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ABSTRACT

The leaf-sheath pulvinus of grasses presents a unique system for studying gravitropism,
primarily because of its differences from other organs. The mature pulvinus is a discrete organ
specialized for gravitropism: it is nongrowing in the absence of gravistimulation and capable
of displaying a graviresponse independent of the rest of the plant. In this paper we present a
model for gravitropism in pulvini based on recent findings from studies on the mechanisms of
graviperception and graviresponse. According to this model, amyloplasts play an essential role
in perceiving a change in the orientation of the pulvinus. The perception of this reorientation
leads to the enhanced synthesis and release from conjugate of the auxin IAA, and the increased
conjugation of gibberellin, on a localized basis. Because there is a graded growth promotion
across the gravistirnulated pulvinus, it is suggested that the observed hormonal asymmetry is
actually an indication ofa linear gradient of hormone concentration, as well as hormone response,
across the pulvinus. It is further suggested that the linear gradient of hormone concentration
may be predominantly the result of local changes in hormone level, rather than a product of
hormonal movement into or across the pulvinus.

ALL GRASS SHOOTS have distinctive regions that
function primarily as graviresponsive organs.
These swollen regions near the sites of leaf
insertion have been variously termed nodes
(Wright, 1986), pseudopulvini (Salisbury and
Ross, 1985) or pulvini (Brown, Pratt, and
Mobley, 1959; Pharis et aI., 1981). We prefer
the term pulvinus (plural, pulvinii, since this
structure is a specialized mature organ that is
physically distinct from the node (i.e., it is lo
cated distal to the point of insertion of the leaf
on the stem), and because its specialization as
a motor unit is analogous to the classical pul
vinus (although the mechanism of action is
quite different). This pulvinus actually repre-
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sents either a swollen region above the inter
calary meristem at the base ofan internode (in
panicoid grasses) or a swollen leaf sheath base
(in festucoid grasses) (Fig. I). The pulvinus
functions in controlling the orientation of the
vegetative shoot, and ultimately that of the
inflorescence, via asymmetric growth within
the pulvinus, returning the shoot to the vertical
in response to lodging or gravistimulation.
Lodging refers to the prostration ofgrass shoots,
often resulting from strong wind and/or rain.
Gravistimulation refers to the displacement of
the shoot in any position away from the ver
tical; in research, this typically involves placing
the shoot in a horizontal position, perpendic
ular to the force of gravity on earth.

Both the recovery from lodging and the self
correcting of slightly angled shoots to vertical
positions by means of asymmetric growth in
the pulvini ofgrasses are adaptively significant
for several reasons: 1) both result in the ori
entation ofphotosynthetic organs (stems, leaves
and young inflorescences) to maximize pri
mary productivity while minimizing water loss;
2) the former aids in pollen dispersal by wind
when plants are in anthesis, thus insuring great
er reproductive success for the plants; and 3)
the former also increases the number of shoots
which can develop to reproductive maturity
within a given area. If cereal grass shoots fail
to recover from lodging, due to the presence
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Fig. I. Diagrammatic representation of a longitudinal
bisection of the pulvinus region offestucoid (A) and pan
icoid (B) grasses. Festucoid grasses have a leaf-sheath pul
vinus (LSP) at the base of the leaf sheath (LS). Panicoid
grasses have a prominent internodal pulvinus (lP) at the
base of the internode (I); some panicoid grasses also have
a leaf-sheath pulvinus.

growth results from the promotion of growth
on one side of the organ. Frequently, a reduc
tion or even cessation of growth is observed
on the opposite side. In these cases, the gravire
sponse can be described as distinctly lateral,
with asymmetric form resulting primarily from
unilateral growth promotion. Growth pro
motion in shoots is commonly found to be the
product of the reinitiation ofgrowth in an area
that had ceased to elongate (e.g., Hart and
MacDonald, 1984). In contrast, mature, com
petent pulvini display almost no elongation
growth before lodging or gravistimulation (Ar
sIan and Bennet-Clark, 1960). Asymmetric
growth in pulvini, in response to horizontal
placement, results from growth promotion
throughout the organ, with the response in
creasing in a linear fashion from the top side
to the bottom side (Dayanandan and Kaufman,
1984). Hence, the gravistimulation of pulvini
results in graded growth promotion. The gravi
response is also a promotion of growth in a
region that had previously not been elongating.

Does upward bending in the pulvinus in
volve any compression of cells on the upper
most side of a graviresponding pulvinus? Fig
ures 6, 7, and 8 provide an answer to this
question. These scanning electron micrographs
were prepared from similar areas of critical
point-dried pulvini, from a vertical barley shoot
(Fig. 6), the top side of a pulvinus of a gravi
stimulated barley shoot (24 hr treatment, 30
degrees curvature, Fig. 7), and the bottom side
of the same gravistimulated pulvinus (Fig. 8).
There is no significant compression of epider
mal cells on the top side. However, cortical
cells internal to the epidermis have become
compressed along their periclinal walls, while

of heavy, grain-filled inflorescences, serious
losses in grain yield can result.

The grass pulvinus (Fig. 2-4), as a gravire
sponsive system, offers many distinct advan
tages for studying the mechanism of gravi
tropic responses in plants. These include: 1)
the pulvinus is a relatively large mass oftissue,
so relatively few samples are needed for the
analysis ofchanges in metabolites or hormones
during gravistimulation; 2) the sites for gravity
perception and response are in close proximity
within the single organ, obviating problems
associated with long-distance hormone trans
port; 3) a long lag time exists between stimulus
and response (minimum of 15 min; Kaufman
and Dayanandan, 1984), permitting conve
nience in studying the earliest events that occur
in the upward bending response (compare with
a lag time of 1.5 to 3 min for com coleoptiles
(Bandurski et al., 1984)); 4) the system can re
respond to repeated gravistimulations, in con
trast to roots and dicot stems, in which the
graviresponding zone changes with plant
growth; 5) there exist "lazy" mutants of some
grasses, which are agravitropic (i.e., they show
no graviresponse), allowing the study of the
nature of the lesion in the gravitropic mech
anism and therefore the identification of crit
ical components of the mechanism.

The primary objective of this paper is to
review what is known about the upward bend
ing response in grass shoot pulvini. While the
gravity perception-transduction-response sys
tem ofpulvini is in many ways comparable to
that found in other organs, some differences
exist and these will be considered. Also, di
rections for future work regarding the roles of
starch grains, calcium, macromolecules (such
as cellulose, pectins, structural proteins, wall
loosening enzymes and calmodulin) and hor
mones in the pulvinus graviresponse will be
presented.

GENERAL FEATURES OF GRAVITROPISM IN
GRASS SHOOT PULVINI-When intact cereal grass
shoots become lodged or are gravistimulated,
they begin to show an upward bending re
sponse within 30 min, which continues over a
comparatively long period of 60 to 72 hr. This
type ofgravitropic response is termed negative
gravitropic curvature, and it results in shoots
being oriented to a vertical position (Fig. 5).
The gravitropic response is the manifestation
of asymmetric growth within the pulvinus.

The pattern of growth within the pulvinus
is different from that in other shoots and in
roots. In shoots (e.g., sunflower hypocotyl; Hart
and MacDonald, 1984) and in roots (e.g., maize;
Barlow and Rathfelder, 1985), asymmetric
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Fig. 2-4. 2. Cross-sectional diagram, depicting the mid portion of a barley leaf-sheath pulvinus and internode base
enclosed within it. E = epidermis, P = parenchyma tissue, C = collenchymatous tissue associated with each vascular
bundle, V = vascular bundle, S = statenchyma tissue. 3. Scanning electron micrograph prepared from a cross section
of a barley leaf-sheath pulvinus, comparable to the enclosed region in Fig. 2. 4. Scanning electron micrograph showing
the statenchyma tissue (comparable to the enclosed area in Fig. 3). Starch statoliths appear as small white granules in
each statocyte and are noticeably smaller than the nucleus (n).

the anticlinal walls are comparable in length
to those in the vertical cortex. As a result, the
cortical cells in the uppermost portion ofgravi
stimulated pulvini can have as little as half the
volume of equivalent cells in upright, control
pulvini. Compression can occur, but it is seen
primarily in cells of the inner cell layers below
the epidermal system at the top side of a gra
viresponding pulvinus. In no case have we ever
observed any decrease in length ofthe pulvinus
on the top side of one which has responded by
bending upward. It is comparable in length to
the lateral flank of an upright pulvinus, so no
compression takes place at this locus in con
trast to what occurs in subjacent cell layers.
This property may result from differences in
cell wall rigidity and plasticity between cells of
the epidermal system and those of the cortical
tissue below.

The kinetics of upward bending in pulvini
is different from that in other organs. Barley
(Hordeum vulgare cv. Larker) and oat (Avena
sativacv. Victory) pulvini start to bend upward
after a lag time of at least 15 min.

Features of the response of oat pulvini are
presented in Fig. 9 and Table 1. The kinetics
of this response were determined through the
use ofan angular recording position transducer
(Kaufman and Dayanandan, 1984). For this
purpose, an excised shoot was mounted with
the basal end in 0.1 M sucrose and left in a
vertical orientation in the dark for 0.5 hr. The
mounted section was then rotated to a hori
zontal position and the transducer arm was
placed on the leaf sheath portion beyond the
pulvinus, and left in the dark at 25 C. Excised
shoot portions containing pulvini were from
next-to-last nodes of 42- to 45-day-old oat
plants. We find that continuous upward bend
ing in the pulvinus ofan excised shoot portion
under the above conditions begins at least 20
min after gravistimulation in oat pulvini. Sim
ilarly treated barley pulvini show a lag time
before the upward bending response ofat least
15 min. Upward bending then progresses in
linear fashion at 4 degrees hr: I for barley and
1.5 degrees hr : I in oats for the next 12 hr, then
gradually decelerates over the next 60 hr. No
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Fig. 5-8. S. The graviresponse in lodged (left) and erect (right) plants ofcultivated oat (Avena sativa L., cv. Victory).
In the lodged plant, two pulvini have responded to bring the shoot to a vertical orientation. In the erect plant, note
the "self-correcting" of plant orientation by distinct graviresponses of the pulvini. 6-8. Scanning electron micrographs
of longitudinal sections of pulvini of barley, epidermis at top. 6. Epidermal and cortical regions from a pulvinus in a
vertically-oriented shoot. 7. "Top" side of a gravistimulated pulvinus after 24 hr. Note the reduction in length of
peric1inal cell walls in the cortex. 8. "Bottom" side of the same gravistimulated pulvinus.

further bending is observed after 72 hr. In con
trast, in maize coleoptiles (Zea mays cv. Stow
ells Evergreen), the upward bending response
in horizontally positioned plants is much fast
er; namely, 1 to 2 degrees min - lover a 60- to
90-min period (Bandurski et aI., 1984). With
maize seedlings and with excised barley and
oat shoots, angles of bending of90 degrees are
typically obtained. Such angles ofcurvature are

seldom seen in pulvini of intact barley and oat
plants which have been lodged or gravistimu
lated since several pulvini are involved in
righting the shoots to a vertical position.

A unique feature of pulvini is the capacity
of the graviresponding region to re-respond to
subsequent gravistimulations. In dicot shoots
and in roots, the graviresponding region
"moves" with time as the organ grows, and so
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Fig. 9. Generalized summary of the early kinetics of
the graviresponse in oat leaf-sheath pulvini. Data for the
earliest response (A), time of initial upward bending re
sponse (B),halftime to steady curvature rate (C), overshoot
of response (D) and final steady curvature rate (E) are
summarized in Table I.
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new cells are involved in subsequent gravire
sponses. When pulvini in excised shoot por
tions of intact plants are rotated 180 degrees
after a 30-degree upward bending response has
occurred, the pulvini reverse their direction of
curvature through further stimulation ofgrowth
across a new gradient. This response requires
about 25 to 30 min after the shoots are first
rotated (Brock and Kaufman, unpublished re
sults). Successive rotations can be made as
many as five times, and reversal of curvature
can be elicited in each case, though the time
required to achieve equivalent angles of cur
vature increases with each new rotation. Figure
10 shows the final outcome of five successive
re-stimulations by rotation in a pulvinus from
an intact barley shoot. Note that the pulvinus
has elongated considerably as a result of these
successive rotations and repeated upward
bending responses. Never have we observed

Fig. 10. Pulvini from barley plants left erect (left) or
repeatedly gravistimulated (right). The pulvinus can re
respond to changes in orientation. The final result is ex
treme elongation of the pulvinus.

such an elongation response in upright pulvini.
Similarly, treatment ofpulvini in upright plants
with hormones such as IAA or GAs cause only
a small growth response. However, brassino
steroid, especially in the presence of IAA, will
cause extensive pulvinus elongation in upright
barley shoots (Kaufman, Brock, and Song, in
press). In other words, the pulvinus consists of
unelongated mature cells which only elongate
in response to gravistimulation or lodging. The
re-response may have some adaptive signifi
cance in that lodged shoots which do start to
bend upwards may become lodged again or fall
over again due to the weight of a developing
inflorescence. In either case, gravitropically

TABLE 1. Features ofthe graviresponse of the oat leaf-sheath pulvinus in excised segments, determined by continuous
monitoring with an angular displacement transducer. Segments were excised 10 cm below and 4 em above the (p-1
locus) pulvinus, mounted with the base in 0.1 M sucrose, and left in a vertical orientation in the dark, 25 C, for 30
min before gravistimulation. N = 50

(A) Initial response:
Significant transient upward bending
No significant initial bending
Significant transient downward bending

(B) Lag time (min) to continuous upward bending:
Mean: 58.1 (SE = 21) minimum: 20

(C) Half time (min) to a steady continuous upward bending rate:
Mean: 27.3 (SE = 13) minimum: 10

(D) Percent observed to significantly overshoot
the subsequent steady bending rate:

(E) Final steady upward bending rate (deg hr-'):
Mean: 1.5 (SE = 0.46) minimum: 0.60

percentage:
8

27
65

maximum: 125

maximum: 64

48

maximum: 2.7



September 1987] KAUFMAN ET AL.-GRAVITROPISM IN THE GRASS PULVINUS 1451

TABLE 2. The effect of alpha-amylase. with or without subsequent sucrose treatment. on the graviresponse of barley
pulvini. Plants were treated in a vertical (V) position with alpha-amylase (hog pancrease; Sigma Co.), then sucrose
(Sue; 0.1 M). and then gravistimulated (G). Each treatment was for 24 hr. Six samples per treatment, repeated three
times

Water (V) ~ Water (G)
3.13 mg/rnl amylase (V) - Water (G)
6.25 mg/rnl amylase (V) - Water (G)
Water (V) ~ Sue (V) - Sue (G)
3.13 mg/rnl amylase (V) - Sue (V) - Sue (G)
6.25 mg/rnl amylase (V) - Sue (V) - Sue (G)

Mean graviresponse
(degrees)

38.5
5.5
o

62.4
54.5
29.9

Percent control
graviresponse

(100)
14.3
o

(100)
87.3
47.9

competent pulvini on these shoots can re-re
spond to the new gravitropic stimulus.

The capacity for a given pulvinus to respond
to a lodging or gravistimulation event is a func
tion of the state of development of the pul
vinus. In order for a pulvinus to respond to
gravistimulation, it must be relatively lignin
and silica-free, and it must have gravipercep
tive organelles (starch statoliths) present (Day
anandan and Kaufman, 1984; Wright, 1986).
Increased silicification has been correlated with
the loss of the capacity of Equisetum shoots to
respond to gravistimulation (Srinivasan, Day
anandan, and Kaufman, 1979). Thus, it ap
pears that in older pulvini, where the walls of
the cells have become lignified and silicified,
no bending response occurs when these pulvini
are gravistimulated. Likewise, young pulvini
which have not yet developed starch statoliths
or have too few present do not respond to
gravistimulation (Wright, 1986; also, see next
section). Within a given plant, the lodging or
gravistimulatory event is perceived and re
sponded to by several pulvini. In large grasses
such as sugarcane, maize, sorghum and bam
boo, as many as six to eight pulvini are in
volved in the upward bending response, where
as in cereal grasses such as oats, rice, wheat,
rye, and barley, it involves a maximum offour
pulvini. These cereal grasses may also respond
gravitropically at any time during the course
ofvegetative shoot development whenever the
shoots become oriented slightly away from the
vertical position. They respond by making small
"corrections" in pulvinus angle by asymmetric
growth that results in orienting the shoot to a
vertical position. These features are indicated
in Fig. 5.

PERCEPTION OFGRAVITY IN THE PULVINUS
The first step in the graviresponse is the per
ception of a change in orientation with respect
to the force ofgravity. The evidence indicates
that certain cells ("statocytes") are specialized
for this purpose. These cells typically contain

starch-filled plastids ("amyloplasts"), which
move in response to changes in the orientation
of the cell. Historically, this sedimentation of
the amyloplasts (or "statoliths") has been as
sumed to be the first step in the graviresponse
(Haberlandt, 1900; Nemec, 1900). Although
several lines of evidence support this assump
tion, a recent study of the roots ofa starch-free
form of Arabidopsis, which display a gravire
sponse comparable to that ofstarch-containing
forms, indicates that amyloplasts are not es
sential for graviperception in roots (B. Pickard,
personal communciation). Still, it is not clear
whether amyloplasts would function in some
graviperception capacity in roots, when pres
ent.

There is incontrovertible evidence that amy
loplasts are indeed the graviperceptive organ
elles in cereal grass pulvini. Two lines of evi
dence support this view. First, when the starch
in the amyloplasts in statocytes (Fig. 11) of
Larker barley is lysed through treatment with
alpha-amylase for 24 hr (Fig. 12), gravire
sponse in the pulvinus is nullified (Table 2).
Then, when the starch in these organelles is
resynthesized following treatment with 0.1 M
sucrose for another 24 hr (Fig. 13), the pulvini
respond to gravistimulation. Second, young
pulvini of wild oats (Avena jatua) which are
developing new statocytes do not respond to
gravistimulation until they have formed 14 to
16 statoliths per statocyte, and as this number
increases to 25 statoliths per statocyte, there
is a parallel, linear increase in angle of bend
over a given time interval in the pulvinus
(Wright, 1986). Alpha-amylase is a fairly large
protein with molecular weight of 62-63 Kd; it
is assumed that, in these experiments, it may
be actively taken up through intact cellular
membranes, or, alternatively, it could reach
the pulvinus statenchyma cells symplastically,
via plasmodesmata.) In the face of this evi
dence, we cannot accept the idea that these
starch-containing plastids in grass pulvini have
nothing to do with graviperception.
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Fig. 11-13. Scanning electron micrographs of barley
pulvini statocytes.ll. Statocytesofuntreated pulvini. Note
the presence ofnumerous, large amy loplasts. 12. Statocytes
of pulvini after treatment with 6.25 mglml hog pancreas
alpha-amylase for 24 hr in dark. Note absence of amy
loplasts. 13. Statocytes treated for 24 hr with 6.25 mglml
alpha-amylase, then for 24 hr with 0.1 M sucrose.

Now we can ask, how might the starch sta
toliths function in graviperception in the grass
pulvinus system? In the gravistimulated pul
vini of Larker barley and of Victory oats, the

Fig. 14. Diagrammatic representation of a cross sec
tion ofa statocyte shortly after gravistimulation, showing
nucleus (N) and three sedimenting amyloplasts (at right).
As the amyloplasts fall, they bring enzymes ("e" in inset),
bound to the amyloplast and tonoplast membranes, to
interact with components ofthe plasmalemma ofthe cell's
lateral face. It is proposed that the plasmalemma contains
IAA-deconjugating and gibberellin-conjugating moieties
("e" in inset), which are activated by amyloplast sedi
mentation to release bound forms of IAA and bind-free
gibberellin. The gaps in the cell wall in the diagram rep
resent plasmodesmata.

starch statoliths complete their descent within
two min (Thompson, Song, and Kaufman, un
published results). This is well within the per
ception times required for a graviresponse to
occur in the pulvini of these plants. When the
statoliths descend, they impinge upon the large
vacuole within each statocyte. In doing so, they
bring down a variety ofmembranes with them,
including the double-layered plastid mem
brane and, in many cases, portions ofthe tono
plast membrane (Kaufman and Dayanandan,
1984; see also micrographs in Parker, 1979).
We have proposed that the starch statoliths in
cereal grass pulvini may serve as "information
carriers" (Kaufman and Dayanandan, 1984),
by bringing membrane-bound enzymes to sites
where IAA can be released from a (presumedly)
bound, conjugated form, or gibberellins can be
actively conjugated (Fig. 14). ThefreeIAAmay
then directly initiate asymmetric growth on a
local basis, or move laterally and/or downward
within the pulvinus. Hence, enzymes such as
esterases and peptidases, which hydrolyze, re
spectively, myoinositol ester IAA and amide
linked IAA, and glucosyl transferases, which
direct the formation of glucosyl esters of GAs
from the free GA form, would be activated as
a result of amyloplast sedimentation.

The ideas that statoliths directly alter en
zyme activity and that this mediates the gravity
response are highly speculative and will require
further testing in order to prove or disprove
their validity. To test these ideas, one might
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start with enzyme localization on the statocyte
membranes, or in a gross fashion, on the whole
statocytes. We have made an initial attempt in
this direction with the statocytes of Victory
oats. If fresh pulvinus tissue preparations are
stained with fluorescein diacetate, which is spe
cific for esterase activity, the statocytes flu
oresce bright yellow when excited by UV light
in the microscope (Dayanandan and Kaufman,
unpublished results). The fluorescence is large
ly confined to the statoliths. Such esterase ac
tivity associated with the starch statoliths could
be involved in deconjugating IAA from its
myoinositol ester conjugate that we have pos
tulated to be localized in the plasma mem
brane.

It is possible that the starch statoliths per
form yet another function; namely, to act as
"pressure probes" that would open or activate
ion channels in the plasma membrane by a
process called "stretch activation" (B. Pickard,
personal communication). This idea presup
poses that the portions ofmembranes that con
tain ion channels (e.g., for Ca 2 +, K + , H +, or
Mg2+) are attached to a network of microtu
bules in the cytosol. This network would be
placed under increased tension as statoliths im
pinge on them at the bottom ofthe cell. Changes
in the tension on the microtubules would bring
about a change in the conductance ofion chan
nels in the plasma membrane. The end result
of the stretching process would be an altered
rate of ion flux, theoretically leading to acti
vation ofcellular processes. The movement of
Ca2+ and its association with calmodulin ac
tion have been implicated in the gravitropic
response of roots (e.g., Hasenstein and Evans,
1986; Moore and Evans, 1986), suggesting that
calcium channels might be significant in the
stretch activation process. However, as far as
we are aware, nothing is known about the roles
of calcium and calmodulin in the gravitropic
response mechanism in cereal grass pulvini.

The significance of both pressure-sensitive
ion channels and calcium in graviperception
in pulvini are key areas for future research.
The "stretch activation" idea might be tested
through the use of patch clamping techniques
applied to statocyte protoplasts in order to
measure membrane potential changes associ
ated with cells in which the starch grains sed
iment in comparison with cells in which the
starch grains are free-floating and do not sed
iment. fluxes of ions such as Ca 2 + into and
out of statocytes could be indicated in upright
pulvini as compared with gravistimulated pul
vini by measuring extracellular calcium levels
with a Ca 2 + -specific microelectrode. Unfor
tunately, quantitation of cytosolic calcium re-

mains technically difficult. In particular, at
tempts to use some ofthe new fluorescent Ca 2 +

indicators, such as Fura-2 or Quin-2, have met
with considerable difficulty when used on plant
cells (P. Hepler, personal communication).

In summary, the way that gravity is per
ceived by plants is complex. Apparently, more
than one mechanism may be involved. These
different mechanisms may function indepen
dently or they may interact. For example, pres
sure-sensitive channels in cell membranes may
be capable of responding to changes in gravity
independent ofstarch grain sedimentation, but
their response may be amplified or prolonged
following sedimentation. Similarly, the amy
loplasts may have multiple functions. By mov
ing in response to cell reorientation, they may
transport membrane-bound information, re
orient microtubules or alter local membrane
properties. Also, the starch may serve as a sub
strate source for energy production, cell wall
synthesis or osmotic pressure maintenance
during growth. Many of these ideas are only
now being addressed experimentally.

TRANSDUCTION OFTHE GRAVISTIMULUS- The
classical model of gravitropism in coleoptiles
and roots designates the site of perception as
the tip ofthe organ, with the response occurring
at a site near the elongation zone some milli
meters away. Simply because ofthe separation
of sites, some mode of transduction of the sig
nal from tip to growth zone must exist. The
nature ofthis transduction process remains un
known. Among the more exciting possibilities
are electrical potential differences generated
across the stimulated organ (Behrens, Grad
mann, and Sievers, 1985; T. Bjorkman and A.
C. Leopold, personal communication) and in
duced asymmetry of metal ions, such as cal
cium (Slocum and Roux, 1983; Hasenstein and
Evans, 1986).

The cereal pulvinus lacks the obvious sep
aration of sites for perception and response
(Fig. 2-4). The transduction ofsignal need only
be over a few cells, from the statocytes to the
site of growth regulation. In the pulvinus, the
primary site of cell expansion appears to be
the collenchyma tissue, which is adjacent to
the vascular system and near the statoliths
(Dayanandan, Hebard, and Kaufman, 1976;
Dayanandan et aI., 1977; also see Fig. 2-4).
The epidermis is not considered to be essential
for the graviresponse, since preliminary tests
find only a minor effect of epidermal removal
on the change in angle of curvature over time,
in response to gravistimulation (Dayanandan
and Kaufman, unpublished results). Due to the
short distance between the statoliths and col-
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lenchyma, the nature of the transduction pro
cess in pulvini may be very different from that
in other organs. Also because of the short dis
tance between these sites, this aspect of the
graviresponse in pulvini may be the most dif
ficult to solve. At present, there is nothing
known about the transduction process in grass
shoot pulvini.

REsPONSE TO GRAVISTIMULAnON: HORMONAL
CHANGES- Ultimately, the graviresponse of
plants is a growth response. The reorientation
of the plant following lodging or gravistimu
lation is the product of asymmetric growth.
From the earliest publications of studies on
tropisms carne the postulation that the re
sponse is directly due to an asymmetric dis
tribution of growth regulators, such as hor
mones (Cholodny, 1926; Went, 1926). This
concept has persisted and remains an under
lying assumption of much of the research in
gravitropism today.

Such a simple concept has still not achieved
universal support, however. A number of in
vestigators (Digby and Fim, 1976; Fim and
Digby, 1980, and references cited therein; Mer
tens and Weiler, 1983) have suggested that
asymmetric distributions ofhormones may not
direct the upward bending response in gravi
stimulated shoots. Rather, they say that dif
ferences in tissue sensitivity to hormones may
account for the differential growth response.
Furthermore, the timing of the occurrence of
the asymmetry in hormonal distribution is a
central issue. These investigations argue that
hormone asymmetries may develop slowly and
may in fact be the result of the graviresponse.

While the question of tissue sensitivity has
yet to be addressed, recent studies using grass
seedlings and shoot pulvini have dealt with the
issue oftiming. In gravistimulated maize seed
lings, greater amounts of auxin, both as free
IAA and as the myoinositol ester of IAA, can
be found on the lower side (relative to upper)
in as short a time as five min (R. Bandurski,
personal communication). This coincides with
the time when an upward bending response
can first be measured (Bandurski et al., 1984).
Similarly, in the graviresponse of leaf-sheath
pulvini of wild oat (Avena fatuai, free IAA
asymmetry has been measured in as early as
15 min after the shoots are first gravistimulated
(Wright, 1986, and papers cited therein). This
is at least five min before the gravistimulated
shoots start to bend upward. Consistent with
these findings is the report that an asymmetry
of IAA is observable in gravistimulated Ech
inochloa colonum nodes (Wright, Mousdale,
and Osborne, 1978).

On the other hand, ethylene asymmetry in
gravistimulated cultivated oats (Avena sativa)
arises as late as 5.5 hr after upward bending is
initiated in gravistimulated plants (Kaufman
et al., 1985). For this reason, it is apparent that
ethylene is not one of the primary regulatory
hormones in eliciting the upward bending re
sponse in pulvini ofthese plants. Its asymmetry
may arise as a result ofthe unequal distribution
of free IAA in the upward bending pulvinus,
especially since it is well-documented that eth
ylene synthesis can be promoted by IAA. (See
Kaufman et al., in press, and references cited
therein.) Thus, we have a situation in which
some hormones, such as ethylene, are not in
volved in regulating the initiation of upward
bending, and other hormones, such as IAA,
which may be directly involved. Auxin is
therefore one of the leading candidates for
causing the upward bending response, since its
asymmetry arises at or just before the upward
curvature is initiated.

It should be noted that the asymmetry of a
hormone such as IAA need not be large in order
to initiate an upward bending response. This
is the case with IAA in maize seedlings. A very
small gradient in IAA across a tissue can elicit
considerable unequal growth of the tissue, cer
tainly enough for the initial growth asymmetry
seen in graviresponding tissue, since the growth
rate of a section is the sum of the growth rates
of a series of individual cells. Also, when one
adds up these gradients across a whole pulvi
nus, for example, the expected effects on dif
ferential cell elongation would be quite signif
icant. Thus, it is seen that very small differences
in IAA concentration can elicit a rather sig
nificant differential growth response, especially
since IAA can stimualte cell elongation at con
centrations as low as 10-9 M in roots and 10- 7

M in shoots (Thimann, 1977). One cannot, of
course, rule out differential sensitivity to IAA
as an integral component ofthe unequal growth
response mechanism.

Gibberellins (GAs) may also be involved in
gravitropism in pulvini. During gravistimu
lation, glucosyl ester conjugates of GAs ac
cumulate in the top halves whereas free GAs
(GA 4 , GA7 , GAl) accumulate in the bottom
halves; further, feeds with 3H-GA4 indicate that
there is differential synthesis of free GAl and
GA7 and GA conjugates at the two positions,
with more free GAs being synthesized in the
bottom halves and more GA conjugates being
synthesized in the upper halves (Pharis et al.,
1981; Kaufman and Dayanandan, 1984). In
sum, it appears that both differential synthesis
and release from conjugate are involved in the
establishment ofhormone asymmetry in gravi-
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responding cereal grass pulvini. In order to
resolve when this occurs, kinetic studies must
be undertaken to determine relative amounts
of both free IAA and its conjugates and free
GAs and their conjugates in top and bottom
halves of graviresponding pulvini.

An important question we can now ask is
this: how do hormone asymmetries arise? Basi
polar transport (i.e., lateral transport in hori
zontally-oriented segments) is unlikely for IAA
(Kaufman et al., 1979), since there is no sig
nificant downward movement of 14C-IAA ap
plied in agar blocks to "top" sides ofgravistim
ulated pulvini in cultivated oats (Avena sativa)
and wheat (Triticum aestivum) (Bridges and
Wilkins, 1973). The same can be said for 3H_
GA3 , applied in the same fashion to gravistim
ulated oat pulvini (Kaufman and Dayanandan,
1984). We are then left with three other pos
sibilities: 1) differential hormone metabolism,
2) differential hormone synthesis, and 3) re
lease of free hormone from conjugate. Current
evidence favors the last two as being most im
portant. For IAA, in gravistimulated oat pul
vini which have achieved angles of bending
equal to 30° in a 24-hr period, we have found
seven times more free IAA in the gravistimu
lated pulvini than in those of the upright con
trols, and the asymmetry is ca. 1:2.5 top/bot
tom in the former (Table 3). As Wright (1986)
has pointed out, this IAA asymmetry arises as
early as 15 min after the pulvini are placed
horizontally. It appears then that differential
IAA synthesis can account for at least some of
this asymmetry.

More recently, Kaufman and Cohen (1986,
unpublished results) have found that the up
right control oat pulvinus contains three times
more amide- plus ester-linked IAA than free
IAA, suggesting that IAA is stored in the pul
vinus as its conjugate. Further, we suggest that
it could be released differentially from this con
jugate during gravistimulation. This idea is
currently being tested. It is a fact that in pulvini
in an upright position, 14C-IAAcan move from
top to bottom in the expected basipolar fash
ion, although much of this IAA does not exit
the pulvinus at its base into the internode be
low, so it appears not to be a "leaky" system.
That which does move into the pulvinus from
shoot parts above it (leaves, inflorescence), then,
most likely gets impounded as IAA conjugate,
which in vegetative oat tissues is primarily
amide-linked IAA (Bandurski and Schulze,
1977).

This model for gravitropism, as applied to
the grass pulvinus, calls for a basic departure
from the classical model of gravitropism, as
applied to coleoptiles (Cholodny, 1926; Went,

TABLE 3. Analysis offree fAA amounts in vertical and
gravistimulated oat pulvini. Plants were gravistimu
lated intact for 24 hr. Pulvini (IO g fresh weight total
per value) were then excised and assayed for free fAA
content by the double isotope dilution technique (Ban
durski and Schulze, f977)

Free IAA
(ng/g dry weight)

Vertical pulvinus 70
Gravistimulated pulvinus

Upper half 130
Lower half 350

1926) or roots (e.g., Shaw and Wilkins, 1973;
Pilet, 1977). According to the classical model,
hormones function in the transduction phase
ofgravitropism: perception at one site leads to
response at another through asymmetric ba
sipetal transport ofhormones. In the pulvinus,
basipetal transport of hormones is not a factor
during gravitropism: the pulvinus can fully
perceive and respond to gravistimulation as an
isolated organ (Brock and Kaufman, unpub
lished results). Moreover, it appears that basi
polar transport (i.e., downward transport in
horizontally-placed pulvini) is relatively insig
nificant as a transduction mechanism. In pul
vini, a key response to gravistimulation is a
change in the rates of synthesis and deconju
gation of IAA and conjugation of GA. Asym
metric growth is assumed to be a direct effect
of the local change in hormone level. In this
situation, transduction becomes, simply, the
events between amyloplast sedimentation and
change in hormone level.

According to this model, then, a variety of
molecular and cellular changes, related to hor
mone action and growth promotion, should be
observable. This is indeed the case. Analysis
of tissue from vertical vs. gravistimulated bar
ley pulvini, by sodium dodecyl sulfate-poly
acrylamide gel electrophoresis, indicates that
several protein levels change in response to
gravistimulation (Kaufman, Song, and Pharis,
1985). Specific enzyme assays indicate an
asymmetry in the activity of beta-glucosidase,
cellulase and invertase in response to gravi
stimulation (Kaufman, Song, and Pharis,
1985). The syntheses of RNA and proteins are
required for the gravitropic response, since
actinomycin D and cycloheximide completely
inhibit the asymmetric growth response (Day
anandan, Franklin, and Kaufman, 1982). Work
in progress is designed to determine if these
changes in protein levels are exactly the changes
expected if gravitropism is purely the result of
differential hormone action.

In summary, the response phase ofpulvinus
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gravitropism may involve auxin, gibberellin(s)
and ethylene (Kaufman and Song, 1987).
Auxin is dramatically increased by both de
novo synthesis and release from conjugate. An
asymmetry in auxin distribution can be mea
sured in 15 min, which is before the initial
upward bending is observed. Gibberellins also
are found to change in response to a gravistim
ulus. There is enhanced conjugation ofGAs in
upper halves of pulvini, resulting in an asym
metry offree, active gibberellin. Also, ethylene
levels increase, but only after 5.5 hr of gravi
stimulation. Hence, ethylene does not promote
upward bending, but may playa role in later
events. An important point is that asymmetry
of auxin and gibberellin levels is not due to
transport into or across the responding organ,
but is most likely the product oflocal, cellular
processes. Also, changes in tissue sensitivity
upon gravistimulation have yet to be addressed
in detail, although recent studies on dicot hy
pocotyls suggest that a change in sensitivity to
endogenous auxin may be a fundamental fea
ture ofthe graviresponse (Salisbury et al., 1986;
Meudt, 1987). It is possible that this is also an
important facet of the graviresponse mecha
nism in cereal grass shoots.

GRAVITROPISM IN THE PULVINUS IN COM
PARISON WITH OTHER SYSTEMs-Gravitropism
in the grass pulvinus is similar in many ways
to gravitropism in other organs. First, starch
grains, as components of amyloplasts, are as
sociated with the perception ofa change in the
orientation of the organ with respect to the
force of gravity. In the pulvinus, the starch
grains are a necessary component for percep
tion: upon enzymatic removal of the starch,
no response occurs; after reformation, the com
petence to respond returns. Second, the gravi
response can be directly attributed to an asym
metry of hormones in an active form. A
dramatic increase in free IAA occurs and a
graded asymmetry is observed before asym
metric growth is measured.

Several distinct differences place the pulvi
nus apart from other graviresponse systems.
First, the site of perception is very close to the
site of response. This may allow for unique
mechanisms of transduction and response.
Second, the organ is capable of repeated gravi
responses within one defined region. This re
response feature implies the involvement of
changes in tissue sensitivity and suggests sev
eral possible avenues for future research. Third,
the graviresponse is under multiple hormonal
control. Both gibberellins and auxin are in
volved in the initiation ofasymmetric growth,
and ethylene may affect later stages of the re-

sponse. Finally, hormonal transport, either into
or across the organ, appears to be relatively
unimportant in the initiation of the gravire
sponse. Hormonal asymmetries result chiefly
through local processes, such as enhanced syn
thesis and a shift between the free and con
jugated forms of the hormone.
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