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Abstract.—We evaluated bioelectrical impedance analysis (BIA) as a nonlethal means of predicting energy

density and percent lipids for three fish species: yellow perch Perca flavescens, walleye Sander vitreus, and

lake whitefish Coregonus clupeaformis. Although models that combined BIA measures with fish wet mass

provided strong predictions of total energy, total lipids, and total dry mass for whole fish, including BIA

provided only slightly better predictions than using fish mass alone. Regression models that used BIA

measures to directly predict the energy density or percent lipids of whole fish were generally better than those

using body mass alone (based on Akaike’s information criterion). However, the goodness of fit of models that

used BIA measures varied widely across species and at best explained only slightly more than one-half the

variation observed in fish energy density or percent lipids. Models that combined BIA measures with body

mass for prediction had the strongest correlations between predicted and observed energy density or percent

lipids for a validation group of fish, but there were significant biases in these predictions. For example, the

models underestimated energy density and percent lipids for lipid-rich fish and overestimated energy density

and percent lipids for lipid-poor fish. A comparison of observed versus predicted whole-fish energy densities

and percent lipids demonstrated that models that incorporated BIA measures had lower maximum percent

error than models without BIA measures in them, although the errors for the BIA models were still generally

high (energy density: 15–18%; percent lipids: 82–89%). Considerable work is still required before BIA can

provide reliable predictions of whole-fish energy density and percent lipids, including understanding how

temperature, electrode placement, and the variation in lipid distribution within a fish affect BIA measures.

The ability to quantify the energy content of fish has

benefited both fisheries management and ecological

investigations (Rottiers and Tucker 1982; Henderson et

al. 1996; Hurst and Conover 2003; Madenjian et al.

2006). Such information can be used to describe the

flow of energy between and within populations and

evaluate an individual’s or population’s response to

ecosystem changes (Paine 1971; Ludsin and DeVries

1997; Madenjian et al. 2000). Similarly, measures of

energy content such as energy density and percent

lipids can provide insight into the physiological status

of a fish, which may reflect its condition for wintering,

migrating, or spawning (Rottiers and Tucker 1982;

Shearer 1994; Ludsin and DeVries 1997). Insufficient
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information on fish energy content—specifically,

energy density—can also compromise bioenergetic

and energy flow studies (Bartell et al. 1986; Vondracek

et al. 1996; Lantry et al. 1999).

Despite the potential value of quantifying energy

content, there is surprisingly little information for most

fish species and even less on how measures of energy

content (e.g., energy density, percent lipids) vary

ontogenetically, seasonally, and geographically. In

part, this information gap is undoubtedly due to the

expense and time required to quantify energy content

with traditional laboratory approaches (Vondracek et

al. 1996; Lantry et al. 1999). Further, because

traditional methods used to assess fish energy content

require individuals to be sacrificed, such approaches

cannot be used to quantify energy content on the same

individual through time and are not appropriate for

species that are low in abundance, threatened, or

endangered.

Alternative approaches have been developed to

estimate the energy content of fish. For example, some

studies have demonstrated that energy density and lipid

content can vary with fish size; however, the amount of

variation attributable to fish size can differ among

species, and in some cases, the relationship changes as

fish grow (Shearer 1994; Madenjian et al. 2000;

Pothoven et al. 2006). Likewise, Hartman and Brandt

(1995) found that ratio of dry to wet mass of an

individual can predict the energy density of fish quite

well. However, this method still necessitates sacrificing

fish and requires substantial time for grinding and

drying fish carcasses. Clearly, development of a rapid,

nonlethal approach for estimating proximate body

composition—including energy density and percent

lipids—would be of great value to fishery scientists and

management agencies.

Several technological developments have provided

an alternative to the time-consuming determination of

energy content in fish, including total-body electrical

conductivity (TOBEC), handheld microwave energy

meters (fat meters), and bioelectrical impedance

analysis (BIA). Both TOBEC and BIA rely on the

differing conductive properties of fat and fat-free mass

within a body to evaluate whole-body lipid content,

whereas microwave energy meters use a microwave

sensor to measure water content in a cell and then use

species-specific relationships to determine somatic

lipid content (Crossin and Hinch 2005). The TOBEC

instruments are large and difficult to use in field

situations and have not proven reliable for fisheries

studies (Lantry et al. 1999). In contrast, both BIA and

microwave energy instruments are more portable.

Given our interest in estimating whole-body energy

content (not just somatic tissue content) in field settings

in a nonlethal manner, we chose to evaluate the use of

BIA for this study.

The theory of BIA for estimating total-body water in

humans was established by 1970 and increasingly has

been used for clinical applications (Kushner et al.

1992; Kotler et al. 1996; Kyle et al. 2004). More

recently, BIA has shown some potential for estimating

body composition of other animals, including moose

Alces alces (Hundertmark and Schwartz 2002), gray

seals Halichoerus grypus (Bowen et al. 1999), and

more recently, fish (Bosworth and Wolters 2001; Cox

and Hartman 2005). BIA is based on the principle that

impedance in a simple geometric system is a function

of conductor length, its cross-sectional area, and the

applied signal frequency (Hoffer et al. 1969; Lukaski et

al. 1985; Kushner et al. 1992; Kyle et al. 2004). The

theory underlying BIA assumes that water offers less

resistance to electrical current than lipids, that is, that

higher resistance equates to higher amounts of lipids or

nonconductive materials such as bone (Lukaski et al.

1985; Jackson et al. 1988; Kyle et al. 2004). Reactance

provides a measure of the volume of cell membrane

capacitance and in theory is not affected by the fat

quantity in a body (Lukaski et al. 1985). BIA measures

can be correlated with measures of proximate body

composition to develop calibration equations to predict

proximate body composition (Kushner et al. 1992;

Kyle et al. 2004; Cox and Hartman 2005).

Previous work on whole fish has used BIA to

successfully predict total-body water and lipids (R2 .

0.96; Cox and Hartman 2005) but not caloric energy

density, the metric most commonly used to evaluate

fish health and track energy flow with bioenergetics

models (Rottiers and Tucker 1982; Hanson et al. 1997;

Lantry et al. 1999). Considering the strong correlation

between water content and energy density (Hartman

and Brandt 1995), we sought to determine whether BIA

could provide robust predictions of whole-fish energy

density for yellow perch Perca flavescens, walleye

Sander vitreus, and lake whitefish Coregonus clupea-
formis. These fish are of recreational, commercial, or

ecological importance in the Great Lakes and differ

considerably in terms of body size and whole-body

energy content. Additionally, because most studies

evaluating BIA have examined only the relationship

between BIA and total lipid mass, we wanted to

determine whether BIA could predict percent lipids,

another metric commonly used to evaluate fish

condition (Madenjian et al. 2000; Hendry and Beall

2004). If BIA can provide a rapid and nonlethal manner

to determine whole-fish energy content, then fishery

managers and scientists would have a nonlethal tool to

quickly and easily track the physiological status of fish

in the field. Bioenergetics applications could thus be
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improved through the collection of more seasonal and

interannual species-specific data on fish energy

content.

Methods

Yellow perch, walleyes, and lake whitefish were

collected with either gill nets or bottom trawls from (1)

Lake Erie during May and September 2005 (yellow

perch) and (2) Lake Michigan and a connected

drowned river mouth (Muskegon Lake) during June–

October 2006 (walleyes, yellow perch, and lake

whitefish). An additional sample of walleyes (originat-

ing from Lake Erie) was taken from Michigan

Department of Natural Resources experimental ponds

during April 2005. When collected, fish were measured

(total length [TL], nearest mm) and weighed (nearest

g). We anticipated that we would collect a broad range

of fish sizes and fish with various energy contents by

sampling various systems during different seasons.

While fish were still alive, they were placed on a

nonconductive board and bioelectrical impedance

(resistance and reactance, series) was quantified by

applying an 800 lA current at 50 kHz with a Quantum

II bioelectrical impedance analyzer (RJL Systems,

Detroit, Michigan). After BIA measures were taken,

the fish were euthanized, individually wrapped in

aluminum foil to reduce moisture loss, bagged, and

frozen.

The BIA system consisted of two sets of 3-gauge, 19-

mm-long hypodermic needles. Each set included an

outer transmitting and an inner detecting electrode held

1 cm apart in a plastic housing that allowed each needle

to penetrate about 3 mm into the fish muscle. For the

lateral placement of electrodes, one transmitting elec-

trode was placed just above the anterior end of

operculum so that its paired detecting electrode was 1

cm posterior to the operculum. The other pair of

electrodes was placed so that the detecting electrode was

even with the posterior edge of the second dorsal fin (for

walleyes and yellow perch) or the transmitting electrode

was even with the anterior edge of the adipose fin (for

lake whitefish; Cox and Hartman 2005). A current was

then introduced by the outer transmitting electrodes and

the voltage drop between the two inner detecting

electrodes was determined. Dorsal BIA measures were

also taken (Bosworth and Wolters 2001), but we present

only lateral measures here because dorsal and lateral

measures resulted in similar predictive patterns (S.

Pothoven, unpublished data). Triplicate BIA measures

were taken on 32 fish (3 yellow perch, 11 walleyes, and

18 lake whitefish) to determine variability of BIA

measures on individual fish.

Field measures of resistance and reactance are based

on measurements of a series circuit (Kotler et al. 1996)

and must be converted to parallel measures by using

standard equations, such that

Xp ¼ Xm þ ðR2
m=XmÞ ð1Þ

and

Rp ¼ Rm þ ðX2
m=RmÞ; ð2Þ

where X
p
¼parallel reactance, X

m
¼ series reactance, R

p

¼ parallel resistance, and R
m
¼ series resistance. As

recommended by the BIA instrument manufacturer, we

used parallel measures for all BIA predictions of

proximate composition, because parallel measurements

most closely approximate real electrical properties of

biological tissue.

In the laboratory, frozen fish were homogenized in a

commercial grinder and blender. To determine dry-to-

wet mass (percent dry mass; Hartman and Brandt

1995), we dried a 20–30-g subsample of ground fish

tissue at 708C to a constant mass (about 3 d). For

energy density (J/g wet mass), the dried material was

ground with a mortar and pestle, and a 1-g subsample

was combusted in a Parr 1261 isoperibol bomb

calorimeter that was standardized with benzoic acid.

To estimate within-fish variability for bomb calorim-

etry, we initially quantified energy density in triplicate

for individual fish of each species. Mean coefficients of

variation (CV ¼ 100 3 SD/mean) for individual fish

were low: 1.31% (n¼ 5) for yellow perch, 1.02% (n¼
10) for walleyes, and 1.19% (n¼ 6) for lake whitefish.

Thus, we subsequently quantified energy density in

only one subsample per fish.

For lipid analysis, a subsample of the ground

homogenate was freeze-dried, reground with a wand

blender, sifted through a 1.68-mm sieve, and stored at

�808C until lipid analysis. To extract lipids, triplicate

subsamples of 1–3 mg (measured to nearest 0.001 mg)

of finely homogenized freeze-dried samples were

weighed directly into glass test tubes (50 mm 3 6

mm) and combined with 200 lL of 2:1 chloroform:-

methanol (HPLC-grade). Homogenization was per-

formed promptly on ice, to avoid evaporation. Samples

were homogenized for 30 s by means of a dremel tool

with a glass bead pestle. Each homogenate was

decanted into a 1.5-mL conical centrifuge tube. A

second 200 lL of 2:1 chloroform:methanol was added

to each test tube and homogenized briefly (;5 s),

acting as a rinse. This second homogenate was then

combined with the first homogenate, and 200 lL of

0.9% NaCl was added (and vortex-mixed) to each tube

(Folch et al. 1956). Tubes were centrifuged (Eppen-

dorf, Model 5415, Hamburg, Germany) for 15 s at

8,000 rpm, resulting in a phase separation with

nonlipid compounds and methanol partitioned into
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the upper aqueous phase, and lipid material in the

lower organic phase. A microsampling pipette was

used to remove organic-phase lipid extracts for

analysis. In 2005, total lipids were determined with

both gravimetric and colorimetric techniques as part of

a concurrent methodological study that yielded a 0.98

correlation between methods (Lu et al., in press). Only

the colorimetric method was used in 2006. The

gravimetric analyses, which are based on weighing

total extracted lipids, were as described by Gardner et

al. (1985). The microcolorimetric sulfophosphovanillan

(SPV) analysis, which measured the absorbance of the

red–purple complex produced from the reaction

between double carbon bonds and the phosphovanillin

SPV reagent, followed Van Handel’s (1985) descrip-

tion. See Lu et al. (in press) for more details on our

lipid analyses. Percent lipids was expressed as percent

of wet body mass.

Previous studies predicted the whole-body energy

content of fish by using a ‘‘conductor volume’’ method

(e.g., length2/R
p
), which treats an individual fish’s

body as a true cylinder (Hoffer et al. 1969; Bowen et al.

1999; Cox and Hartman 2005). However, given that

the body shapes of most fish are not true cylinders, this

approach may induce undue error (Kotler et al.

1996).For this reason, we also used a multiple

regression approach to both directly and indirectly

derive predictive relationships between BIA measures

and energy content. To do so, we evaluated four

regression models: (1) a ‘‘body mass (M) model’’ that

used M alone as a predictor; (2) a ‘‘conductor volume

model’’ that used the BIA-derived measure TL2/R
p

as a

predictor; (3) a ‘‘BIA model’’ with BIA measures as

predictors (TL, R
p
, and X

p
); and (4) a ‘‘BIA þ body

mass model’’ with BIA measures (TL, R
p
, and X

p
) and

M as predictors.

For the direct approach, each model was used to

predict energy density or percent lipids directly.

Because BIA is typically used to evaluate total mass

of a proximate component, rather than a proportional-

based metric such as energy density or percent lipids,

we also used each model to predict total energy, total

lipid mass, and total dry mass. For analysis of total

energy, total lipid mass, and total dry mass, both the

dependent variables and the predictors (M, TL, R
p
, X

p,

TL2/R
p
) were log

10
transformed to linearize the

relationships and stabilize the variances. We then

indirectly calculated energy density and percent lipids

as total energy (or total lipids) divided by measured

wet-body mass. For both approaches, we evaluated

models for interactions among species and other

predictors. When slopes of at least one of the

regression models varied among species for a given

metric (i.e., species interactions were evident), we

made predictions for species-specific relationships.

To select the most parsimonious (‘‘best’’) models

(Spendelow et al. 1995), we used a second-order

Akaike information criterion for small sample sizes

(AIC
c
; n

i
/k

i
, 40; ) to rank models (Burnham and

Anderson 1998). We then subtracted the lowest AIC
ci

value for the suite of models (AIC
c[min]

) from each

individual AIC
ci

value, producing a ranked index

referred to as D
i
�AIC

c(min)
; for the most-parsimonious

model, D
i
� AIC

c(min)
¼ 0.

We used an independent validation group of fish to

asses the robustness of both the direct and indirect

regression-derived predictions of energy density and

percent lipids. This validation set of fish consisted of

seven randomly selected fish of each species that were

not used to build any of the predictive relationships. To

assess whether our direct and indirect predictions of

energy density and percent lipids differed from the

observed values, we used 95% confidence intervals to

determine whether the slopes of the relationships

between predicted and observed values differed from

1 and whether the intercepts differed from 0. We also

quantified the percent error between predicted and

observed values for energy density and percent lipids

for each fish in the validation group. A two-factor

analysis of variance (ANOVA) was then used to

examine the effects of species and model on percent

error. We used SYSTAT 10 to perform all statistical

analyses and evaluated effects at a ¼ 0.05 level of

significance.

Results

We quantified BIA indices for 123 fish (37 walleyes,

45 yellow perch, and 41 lake whitefish) ranging in size

from 138 mm (29 g) to 639 mm (2,670 g) (Table 1).

The mean coefficient of variation (based on triplicate

measures of individual fish) of lateral BIA measures

was lower for R
p
(2.89%) than X

p
(8.32%). There was

TABLE 1.—Mean total length, wet body mass, energy density, and lipid content for individuals used to develop predictive

models of energy density and percent lipids. Ranges of values are given in parentheses; n ¼ sample size.

Species n Total length (mm) Mass (g) Energy density (J/g) Lipid content (%)

Yellow perch 38 247 (138–358) 191 (29–500) 5,728 (3,591–7,782) 5.6 (2.7–8.7)
Walleye 30 503 (328–639) 1,362 (270–2,670) 7,215 (5,731–9,299) 10.0 (6.0–18.2)
Lake whitefish 34 502 (246–564) 1,136 (80–1,910) 6,184 (4,550–7,782) 7.3 (2.4–14.7)
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no indication that the coefficient of variation of BIA

measures increased with fish size (R2 , 0.07) or varied

by species. Although energy density was strongly

correlated with percent dry weight (yellow perch: R2¼
0.73; walleyes: R2¼ 0.94; lake whitefish: R2¼ 0.90; all

P , 0.001), the relationships between percent lipids

and percent dry weight were weaker (yellow perch: R2

¼ 0.47; walleyes: R2¼ 0.52; lake whitefish: R2¼ 0.51;

all P , 0.001).

Direct Approach

Predictive models were determined separately for

each species, owing to significant interactions among

species and some predictor variables in the models. For

directly predicting energy density, AIC values indicat-

ed a different best model for each species: the BIA

model for yellow perch, the conductor volume model

for walleyes, and the body mass model for lake

whitefish (Table 2). However, even the best model fits

were far from perfect for walleyes (R2 ¼ 0.50; P ,

0.001) and whitefish (R2 ¼ 0.29; P ¼ 0.001) and were

not significant for yellow perch (R2¼ 0.18; P¼ 0.08).

As with energy density, the variation in percent

lipids explained by our best models was imperfect

(maximum R2, 0.53). The best predictive models were

the BIA model for yellow perch (R2¼ 0.17; P¼ 0.09),

the conductor volume model for walleyes (R2¼ 0.25; P

, 0.01), and BIAþM model for lake whitefish (R2¼
0.53; P , 0.001).

Indirect Approach

The body mass model (for yellow perch) and the BIA

þ M model (for lake whitefish) were identified as the

most-parsimonious models for predicting log
10

trans-

formed total energy, total lipid mass, and dry body mass

(Table 3). For walleyes, the body mass model was the

best at predicting total lipids, but the BIA þ M model

was the best at predicting total energy and dry body

mass (Table 3). All of our most-parsimonious models

explained the majority of variation in total energy, total

lipid mass, and dry mass (all R2 � 0.76; all P , 0.001).

Model Validation

When used to predict total energy, total lipid mass,

or dry mass for the validation group of fish, the BIAþ
M equations had the strongest correlation between

observed and predicted values, although these correla-

tions were only slightly better than those for the body

mass models (Figure 1). All relationships between

observed and predicted values were significant (P ,

0.001), and in all cases the slopes and intercepts did not

differ from 1 and 0, respectively.

TABLE 2.—Regression models for predicting energy density and percent lipids for yellow perch, walleyes, and lake whitefish.

The predictor variables are as follows: body mass (M), total length (TL), parallel resistance (Rp),a nd parallel reactance (Xp). A

second-order Akaike criterion for small sample sizes, D
i
� AIC

c(min)
, was used to rank models, the most parsimonious model

having a value of 0 (see Methods for details). The most parsimonious models are indicated by bold type.

Species Model R2 P-value D
i
� AIC

c(min)

Energy density

Yellow perch 6153 � 2.23(M) 0.06 0.13 0.410
5998 � 1.38(TL2/R

p
) 0.02 0.37 1.994

9247 � 8.15(TL) � 4.33(R
p
) � 0.03(X

p
) 0.18 0.08 0.000

8635 � 3.55(TL) � 4.59(R
p
) � 0.04(X

p
) � 2.22(M) 0.18 0.15 2.321

Walleye 6264 þ 0.70(M) 0.38 ,0.001 6.284
5924 þ 1.47(TL2/R

p
) 0.50 ,0.001 0.000

8441 � 2.15(TL) � 8.71(R
p
) þ 0.51(X

p
) 0.49 ,0.001 5.357

11436 þ 6.85(TL) � 10.08(R
p
) þ 0.84(X

p
) þ 1.21(M) 0.56 ,0.001 3.642

Lake whitefish 4671 þ 1.33(M) 0.29 0.001 0.000
5236 þ 1.02(TL2/R

p
) 0.09 0.08 8.251

4416 þ 4.39(TL) � 4.93(R
p
) þ 1.50(X

p
) 0.29 0.02 4.675

6324 � 3.81(TL) � 2.71(R
p
) þ 0.93(X

p
) þ 1.71(M) 0.37 0.01 3.190

% Lipids

Yellow perch 6.1 � 0.003(M) 0.03 0.33 1.600
5.9 � 0.001(TL2/R

p
) 0.01 0.69 2.431

11.8 � 0.012(TL) � 0.008(R
p
) � 0.003(X

p
) 0.17 0.09 0.000

11.0 � 0.007(TL) � 0.008(R
p
) � 0.001(X

p
) þ 0.003(M) 0.18 0.16 2.407

Walleye 7.7 þ 0.002(M) 0.18 0.02 2.756
6.8 þ 0.004(TL2/R

p
) 0.25 0.01 0.000

7.1 þ 0.012(TL) þ 0.002(R
p
) � 0.004(X

p
) 0.28 0.03 3.515

13.6 � 0.008(TL) � 0.001(R
p
) � 0.003(X

p
) þ 0.003(M) 0.31 0.05 5.011

Lake whitefish 1.6 þ 0.005(M) 0.36 ,0.001 3.246
4.0 þ 0.004(TL2/R

p
) 0.10 0.07 14.807

1.3 þ 0.015(TL) � 0.021(R
p
) þ 0.007(X

p
) 0.41 0.001 4.811

8.9 � 0.018(TL) � 0.012(R
p
) þ 0.004(X

p
) þ 0.007(M) 0.53 ,0.001 0.000
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When used to predict energy density for the validation

group of fish, the BIAþM equations had the strongest

correlation between observed and predicted values for

both the direct and indirect approaches (Figure 2). All

relationships between observed and predicted values

were significant (P , 0.03), except for conductor

volume indirect equations (P ¼ 0.12). In all cases, the

slope was significantly less than 1 and the intercept was

significantly greater than 0, indicating that our models

tended to underestimate energy density for individuals

with a high energy density and overestimate energy

density for individuals with a low energy density.

The correlations between the predicted and observed

values of percent lipids were weaker than the

FIGURE 1.—Observed versus predicted values of total energy, total lipid mass, and total dry mass using species-specific

regression models with the predictors (a) body mass, (b) conductor volume, (c) bioelectrical impedance analysis (BIA) measures

only, and (d) BIA measures combined with body mass for a validation group of fish (n ¼ 7 individuals/species). See text for

details on models. The solid line represents the regression line, the dashed line a 1:1 relationship between observed and predicted

values. Diamonds represent values for yellow perch, closed squares values for walleyes, and open squares values for lake

whitefish.

TABLE 3.—Coefficents of determination (R2) and Akaike rankings (in parentheses) for four sets of regression models used to

predict total energy (J), total lipid mass (g), and total dry mass (g) for yellow perch, walleyes, and lake whitefish. All models

were significant (P , 0.001). Predictor variables (see Table 2) were log
10

transformed. A second-order Akaike criterion for small

sample sizes was used to rank models by relative parsimony; the most parsimonious models are indicated by bold type.

Species Metric

Model

a þ b
1
(M) a þ b

1
(TL2/R

p
)

a þ b
0
(TL)

þ b
1
(R

p
) þ b

2
(X

p
)

a þ b
0
(TL) þ b

1
(R

p
)

þ b
2
(X

p
) þ b

3
(M)

Yellow perch Energy 0.927 (0.000) 0.848 (27.793) 0.906 (13.943) 0.934 (3.290)
Lipids 0.763 (0.000) 0.747 (2.517) 0.777 (2.325) 0.799 (0.945)
Dry mass 0.974 (0.000) 0.887 (55.289) 0.956 (23.444) 0.977 (1.481)

Walleye Energy 0.987 (4.011) 0.930 (53.621) 0.974 (29.037) 0.991 (0.000)
Lipids 0.920 (0.000) 0.882 (11.608) 0.910 (8.398) 0.932 (2.547)
Dry mass 0.995 (5.268) 0.930 (84.545) 0.983 (47.312) 0.997 (0.000)

Lake whitefish Energy 0.960 (2.854) 0.748 (65.678) 0.912 (34.462) 0.971 (0.000)
Lipids 0.838 (1.489) 0.621 (30.426) 0.796 (14.166) 0.875 (0.000)
Dry mass 0.980 (7.789) 0.756 (93.611) 0.933 (54.456) 0.987 (0.000)
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analogous comparisons for energy density (Figure 3).

The relationship between observed and predicted

values was significant for only the BIA þ M direct

and indirect models (P , 0.01). For these models, the

slope was again significantly less than 1, and the

intercept was significantly greater than 0.

There was no difference in the percent error between

observed and predicted values for either energy density

or percent lipids across models (P . 0.25; Table 4) or

species (P . 0.05). The maximum percent error

between the predicted and observed values of energy

density was lowest (15–18%) for models that combined

BIA measures with fish mass. For percent lipids, the

lowest maximum percent errors were for models that

used some type of BIA measure, but were still

extremely high (82–89%).

Discussion

Our analyses demonstrate that models containing

BIA measures provide solid predictions of total dry

mass, total energy, and total lipids for our three study

species, which corresponds to Cox and Hartman’s

(2005) results from a laboratory study conducted with

brook trout Salvelinus fontinalis. In that study, Cox and

FIGURE 2.—Observed versus predicted values of energy density derived directly (top row) and indirectly (bottom row) using

species-specific regression models with the predictors (a) body mass, (b) conductor volume, (c) bioelectrical impedance analysis

(BIA) measures only, and (d) BIA measures combined with body mass for a validation group of fish (n¼ 7 individuals/species).

See Figure 1 for additional details.

FIGURE 3.—Observed versus predicted values of percent lipids derived directly (top row) and indirectly (bottom row) by using

species-specific regression models with the predictors (a) body mass, (b) conductor volume, (c) bioelectrical impedance analysis

(BIA) measures only, and (d) BIA measures combined with body mass for a validation group of fish (n¼ 7 individuals/species).

Diamonds represent values for yellow perch, squares values for walleyes, and triangles values for lake whitefish. See Figure 1 for

additional details.
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Hartman found that predictive relationships with BIA

measures could explain more than 95% of the variation

in dry body mass, total lipid content, and total water

content. Although the point is not discussed in Cox and

Hartman (2005), our results also show that the addition

of BIA measures to models with body mass alone

slightly improves the predictive capabilities of those

models. In fact, for all three species, the increase in the

amount of variation explained by the addition of BIA

measures was less than 5% for all body constituents.

Further, in the case of yellow perch, we found that

models with BIA measures were not any better than

models with only body mass for predicting total

energy, lipid mass, and dry mass.

Evaluations of BIA with humans (Mazess 1998) and

small mammals (Wirsing et al. 2002) have also

indicated that body mass can be as good a predictor

of total-body water content as BIA measures. Lantry et

al. (1999) drew a similar conclusion using TOBEC to

estimate fish total-body water. This suite of results,

including our study, is not surprising, given that animal

mass alone can explain over 90% of the variation in

total mass of proximate body measures for many

organisms (see Bosworth and Wolters 2001). Addi-

tionally, the strong ability of models with BIA

measures to accurately predict the total mass of body

components may simply be related to the adjustment of

BIA measures by length or length squared (Forbes et

al. 1992; Mazess 1998), although others have argued

that the physical properties of electricity passing

through tissues necessitates such length-based adjust-

ments to BIA measures (Hoffer et al. 1969; Kushner et

al. 1992; Bracco et al. 1996).

The predictions of energy density and percent lipids

from BIA measures were much less reliable than those

for total energy, lipids, or dry mass. For the direct

approach, regression models that contained BIA

measures (BIA model, conductor volume model, and

BIA þ body mass model) were generally the best

(most-parsimonious) models for estimating energy

density or percent lipids; however, even these models

explained at most 53% of the variation in observed

energy density or percent lipids, and for yellow perch,

none of the models were even significant. Our findings

support Bosworth and Wolters (2001), who hypothe-

sized that the correlations between BIA measures and

total water or fat would be substantially lower when

these proximate components were expressed as per-

centages.

For both the indirect and direct approaches, models

that combined BIA measures with body mass had the

strongest correlations between the predicted and

observed values of energy density (r ¼ 0.73–0.77)

and percent lipids (r ¼ 0.55–0.58). There were

significant biases in these predictions, however. In

particular, these models underestimated energy density

and percent lipids for energetically rich individuals and

overestimated energy density and percent lipids for

individuals with fewer energy reserves. Although the

maximum percent error between predicted and ob-

served values was lowest for models that incorporated

BIA measures, these errors were still rather high for

both energy density (15–18%) and percent lipids (82–

89%). Similarly, Bowen et al. (1999) concluded that,

even though BIA was found to be a decent predictor for

gray seal total-body water, individual estimates were

often associated with a high degree of error (up to

25%). Further, a study with moose indicated that BIA

did not provide precise predictions of body fat and

concluded that the method was unsuitable for use in the

field (Hundertmark and Schwartz 2002).

In contrast to our findings, Bosworth and Wolters

(2001) found that including BIA measures in models

with fish mass improved predictions over those that

used body mass alone for both percent moisture (R2¼
0.65 versus 0.25) and percent fat (R2 ¼ 0.75 versus

0.04) of channel catfish Ictuluras punctatus. In that

study, however, only deheaded, eviscerated, and

skinned carcasses were used for laboratory determina-

tions of body moisture and fat (Bosworth and Wolters

2001). In our study, as in two previous studies with fish

(Bosworth and Wolters 2001; Cox and Hartman 2005),

TABLE 4.—Average percent differences (ranges in parentheses) between predicted and observed values of energy density and

percent lipids for the validation group of fish (7 yellow perch, 7 walleyes, and 7 lake whitefish) with four different regression

models, where energy density and percent lipids are calculated both directly and indirectly (see text). Predictor variables are

defined in Table 2.

Metric Calculation

Model

a þ b
1
(M) a þ b

1
(TL2/R

p
)

a þ b
0
(TL)

þ b
1
(R

p
) þ b

2
(X

p
)

a þ b
0
(TL) þ b

1
(R

p
)

þ b
2
(X

p
) þ b

3
(M)

Energy density Direct 10 (2–26) 10 (1–23) 8 (1–20) 8 (1–18)
Indirect 10 (1–24) 13 (1–44) 10 (0–33) 8 (2–15)

% Lipids Direct 36 (1–134) 35 (0–134) 27 (2–89) 28 (6–97)
Indirect 33 (1–123) 31 (1–82) 30 (0–97) 27 (3–83)
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BIA measures were taken to encompass the body of a

fish between the posterior edge of the operculum and

the caudal peduncle region. Thus, the head of the fish

was not included in the area measured between the two

sets of electrodes. It was, however, included in

determinations of whole-body energy density or

percent lipids because we homogenized the entire fish.

Given the large amount of bony material in the head

region, it is probably a low-energy region, and when

combined with the rest of the body, could lower the

overall percent energy content. However, the bony

head region also may have high resistance, similar to

that of lipids, which could further bias BIA readings.

We recommend that future studies vary the placement

of electrodes to account for whole-body (including

head) resistance and reactance to try and improve BIA

predictions of whole-fish energy content on a percent-

age basis.

Other factors may also contribute to the poor ability

of BIA to predict energy density and percent lipids. For

humans, the various demographics or body builds of

people are linked to variation in predictive equations

(Kotler et al. 1996; Chumlea et al. 2002; Kyle et al.

2004), so similar difficulties may occur when studying

various species of fish from different environmental

conditions or locations. Also, where lipids are stored

within a fish can change ontogenetically or seasonally

without affecting overall energy density, and such

alterations could influence BIA measures and predic-

tions. For example, fish may mobilize somatic and

visceral lipids for gonadal development without

altering their overall energy content (Henderson et al.

1996). Cox and Hartman (2005) suggested that fat in

the ventral regions may not be well represented by

lateral BIA measures. In turn, alterations in ventral fat

deposits that do not correspond with any overall

change in energy density could readily bias BIA

predictions. Finally, we did not account for variation in

ambient air or body temperature, which may influence

BIA readings (Buono et al. 2004).

In contrast to BIA, a handheld microwave energy

meter (fat meter), which requires species-specific

regressions of meter readings versus proximate com-

ponents, has provided strong predictive power (R2 .

0.93) for the somatic percent lipids and energy

densities of salmonids (Crossin and Hinch 2005);

however, the relationships are weaker for spawning

fish (R2¼ 0.49–0.87; Hendry and Beall 2004). The fat

meter measures water content and estimates lipid

content using published water-to-lipid relationships,

which can vary across species (Crossin and Hinch

2005) and even within a species (Pothoven et al. 2006).

Thus, some evaluation would be necessary before this

method is applied generally (Hendry and Beall 2004).

Additionally, this technique does not account for

viscera and has been restricted to analyzing somatic

tissues. As such, we are uncertain as to whether this

method can reliably estimate whole-body energy

content, which is necessary for bioenergetics applica-

tions.

Clearly, BIA techniques are not currently reliable

enough to allow for routine determinations of whole-

fish energy density or percent lipids. The added value

of the BIA metrics over simply weighing individuals

was marginal, and significant biases were found for

predictions relative to observed values. However,

difficulties in applying relatively new technology to a

problem should not come as a surprise. BIA techniques

have been used with humans since the 1970s, and the

methods are still being refined and debated (Kushner et

al. 1992; Mazess 1998; Kyle et al. 2004). During the

development of BIA techniques for humans, Jackson et

al. (1988) indicated that validation of the technique

would require multiple investigators sampling large,

heterogeneous samples. Similar challenges and re-

quirements should be expected if BIA is further

pursued as a routine research technique for fisheries

sciences.
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