
Received: 9 May 2017 Accepted: 10 May 2017
DO
I: 10.1111/jep.12779
OR I G I N A L A R T I C L E
Modeling time‐to‐event (survival) data using classification tree
analysis

Ariel Linden DrPH1,2 | Paul R. Yarnold PhD3
1President, Linden Consulting Group, LLC,

Ann Arbor, MI, USA

2Research Scientist, Division of General

Medicine, Medical School, University of

Michigan, Ann Arbor, MI, USA

3President, Optimal Data Analysis, LLC,

Chicago, IL, USA

Correspondence

Ariel Linden, Linden Consulting Group, LLC,

1301 North Bay Drive, Ann Arbor, MI 48103,

USA.

Email: alinden@lindenconsulting.org
J Eval Clin Pract. 2017;23:1299–1308.
Abstract

Rationale, aims, and objectives: Time to the occurrence of an event is often studied in

health research. Survival analysis differs from other designs in that follow‐up times for individuals

who do not experience the event by the end of the study (called censored) are accounted for in

the analysis. Cox regression is the standard method for analysing censored data, but the assump-

tions required of these models are easily violated. In this paper, we introduce classification tree

analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis

is a “decision‐tree”–like classification model that provides parsimonious, transparent (ie, easy to

visually display and interpret) decision rules that maximize predictive accuracy, derives exact P

values via permutation tests, and evaluates model cross‐generalizability.

Method: Using empirical data, we identify all statistically valid, reproducible, longitudinally

consistent, and cross‐generalizable CTA survival models and then compare their predictive accu-

racy to estimates derived via Cox regression and an unadjusted naïve model. Model performance

is assessed using integrated Brier scores and a comparison between estimated survival curves.

Results: The Cox regression model best predicts average incidence of the outcome over time,

whereas CTA survival models best predict either relatively high, or low, incidence of the outcome

over time.

Conclusions: Classification tree analysis survival models offer many advantages over Cox

regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness,

and transparency. Therefore, researchers interested in accurate prognoses and clear decision

rules should consider developing models using the CTA‐survival framework.

KEYWORDS

censoring, classification tree analysis, machine learning, survival
1 | INTRODUCTION

Time to the occurrence of an event is often studied in health‐related

research. Typically, the event is survival or, conversely, mortality, over

a given period of observation. However, other events may be used as

the endpoint, such as hospitalization, development of disease, or

reaching a threshold for a physiologic marker.1-3

In survival analysis, data from individuals who do not experience

the event by the end of the study are used in model estimation. Such

individuals' survival times are called censored, indicating that that the

study terminated before the event occurred or that the individual

may have been lost to follow‐up at some point during the study. In

either case, censored survival times are used—along with the survival
wileyonlinelibrary.com
times of individuals who experienced the event during the course of

the study—to construct the survival analysis model.4

Several regression‐based models are specifically designed to

assess the influence of covariates on survival in the presence of cen-

soring. As with all regression analyses, these methods involve making

assumptions about the data, including that variables are independent

and that data can be modelled using linear combinations of these

variables. Moreover, while these models generally show improved

fit when additional variables are included, there is no good indicator

of when the model is over‐fit.5 Given that health data are rarely

strictly linear, but often exhibit interactions and conditional depen-

dencies, assumptions underlying the validity of these survival models

are easily violated.
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To avoid these limitations, various machine learning algorithms

have been proposed as alternatives for modelling survival data (see,

for example6-10). Machine learning algorithms find the best‐fitting

model through automated processes that search through the data to

detect patterns that may include interactions between variables, as

well as interactions within subsets of variables. This is in contrast to

conventional statistics, where a model is chosen and estimated on

the basis of an a priori hypothesis about the underlying relationship

between the variables, and then statistical tests are performed to

evaluate whether the data satisfy crucial assumptions underlying the

validity of the findings.11 In short, machine learning allows the data

to dictate the form of the model, whereas conventional statistics

attempts to fit the data to an investigator‐specified model.

In this paper, we introduce classification tree analysis (CTA) as a

machine learning alternative to conventional regression‐based

models for analysing survival data. Classification tree analysis is a

“decision‐tree”–like classification model that provides accurate, parsi-

monious decision rules that are easy to visually display and interpret,

while reporting P values derived via permutation tests performed at

each node. This approach is attractive to clinicians using model‐derived

prognostic tools in daily practice and to investigators evaluating the

effectiveness of interventions in which the outcome is the time to

the occurrence of an event.

The paper is organized as follows. Section 2 briefly introduces CTA

and describes the data source and analytic framework used in the

current study. Section 3 reports and compares the findings of the

CTA framework and the Cox semiparametric proportional hazard

model,12 the most widely‐used method for analysing survival data.

Section 4 describes the specific advantages of the CTA framework

for developing risk prediction models compared with regression‐based

survival models and discusses extending this approach to the

evaluation of treatment effects in health care interventions.
2 | METHODS

2.1 | A brief introduction to CTA

Classification tree analysis is an optimal discriminant analysis (ODA)

model.13 Optimal discriminant analysis is a machine learning algorithm

used to identify the cutpoint on an ordered attribute (variable), or

assignment rule for a categorical attribute, that optimally discrimi-

nates between two or more classes (eg, outcome categories).14 The

optimal cutpoint is determined by iterating through every value on

the attribute and computing the effect strength for sensitivity (ESS),

which is the mean sensitivity across classes standardized using a 0

to 100% scale on which 0 represents the discriminatory accuracy that

is expected by chance and 100% represents perfect discrimination. By

definition, the maximally accurate predictive model uses the optimal

cutpoint that yields the highest ESS versus all other cutpoints. This

optimal model is subjected to a nonparametric permutation test to

assess the statistical significance of the cutpoint. Finally, the repro-

ducibility and generalizability of the model are assessed using cross‐

validation methods, such as jackknife, bootstrap, or hold‐out analysis,

to determine how well it predicts the outcome in new subjects that
may differ in their characteristics compared to subjects in the original

sample.15-19

CTA models use one or more attributes to classify a sample of

subjects into two or more subgroups represented as model endpoints

(called “terminal nodes” by alternative decision‐tree methods).

Subgroups are known as “sample strata” because the CTA model

stratifies the sample into subgroups that—when considered with

respect to model attributes—are homogeneous within and heteroge-

neous between strata.19 The hierarchically optimal CTA (HO‐CTA)

algorithm involves chained ODA models in which the initial (“root”)

node represents the attribute achieving the highest ESS value for the

entire sample, and additional nodes yielding greatest ESS are

iteratively added at every step on all model branches.20,21 In contrast,

the enumerated optimal CTA (EO‐CTA) algorithm evaluates all possible

combinations of the first 3 nodes, which dominate the solution.16,22

The most robust globally optimal CTA (GO‐CTA) algorithm explicitly

evaluates all possible solutions (called the descendant family) and

identifies the GO‐CTA model reflecting the best combination of ESS

and parsimony—yielding the highest ESS using the smallest number

of strata.19 The software that implements ODA and CTA models

provides an array of options to control the modelling and validation

process (see Yarnold and Soltysik19 for a comprehensive discussion).
2.2 | Data

To demonstrate the use of CTA for survival analysis and to compare

this approach to the standard Cox‐regression model, we use a subset

of data from the Framingham Heart Study, which has been collecting

longitudinal data on residents of Framingham, Massachusetts since

1948, to gain insight into the epidemiology of cardiovascular disease

(CVD) and its risk factors (see Mahmood et al23 for an excellent

historical perspective). We use data that comprise 4699 individuals

free of CVD at their baseline exam and followed for up to 11 688 days

(32 years). The variables include systolic and diastolic blood pressure

(mmHg), age (years), serum cholesterol (mg/100 mL), body mass index

(kg/m2), gender, follow‐up time (days), and an indicator of whether the

individual developed CVD or was otherwise censored. The dataset

was accessed as a supplement to the book “Statistical Modeling

for Biomedical Researchers”24 (http://biostat.mc.vanderbilt.edu/

dupontwd/wddtext/index.html#datasets).
2.3 | Analytic approach

Split‐half cross‐validation methodology is used throughout the analytic

process to evaluate model reproducibility and generalizability. This

entails randomly drawing subjects from the full sample and assigning

them into 1 of 2 groups: split‐half 1 (SH1) or split‐half 2 (SH2). Next,

models are generated using SH1 as the training sample, and these

models are used to make out‐of‐sample predictions for subjects in

SH2 (the test or “hold‐out” sample). This process is then repeated after

switching the roles of SH1 (test sample) and SH2 (training sample). By

definition, perfectly reproducible (generalizable) models are identical,

and parallel models are identical except for the values of numerical

cutpoints used on model branches.18,19 Unless otherwise noted, all

models make use of all available follow‐up data.

http://biostat.mc.vanderbilt.edu/dupontwd/wddtext/index.html#datasets
http://biostat.mc.vanderbilt.edu/dupontwd/wddtext/index.html#datasets
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For comparative purposes, estimates were derived by

implementing the widely used Cox semiparametric proportional haz-

ards model,12 which models the effects of covariates on survival time.

The quantity of interest in Cox regression is the hazard function, which

may be described as the risk that the event will occur for a subject

within an observation (ie, follow‐up) period, given that the subject

did not already have the event. A high hazard function indicates a high

event rate (low survival probability), and conversely, a low hazard

function indicates a low event rate (high survival probability). While

Cox regression requires no assumptions about the distribution of fail-

ure (eg, development of CVD) times, it is assumed that the hazards

between any 2 subjects are proportional over time (hence, the name

proportional hazards regression), with the proportion being a function

of the covariates.4 For the current example, we estimate the time to

the development of CVD at the end of follow‐up, incorporating all of

the covariates in the model as main effects. We estimate a model for

the full sample and separately for both split‐half samples. Standard

errors are computed using a bootstrap procedure with 2000 repeti-

tions.25 Following the modelling procedure, we test if the proportional

hazards assumption was violated.26

In nonweighted CTA, every subject has a weight of one and the

model identifies attributes that classify subjects with maximum accu-

racy. In contrast, for aweightedCTA survival model, theweight of every

subject is their follow‐up time (ie, the number of days of follow‐up), and

the model identifies attributes that classify subject‐days with maximum

accuracy. For example, a subject without CVD and lost to follow‐up

after 1000 days is coded as class = 0 (no CVD), weight = 1000; a subject

without CVD after maximum follow‐up (eg, 10 585 d) is coded as

class = 0, weight = 10 585; and a subject experiencing an event after

7919 days is coded as class = 1 (CVD), weight = 7919. The optimal

cutpoint is identified by iterating through every value of the attribute

and computing the weighted ESS (WESS), which is the mean weighted

sensitivity (ie, percent of correctly predicted subject‐days for each class)

across the classes, standardized to a 0 to 100% scale on which 0 repre-

sents the weighted discriminatory accuracy expected by chance and

100% represents perfect discrimination. By definition, the maximally

accurate predictive model uses the optimal cutpoint that achieves the

highest WESS, versus all other cutpoints. The optimal model is sub-

jected to a nonparametric permutation test to assess the statistical

validity of the cutpoint. Model reproducibility and cross‐generalizability

are assessed using a hold‐out (split‐half) method, which is one of several

possible cross‐validation techniques typically implemented as part of

the machine learning process.16,19

The present study demonstrates CTA‐based survival analysis—

which is implemented in 5 sequential steps. The first step uses

weighted CTA for each attribute considered individually, separately

for SH1 and SH2, to provide a “benchmark” for evaluating comparative

predictive performance of multivariable models using two or more

attributes.27 The second step obtains the descendant family of all

possible weighted CTA survival models using all available attributes,

separately for SH1 and SH2. Identical and parallel models identified

in SH1 and SH2 are considered reproducible and are hypothesized to

cross‐generalize to new independent random samples of subjects.

The third step evaluates intermodel agreement of outcome predictions

made by corresponding SH1 and SH2 survival models.19 The fourth
step involves a sensitivity analysis28 to assess the consistency of the

predictive accuracy yielded by the SH1 model used to classify the

SH2 sample—and by the SH2 model used to classify the SH1 sample

—over increasing annual follow‐up lengths: The first analysis omits

subjects with <1 year of follow‐up; the second analysis omits subjects

with <2 years of follow‐up, and so on, until either all follow‐up periods

have been evaluated or until the point at which a follow‐up period

yields samples that provide inadequate statistical power.19 The fifth

and final step evaluates whether computing new CTA survival models

for the SH1 and/or the SH2 samples improves WESS at strategic fol-

low‐up times identified in the sensitivity analysis. This is determined

by whether or not the WESS decreases beyond some empirically

defined level—indicating poor model fit. In such a circumstance, the

modelling process is repeated beginning with step 2.
2.4 | Performance metrics

Several methods proposed to assess the accuracy of predictions

derived from survival models—including the concordance index,29,30

omnibus goodness‐of‐fit tests,31,32 and measures of explained varia-

tion versus explained randomness33—have been criticized on method-

ological grounds. Accordingly, we use the widely used Integrated Brier

Score (IBS)34 and introduce comparisons of WESS and of generated

survival curves.

First, we use the IBS to compare performance of the naïve

nonadjusted model, Cox regression with covariates, and weighted

CTA approaches, because its computation relies on 2 quantities avail-

able in every survival model—event status and predicted survival prob-

ability. For a given follow‐up time, the Brier score is calculated by

taking the squared difference between each individual's true survival

status and their predicted survival probability, weighted by their prob-

ability of censoring—and then averaged across all subjects. The

resulting score ranges between 0 and 1, with lower values indicating

lower prediction error. The IBS is an omnibus measure of the weighted

mean‐squared error (MSE) in predictive accuracy of the model across

all follow‐up times. For the present data, the IBS was estimated using

the riskRegression package in R35 truncating the maximum follow‐up

time at 10 590 days (29 y), because of the sparsity of events occurring

beyond that time.

Second, we perform pairwise comparisons between models on

estimated survival curves to determine whether they are discriminable

at any point along the follow‐up continuum. The Kaplan‐Meier (KM)

product‐limit estimator36 was used to estimate a survivor function

for the naïve (nonadjusted) model and each of the three‐strata EO‐

CTA survival model endpoints and both two‐strata GO‐CTA survival

model endpoints. A postestimation survival function was computed

following estimation of the Cox regression model with covariates.

Stata 14.1 (StataCorp, College Station, Texas) was used to estimate

the Cox regression model and generate all survival curves. To be con-

sistent with the 10‐year (3650 d) event horizon used for predicting

CVD in the Framingham project,2 we also estimated survival curves

for a 10‐year follow‐up period. Nonweighted GO‐CTA was used to

perform pairwise comparisons between the naïve model and each of

the 6 adjusted survival curves; and between the Cox regression model

with covariates and each of the 5 CTA survival model‐based curves.
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3 | RESULTS

3.1 | Baseline characteristics, follow‐up length, split‐
half samples, and Cox regression results

Table 1 presents baseline characteristics and length of follow‐up of

study participants, by CVD outcome status and sample (ie, split‐half

or full), as well as the results of the Cox regression analysis. By the

end of the follow‐up period (11 688 d), approximately 46% of the

study population developed CVD; on average, these were older males

with higher baseline blood pressure, serum cholesterol level, and BMI.
TABLE 1 Baseline characteristics and length of follow‐up of study participa
regression results

Variable Sample

No CVD

N Mean SD

SBP, mmHg SH1 1602 130.2 21.2
SH2 1624 129.8 21.4
Full 3226 130.0 21.3

DBP, mmHg SH1 1602 81.2 12.2
SH2 1624 80.9 12.3
Full 3226 81.0 12.2

SCL, mg/100 mL SH1 1586 222.9 43.0
SH2 1614 223.1 41.8
Full 3200 223.0 42.4

Age, years SH1 1602 45.4 8.5
SH2 1624 45.0 8.3
Full 3226 45.2 8.4

BMI, kg/m2 SH1 1601 25.2 4.0
SH2 1617 25.2 4.0
Full 3218 25.2 4.0

Male, % SH1 624 39.0
SH2 602 37.1
Full 1226 38.0

Follow‐up, days SH1 1602 9012.0 3395
SH2 1624 9041.0 3362
Full 3226 9027.0 3378

Notes: Cox regression values represent coefficients, with bootstrapped standar
pressure; SCL, serum cholesterol level; BMI, body mass index.

*P < .001.

TABLE 2 Weighted CTA models discriminating subjects with versus witho

Variable Split‐half
Cutpoint predicting

disease status Weighte

SBP, mmHg SH1 ≤145
SH2 ≤149

DBP, mmHg SH1 ≤99
SH2 ≤99

SCL, mg/100 mL SH1 ≤292
SH2 ≤276

Age, years SH1 ≤54
SH2 ≤58

BMI, kg/m2 SH1 ≤30.8
SH2 ≤34.1

Gender SH1 Male
SH2 Male

Notes: All estimates are weighted by follow‐up. For WESS, 0 = weighted ESS exp
of results is for analysis involving SH1, and the second row of results is for analy
the tabled threshold value (computed by the ODA algorithm) are predicted to be
than the tabled threshold are predicted to be from the disease group (coded as 1
DBP, diastolic blood pressure; SCL, serum cholesterol level; BMI, body mass ind
The SH1 and SH2 samples were comparable on all baseline character-

istics, outcomes, and follow‐up times, as assessed by CTA: No statisti-

cally significant model emerged (all P > .05), indicating that SH1 and

SH2 could not be discriminated on the basis of these variables. In the

Cox regression analysis, all covariates were statistically significant

(P < .001) except diastolic blood pressure. All models (full, SH1, and

SH2) produced similar estimates, further demonstrating comparability

of the samples. Postestimation tests revealed that the proportional‐

hazards assumption was violated for gender. While beyond the scope

of the present study, in general, if the proportional‐hazards assumption

fails, then alternative modelling choices should be considered.37
nts, by CVD outcome status and sample (full and by split‐half), and Cox

CVD Cox regression results

N Mean SD Coefficient SE

725 137.7 23.6 0.011* 0.003
748 139.9 25.6 0.009* 0.002

1473 138.8 24.7 0.010* 0.002

725 85.4 12.7 0.001 0.005
748 86.3 13.7 0.008 0.005

1,473 85.8 13.2 0.005 0.003

720 238.8 46.1 0.004* 0.001
746 240.8 47.8 0.006* 0.001

1466 239.8 46.9 0.005* 0.001

725 47.9 8.4 0.040* 0.005
748 47.9 8.3 0.043* 0.005

1473 47.9 8.4 0.041* 0.003

724 26.6 4.2 0.037* 0.009
748 26.5 4.0 0.030* 0.009

1,472 26.6 4.1 0.033* 0.007

417 57.5 0.779* 0.079
406 54.3 0.764* 0.079
823 55.9 0.771* 0.055

725 5957 3178
748 5937 3066

1473 5947 3121

d errors in parentheses. SBP, systolic blood pressure; DBP, diastolic blood

ut CVD, by variable (attribute) and split‐half

d sensitivity (CVD)
Weighted specificity

(No disease) WESS (Exact P<)

26.6 84.3 10.8 (.001)
24.2 87.2 11.4 (.001)

12.4 93.4 5.8 (.001)
15.0 94.6 9.6 (.001)

11.4 94.1 5.5 (.001)
16.6 90.9 7.5 (.001)

21.5 87.3 8.8 (.001)
9.2 95.0 4.2 (.004)

13.2 93.4 6.6 (.001)
4.4 98.0 2.4 (.023)

54.8 62.1 16.9 (.001)
51.6 63.9 15.5 (.001)

ected by chance, 100 = perfect prediction. For every attribute the first row
sis involving SH2. For all models subjects having values less than or equal to
from the no disease group (coded as 0), and subjects having values greater
). Exact P values are given for all WESS values. SBP, systolic blood pressure;
ex.



FIGURE 1 The three‐strata weighted CTA survival model 7 obtained
using SH1 (with probability of disease estimated for the SH2 sample),

for SH2 (with probability of disease estimated for the SH1 sample), and
for the full sample (with probability of disease estimated for the full
sample). CTA, classification tree analysis
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3.2 | Weighted CTA for attributes evaluated
individually (step 1)

Table 2 presents the results of applying weighted CTA to individual

attributes to predict subject CVD status, separately by split‐half sample.

All models yielded relatively weak WESS and were statistically signifi-

cant (age and body mass index effects for SH2 were only statistically

significant if evaluated using the “per‐comparison” P < .05 criterion18).

3.3 | Obtaining all possible weighted CTA models
separately for SH1 and SH2 and identifying the
identical and parallel models (step 2)

Table 3 presents all of the statistically valid CTA survival models

obtained for predicting CVD status, separately for SH1 and SH2. Two

models were retained. First, an identical two‐strata weighted GO‐CTA

model using gender as the only attribute (if gender = male then predict

disease; if gender = female then predict no disease) was identified as

model 8 for SH1 and SH2. This model estimated probability of disease

as 0.1787 or 0.1863 for females, and 0.3020 or 0.3019 for males, for

SH1 and SH2, respectively. Second, parallel weighted EO‐CTA models

were obtained as models 6 and 7—in which SH1 and SH2 models were

identical except for the systolic blood pressure (SBP) cutpoint value.

Model 6 used gender as the root attribute and then SBP, and model 7

used SBP as the root attribute and then gender. Thesemodels had iden-

tical WESS within complementary split‐half samples, but model 7 was

selected as the three‐strata model because it had the largest minimum

strata N, thus providing greatest statistical power.19 Figure 1 illustrates

model 7 for SH1 and SH2 and summarizes hold‐out validity classifica-

tion results obtained by applying the SH1 model to the SH2 sample,

and vice versa. Consistent with findings for model 8, predicted out-

comes for model 7 are highly consistent between SH1 and SH2.

3.4 | Evaluating intermodel agreement of outcome
predictions made by corresponding SH1 and SH2
survival models (step 3)

Agreement of outcome predictions made by models 7 and 8 was

assessed for the full sample. Cross‐classifying predicted disease status
TABLE 3 All weighted CTA survival models predicting CVD identified for

SH1

Model Strata WESS Efficiency D Smallest strata N

1 6 25.38 4.23 17.64 42

2 5 24.28 4.86 15.59 80

3 5 22.95 4.59 16.79 114

4 4 22.73 5.68 13.60 217

5 4 22.65 5.66 13.66 222

6 3 22.57 7.52 10.29 339

7 3 22.57 7.52 10.29 538

8 2 16.91 8.46 9.83 1,041

Notes: Strata is the number of model endpoints (terminal nodes); WESS measure
chance; 100 = perfect accuracy); efficiency is WESS divided by strata—a measu
distance statistic D indicates the number of additional effects with equivalent W
accuracy and maximum possible parsimony for the application; and smallest stra
jects among all endpoints in the model.19,46
of subjects using model 8 (which was identical for SH1 and SH2)

yielded 2650 subjects similarly classified as having no disease, and

2049 subjects similarly classified as having disease—revealing perfect

congruence (ESS = 100). In contrast, model 7 differed for SH1 and

SH2 (ie, the SBP threshold value was 145.5 versus 149.5 mmHG,

respectively). Cross‐classifying predicted disease status of subjects

obtained using SH1‐ and SH2‐based model 7 yielded 1962 of 2055

subjects similarly classified as having no disease, and 2644 subjects

similarly classified as having disease—indicating near‐perfect agree-

ment: ESS = 95.5 for SH1 model and ESS = 96.6 for SH2 model.
3.5 | Sensitivity analysis assessing model validity for
increasingly longer follow‐ups (step 4)

Sensitivity analysis was conducted to assess stationarity of the

predictive accuracy (WESS) for models 7 and 8 for SH1 and SH2, over

increasing follow‐up periods. In each analysis, the WESS for SH1 was
each split‐half training sample

SH2

Model Strata WESS Efficiency D Smallest strata N

1 8 27.03 3.38 21.60 50

2 7 25.59 3.66 20.35 52

3 6 25.13 4.12 17.88 79

4 4 24.74 6.18 12.17 225

5 4 22.95 5.74 13.43 260

6 3 22.77 7.59 10.18 299

7 3 22.77 7.59 10.18 464

8 2 15.53 7.76 10.88 1008

s normed weighted predictive accuracy (0 = weighted accuracy expected by
re of the magnitude of normed accuracy yielded per model endpoint; the
ESS that are needed to obtain a theoretically ideal model yielding perfect

ta N is the number of subjects in the endpoint representing the fewest sub-
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assessed by applying the SH1 model to classify the SH2 (“hold‐out”)

sample, and vice versa. Model WESS was computed using data from

subsamples representing increasing annual follow‐up periods—ranging

from more than 1 year to more than 28 years (models for longer

periods failed statistical power criteria). Table A.1 presents the findings

of the sensitivity analysis, which indicates that models 7 and 8 each

have stable, comparable hold‐out validity WESS between split‐half

samples across time.
3.6 | Evaluating new (recalibrated) CTA survival
models for the SH1 and SH2 samples at follow‐up
times indicated in sensitivity analysis (step 5)

Three attempted model recalibration analyses were indicated by the

sensitivity analysis. The first attempted recalibration occurred at

>12 years follow‐up—the first time model 8 had a WESS value 10%

lower than obtained in initial (all data) analysis. For models 7 and 8,

for SH1 and SH2, restricting follow‐up to >12 years yielded the identi-

cal models 7 and 8. Identical results were also obtained for the second

recalibration analysis at >13 years follow‐up—the first time WESS for

model 7 was 10% lower than the initial value. And identical results

were obtained for the final recalibration analysis at >21 years follow‐

up—the first time WESS for models 7 and 8 was 15% lower than the

initial value. In summary, sensitivity and model recalibration analyses

confirmed findings consistent with the total sample analysis, over the

range of follow‐up periods studied.
3.7 | Comparing naïve, Cox regression, and CTA
survival model survival curves

Figure 2 illustrates the estimated survival curves for all models derived

in the present study. These include the CTA two‐strata gender model

obtained for SH1 and SH2, the CTA three‐strata model obtained for

SH1 (using a SBP cutpoint of 145.5 mmHg, which yielded the greatest

ESS for SH1 and for the full sample), the naïve (unadjusted) Kaplan‐

Meier estimate, and the covariate‐adjusted Cox regression. As shown,

the highest survival rate was predicted by the three‐strata CTA model

with the rule SBP ≤ 145.5 mmHg and female. Conversely, the lowest
survival rate was predicted by the three‐strata CTA model with the

rule SBP > 145.5 mmHg. Females (from the two‐strata CTA model)

had the second highest predicted survival, while males (also from the

two‐strata CTA model) had the second lowest predicted survival rates.

The adjusted Cox regression model produced survival rates similar to

the naïve (Kaplan‐Meier) estimate, and both were positioned in the

middle of the range of models. Thus, the Cox model best predicts aver-

age (omnibus) incidence of the outcome across follow‐up whereas the

CTA models best predict either relatively high, or low, incidence of the

outcome over time.

Two methods were used to compare the prediction error/accu-

racy between these survival modelling approaches. First, the IBSs for

predicted survival estimates for the 7 models are presented in

Table A.2. The naïve survival estimate, which serves as a general

benchmark, produced a weighted mean‐squared prediction error of

0.122, while the adjusted Cox regression had a slightly lower level of

0.104. Different CTA survival model strata produced varying levels of

prediction error. For example, the overall best IBS score (0.069) was

achieved by the stratum of the three‐strata model in which survival

was predicted by SBP ≤ 145.5 mmHg and gender = female. Con-

versely, in the same model, the stratum in which survival was predicted

simply as SBP > 145.5 mmHg produced the highest weighted mean‐

squared prediction error (0.168). In the two‐strata model, predicting

survival for females elicited less prediction error than that for males

(0.096 vs 0.148, respectively). Overall, the greater the predicted inci-

dence of CVD for a model endpoint (all incidence estimates were

<50%), the greater the heterogeneity in class status of subjects in the

model endpoint—and therefore the greater the IBS score.

In the second approach used to compare survival estimates, the

first of 2 sets of analyses compared naïve (nonadjusted) model (ie,

actual) 10‐year disease‐free survival versus 10‐year disease‐free sur-

vival estimated using each adjusted model (data available from

authors). Ten‐year disease‐free survival predicted by the Cox model

(relatively weak ESS = 20.9), and by the leftmost endpoints of the

two‐strata (moderate ESS = 28.0) and the three‐strata (relatively

strong ESS = 51.9) CTA survival models, was significantly greater than

unadjusted 10‐year survival. Conversely, 10‐year disease‐free survival

predicted by the rightmost endpoint of the two‐strata CTA survival
FIGURE 2 Estimated survival curves for all
models in the present study. Ordering of
models listed in the legend corresponds to
ordering of the curves, from top to bottom
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model (moderate ESS = 27.4), and by the middle (relatively weak

ESS = 14.6) and rightmost (moderate ESS = 38.8) endpoint of the

three‐strata CTA survival model, was significantly lower than unad-

justed 10‐year survival.

The second set of comparative analyses in the second approach,

examined the predicted 10‐year survival for the Cox model versus for

the 5 (one for eachendpoint) two‐ and three‐strataCTA survivalmodels.

10‐year disease‐free survival predicted by the leftmost endpoints of the

two‐strata (relatively weak ESS = 9.3) and three‐strata (moderate

ESS=34.0)CTAsurvivalmodelswas significantly greater thanestimated

10‐year survival by the Cox model. Conversely, 10‐year disease‐free

survival predicted by the rightmost endpoint of the two‐strata CTA sur-

vival model (moderate ESS = 39.4), and by the middle (moderate

ESS = 32.1) and right‐most (relatively strong ESS = 56.2) endpoint of

the three‐strata CTA survival model, was significantly lower than esti-

mated 10‐year survival by the Cox model. In summary, the first set of

analyses reveal that all six of the adjusted survivalmodels generated sur-

vival curves that were significantly different than the unadjusted (naïve)

KM curve, when compared over 10 years of follow‐up, and the second

set of analyses reveal that all five of the CTA‐based survival curveswere

significantly different (and thus more accurate in predicting either posi-

tive or negative CVD status) than the Cox regression survival curve,

when compared over 10 years of follow‐up.
4 | DISCUSSION

Machine learning techniques are increasingly being used in health care

research for applications such as improving diagnostic accuracy,

identifying high‐risk patients, and extracting concepts in unstructured

data.38 In this paper, we introduce CTA as an appealing machine

learning alternative for modelling censored data that offers several

important advantages over the commonly used Cox regression.

First, investigators using regression‐based models have little

guidance in their model‐building process. For example, some studies

estimate models in which the variable selection process includes only

main effects, others estimate completely saturated models (including

all possible interactions, and squared and cubed terms), and others use

automated forward or backward stepwise procedures to select vari-

ables for model inclusion. Such heterogeneous approaches to estima-

tion are likely to produce misspecified or suboptimally fit models.

Indeed, postestimation tests following Cox regression in the present

study indicated that the proportional‐hazards assumption was violated

for gender.Moreover, the estimated disease‐free survival curve derived

from the Cox model followed a similar trajectory to that of the unad-

justed Kaplan‐Meier estimate, suggesting that the more complex Cox

model offered little additional ability to predict disease‐free survival

probability as compared with a simple model. A unique advantage of

GO‐CTA survival analysis in this regard is that all statistically valid,

reproducible, longitudinally consistent, and generalizable CTA models

existing for a given sample are identified by an algorithm‐driven process,

eliminating concerns of model misspecification.39

Second, among CTA's most salient features is the generation of

simple decision rules to aid both clinicians and researchers to identify

subjects exhibiting specific characteristics that place them at higher or
lower risk for realizing the outcome. When supplemented with their

respective survival curves, such decision rules become even more

compelling. For example, in reviewing Figure 1, we see that the

stratum with the lowest predicted probability of disease in the full

model (0.6592) has the rule SBP > 145.5 mmHg, which coincides with

the lowest estimated disease‐free survival function presented in

Figure 2. Taken together, a clinician is given a simple, maximally

accurate rule for identifying individuals with a modifiable risk,

augmented by 2 complementary estimates of disease‐free survival.

Conversely, regression‐based survival models offer no such interpret-

able formulae or visual displays of the final model.

Third, a measure of weighted MSE in predicted survival, IBS scores

increased systematically with decreasing disease‐free survival curves

(Figure 2). We attribute this relationship to variability in the estimated

survival curves, which is maximized when predicted probability of sur-

vival is 0.50. The stratum with the highest overall survival estimate

(SBP ≤ 145.5 mmHg and female) had the lowest variability and MSE,

while thestratumwith the lowestpredictedsurvival (SBP>145.5mmHg)

had the highest variability and MSE. Therefore, an investigator can feel

confident that parsimonious CTA‐based stratum‐specific decision rules

predicting highest survival rates produce survival predictions with an

associated weighted MSE that is lower than that of more complex Cox

models. However, we argue that WESS is a more appropriate measure

of a model's predictive accuracy specifically because it is insensitive to

the variability in the predicted outcome.

Additionally, we found that Cox regression produced an estimated

disease‐free survival curve that was statistically different than those of

all CTA‐based model strata, while converging with the Kaplan Meier

estimate over a very long follow‐up—possibly indicative of regression

to the mean effects.19,40 In contrast, 2 easily discriminated (P < .001)

CTA models that predicted lower CVD incidence than the Cox model

had comparatively flatter trajectories across follow‐up, and 3 easily

discriminated (P's < .001) CTA models predicting higher CVD incidence

than the Cox model had comparatively accelerated trajectories over

follow‐up (Figure 2). As is clearly seen, the Cox model best predicts

average (omnibus) incidence of the outcome across follow‐up, whereas

CTA survival models best predict either relatively high, or low, inci-

dence of the outcome across follow‐up.

Finally, while this paper has focused on the application of CTA

to censored data for developing maximally accurate prognostic

models, a logical extension of these methods lies in the evaluation

of nonrandomized intervention studies with censored outcomes

(eg, targeting poor health behaviours that may cause disease or

death). Linden and Yarnold39 introduced a CTA‐based approach to

generating propensity score weights. Propensity scoring techniques

are in a family of methods that explicitly model treatment assign-

ment to estimate treatment effects in nonrandomized studies.41,42

To estimate treatment effects with censored data using CTA,

propensity score weights would be first generated as described in

Linden and Yarnold,39 and then multiplied by follow‐up time. The

GO‐CTA survival analysis would then be conducted as described herein.

The primary limitation of the CTA framework for developing prog-

nostic models with censored data—as is the case with every analytic

approach used for this purpose—is that models are generated using

only the available data. No matter how sophisticated the algorithm,
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important unobservable factors such as unmeasured motivation to

change health behaviours may limit the ability of any model to

accurately predict the outcome.43,44 Another general limitation affect-

ing all prognostic modelling approaches is that the predictive values of

the model are highly sensitive to the prevalence rate of the observed

outcome in that population evaluated.45 More specifically, in a

population where nearly everyone is disease‐free, it would be much

easier to predict a person's probability of being disease‐free, and much

harder to predict who will develop the disease.
5 | CONCLUSION

In summary, this paper introduced a novel machine learning framework

for modelling censored data. This framework offers many advantages

over broadly used Cox regression, such as explicit maximization

of accuracy, parsimony, sensitivity, statistical robustness, and

transparency. Therefore, researchers interested in accurate prognoses

and clear decision rules should consider developing models using the

CTA‐survival framework.
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APPENDIX A
Table A2. Integrated Brier Scores (IBS) for each model in the current study

Model IBS

Naïve Kaplan Meir (w/o covariates) 0.122

Cox regression with covariates 0.104

Model 7a: SBP ≤ 145.5 and gender = female 0.069

Model 7b: SBP ≤ 145.5 and gender = male 0.135

Model 7c: SBP ≥ 145.5 0.168

Model 8a: Gender = Female 0.096

Model 8b: Gender = Male 0.148

Table A1. Sensitivity analysis applying CTA training models 7 and 8 to indepen

Training
Sample Model 7, SH1 Model 7, SH2

Test Sample
Model 7, SH2 Model 7, SH1

Minimum
Follow‐up

Wtd
Sensitivity

Wtd
Specificity WESS

Wtd
Sensitivity

Wtd
Specificity W

Full sample,
year

69.1 52.5 21.6 68.4 52.7

>1 69.1 52.5 21.6 68.4 52.7

>2 69.1 52.5 21.6 68.4 52.8

>3 69.0 52.5 21.5 68.3 52.8

>4 68.9 52.5 21.4 68.2 52.8

>5 68.9 52.5 21.4 68.0 52.8

>6 68.7 52.6 21.3 67.8 52.9

>7 68.6 52.7 21.3 67.6 52.9

>8 68.4 52.7 21.1 67.4 53.0

>9 68.2 52.7 20.9 67.1 53.1

>10 68.1 52.8 20.9 66.8 53.2

>11 67.8 52.8 20.6 66.2 53.1

>12 67.6 53.0 20.6 65.8 53.3

>13 67.5 53.1 20.6 65.6 53.4

>14 66.9 53.1 20.0 65.2 53.5

>15 66.7 53.1 19.8 65.4 53.7

>16 66.3 53.4 19.7 64.9 54.0

>17 65.6 53.6 19.2 64.8 54.0

>18 65.0 53.9 18.9 64.3 54.3

>19 65.4 54.0 19.4 64.4 54.3

>20 64.7 54.1 18.8 63.8 54.6

>21 63.2 54.2 17.3 63.4 54.9

>22 62.6 54.4 17.0 64.5 55.1

>23 62.3 54.9 17.2 65.0 55.5

>24 65.0 55.3 20.3 64.9 55.7

>25 65.6 55.5 20.9 65.6 55.9

>26 65.1 55.9 21.0 64.1 56.5

>27 68.7 56.4 25.1 62.6 57.0

>28 69.6 56.4 25.9 63.4 57.3

Notes: Tabled values were obtained by applying the indicated training model to
samples with an insufficient number of class = 1 (positive CVD outcome) subje
dent test (hold‐out validity) samples

Model 8, SH1 Model 8, SH2
Model 8, SH2 Model 8, SH1

ESS
Wtd

Sensitivity
Wtd

Specificity WESS
Wtd

Sensitivity
Wtd

Specificity WESS

21.2 51.6 63.9 15.5 54.8 62.1 16.9

21.2 51.6 63.9 15.5 54.8 62.1 16.9

21.2 51.6 63.9 15.5 54.8 62.1 16.9

21.1 51.5 63.9 15.4 54.7 62.2 16.9

21.0 51.5 63.9 15.4 54.6 62.1 16.7

20.8 51.4 63.9 15.3 54.6 62.2 16.8

20.6 51.3 63.9 15.2 54.5 62.2 16.7

20.5 51.2 64.0 15.2 54.4 62.2 16.6

20.3 51.1 64.0 15.1 54.1 62.2 16.3

20.3 51.0 64.0 15.0 53.8 62.3 16.1

19.9 51.0 64.1 15.1 53.7 62.3 15.9

19.4 51.3 64.1 15.3 53.3 62.2 15.5

19.1 51.1 64.1 15.1 52.8 62.2 15.0

19.0 51.1 64.1 15.2 52.6 62.3 14.8

18.7 50.4 64.1 14.5 53.0 62.3 15.3

19.1 50.6 64.1 14.7 53.2 62.3 15.5

19.0 50.9 64.1 15.0 53.4 62.5 15.8

18.8 50.6 64.2 14.7 53.2 62.5 15.8

18.6 50.1 64.3 14.4 53.3 62.6 15.8

18.7 50.6 64.4 14.9 53.6 62.5 16.1

18.4 49.2 64.3 13.5 52.6 62.7 15.2

18.3 47.3 64.4 11.8 52.6 62.8 15.4

19.6 46.2 64.6 10.8 53.0 63.1 16.1

20.5 46.1 65.0 11.0 53.4 63.1 16.6

20.6 47.3 65.4 12.7 53.3 63.2 16.5

21.6 48.9 65.5 14.3 54.1 63.1 17.2

20.6 53.3 63.3 16.5 48.7 65.7 14.4

19.6 53.0 65.7 18.7 51.8 63.2 15.1

20.7 55.0 65.6 20.7 51.8 63.4 15.1

the indicated validity sample. Minimum follow‐up values >29 y produced
cts to satisfy the minimum statistical power criterion.19


