko mutants remain the 

same as in the controls. The efficient Cre recombination within the neural crest cells mediated by 

P0-Cre (data not shown) suggests that Evc2 function within the nasal and frontal bones does not 

play a major role in determining the length of these two bones.  
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In addition to the abnormalities detected in the mid facial region, we also detected a 

shortened cranial base. Our paired comparisons suggest that cranial base length is more severely 

affected in Evc2 global mutants (14.2% decrease) than in Evc2 cko (5.9% decrease). The cranial 

base is a midline structure which connects several bones in the cranial and facial regions (Nie, 

2005). It has unique embryologic developmental origins, with the anterior region being derived 

from the neural crest and the posterior region from the mesoderm (Nie, 2005; McBratney-Owen 

et al., 2008). Consistently, at P8, we observed early closure of the intersphenoidal synchondrosis 

in Evc2 global mutants, but not in the Evc2 cko. Previous studies demonstrated that a shortening 

of the cranial base during development leads to a number of mid-facial abnormalities. For 

example, the retrognathic facial profile characteristic of Cretinism, Turner syndrome, and 

Down’s syndrome is due to reduced cranial base length (Israel et al., 1983; Jensen, 1985; 

Rongen-Westerlaken et al., 1992; Midtbo et al., 1996; Andersen et al., 2000; Quintanilla et al., 

2002). Similar trends are also identified in Klinefelter syndrome and Williams’s syndrome (Mass 

and Belostoky, 1993; Brkic et al., 1994). Given the function of cranial base in mid-facial bone 

development, it is possible that the severely affected cranial base observed in the Evc2 global 

mutant mice leads to the shortened nasal and frontal bones during the early skull development. 

Currently we are carrying out studies to validate this possibility at different time points during 

post-natal skull development.  

Additionally, we also observed that the widths at the zygomatic arch (both anterior and 

posterior regions) and the width at the temporal bone level are all significantly smaller compared 

to controls, while there are no differences in the width of the nasal bone at the premaxilla level. 

On the other hand, the decreased width is less likely due to the decreased size of the overall 
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skull, because the ratios of the width to the skull length are all significantly increased in Evc2 m 

and Evc2 cko mutant mice. 

Compared to controls, the skull from Evc2 m mutants showed increased interparietal 

length (Pr-Pri) and increased basioccipital length (Sos-Ba) (Fig 3 E), in contrast with decreased 

nasal bone length and frontal bone length. It is possible that these length increases are to 

compensate the decreased skull volume in the anterior region. However, in the Evc2 cko mutant, 

where we observed a similar mid-facial defect and decreased skull volume in the anterior head as 

in Evc2 m, we could not detect any increased interparietal length (Pr-Pri) and increased 

basioccipital length (Sos-Ba). It is possible that loss of Evc2 function in the non-neural crest-

derived tissue promotes the over growth of these bones. Further genetic experiments to 

specifically delete Evc2 in the mesoderm-derived tissues are needed.  

In conclusion, our study presents a comprehensive characterization of altered craniofacial 

development in the Evc2 mutant mice, and provides the developmental insight to appreciate the 

origin of each morphological abnormality. 
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FIGURE LEGENDS 

Fig 1. Gross morphology of head in control, Evc2 cko and Evc2 m. Dorsal views (A, B and C) 

and left lateral views (D, E and F) of represented control, Evc2 cko, and Evc2 m, respectively. 

Fig 2. Evc2 mutation leads to abnormal head in anterior posterior dimension. A. Diagram 

indicates the landmarks in the anterior posterior dimension. Areas with dark color are derived 

from neural crest cells. The length of total (B), nasal bone (C), frontal bone (D) and interparietal 

bone (E) are shown. N=5, #, p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001.  

Fig 3. Evc2 mutation leads to abnormal cranial base. A. Diagram indicates the landmarks in the 

cranial base. Areas with dark color are derived from neural crest cells. The lengths of the cranial 

base at different levels are shown in (B-E). N=5, #, p>0.05; ***, p<0.001. F-H. Cranial base 

models generated from the CT scans of control (F), Evc2 cko (G) and Evc2 m (H). Dark circle 

indicate the fused ISS in Evc2 m. 

Fig 4. Width over length ratios of Evc2 mutant skulls at different levels. A. Diagram indicates 

the landmarks associated with width measurement. Areas with dark color are derived from neural 

crest cells. Width over length ratios at Premaxilla level (B), anterior of Zygomatic level (C), 

posterior of Zygomatic level (D) and temporal level (E) were shown. N=5, #, p>0.4; *, p<0.05; 

**, p<0.01.  

Fig 5. Superimpositions of skulls between controls and Evc2 cko and Evc2 m. A. 

Superimpositions of Evc2 m (yellow) with control skull (blue). B. Superimpositions of Evc2 cko 

(red) with control skull (blue). 
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Anatomical 

landmarks 

Description 

A Nasale, Rostral point of nasal bone 

N Nasion, Caudal point of nasal bone  

F Caudal point of frontal bone  

Pr Caudal point of Parietal bone  

Pri Most posterior point of interparietal bone at midline   

XN Most anterior point at intersection of premaxillae and nasal bones 

XMx  Most inferior point of premaxilla at Premaxilla-maxilla suture  

ZMx Most anterior point of zygomatic process of zygoma at intersection of maxilla 

and zygoma 
MxSp Most posterior point of alveolar ridge at the Intersection of maxilla and 

sphenoid 
ZT Most anterior point of Zygomatic process of temporal bone at intersection of 

zygoma and zygomatic process of temporal bone 
Tp Most posterior portion of post-tympanic hook of temporal bone  

PNS Posterior nasal spine  

Pf Posterior palatine fissure  

Sp Intersection of presphenoid and frontal bone at midline of cranial base 

Sos At SOS, sphenoid-occipital suture, most anterosuperior point 

Ba Basion 

Op Opisthion 

MxAl Most inferior point at center of alveolar ridge on the lingual side of maxillary 

incisor, lingual 
MxC Maxillary incisor edge 

 

Table 1. Craniofacial Landmarks. Please note that bilateral anatomical points are labeled left side 

first.  Anatomical landmarks in parentheses are midpoints of the bilateral landmarks.  
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Linear measurements 

Anatomical 

landmarks 
Angular measurements 

Anatomical 

landmarks 

Total skull length A-Pri 
Neurocranium to Cranial Base 

I 
A-N/A-Ba 

Nasomaxillary complex 
Neurocranium to Cranial Base 

II 
N-F/A-Ba 

Nasal bone length A-N Cranial base to Vault I N-F/F-Pr 

Frontal bone length N-F Cranial base to Vault II F-Pr/Pr-Pri 

Width of nasal bone at 

intersection with premaxillae 
Xn-Xn Cranial vault to cranial base I F-Pri/F-Ba 

Zygomatic arch length ZMx-ZT Cranial vault to cranial base II F-Pri/Sp-SOS 

Erupted upper incisor length 
MxAl-

MxC 
Cranial vault to cranial base III F-Pri/Sp-Ba 

Viscerocranial length F-MxAl Cranial vault to cranial base IV F-Pri/Sos-Ba 

Calvaria Nasal bone to cranial base I A-N/F-Ba 

Parietal length F-Pr Nasal bone to cranial base II A-N/Sp-Sos 

Interparietal length Pr-Pri Nasal bone to cranial base III A-N/Sp-Ba 

Occipital Bone Pri-Op Nasal bone to cranial base IV A-N/Sos-Ba 

Width at Zygomatic arch 

(anterior) 
ZMx-ZMx Nasal bone to cranial vault A-N/F-MxAl 

Width at Zygomatic arch 

(posterior) 
ZT-ZT Premaxilla to cranial base F-MxAl/F-Ba 

Width of temporal bone Tp-Tp Upper incisors to cranial base F-MxC/F-Ba 

Cranial Base Premaxilla to cranial vault F-MxAl/F-Pri  

Total Cranial Base A-Ba Upper incisors to cranial vault 
F-MxC/F-

MxAl 

Cranial base length I Sp-Sos 

Cranial base length II Sp-Ba 

Basioccipital length Ba-Sos 

Viscerocranial heights 

Viscerocranial height at SOS F-Sos 

Viscerocranial height at 

basion 
F-Ba 

 

Table 2. Linear and angular measurements   
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Measurements 

Group 

vs 

Group 

Change  
P 

value 
Measurements 

Group 

vs 

Group 

Change  
P 

value mm % mm % 

A-Pri 

1-2 0.534 3.523 # 

ZT-ZT 

1-2 0.047 0.532 # 

1-3 1.623 10.715 *** 1-3 0.702 7.985 *** 

2-3 1.089 7.454 ** 2-3 0.656 7.493 *** 

A-N 

1-2 0.204 5.163 # 

Tp-Tp 

1-2 -0.099 -1.077 # 

1-3 0.484 12.262 *** 1-3 0.684 7.439 
*** 

 

2-3 0.280 7.486 * 2-3 0.783 8.426 *** 

N-F 

1-2 0.072 1.207 # 

A-Ba 

1-2 0.787 5.870 ** 

1-3 0.636 10.725 ** 1-3 1.902 14.196 *** 

2-3 0.564 9.634 ** 2-3 1.116 8.845 *** 

XN-XN 

1-2 -0.005 -0.217 # 

Sp-Sos 

1-2 1.509 28.731 # 

1-3 0.034 1.487 # 1-3 2.677 50.984 * 

2-3 0.039 1.701 # 2-3 1.169 31.224 # 

ZMx-ZT 

1-2 0.148 5.118 # 

Sp-Ba 

1-2 1.097 14.658 # 

1-3 0.448 15.479 ** 1-3 2.083 27.839 ** 

2-3 0.300 10.920 *** 2-3 0.986 15.444 # 

MxAl-MxC 

1-2 0.122 19.295 ** 

Sos-Ba 

1-2 -0.040 -1.535 # 

1-3 0.374 59.378 *** 1-3 -0.210 -8.004 *** 

2-3 0.253 49.666 *** 2-3 -0.169 -6.371 ** 

F-MxAl 

1-2 0.132 1.312 # 

F-Sos 

1-2 0.113 1.759 # 

1-3 1.052 10.495 ** 1-3 0.288 4.487 * 

2-3 0.921 9.305 * 2-3 0.175 2.777 # 

F-Pr 

1-2 0.055 1.567 # 

F-Ba 

1-2 0.103 1.298 # 

1-3 0.370 10.530 # 1-3 0.022 0.283 # 

2-3 0.315 9.106 # 2-3 -0.080 -1.029 # 

Pr-Pri 

1-2 -0.021 -0.685 # 

 

    
1-3 -0.624 -19.990 *** 

    
2-3 -0.603 -19.173 *** 

    

Pri-Op 

1-2 0.059 2.678 # 

 

    
1-3 0.330 14.946 *** 

    
2-3 0.271 12.606 *** 

    

ZMx-ZMx 

1-2 -0.064 -0.852 # 

 

    

1-3 0.616 8.177 ***     

2-3 0.681 8.953 ***     

Table 3. 1: Control group, 2: Evc2 P0m, 3: Evc2m. Changes in linear measurements are indicated 

as mm and percentage. Positive value indicates decrease in the latter sample comparing to former 

sample. Negative values indicate an increase in the latter sample comparing to former sample. 

N=5, #, p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001.  
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Measurements 

Group 

vs 

Group 

Change 

in  
p 

value 
Measurements 

Group 

vs 

Group 

Change 

in 
p 

value 
degree degree 

A-N/A-Ba 

1-2 -1.876 # 

A-N/Sp-Ba 

1-2 -0.937 # 

1-3 -4.089 ** 1-3 -5.997 ** 

2-3 -2.214 # 2-3 -5.060 * 

A-F/A-Ba 

1-2 -2.355 ** 

A-N/Sos-Ba 

1-2 -4.404 # 

1-3 -7.439 *** 1-3 
-

10.925 
** 

2-3 -5.084 *** 2-3 -6.521 * 

N-F/F-Pr 

1-2 4.305 ** 

A-N/F-MxAl 

1-2 -0.257 # 

1-3 9.210 *** 1-3 -4.306 ** 

2-3 4.906 *** 2-3 -4.049 ** 

F-Pr/Pr-Pri 

1-2 0.984 # 

MxAl-F/F-Ba 

1-2 4.665 ** 

1-3 6.602 *** 1-3 11.063 *** 

2-3 5.618 *** 2-3 6.398 *** 

F-Pri/F-Ba 

1-2 -0.387 # 

MxC-F/F-Ba 

1-2 3.633 ** 

1-3 2.430 *** 1-3 8.990 *** 

2-3 2.817 *** 2-3 5.356 *** 

F-Pri/Sp-Ba 

1-2 -1.017 # 

MxAl-F/F-Pri 

1-2 4.288 ** 

1-3 -0.971 # 1-3 13.504 *** 

2-3 0.046 # 2-3 9.215 *** 

F-Pri/Sos-Ba 

1-2 0.379 # 
MxC-F/F-

MxAl 

1-2 -1.032 ** 

1-3 1.736 # 1-3 -2.074 *** 

2-3 1.358 # 2-3 -1.042 ** 

A-N/F-Ba 

1-2 -4.408 * 
 

 

   
1-3 -6.758 *** 

   
2-3 -2.350 # 

   
 

Table 4. 1: Control group, 2: Evc2 P0m, 3: Evc2m. Changes in angular measurements (degree 

only). Positive value indicates decrease in the latter sample comparing to former sample. 

Negative values indicate an increase in the latter sample comparing to former sample. N=5, #, 

p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001. 
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Fig 1. Gross morphology of head in control, Evc2 cko and Evc2 m. Dorsal views (A, B and C) and left lateral 
views (D, E and F) of represented control, Evc2 cko, and Evc2 m, respectively.  
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Fig 2. Evc2 mutation leads to abnormal head in anterior posterior dimension. A. Diagram indicates the 
landmarks in the anterior posterior dimension. Areas with dark color are derived from neural crest cells. The 
length of total (B), nasal bone (C), frontal bone (D) and interparietal bone (E) are shown. N=5, #, p>0.05; 

*, p<0.05; **, p<0.01; ***, p<0.001.  
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Fig 3. Evc2 mutation leads to abnormal cranial base. A. Diagram indicates the landmarks in the cranial base. 
Areas with dark color are derived from neural crest cells. The lengths of the cranial base at different levels 
are shown in (B-E). N=5, #, p>0.05; ***, p<0.001. F-H. Cranial base models generated from the µCT 

scans of control (F), Evc2 cko (G) and Evc2 m (H). Dark circle indicate the fused ISS in Evc2 m.  
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Fig 4. Width over length ratios of Evc2 mutant skulls at different levels. A. Diagram indicates the landmarks 
associated with width measurement. Areas with dark color are derived from neural crest cells. Width over 
length ratios at Premaxilla level (B), anterior of Zygomatic level (C), posterior of Zygomatic level (D) and 

temporal level (E) were shown. N=5, #, p>0.4; *, p<0.05; **, p<0.01.  
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Fig 5. Width over length ratios of Evc2 mutant skulls at different levels. A. Diagram indicates the landmarks 
associated with width measurement. Areas with dark color are derived from neural crest cells. Width over 
length ratios at Premaxilla level (B), anterior of Zygomatic level (C), posterior of Zygomatic level (D) and 

temporal level (E) were shown. N=5, #, p>0.4; *, p<0.05; **, p<0.01.  
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