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Abstract.—The use of model-predicted, local-scale habitat

data as inputs in analyses intended to evaluate multiscale fish

assemblage–habitat relationships in streams has become

increasingly common as the scale at which such studies are

conducted has increased. We used fish assemblage and habitat

data from 208 wadeable streams in Wisconsin and Michigan

to determine whether model-predicted habitat data would

yield results similar to those of field-measured data in

multiscale analyses of fish assemblage–habitat relationships.

Predictions of local habitat features from landscape variables

were generated by means of generalized additive modeling

with likelihood-based boosting. Relationships between fish

assemblage measures and landscape and local habitat features

were studied via partial constrained multivariate ordination

analyses. The total variation explained in the fish assemblage

data sets was similar for model-predicted local habitat features

and field-measured data, as was the proportion of variation

explained that was due independently to local and regional

(i.e., landscape) habitat features. We observed dissimilar

results in the magnitude of ordination scores for local habitat

features and the directional relationships between local habitat

ordination scores and individual species and assemblage

metric scores. Our findings indicate that model-predicted,

local-scale habitat data can be useful for evaluating the relative

strengths of local and regional habitat features in structuring

fish assemblages, but caution may be necessary when

evaluating species–habitat or assemblage metric–habitat

relationships.

For fish and aquatic macroinvertebrates to colonize

and persist within streams, species must possess traits

that allow individuals to pass through environmental

‘‘filters’’ that operate from continental to microhabitat

spatial scales (Tonn 1990; Poff 1997). As a result,

studies relating fish and macroinvertebrate assemblages

to habitat features often find that both regional-scale

(i.e., climate and landscape) and local-scale (i.e.,

instream) measures explain significant variation in

assemblage structure (Richards et al. 1996; Allan et al.

1997; Zorn et al. 2004; Weigel et al. 2006). Although

increased availability of regional-scale geographic

information systems (GIS) data sets has facilitated the

use of large-scale data for studying fish–habitat

relationships, the ability to cost-efficiently measure

local habitat features across large areas remains a

challenge. Technological advances (e.g., infrared

videography, high spatial resolution hyperspectral

imagery) have facilitated remote monitoring of local

habitat conditions; however, it remains to be seen

whether such technologies can be cost-effectively

applied across entire ecoregions or states, which is

the extent at which many fish–habitat research studies

are commonly conducted (Angermeier and Winston

1999; Baker et al. 2005; Creque et al. 2005; Heitke

et al. 2006; Steen et al. 2006).

One promising approach for inventorying local-scale

habitat features across large areas is predictive

modeling based on landscape data (Wang et al.

2006a). Such an approach for stream habitat inventory

is premised on landscapes constraining local-scale

habitat conditions (Frissell et al. 1986). Empirical

studies indeed have shown that substantial variation in

local-scale habitats can be explained through regional

landscape features (Richards et al. 1996; Zorn and

Wiley 2006), suggesting that this type of modeling may

be beneficial for inventorying local-scale habitats.

Local-scale habitat features that frequently are predict-

ed from regional landscape and climate data include

stream temperature (Creque et al. 2005; Wehrly et al.

2006), physical habitat (Baker et al. 2005), hydrology

(Hastenrath 1990; Wiley et al. 1997; Hsieh et al. 2003;

Creque et al. 2005), water chemistry (Hunsaker and

Levine 1995; Daly et al. 2002), and groundwater

loading (Baker et al. 2001).

Although predictive modeling of local-scale habitat

features is believed to be beneficial for some purposes
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(Seelbach et al. 2002; Wang et al. 2006a), it remains

unclear whether predictive modeling of local habitat

features would be useful when researching fish–habitat

relationships. Because models are inherent simplifica-

tions of reality, it is reasonable to expect that some

explainable variability would be lost if model predic-

tions were used as independent variables in analyses

meant to evaluate fish–habitat relationships. What

remains less certain, though, is whether interpretable

fish–habitat relationships would remain similar for both

model-predicted and field-measured habitat data. For

example, stream ecologists often study whether

regional-scale or local-scale habitat features have a

stronger structural influence on fish assemblages

(Wang et al. 2003, 2006b; Weigel et al. 2006). If

local-scale habitat data are predicted from regional

landscape features, it is possible that the fraction of

total variation explained in the fish assemblages due

independently to local habitat may decline, leading

researchers to perhaps falsely conclude that landscape

features have a stronger influence on fish assemblages.

The purpose of our research was to address this

question by comparing results when both model-

predicted and field-measured local habitat data were

FIGURE 1.—Locations of the 208 stream sites in Wisconsin and Michigan from which data on fish and local-scale habitat

features were obtained for the purpose of modeling multiscale fish assemblage–habitat relationships.
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used to conduct multivariate, multiscale analyses of

fish assemblage–habitat relationships for Michigan and

Wisconsin streams.

Methods

Data collection.—We used data from 208 wadeable

stream sites located in Wisconsin and the Upper and

northern Lower peninsulas of Michigan (Figure 1).

Fish assemblages at these sites were sampled during

the summers of 1997 to 2003. Fish sampling was

conducted once at each site using either two backpack

electrofishing units operated in tandem or a single

tow-barge electrofishing unit. At each site we sampled

stream distances approximately 35 times the mean

wetted stream width. Fish assemblages at the sites

were described according to species abundance

(number of individuals per 100 m of sampled stream);

species presence or absence; and 12 assemblage

metrics describing thermal, feeding, tolerance, and

reproduction classifications presented in Lyons et al.

(1996; Table 1). Wang et al. (2003) provides

additional details regarding sampling and description

of fish assemblages at the sites.

Local-scale habitat conditions (hereafter referred to

as local habitat) at the stream sites were measured on

the same day that fish sampling occurred. Conductiv-

ity; dissolved oxygen; discharge; lengths of riffles,

pools, and runs; and distances between bends and

between riffles were measured at the sites. Channel

morphology (e.g., bank-full width, mean depth at

thalweg), bottom substrate (percent stream bottom

covered with detritus, cobble, gravel, sand, or silt), log

availability (density of logs .1.5 m in length and .0.1

m in diameter), fish cover (percent undercut bank,

woody debris, or overhanging vegetation), bank

stability (percent stable bank), and riparian condition

(percent of bank within 5 m of stream that is

developed) were measured along 12 transects estab-

lished at the stream sites (Simonson et al. 1994). Water

temperature during the month of July for the year in

which fish sampling was conducted was recorded via

temperature data loggers deployed at the stream sites.

Regional-scale climate and landscape features (here-

after referred to as regional habitat) for the sampled

stream sites were summarized at four levels (reach

catchment, network catchment, reach buffer, and

network buffer) via a standardized GIS process

(Brenden et al. 2006). Reach catchments included all

upstream areas that drained directly to the stream

reaches; network catchments included all upstream

areas that drained to the stream reaches by either

overland or waterway routes (Figure 2). Similarly,

reach buffers included only those areas bounded within

a certain distance of the stream reaches, and network

buffers included all reach buffers located upstream

from the individual stream reaches. The distance used

to delineate riparian buffers was 60 m on either side of

the stream channels (Brenden et al. 2006). Summarized

regional habitat variables included percentages of

surficial geology, land cover, and bedrock geology

classifications within the delineated areas. Other

summarized regional habitat variables included mean

July air temperature, number of growing degree-days

(108C baseline temperature), mean precipitation, sur-

face area, slope, soil permeability, and potential

groundwater delivery. Brenden et al. (2006) provides

additional details regarding regional habitat data

sources, delineation of regional habitat levels, and

methods used for habitat feature attribution.

Variable selection.—We attributed 117 regional and

60 local habitat features to each stream site. To reduce

the large number of candidate variables to a smaller set

(Nelson 2001), we used PROC VARCLUS in SAS

(SAS Institute 2004), which is conceptually similar to

principal components analysis and implements an

iterative procedure for clustering variables. We thereby

clustered the regional and local data into 20 clusters

each that explained approximately 70% of the total

observed variation in each data set. One variable from

each of the clusters was then selected to use for

analyzing fish assemblage–habitat relationships (Nel-

son 2001). Selected variables generally had high

correlations with their own cluster components and

low correlations with other clusters or were selected

based on a hypothesized relationship with at least one

of the fish assemblage data sets.

After selecting the representative variables from the

habitat clusters, we used forward variable selection in

CANOCO (ter Braak and Smilauer 1998) to identify

those variables with significant conditional effects on

the data sets for species abundance, species presence or

absence, or assemblage metrics. Forward selection of

TABLE 1.—Mean and coefficient of variation (CV ¼
100 3 SD=mean) for the fish assemblage variables at 208

stream sampling sites in Michigan and Wisconsin.

Variable Description Mean CV

FISHNB Fish abundance (individuals/100 m) 133.86 112.74
PCCARNIV Top carnivore individuals (%) 12.88 156.80
PCCLCDSP Cool- and coldwater species (%) 23.93 96.43
PCCOLCD Cool- and coldwater individuals (%) 23.98 128.12
PCINSECT Insectivore individuals (%) 51.67 47.48
PCINTONB Intolerant individuals (%) 17.05 126.98
PCLITHO Lithophilous individuals (%) 34.15 67.53
PCOMNIV Omnivore individuals (%) 14.80 110.51
PCSALMNB Salmonid individuals (%) 9.49 211.89
PCSALMSP Salmonid species (%) 7.27 177.58
PCTOLER Tolerant individuals (%) 39.05 70.12
SPCNT Number of fish species 12.51 48.11
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the habitat variables was conducted separately for

regional and local habitats. Based upon gradient

lengths determined through detrended correspondence

analysis, we used canonical correspondence analysis

(CCA) for the forward variable selection for the species

abundance and species presence–absence data sets and

redundancy analysis (RDA) for the forward variable

selection for the fish assemblage data set (ter Braak and

Prentice 1998). Monte Carlo permutations (number of

permutations ¼ 199) were used to determine the

statistical significance of the conditional effects of the

habitat variables. Only those variables with statistically

significant (a ¼ 0.05) conditional effects were used in

the multiscale analyses of fish–habitat relationships.

Model prediction of local habitat features.—We

developed models to predict those local habitat

features that were found to have statistically signifi-

cant conditional effects on at least one of the fish

assemblage data sets. Because of the possibility that

regional variables could have nonlinear effects on

local habitat variables and because of the large number

of regional habitat variables that were available for

model fitting, we chose to use generalized additive

modeling with likelihood-based boosting to fit the

prediction models (Tutz and Binder 2006). General-

ized additive modeling is a semiparametric regression

approach for generating nonlinear response curves

between dependent and independent variables, and

because users do not need to specify a particular model

FIGURE 2.—Example of the differences, for a particular reach of interest, between the riparian buffers and catchments for a

reach (two left panels) and those for a network (two right panels). The areas encompassed by each of the levels are outlined in

gray. In this example, the direction of water flow is generally from the northwest (upper left) to the southeast (lower right).

Figure modified from Brendan et al. (2006).
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equation it can be a useful modeling procedure in

cases where there is little available information

indicating how independent variables may influence

dependent variables (Venables and Dichmont 2004).

Likelihood-based boosting is a method for selecting

variables and the degree of variable smoothing when

fitting generalized additive models; it is efficient with

large-dimension data sets (Tutz and Binder 2006).

Prediction models for the local habitat features were fit

in R (R Development Core Team 2006) using the

GAMBoost package (Tutz and Binder 2006), which

uses penalized B-splines to model nonlinear relation-

ships between variables. All of the 117 regional habitat

variables that were attributed to the stream sites were

used as candidate variables for fitting the prediction

models for the local habitat features. When fitting

models to percentage data, a binomial distribution was

specified as the family distribution; for all other local

habitat features a Gaussian distribution was specified

as the family distribution. The number of boosting

steps used in fitting the generalized additive models

was determined by AIC minimization, whereas the

penalty parameter for the likelihood-based boosting

was selected using a coarse line search such that the

number of required boosting steps was at least 50

(Tutz and Binder 2006).

Multiscale analyses of fish–habitat relationships.—

Partial constrained ordination, which is a commonly

used multivariate statistical technique for exploring the

relative importance of multiscale habitat components in

aquatic environments (Wang et al. 2003, 2006b;

Sandin and Johnson 2004; Weigel et al. 2006), was

used to partition the variation in the data for species

abundance, species presence–absence, and assemblage

metrics between regional and local habitat components.

Canonical correspondence analysis was used to

partition variation for the species abundance and

species presence–absence data sets, and RDA was

used to partition variation for the assemblage metrics

data set. Partial constrained ordinations were conducted

in CANOCO (ter Braak and Smilauer 1998) using

methods described in Borcard et al. (1992). Ordinations

were conducted using both observed and model-

predicated local habitat data sets. Ordinations were

also conducted using a joint local habitat data set,

which consisted of a combination of model-predicted

and field-measured local habitat variables. For the joint

data set, we included as predicted data only those local

habitat variables that, when compared with observed

data, had Pearson’s product-moment correlation coef-

ficients greater than 80%. For each ordination that was

conducted, Monte Carlo permutation tests (number of

permutations ¼ 199) were used to determine the

statistical significance of the observed relationship

between the fish data set and the local habitat features.

Comparisons in the partial constrained ordination

results among the observed, model-predicted, and

joint local habitat data sets were based on differences

in the total variation explained and the fraction of

explained variation attributable independently to local

habitat features for the data sets for species abun-

dance, species presence–absence, and assemblage

metrics. Although total variation explained is gener-

ally not comparable across different data sets, the

correspondence among the observed, model-predicted,

and joint data sets should result in this being a valid

comparison (Økland 1999). To determine whether the

relationships were similar across the different local

habitat data sets, we also examined the magnitude of

ordination scores for the local habitat features and the

agreement in the directional relationships by compar-

ing the ordination scores for the local habitat features

and the individual species with assemblage metrics for

the two ordination axes that explained the largest

proportions of observed variance in the fish assem-

blage–habitat relationships.

Results

We collected 54 species from the stream sites.

Average fish abundance ranged from a minimum of 0.1

fish/100 m for walleye Sander vitreus to a maximum of

17.7 fish/100 m for common shiner Luxilus cornutus.
Of the 20 regional and locale habitat variables that

were initially selected through the variable clustering,

17 regional and 12 local habitat variables had

statistically significant conditional effects for at least

one of the fish assemblage data sets (Tables 2, 3).

Prediction accuracy varied widely for the fitted

generalized additive models for the 12 local habitat

variables with statistically significant conditional

effects for at least one of the fish data sets (Figure 3).

Pearson’s product-moment correlation coefficients of

model predictions in relation to observed data ranged

from 37% to 93% (Table 3). Model predictions for

bankfull width, conductivity, maximum daily mean

water temperature, mean thalweg water depth, and

stream gradient had Pearson correlations greater than

80% compared with observed data. Thus, model

predictions for these five variables were included along

with the observed data for the other local habitat

variables when conducting ordinations with the joint

local habitat data set.

The total variation explained in the species abun-

dance data set decreased from 30% when observed

local habitat data were used in the partial constrained

ordinations to 28% when model-predicted data were

used. Total variation explained was 29% when joint
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local habitat data were used in the ordination analysis

with the species abundance data set. The fraction of

variation explained independently by local habitat

declined from 36% for observed data to 30% for

model-predicted data. The fraction of variation ex-

plained independently by local habitat was 33% for the

joint data set. Declines in the fraction of variation

explained independently by local habitats when model-

predicted data were used in the ordinations largely

were offset by increases in the fraction of variation

explained jointly by regional and local habitats

(Figure 4). Statistically significant relationships be-

tween the species abundance and local habitat features

were detected for the observed (F¼ 2.78; P , 0.005),

model-predicted (F¼ 2.11; P , 0.005), and joint (F¼
2.38; P , 0.005) local habitat data sets.

For the species presence–absence data set, the total

variation explained decreased from 30% when ob-

served local habitat data were used in the partial

constrained ordinations to 28% when model-predicted

data were used. Total variation explained in the species

presence–absence data was 29% when joint local

habitat data were used in the ordination analysis. The

fraction of variation explained independently by local

habitat features declined from 30% for observed data to

25% for model-predicted data. The fraction of variation

explained independently by local habitat was 28% for

the joint local habitat data. As was observed with the

species abundance data set, declines in the fraction of

variation explained independently by local habitat

features with model-predicted data were largely offset

by increases in the amount of variation explained

TABLE 3.—Mean and coefficient of variation (CV) for local-scale stream habitat variables having significant (P , 0.05)

conditional effects on the different fish data sets, as determined by forward selection in canonical correlation and redundancy

analyses. Also shown are Pearson’s product-moment correlation coefficients (r) calculated between field-measured observations

and predictions resulting from fitting generalized additive models by likelihood-based boosting. Significant conditional effects

for variables include effects for the species abundance data set (AB), effects for the species presence–absence data set (PA), and

effects for the assemblage metrics data set (AM).

Variable Effect Description Mean CV r

BNKFWID AB, PA, AM Bank-full width (m) 12.90 76.36 92.9
COND AB, PA, AM Conductivity (lS/cm) 387.54 83.20 91.1
DAY AB, PA, AM Maximum daily mean water temperature in July (8C) 23.40 13.41 81.4
DEPTH AB, PA Mean water depth at thalweg (m) 0.53 46.62 80.1
DETRTS AB, PA, AM Stream bottom covered with detritus (%) 4.57 187.58 37.4
DSTRB AB, PA Bank with agriculture or urban land cover (%) 7.93 233.17 55.2
EMB AB, PA, AM Rocky substrate covered by silt or sand (%) 57.32 55.65 70.1
GRAD AM Stream gradient (m/1,000 m) 2.94 139.05 88.6
POOL AB, PA Stream reach that is pool (%) 10.75 164.12 58.3
SBMAC AB Stream bottom covered with macrophytes (%) 17.36 126.77 40.8
SINUOUS AM Sinuosity of stream reach 1.38 25.52 65.1
WETLAND AB Wetland land cover within 5 m of stream bank (%) 8.31 274.48 61.1

TABLE 2.—Mean and coefficient of variation (CV) for regional-scale stream habitat variables having significant (P , 0.05)

conditional effects on fish assemblage measures, as determined by forward selection in canonical correlation and redundancy

analyses. Significant conditional effects for variables include effects for the species abundance data set (AB), effects for the

species presence–absence dataset (PA), and effects for the fish assemblage metrics data set (AM).

Variable Effect Description Mean CV

AGRICU AB, PA Agriculture land cover in network catchment (%) 30.29 97.18
AREA AB, PA, AM Network catchment area (km2) 186.82 154.42
BARRENWL AM Barren land cover in reach catchment (%) 1.77 226.17
BCARBONB AB, PA Carbonate bedrock geology in network buffer (%) 24.02 162.68
BDEP051B AB, PA Bedrock depth 15.48–30.48 m in network buffer (%) 25.35 118.39
BDEPL1HB AB, PA, AM Bedrock depth ,30.48 m in network buffer (%) 64.77 62.11
BDEPMENW AB, PA Mean bedrock depth in network catchment (m) 33.77 33.02
BSHALEB PA Shale bedrock geology in network buffer (%) 13.60 194.11
DARCYW AB, PA, AM Groundwater velocity in network catchment (m/d) 9.95 95.89
GCOARSEB AB, PA Coarse-texture surficial geology in network buffer (%) 65.73 63.14
GFINEW AB, PA, AM Fine-texture surficial geology in network catchment (%) 7.91 296.41
GMEDIMB AB Medium-texture surficial geology in network buffer (%) 6.97 314.59
GRASS AB, PA Grassland land cover in network catchment (%) 9.99 83.71
NFWETLND AB, PA, AM Nonforested wetland land cover in network catchment (%) 2.93 138.43
SLOPE PA, AM Mean network catchment slope 5.44 54.78
SOILPERB AB, PA, AM Mean soil permeability in network buffer (cm/100 h) 21.11 707.34
URBANWL AB, PA, AM Urban land cover in reach catchment (%) 5.13 285.88
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jointly by regional and local habitats (Figure 4).

Statistically significant relationships between the

species presence–absence and local habitat features

were again detected for the observed (F ¼ 2.90; P ,

0.005), model-predicted (F ¼ 2.30; P , 0.005), and

joint (F ¼ 2.61; P , 0.005) local habitat data sets.

The total variation explained in the fish assemblage

data set decreased from 29% for the observed local

habitat data set to 26% for the model-predicted data set.

Total variation explained in the fish assemblage data

was 27% when the joint local habitat data were used in

the ordination analysis. The fraction of variation

explained due independently to local habitat features

was 46% for the observed and 39% for the model-

predicted data. For the joint local habitat data, the

fraction of variation explained independently by local

habitat features was 41%. As was found for the species

abundance and species presence–absence data, statis-

tically significant relationships between the assemblage

metrics and local habitat features were detected for the

FIGURE 3.—Scatterplots of model predictions and field-measured observations for the local-scale stream variables used in

multivariate analyses of fish assemblage–habitat relationships (see Table 3 for variable descriptions). Predictions were generated

through generalized additive modeling in which variable selection and the degree of smoothing were determined by likelihood-

based boosting (Tutz and Binder 2006).

586 BRENDEN ET AL.



observed (F¼ 5.19; P , 0.005), model-predicted (F¼
3.99; P , 0.005), and joint (F¼ 3.72; P , 0.005) local

habitat data sets.

Most of the variables that had large scores for the

first ordination axis for the observed data set also had

large scores for the model-predicted data set. Bank-full

width and maximum daily mean water temperature

were among the variables with the largest ordination

scores for the fish abundance and presence–absence

data sets, whereas conductivity, maximum daily mean

water temperature, and percent embeddedness had the

largest ordination scores for the observed and model-

predicted local habitat data sets for the assemblage data

set (Table 4). There also was general agreement in the

magnitude of the local habitat feature scores for the

second ordination axis for the observed and model-

FIGURE 4.—Fractions of the explained variation in species abundance that were attributable to regional, local, and joint

(regional plus local) habitat features for observed, model-predicted, and joint local habitat data sets, as determined by partially

constrained ordinations. For the species abundance and presence–absence data sets, canonical correspondence analysis was used

to partition the variation; for the assemblage metric data sets, redundancy analysis was used. The actual proportions explained by

the data sets are indicated on each graph.
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predicted data sets. Percent of stream bottom covered

with detritus and percent embeddedness were among

the variables with the largest ordination scores for both

the species abundance and species presence–absence

data. Conductivity, maximum daily mean water

temperature, and stream gradient had the largest

ordination scores with fish assemblages in the second

ordination axis for both the observed and model-

predicted data.

The magnitude of variable scores for ordination

between the observed and joint habitat data sets did not

agree as well as for the observed and model-predicted

data sets. For the species abundance data, none of the

local habitat features with the largest ordination scores

for the observed data were among the variables with

the largest ordination scores for the joint data for the

first ordination axis (Table 4). Percent of stream bottom

covered with detritus and percent wetland land type

had large ordination scores for both observed and joint

data sets for the second ordination axis when ordina-

tions were conducted on the species abundance data.

For the species presence–absence data set, maximum

daily mean water temperature and percent of stream

bottom covered with detritus for the first ordination axis

and percent embeddedness and percent of stream

bottom covered with detritus for the second axis were

among the variables with the largest ordination scores

for both the observed and joint data (Table 4). For the

assemblage metrics data, conductivity, maximum daily

mean water temperature, percent embeddedness, and

stream gradient had large ordination scores for either

the first or second ordination axis for both the observed

and joint local habitat data (Table 4).

For the species abundance data set, directional

agreement between local habitat ordination scores and

individual species scores for the first ordination axis

equaled 71% for the observed and model-predicted

local habitat data. For the observed and joint data,

directional agreement between local habitat ordination

scores and individual species scores was 53% for the

first ordination axis. For the second ordination axis,

directional agreement between local habitat ordination

scores and individual species scores was 59% for the

observed and model-predicted data and was 50% for

the observed and joint data.

For the species presence–absence data set, direc-

TABLE 4.—Habitat variable scores for the first two ordination axes for the fish abundance, species presence–absence, and fish

assemblage metrics data. Scores in bold italics are for the variables with the three highest scores for that ordination axis.

Asterisks indicate that model predictions for a local-scale variable were used in the joint (combination of observed and model-

predicted data) local data set analysis. See Table 3 for descriptions of variables.

Local-scale
variable

Ordination axis 1 Ordination axis 2

Observed Predicted Joint Observed Predicted Joint

Species abundance

BNKFWID* �0.159 �0.131 �0.112 �0.094 �0.017 �0.056
COND* 0.048 0.011 0.054 �0.009 0.038 �0.021
DAY* �0.534 �0.406 �0.263 �0.065 �0.070 �0.301
DEPTH* �0.071 �0.094 �0.047 0.166 0.057 �0.051
DETRTS �0.039 0.012 0.377 0.460 0.178 �0.246
DSTRB �0.130 �0.084 �0.113 �0.054 0.038 �0.099
EMB 0.046 0.050 0.404 0.448 0.203 �0.165
POOL 0.022 0.054 0.017 �0.002 �0.153 0.026
SBMAC 0.197 0.086 0.225 0.152 0.030 0.125
WETLAND �0.087 0.045 0.276 0.368 0.110 �0.235

Species presence–absence

BNKFWID* �0.136 �0.132 �0.130 �0.101 0.057 �0.029
COND* �0.031 �0.048 �0.015 �0.001 0.010 �0.079
DAY* �0.467 �0.305 �0.207 0.085 �0.161 �0.271
DEPTH* �0.071 �0.161 �0.154 0.017 0.009 �0.039
DETRTS 0.099 0.058 0.297 0.335 �0.108 �0.137
DSTRB �0.014 �0.027 �0.110 �0.145 0.019 0.100
EMB 0.097 0.106 0.273 0.298 �0.075 �0.124
POOL 0.069 0.068 0.130 0.110 �0.018 �0.009

Fish assemblage metrics

BNKFWID* �0.016 �0.008 0.009 �0.072 �0.047 �0.046
COND* 0.277 �0.213 0.217 �0.126 �0.114 �0.089
DAY* �0.170 0.086 �0.067 �0.344 �0.284 �0.293
DETRTS 0.038 �0.085 0.042 0.001 �0.048 0.008
EMB 0.258 �0.115 0.269 0.011 0.066 0.048
GRAD* 0.016 0.070 �0.077 0.155 0.155 0.146
SINUOUS 0.094 �0.081 0.098 0.002 �0.040 0.015
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tional agreement between local habitat ordination

scores and individual species scores for the first

ordination axis equaled 86% for the observed and

model-predicted local habitat data. Directional agree-

ment between local habitat ordination scores and

individual species scores for the observed and joint

data was 83% for the first ordination axis. For the

second ordination axis, directional agreement between

local habitat ordination scores and individual species

scores was 61% for the observed and model-predicted

data and was 59% for observed and joint data.

For the fish assemblage data set, directional

agreement between local habitat ordination scores and

assemblage metric scores for the first ordination axis

was 68% for the observed and model-predicted local

habitat data. A 68% agreement in directional relation-

ships between local habitat ordination scores and fish

assemblage scores for the first ordination axis also was

found for the observed and joint data sets. For the

second ordination axis, directional agreement between

local habitat ordination scores and assemblage scores

was 71% for the observed and model-predicted data

and was 100% for the observed and joint local habitat

data.

Discussion

Predictive modeling of local-scale habitat features is

an appealing method for stream habitat inventory

because of its potential cost savings relative to

traditional field sampling (Wang et al. 2006a). In

practice, however, accuracy of models developed for

predicting local-scale habitat features can be somewhat

questionable. Coefficients of determination for models

predicting instream habitat features (e.g., water chem-

istry, physical habitat, and stream temperature) often

are less than 60% (Baker et al. 2005; Wehrly et al.

2006). Additionally, prediction models are often not

properly validated (Olden et al. 2002), nor are model

assumptions (e.g., normality, linearity) properly

checked. Such factors raise the question as to whether

results obtained with model-predicted local habitat data

would be similar to those that might otherwise have

been obtained with field-measured data.

Our study found that the model-predicted local

habitat data did, to a certain extent, provide results that

were similar to those obtained with field-measured data

when analyzing multiscale fish assemblage–habitat

relationships in Michigan and Wisconsin streams. In

particular, we found that model-predicted local habitat

data resulted in only modest declines (2–3%) in the

total variation explained in three fish assemblage data

sets relative to that of field-measured data. Declines in

total variation explained were even less when local

habitat data consisted of a combination of observed and

model-predicted variables. We also found that the

relative strengths of regional and local habitat features

in structuring fish assemblages remained similar,

regardless of whether observed or model-predicted

data were used in our ordinations. For example,

observed, model-predicted, and joint local habitat data

sets all indicated that regional features accounted for a

larger fraction of total variation explained in the species

presence–absence data set. Further, all three data sets

indicated that shared and local-scale habitat features

accounted for the largest fractions of total explained

variation for the fish assemblage data set. In general,

we found that declines in the fraction of variation

explained independently by local habitat features were

offset by increase in the fraction of variation explained

jointly by regional and local habitat features. Given that

our model predictions for local habitat variables were

generated using regional data, this result was somewhat

expected.

The major issue that we found with using model-

predicted data concerned the identification of environ-

mental gradients for local habitats and the identifiable

relationships between local habitat features and

individual species or assemblage metrics. We found

that environmental gradients that were identified with

field-measured data were not necessarily the same as

those that were identified with model-predicted data.

This was the case even when only the most accurate

model predictions were incorporated in the local

habitat data set. Additionally, we found that directional

relationships between individual species and fish

assemblage ordination scores and local habitat scores

oftentimes switched directions when model-predicted

data were used in the ordinations; this could lead to

incorrect conclusions as to how a species or group of

species is affected by a particular habitat feature. As a

result, any conclusions that we might have tried to

draw regarding how individual species or fish assem-

blage metrics were affected by any of the local-scale

habitat features for Michigan and Wisconsin streams

would have been tentative at best.

Our intent for this research was not to explicitly

study fish–habitat relationships, nor was it to construct

the best possible model for predicting local habitat

components. We thus intentionally have avoided

discussing results related to either of theses research

aspects; rather, we have focused exclusively on the

similarity of results obtained through field-measured

and model-predicted data. Regarding the former

research aspect, Wang et al. (2003, 2006b) previously

used some of the data in the present study to identify

the relative influences of catchment, reach, and riparian

buffer habitat features on stream fish assemblages

(these publications discuss how fish in Michigan and
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Wisconsin streams are structured by multiscale habitat

features). Regarding the latter research aspect, we

encourage study of the potential benefits of generalized

additive modeling through likelihood based boosting as

a technique for fitting prediction models. In particular,

its ability to deal efficiently with large data sets (e.g.,

hundreds of explanatory variables) makes it a concep-

tually appealing model-fitting technique. Research

comparing this modeling approach to other commonly

used model approaches potentially could be beneficial

to the entire fisheries science and management field.

In conclusion, the use of regional data to predict

local habitat conditions in streams has proliferated

recently largely because of increased use of GIS in

stream research and management (Fisher and Rahel

2004). Predictive modeling of local habitat features

through regional landscape and climate conditions has

been advocated as a useful approach for hindcasting

predevelopment habitat conditions and for forecasting

how changes in regional land use may affect instream

habitat (Seelbach et al. 2002; Kilgour and Stanfield

2006; Wang et al. 2006a). Additionally, it is becoming

increasingly common to use model-predicted habitat

data as inputs for other modeling purposes (Baker et al.

2005; Creque et al. 2005; Wall et al. 2004; McKenna

et al. 2006; Zorn and Wiley 2006). Based on the results

from the present study, we would encourage research-

ers to exercise caution when using model-predicted

data to study fish assemblage–habitat relationships.

Although we found that model-predicted data in some

cases can yield results that are similar to those obtained

with field-measured data, in other cases the results can

be quite different from those obtained with field-

measured data. Such differences can occur even if local

habitat features are predicted with apparently high

accuracy. If model-predicted local habitat data are

included in analyses meant to elucidate fish assem-

blage–habitat relationships, then the results from our

research on Michigan and Wisconsin streams suggest

that conclusions regarding observed environmental

gradients or directional relationships between local

habitat features and individual species or assemblage

metrics should only be considered as tentative.
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