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Abstract

Climatic or environmental change is not only driving distributional shifts in species

today, but it has also caused distributions to expand and contract in the past. Infer-

ences about the geographic locations of past populations especially regions that

served as refugia (i.e., source populations) and migratory routes are a challenging

endeavour. Refugial areas may be evidenced from fossil records or regions of temporal

stability inferred from ecological niche models. Genomic data offer an alternative and

broadly applicable source of information about the locality of refugial areas, especially

relative to fossil data, which are either unavailable or incomplete for most species.

Here, we present a pipeline we developed (called X-ORIGIN) for statistically inferring the

geographic origin of range expansion using a spatially explicit coalescent model and an

approximate Bayesian computation testing framework. In addition to assessing the

probability of specific latitudinal and longitudinal coordinates of refugial or source

populations, such inferences can also be made accounting for the effects of temporal

and spatial environmental heterogeneity, which may impact migration routes. We

demonstrate X-ORIGIN with an analysis of genomic data collected in the Collared pika

that underwent postglacial expansion across Alaska, as well as present an assessment

of its accuracy under a known model of expansion to validate the approach.
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1 | INTRODUCTION

Population expansions leave signatures in the distribution of popula-

tion genetic variation across a landscape. This pattern of genetic

variation is commonly used for making inferences about the underly-

ing demographic processes. For example, the decreasing pattern of

genetic diversity along expansion routes has been used to infer the

origin of human migrations (DeGiorgio, Jakobsson, & Rosenberg,

2009; Ramachandran et al., 2005). Similarly, such genetic signatures

have been applied to study postglacial expansions in other species,

as well as their corresponding geographic refugia during glacial peri-

ods of the Pleistocene (reviewed in Hewitt, 2000).

However, this approach comes with an inherent issue. Specifi-

cally, genetic diversity patterns (e.g., heterozygosity, FST) can reflect

not only signatures from recent distributional shifts, but also local

habitat suitability or long-term geographic isolation (Austerlitz, Jung-

Muller, Godelle, & Gouyon, 1997; Ray, Currat, & Excoffier, 2003).

Thus, while the isolation-by-distance model applies relatively well to

species that have a broad habitat, such as human beings, species

with narrower niches tend to track their habitats, displaying a

genetic diversity pattern of isolation by barriers or resistance (McRae
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& Beier, 2007). Therefore, sole reliance on the gradients of popula-

tion size/heterozygosity or the principal components without spatial

models is inadequate for making accurate inferences about the

ancestral source population or directions of expansion (Franc�ois
et al., 2010). Due to the rich, yet confounding information retained

in the genetic diversity patterns, most phylogeographic studies infer

the location of hypothesized refugia from the data that are indepen-

dent of the genomic information (reviewed in Knowles, 2009). Eco-

logical niche models (ENMs), for instance, could be applied to infer

areas with temporal stability as suitable habitats. In addition, the

associated genetic data could then be used to evaluate the hypothe-

sis that such geographic regions would have served as refugial

source population (e.g., see Carnaval, Hickerson, Haddad, Rodrigues,

& Moritz, 2009; Knowles, Massatti, He, Olson, & Lanier, 2016).

Attempts to address the issue of complex historical processes

shaping the current genetic patterns have witnessed the develop-

ment of spatially explicit demographic models as well as spatial

genetic indices. Ray, Currat, Berthier, and Excoffier (2005) systemati-

cally tested the likelihood of different geographic locations as human

origins by evaluating the goodness of fit of RST values from different

spatial simulations of expansions using the empirical values. Itan,

Powell, Beaumont, Burger, and Thomas (2009) estimated the origin

of lactase persistent mutations in Europe by fitting empirical fre-

quencies of lactase persistent mutations to those from spatial simu-

lations of the gene expansion along with dairy groups. These pioneer

studies demonstrate the potential of using spatially explicit models

for estimating migration histories. However, these models do not

take temporal changes in habitat suitability into account, which limit

their applicability in flora and fauna that underwent expansions lar-

gely driven by climatic oscillations.

Spatial genetic indices, on the other hand, are designed to pick

up “range expansion”-specific signatures—that is, the directions of

gene flow. By analysing the allele frequency clines created by con-

secutive founder events during the expansion of a population across

a landscape, as captured by a directionality index Ψ, Peter & Slatkin

(2013) demonstrated how information on the geographic origin and

the direction of expansion could be extracted from genomic data

through asymmetrical gene flow. That is, regression between pair-

wise differences of Ψ and geographic distances between populations

can be used to directly infer the geographic origin of expansion.

However, several aspects of this approach limit its utility in practice.

For example, this method does not account for the heterogeneity in

the underlying landscape during the inference procedure (i.e., assum-

ing a strict isolation-by-distance model). Ψ may also be biased

towards nonzero values when local population sizes differ substan-

tially (Peter & Slatkin, 2013). Also, although it is possible to recover

a signature of expansion from the magnitude of Ψ, assessing the sig-

nificance of Ψ-values, and hence, the confidence of the inferred ori-

gin, is not straightforward.

Here, we present a pipeline specifically developed for making

statistical inferences about the geographic origin of range expansion

(called X-ORIGIN) that addresses these aforementioned shortcomings.

This pipeline builds upon earlier developments in spatial

demographic models (e.g., Ray, Currat, Foll, & Excoffier, 2010) and

spatially explicit summary statistics (e.g., Peter & Slatkin, 2013).

Specifically, with the X-ORIGIN we couple the Ψ-index (Peter & Slatkin,

2013) with a spatially explicit coalescent model for hypothesis test-

ing in an approximate Bayesian computation (ABC; Beaumont,

Zhang, & Balding, 2002) framework. Information based on current

and/or historical habitat suitability can be estimated using ENMs and

subsequently incorporated into the spatially explicit coalescent

model (i.e., a modified application of SPLATCHE2; Ray et al., 2010). In

addition, with the ABC framework, the estimation of the geographic

origin of range expansion will not be sensitive to the uncertainties in

the underlying demographic parameters if a wide range of priors of

demographic parameters is specified in spatial simulations. Hereafter,

we refer to the geographic origin of range expansion as a parameter,

Ω. Together, the significance of expansion and the confidence of a

particular geographic location for the ancestral source population are

provided by the X-ORIGIN. As such, the pipeline couples information

from a series of independent analyses (Figure 1), making X-ORIGIN a

useful tool for inferring the geographic origin of ancestral sources

with confidence.

It should be noted that there are general procedural parallels

with the integrative distributional, demographic, and coalescent

(iDDC) approach for model selection, which also involves a series of

independent analyses (i.e., estimates of habitat suitability, demo-

graphic modelling, and spatially explicit coalescent; He, Edwards, &

Knowles, 2013). However, the X-ORIGIN pipeline differs in that (i) it

infers a novel model parameter of interest Ω (i.e., the actual latitudi-

nal and longitudinal coordinates), and (ii) it utilizes information from

spatial summary statistics, specifically, pairwise population measures

of FST and the directionality index, Ψ (Peter & Slatkin, 2013). As

such, X-ORIGIN is an approach that focuses on the estimation of a

specific parameter of interest—Ω, whereas the iDDC is an approach

for model selection among a set of biologically informed demo-

graphic hypotheses, the foci of which vary significantly among stud-

ies (e.g., Bemmels, Title, Ortego, & Knowles, 2016; Knowles &

Massatti, 2017; Massatti & Knowles, 2016).

Here, we describe the approach and test the accuracy of the X-

ORIGIN pipeline in inferring Ω under a known expansion history (i.e.,

simulated history; see Figure 2). Specifically, we model a history of

expansion that involves temporal shifts in the habitat suitability of a

landscape (i.e., we validate the approach by implementing a complex

model which cannot be accommodated by any other currently exist-

ing programs). We also demonstrate the utility of the X-ORIGIN with

an analysis of empirical data. Specifically, we analyse the SNP data

set collected in the Collared pika (Ochotona collaris) (i.e., data from

Lanier, Massatti, He, Olson, & Knowles, 2015). The impact of the

glaciations is pronounced in small Alaskan mammals (Galbreath,

Cook, Eddingsaas, & DeChaine, 2011; Knowles et al., 2016; Lanier

et al., 2015). While previous analyses in the Collared pikas also sug-

gested that contemporary environmental factors contribute less to

genomic structure than a dynamic history involving the founding of

current populations by ancestral source populations (Lanier et al.,
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2015), the location of putative ancestral source populations remains

unclear.

2 | METHODS

2.1 | Statistic inferences using the X-ORIGIN pipeline

The X-ORIGIN pipeline couples information from a series of indepen-

dent analyses to make inferences about Ω, the geographic location

of ancestral source populations, by estimating the posterior probabil-

ity of Ω under an ABC framework (Figure 1). Scripts are provided in

the X-ORIGIN pipeline for all the steps involved, and a detailed tutorial

is provided on GitHub (see https://github.com/KnowlesLab/X-

ORGIN).

Briefly, the approach employs a spatially explicit coalescent to

generate expected patterns of genomic variation under a set of pri-

ors, including a prior on Ω and priors on demographic parameters of

the expansion process (i.e., k and m, the local population sizes and

migration rates, and an ancestral population size, NA). That is, geno-

mic simulations of range expansion are initiated at different random

locations within the geographic range specified by the prior on Ω

and for different population size and migration rate values. If there

is no prior knowledge on possible geographic origins, all demes on

the map used for demographic simulations will be tested. Otherwise,

a prior on Ω can be based on the fossil record, or a general candi-

date region might be based on the regression between pairwise pop-

ulation differences of Ψ and geographic distances (see Peter &

Slatkin, 2013).

To make inferences using X-ORIGIN that considers the effects of

spatial and temporal environmental heterogeneity on the expansion

process, X-ORIGIN models the impact of this environmental hetero-

geneity on the expansion process. Specifically, heterogeneity in habi-

tat suitability might be derived from ecological niche models (ENMs)

for the present or the past (Sindato et al., 2016; Waltari et al.,

2007), or from information on known barriers (e.g., mountain ranges,

glaciers and bodies of water; Boehm et al., 2013; Knowles & Mas-

satti, 2017; Waltari & Hickerson, 2013). These suitability maps are

used to inform demographic dynamics associated with the expansion

process by specifying different likely migration events as a function

of spatial and/or temporal environmental heterogeneity. Specifically,

Suitability map

Fossil records
pairwise ψ calculation

Range expansion simulations

Distributional and 
connectivity patterns

Candidate regions of 
origin of expansion

Calculation of summary statistics
including spatial statistics (e.g., ψ) 

Posterior distribution of 
estimated origins

Phylogeographic histories

Priors for 
demographic parameters

ENM

ABCSAMPLER + SPLATCHE2

CALSUMSTAT

ABCESTIMATOR + CALORIGIN

TDOA θ, m

CONVERTMAP

X-ORIGIN

pipeline

F IGURE 1 The required data inputs (shown in boxes) and workflow of the X-ORIGIN pipeline are highlighted in the schematic. Specifically, to
infer the geographic location from which an expansion originates, Ω (i.e., the actual latitudinal and longitudinal coordinates of the ancestral
source population), a habitat suitability map, candidate regions of Ω and priors for demographic parameters are required. To consider how
habitat heterogeneity might impact the range expansion process, the habitat suitability map can be informed by spatial (as well as temporal)
variation in suitability (e.g., from ENMs based on contemporary bioclimatic variables, or palaeoclimatic variables; see He et al., 2013).
Otherwise, the expansion process can be modelled as a diffusion process (i.e., equal habitat suitability across space and time). Likewise, users
have the option of either entering candidate regions of Ω (e.g., a region identified by the regression approach of Peter & Slatkin, 2013; as
discussed in the text), or the entire map area can be evaluated during the inference procedure. The pipeline calls up different software
packages for downstream generation of simulations and estimation of the expansion origin, candidate regions of Ω. Specifically, spatially
explicit coalescent simulations are used to generate expected patterns of genetic variation under a demographic model the expansion process
(either informed or not by spatial and temporal heterogeneity of the landscape) using a modified version of the program SPLATCHE2 (Ray
et al., 2010). Summary statistics are calculated from each simulated data set using R script that are incorporated in the pipeline, which are
compared with those calculated for empirical data to inform the posterior distribution of Ω using ABC. Note that all steps can be performed
seamlessly in X-ORIGIN, which has a wrapper for connecting all the steps in R or python scripts. Scripts for the pipeline are shown in grey shaded
boxes, while external programs called in the pipeline are shown without boxes
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the habitat suitability scores for each deme determine local popula-

tion sizes, thereby influencing the actual number of migrants across

demes per generation. If distributional shifts are induced by climatic

changes, then temporal shifts in habitat suitability can be incorpo-

rated into the demographic modelling (i.e., applying different relative

weighting of suitability information from past vs. current ENMs to

mirror trends of climatic change; see Brown & Knowles, 2012), given

that shifts in connectivity over time can influence the expansion pro-

cess, and consequently, the patterns of genetic variation across the

landscape.

2.2 | Programs called up in the X-ORIGIN pipeline

In the X-ORIGIN pipeline, demographic and spatially explicit coalescent

simulations are performed in SPLATCHE2 (Ray et al., 2010) in conjunc-

tion with a customized script in the X-ORIGIN pipeline to allow for

temporally changing landscapes. Local demographic parameters (i.e.,

k and m) are informed from habitat suitability by scaling these

parameters proportionally to the habitat suitability values of local

demes (Figure 1), which might be temporally dynamic (i.e., the habi-

tat suitability for a particular location may change in each generation

based on shifting climatic conditions; see Brown & Knowles, 2012).

Each generation m proportion of the population migrates out of the

local deme; migration occurs to the adjacent four cells (north, south,

west, east). After the exchange of individuals, local demes grow

logistically with a rate r and are regulated by the local carrying

capacity (which are also rescaled as a function of the habitat suitabil-

ity of a deme); r can be set to a specific value (e.g., He et al., 2013),

and as we do here (r = 1), or it can also be estimated as a parameter.

For each time-forward simulation (i.e., a spatially explicit map of per

generation local population sizes and migration events), a series of

corresponding time-backward coalescent genetic simulation are run,

with a separate coalescent simulation generated for each indepen-

dent locus in the study. The ancestry of an allele will trace back from

the present into ancestral source populations, where the pattern of

gene lineage coalescence across the landscape and the timing of

coalescence is defined by the time-forward local demographic simu-

lations (i.e., the per generation k and m parameter values). SNP

mutation models are then used to simulate patterns of genomic vari-

ation in SPLATCHE2, where the state of each SNP is generated across

the independent coalescent simulations.

To generate patterns of genomic variation to compare with the

empirical data, the simulated data sets are constructed by sampling

the same populations (in geographic space), the same number of

50 × 50 cells

21,000 BP 16,000 BP 10,000 BP 

ENM of pika in LGM CurrentIntermediate

Time250 generations ago500 generations ago

time

0

1

0.5

(a)

(b)

F IGURE 2 Simulated scenario used to evaluate the performance of the X-ORIGIN pipeline for inferring the geographic origin of a range
expansion. In the simulated scenario, (a) expansion proceeded from the lower left corner of the map (shown as the red dotted area) across a
homogeneous landscape with a centrally located geographic barrier during the first 250 generations, but not the last 250 generations (i.e.,
there is spatial and temporal habitat heterogeneity, where the area of the barrier has zero suitability). Due to the symmetry of the landscape,
we varied the origin of expansion in the simulations within the red dotted area instead of the whole map. Circles mark populations that are
sampled and for which summary statistics are calculated from multiple individuals. (b) An empirical application of X-ORIGIN in the Collared pika in
which habitat suitability varied spatially and temporally across the Alaskan landscape. Ecological niche models were used to estimate habitat
suitabilities for the present and past (i.e., the LGM) using climatic data (see Lanier et al., 2015 for details about ENMs). Specifically, the
demographic expansion process proceeded across a temporally and spatially heterogeneous landscape, in which the habitat suitabilities from an
ENM estimated for the LGM was used to inform the first 5,000 years of the simulated demographic expansion, followed by 6,000 simulated
years of expansion across an intermediate surface (i.e., a map with average habitat suitability scores between those from the ENM for the
present and LGM), and then 10,000 years of expansion with the habitat suitabilities from an ENM based on current climatic conditions
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individuals, and the same number of SNPs as the empirical scenario.

Summary statistics are calculated for both the empirical and simu-

lated data sets. These include the spatial summary Ψ statistics calcu-

lated within, between, across all populations, as well as pairwise

population FST values; ARLEQUIN 3.5 (Excoffier & Lischer, 2010) is

used to calculate FST. Note that other nonspatial statistics often used

in ABC analyses were also considered (e.g., K, the number of haplo-

types, and H, observed heterozygosity). These additional summary

statistics are not used in the analyses presented here because of the

lack information they contained under the expansion scenarios (see

Fig. S1); however, a user could employ them in X-ORIGIN if they deter-

mine they are relevant to the expansion history under study.

The empirical summary statistics are compared to those from the

simulated data using approximate Bayesian computation (ABC), as

implemented with ABCESTIMATOR in ABCTOOLBOX (Wegmann, Leuen-

berger, Neuenschwander, & Excoffier, 2010). Rather than conducting

ABC analyses directly on the summary statistics, principal compo-

nents (PCs) are extracted from all predictor variables to remove the

effects of interactions between summary statistics, as well as to

reduce “the curse of dimensionality” (i.e., when too many statistics

are included, the distance between the simulated and empirical val-

ues systematically increases, reducing the accuracy of parameter

estimates and making it more difficult to distinguish among models)

(Wegmann & Excoffier, 2010; Wegmann, Leuenberger, & Excoffier,

2009).

Five thousand simulations (0.5%) whose transformed summary

statistics are closest to those calculated from the empirical genomic

data are retained for estimating the model parameters (i.e., Ω, the

geographic locations of the ancestral source populations, and the

demographic parameters k, m, and NA). To jointly estimate the likeli-

hood of a specific deme as the origin Ω (i.e., a specific longitude and

latitude), the kernel densities of Ω across the retained simulations

were estimated and used as the likelihood. This provides a nonpara-

metric way of smoothing and estimating the likelihood of the origin

based on the limited retained simulations (i.e., from the 0.5%, or five

thousand retained simulations).

To check whether the inferred model is capable of generating

the observed data, the likelihood of the empirical data given the

model is compared with the likelihoods of the retained simulations.

The fraction of simulations that have a smaller likelihood than the

empirical data is expressed as a p-value, with small p-values indicat-

ing that a model is highly unlikely (Wegmann et al., 2010). Likewise,

we conduct standard evaluations of the quality of the inferences

from ABC (e.g., bias in parameter estimates; described below).

2.3 | Performance of the X-ORIGIN pipeline

We tested the pipeline on a simulated scenario (Figure 2a) to evalu-

ate the performance of the approach for inferring the geographic

location of the source population, Ω, under a temporally changing

landscape. Specifically, simulations were conducted on a 50 9 50

deme landscape with a centrally located geographic barrier that was

present in the past but not the present and expansion proceeded

from the lower left deme (Figure 2a). Simulations were run for 500

generations, in which the barrier persisted for 250 generations. At

the end of the simulations, 10 diploid individuals were sampled from

10 demes from across the distributional map. A range of migration

rate (10�3, 10�2), ancestral population size (10�3, 10�4) and carrying

capacity values (10�3, 10�4) per deme were simulated to check

whether the inferred origin is sensitive to particular details of the

demographic expansion process.

The accuracy of X-ORIGIN was evaluated by measuring the geo-

graphic distance between the actual and inferred geographic location

of the source population (i.e., differences in the actual and inferred

latitudinal and longitudinal coordinates). In addition to evaluating the

accuracy of the estimated Ω under the model in which expansion

proceeded from the upper left deme (Figure 2), we also tested

whether the accuracy of Ω varied depending upon the geographic

origin of the expansion. Specifically, we investigated the perfor-

mance of the model by inspecting the average error of the inferred

Ω of 10 pseudo-observed data sets (i.e., PODs from the simulations)

in which the geographic origin of the expansion differed. Specifically,

Ω was systematically varied so that each deme across the entire

map served as the source of expansion.

In addition, the accuracy of X-ORIGIN pipeline is compared with

Peter and Slatkin (2013)’s original “time difference of arrival location

estimation” (TDOA) approach as well as a modified TDOA approach,

which incorporates spatial heterogeneity in migration patterns

(Olave, He, & Knowles, unpublished data). Specifically, we calculated

the distance between the actual geographic origin with the one esti-

mated from the TDOA approaches. The TDOA approach identifies

the origin of the expansion by locating the deme that explains the

highest proportion of variation in the correlation of pairwise Ψ dif-

ferences and the pairwise differences of geographic distances of the

populations to the potential origin. The modified TDOA approach

correlates pairwise Ψ differences with pairwise resistance differences

(McRae & N€urnberger, 2006) in which heterogeneous landscape is

considered (Olave et al., unpublished data), whereas the original

TDOA (Peter & Slatkin, 2013) assumes migration occurs on a homo-

geneous landscape (i.e., according to a random diffusion model). We

TABLE 1 Prior ranges for demographic and genetic parameters
used in the demographic simulations of Collared pika

Parameters Description Prior ranges Distribution

m Migration rate

between demes

(10�3.6, 10�2) Log-

uniform

Nans Ancestral

population size

before

expansion

(36,880, 508,318) Uniform

K Carry capacity

per deme

(103.3, 104.6) Log-

uniform

Lat Latitude range of

origin

(1,073,893, 1,850,478) Uniform

Long Longitude range

of origin

(616,487, 899,496) Uniform
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conducted a cursory examination of the robustness of X-ORIGIN to

model misspecification as well.

2.4 | Demonstration of X-ORIGIN with application to
Alaskan Collared pika

In addition to details about the ABC analyses, here we briefly

describe the empirical genomic data we analysed with X-ORIGIN, given

that all data used here are from previous publications and are refer-

enced below. Specifically, we analyse a genomic data set collected in

the Alaskan Collared pika (for details on library construction and rig-

orous quality filtering see Lanier et al., 2015). Maps of environmental

heterogeneity used in the X-ORIGIN analyses to infer Ω, the geographic

location of the ancestral source population for the Collared pika,

were generated from ENMs for the present and the last glacial maxi-

mum, LGM (see details in Knowles et al., 2016).

2.4.1 | Genomic data set

We analysed RADseq data for eight populations; note, we excluded

the Pika Camp (Wrangell-St. Elias Mtns; GIS coordinates 61.2170,

�138.2670) from our analyses because previous analyses indicate

that it was founded from a separate ancestral refugial source (Lanier

et al., 2015). Of the 23,493 RADseq loci with at least one biallelic

SNP across populations, we analysed 6,816 loci with one SNP

retained per RADseq loci in 50 individuals (i.e., 6–8 individuals per

population, with the exception of Jawbone Lake, where n = 2); loci

in <50% of the samples or were not present in more than one indi-

vidual per population were excluded. Note that this is an expanded

data set relative to those previously published (i.e., Lanier et al.,

2015; Knowles et al., 2016) because we recovered more genetic

information using ddRAD aligned to a reference genome for Ocho-

tona princeps (American pika; ID: 771).

The directionality index Ψ requires information on the ancestral

vs. derived states of SNPs because the statistic is calculated by

counting the difference in derived allelic frequencies between pairs

of populations (see Eq. 1 in Peter & Slatkin, 2013). Ancestral states

of independent biallelic SNPs were determined by aligning the

sequences with Ochotona princeps (American pika; ID: 771; https://

www.ncbi.nlm.nih.gov/genome).

2.4.2 | Prior on Ω, the geographic locations of the
origin of expansion

The TDOA approach was conducted to select candidate regions of

origin to inform the prior on Ω (as opposed to considering the entire

state of Alaska). Specifically, for each potential geographic location

as the site of the ancestral source population (i.e., each deme from

the distributional map), linear regression was performed between

pairwise Ψ differences and the pairwise differences of geographic

distances of the populations to the potential origin. The linear

regression was repeated for each of the different potential geo-

graphic origins, and the geographic locations with R2-values larger

than 0.5 were used to specify the prior on the geographic location

of the ancestral source population (regression analyses were con-

ducted using modified scripts from Peter & Slatkin, 2013; which we

provide on KnowlesLab/Github). This generated a target area of

approximately 442,300 km2 (i.e., 1,302 demes, with a size of

18.4 9 18.4 km2 for each deme; Table 1) to analyse in detail regard-

ing the posterior probability of Ω, the geographic location of the

ancestral source population for the set of eight Collared pika popula-

tions collected across its range (see Lanier et al., 2015 for details).

2.4.3 | Estimates of habitat heterogeneity across
space and time

Maps of environmental heterogeneity for the Collared pika were

generated from ENMs (see details in Knowles et al., 2016). Briefly,

inferences about differences in habitat suitability across space were

made for the present and the LGM from ENMs based on bioclimatic

data for the present and palaeoclimatic data from 21 kya. The mod-

els were tested over combinations of regularization parameters from

0.25 to 3 in intervals of 0.25 and the Linear, Quadratic, Hinge, Pro-

duct and Threshold features using SDMTOOLBOX (Brown, 2014). Each

model parameter class was replicated 25 times using cross-vali-

dation.

In addition, temporal shifts in habitat suitability were represented

using differences in the relative weighting of habitat suitabilities esti-

mated for the present and LGM across time to reflect climatic trends

in the region over the past 21,000 years (Brown & Knowles, 2012).

Specifically, the current ENM suitability map was used to represent

the present to 5,000 years ago, an intermediate suitability map (i.e.,

an average suitability between the current and LGM ENMs) for the

time period 5,000–11,000 years ago, and the LGM ENM suitability

map for 11,000–21,000 years ago.

2.4.4 | ABC analyses

Data sets were simulated for 2,100 generations (based on a scaling

factor of 10 to reduce the computational requirements; see He

et al., 2013) to represent the range expansion from last glacial maxi-

mum. Priors for the local carrying capacity (k), ancestral population

size (Nans) and migration rates (m) were set according to Lanier et al.

(2015) (see Table 1). Note that a geographic grid of

18.4 9 18.4 km2 corresponded to a single deme and expansion was

modelled across the Alaskan landscape (i.e., over approximately

2,197,850 km2).

As with tests of the general performance of X-ORIGIN, we com-

pared the estimates of Ω, the geographic location of the ancestral

source of expansion, with results from (i) the TDOA method, where

heterogeneity in the present landscape is not incorporated (i.e., the

geographic distances separating populations were represented as

pairwise Euclidean distances), (ii) the modified TDOA method, where

resistance distances based on heterogeneity in the current habitat

suitability is used, and (iii) X-ORIGIN, where temporal shifts in the

heterogeneity of the landscape over time are accounted for. To
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evaluate the accuracy of estimates of Ω, five thousand pseudo-

observations were generated from the prior distributions of the

parameters. If the estimated parameters are unbiased, posterior

quantiles of the parameters from the pseudo data sets should be

uniformly distributed (Cook, Gelman, & Rubin, 2006; Wegmann

et al., 2010). The posterior quantiles of true parameters for each

pseudo run were calculated based on the posterior distribution of

the regression adjusted 5,000 simulations closest to the pseudo-

observed data sets.

3 | RESULTS

3.1 | Performance of the X-ORIGIN pipeline

For the example history considered here, which involved a central

barrier that was present in the past, but not the present (i.e., there is

both spatial and temporal heterogeneity in habitat suitabilities) X-ORI-

GIN gives more accurate inferences of Ω, the geographic location of

the source population of the expansion, than the TDOA approach. In

fact, the performance of X-ORIGIN was quite good, estimating the

most likely origin within 1–4 demes of the actual origin (mean p-

value = .67) from different starting positions across the map (and

hence, differences in when and where the expansion process inter-

acted with the geographic barrier), except for the lower left grid of

the geographic area (Figure 3a c; see Fig. S2 for detailed examples

of variation in inferences across PODs for different locations of

origins).

In contrast, the majority of analyses with the TDOA approach

give inferred locations that differ markedly from the actual area

where the expansion originated, irrespective of where on the map

the expansion originates (Figure 3b). The performance of the TDOA

approach was especially poor (i.e., large discrepancies between the

inferred and actual geographic origin of expansion) when the ances-

tral source area was near the barrier (Figure 3b). This variation in

accuracy highlights the importance of explicitly modelling the tempo-

ral heterogeneity of landscapes (also see Wegmann, Currat, & Excof-

fier, 2006), as it strongly distorts the Ψ signatures, especially if the

heterogeneity is present in the early stage of the expansion.

3.2 | Inferred geographic origin of expansion in the
Alaskan Collared Pika

For the set of Collared pika populations studied here, the highest

likelihood (marginal density: 1.82 9 10�8; p-value: .996) for the loca-

tion of the expansion origin, Ω, is the Mackenzie Mountains in

Yukon Territory, Canada (Figure 4). This inference is based on the

retained 5,000 simulations whose summary statistics were to those

of empirical data. The geographic origin of expansion (i.e., the latitu-

dinal and longitudinal coordinates) was estimated using a two-dimen-

sional kernel density of the retained simulations, implemented using

the kde2d function in the MASS package of R (Venables & Ripley,

2002).

The geographic origin of expansion inferred using X-ORIGIN dif-

fered from the TDOA results (Figure 4). Moreover, neither the
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inferred area based on the pairwise Ψ matrix on a homogeneous

landscape (TDOA-diffusion) nor the one based on a resistance map

of the current landscape suitabilities (TDOA-resistance) are in areas

with high likelihoods. That is, simulated genetic data sets where

expansion proceeded from the inferred areas under the TDOA

approaches do not correspond to the observed genetic data (i.e.,

there is a mismatch between the empirical summary statistic and

those calculated from the simulations).

Based on the distances between actual vs. inferred origin for

each of the different method, X-ORIGIN outperformed TDOA, although

the accuracy of inferred Ω-values varied depending upon the geo-

graphic origin of the expansion (Figure 5). We also note that the

accuracy was generally lower for the heterogeneous landscape

inferred for pikas relative to the landscape used to validate the X-ORI-

GIN package (Figure 5 vs. Figure 3). In particular, populations that

originated from the southeast region exhibited the lowest accuracy

(i.e., the greatest difference between the inferred and actual value of

Ω). This is most likely due to the lack of samples from that area, and

consequently, little information of the direction of asymmetrical gene

flow expected under an expansion model (see Peter & Slatkin,

2013). Nevertheless, comparison of the accuracy of inferences

between X-ORIGIN and TDOA approaches indicates those from X-ORI-

GIN are more accurate for an expansion originating from the Macken-

zie Mountain range. Specifically, analysing simulated data of

expansions from the Mackenzie Mountain range (i.e., the PODs from

the ABC simulations), the TDOA approaches give estimates that are

generally displaced by 15–30 demes from the actual origin of expan-

sion (i.e., a discrepancy of 750–1,500 km), and curiously, these were

more inaccurate than inferences with a southwest geographic origin

of expansion (Figure 5), despite sampling of populations in that

region (see discussion below).

4 | DISCUSSION

Patterns of genetic variation in individuals sampled in the present

harbour rich information about past movements of species. In con-

trast to those from nonspatial models of population demography

(e.g., changes in population size or admixture proportions; see Hey,

2005; Theis, Ronco, Indermaur, Salzburger, & Egger, 2014), recent

developments have focused on inferences from spatially explicit

approaches. Specifically, departure from equilibrium status of popula-

tion movements under a diffusion model, “isolation by distance,”

caused either by range expansion/contraction history, long distance

admixture or habitat heterogeneity is tested through different

approaches. One general approach is to quantify discrepancies

between spatial genetic patterns and the expectations from geo-

graphic distances. For example, discrepancies between population’s
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positions on a genetic PCA map can be visualized against a map of

their geographic distribution using Procrustes analyses to examine

where on a landscape patterns of genetic variation depart from isola-

tion by distance (Knowles et al., 2016; Wang, Z€ollner, & Rosenberg,

2012), or a “geogenetic map” can be used to infer potential long-

range admixture among populations (Bradburd, Ralph, & Coop,

2016). Similarly, disruptions to past movement might be inferred by

relating the effective migration rates to expected genetic dissimilari-

ties for an interpolated geographic map of barriers or corridors

among populations (see Petkova, Novembre, & Stephens, 2016).

Instead of quantifying discrepancies from isolation by distance,

our approach directly models expected patterns of genetic variation

using spatial genetic indices and makes inferences about historical

movements—specifically, the geographic origin of expansion, Ω—un-

der an ABC framework, while incorporating temporal shifts in habitat

suitability over time. This is not the first approach for directly evalu-

ating genetic variation under models of historical movement. For

example, the spatial genetic indices applied here were developed to

directly infer historical movements based on shifts in the genetic

summary statistics across a landscape (Peter & Slatkin, 2013), and

spatial-autocorrelation of genetic covariance information has been

applied to distinguish among spatially explicit demographic scenarios

(Alvarado-Serrano & Hickerson, 2016; Bertorelle & Barbujani, 1995;

Coop, Witonsky, Rienzo, & Pritchard, 2010). However, our approach

infers and evaluates the parameter Ω—the actual latitudinal and lon-

gitudinal coordinates for the origin of an expansion—that is not

based on the assumption of a diffusion model and provides statisti-

cal rigorousness and flexible applications for inferences about

historical expansion scenarios. First, we can evaluate the likelihood

of different geographic locations as the origin of a population expan-

sion, accounting for both spatial and temporal heterogeneity in habi-

tat suitability of the landscape. Second, with the freely available X-

ORIGIN pipeline we developed, users can validate any inference by

determining whether the inferred model is capable of generating

data that generally corresponds to the empirical data, which is

equally important as estimating the most likely model for the origin

of expansion (i.e., the most likely location for the origin of expansion

may nonetheless be a poor fit to the observed data). Such attributes

are not currently implemented in other methods for inference about

expansion histories (e.g., compare with Ray et al., 2005).

Below, we discuss how these attributes make X-ORIGIN not only a

practical tool, but as our analyses demonstrate, also one whose per-

formance is better than not accommodating such dynamic histories.

Likewise, we highlight how this pipeline can easily be adapted for a

more general inference approach beyond inferring the origin of

expansions, especially with the development of new spatial indices.

However, we also note the difference in performance of X-ORIGIN

between a simple demographic history (i.e., the one used to validate

the approach) and the one with more extreme habitat heterogeneity,

and caution users of the importance for validating the accuracy of

the inference, which can be implemented in the X-ORIGIN pipeline.

We apply this practice when interpreting the results from the X-ORI-

GIN analysis of the Collared pikas, as well as discuss aspects of the

data that might contribute to uncertainty in the inferred origin of

expansion, and the importance of corroborative evidence not based

on the genetic data itself.
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4.1 | Factors impacting the accuracy of inferences
about the geographic origin of expansion

The Ψ index directly captures the overall trend of differences in fre-

quencies of derived polymorphic alleles in populations based on the

fact that expanding front of populations are experiencing serial bot-

tlenecks. Therefore, Ψ indices are informative as long as current pop-

ulations have not yet reached equilibrium. If the majority of the

pairwise Ψ indices are close to zero in the system (which is not the

case for pikas; Table S1), the lack of spatial gradient in the Ψ indices

indicate that either there was not an expansion or a sufficient

amount of time since the expansion has passed such that its genetic

signature can no longer be detected by the Ψ indices (see also Peter

& Slatkin, 2013). We tested a scenario in the Pika data set where

there is no expansion origin to examine the performance of X-ORIGIN.

Specifically, we simulated 1,000 replicate data sets in which all popu-

lations started from their sampling areas to reach equilibrium states.

For these data sets, although Ψ indices deviate strongly from zero,

no origin can be estimated from TDOA as no positive relationship

between pairwise differences of Ψ and geographic distances among

populations can be established (Table S2). Likewise, with X-ORIGIN,

marginal densities of the expansion model are extremely low (on the

order of 10�200 to 10�12 as compared to 10�8 for PODs that expe-

rienced expansion from a single origin) and p-values are zero

(Table S2). Therefore, X-ORIGIN, like TDOA, will not give misleading

results about the potential origin for expansion when no such expan-

sion occurred.

Any inference that extracts information on the geographic distri-

bution of genetic variation requires adequate sampling of popula-

tions as well as number of independent SNPs (i.e., at least more than

1,000 independent SNPs; Peter & Slatkin, 2013; Bradburd et al.,

2016). Our results clearly show that inferences become less accurate

when sampled populations are located further from the location

where an expansion originated (e.g., see higher error rate at south-

east corner of Figure 5a). Therefore, researchers should carefully

consider the sampling design. In particular, our results (see also Peter

& Slatkin, 2013; Bradburd et al., 2016) suggest that obtaining accu-

rate inferences that utilize spatial information about the distribution

of genetic variation may be dependent upon which populations are

sampled, rather than whether there is sufficient power for such

inferences related to the number of loci analysed. Although it is

beyond the scope of this study, this general question is something

that could be explored using the X-ORIGIN pipeline.

Another factor impacting the accuracy of inference relates to

model misspecification. Specifically, complicated demographic sce-

narios such as those involving two or more geographic origins of

expansion will give misleading results if not accommodated (see also

Peter & Slatkin, 2013). There are a number of ways to accommodate

and/or test whether an assumed expansion from a single source

might be violated. For example, clustering algorithms can be run to

delineate populations into different groups with potentially different

expansion origins and validated by a minimum-spanning tree built

from a matrix of Ψ -values (Peter & Slatkin, 2013), followed by

separate inferences of Ω for each subgroup of populations. Alterna-

tively, competing explanatory models with multiple origins vs. one

expansion origin can be analysed in X-ORIGIN and compared in a

model selection framework. Our results also suggest that any model,

even those that might be more probable than others, should be

interpreted with caution if Ω is located in areas with low confidence

(based on reference to simulated data sets), or if the most likely

model nevertheless has a low probability of generating data that

resembles the empirical data (i.e., low p-value; Wegmann et al.,

2010; see He et al., 2013 for details of model validation).

Despite positive aspects of X-ORIGIN related to estimating the like-

lihood of the expansion origin, and consequently, uncertainty sur-

rounding this inference (e.g., the geographic area spanned by the

90% highest posterior density of Ω), as well as validating the infer-

ence using PODs (see Figure 5), one unexplored issue is how errors

early in the pipeline might get amplified and generate misleading

results. We did a cursory examination of how such errors might

impact an inferred expansion origin. Specifically, we examined how

robust the inferred origin might be to uncertainties regarding the

temporal changes in habitats—in this case, the duration of a barrier,

as in the scenario, we used to validate X-ORIGIN (see Figure 2). When

we varied the true duration of the barrier to simulate data (i.e., simu-

late data with a barrier that persisted for 200–300 generations,

rather than 250 of the 500 generations), we observed no difference

in the accuracy of the Ω estimation (Fig. S3). This shows that the

pipeline can be robust to misspecification of temporal dynamics of a

historical scenario (at least for the parameter space examined here).

This clearly should not be interpreted as general evidence of robust-

ness to model misspecification. Rather we present it here to show

that X-ORIGIN exhibits some robustness, but also to emphasize that all

users can conduct their own investigation to robustness tailored to

the specifics of their application.

There are of course other paths for errors that could impact the

accuracy of inferences about Ω. For example, we use ENMs to esti-

mate potential suitable areas to inform demographic models (see Fig-

ure 1). As a consequence, the results from X-ORIGIN could be

impacted by poor ENMs (i.e., validation and best practices of ENMs

should be followed). In addition, applying different transformation of

habitat suitabilities into local carrying capacities can affect patterns

of genetic variation (see Brown & Knowles, 2012). There are differ-

ent strategies one might take to avoid biases that could result from

unrealistic assumptions or errors in the upstream steps of the pipe-

line (Figure 1). For example, instead of using a fixed suitability score

from an ENM model for each deme, suitability scores between maxi-

mum and minimum range inferred for each deme might be randomly

sampled during the simulation process to generate expected patterns

of genetic variation that incorporate some uncertainties in the ENM

modelling. This might increase the number of simulations required

for inferring Ω to get an unbiased and precise estimate under an

ABC framework, given that accommodating such uncertainties may

increase the variance in observed patterns of genetic variation in

simulated data sets. Likewise, different transformations of habitat

suitabilities into local carrying capacities (scaling habitat suitability
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linearly with local carrying capacity vs. a step function; Brown &

Knowles, 2012) could be incorporated as alternative models to be

tested (i.e., treated in a model selection framework, even when the

primary interest is on inferring the origin of expansion, Ω).

Although such flexibility in accounting for uncertainty or poten-

tial errors in upstream steps (Figure 1) is a strength of the X-ORIGIN

package we developed, the application of X-ORIGIN (especially com-

pared with TDOA; Peter & Slatkin, 2013) comes with much more

computational expense. For example, a typical spatially explicit simu-

lation of 2,000 generations on a 150 9 150 grid layer and the gen-

eration of 1,000 SNPs takes more than 7 min. Users are advised to

calculate required computational resources before experimenting

with the pipeline. This includes reducing the size of the Ω prior (e.g.,

by applying TDOA as a preliminary step for data inspection, as

applied in the Collared pika example).

4.2 | The Mackenzie Mountain region as the most
likely origin of expansion in Collared pika

As an alpine small mammal, suitable habitats for Collared pika are

spatially highly heterogeneous, but also temporally heterogeneous

given that Alaska was directly impacted by the glacial cycles (Fig-

ure 2b). Previous analyses have suggested a potentially complex bio-

geographic history involving expansion from multiple ancestral

sources (Knowles et al., 2016; Lanier et al., 2015; Lanier & Olson,

2009). Limited sampling of populations inhibits analysis of data sub-

sets to explore such models with X-ORIGIN (i.e., multiple populations

are required to estimate potential sources of expansion) and there-

fore is beyond the scope of this manuscript. Nevertheless, it is infor-

mative to consider how our inference compares to previous

characterizations for the populations analysed here.

Previous studies that made inferences about the biogeographic

and demographic history of the Collared pika applied analyses that

assumed equilibrium status (e.g., FST, STRUCTURE analyses, estimates of

phylogenetic relationships among populations). For example, in an

analysis of the relationship between FST values among populations

and the geographic distance separating them (Lanier et al., 2015),

the most northeastern sampled population Jawbone Lake (Figure 4)

appeared to be an outlier under the expectation of isolation by dis-

tance. Based on this result, and the relative genetic distinctiveness

of the Jawbone Lake population and the other two north-central

populations from the Yukon-Tanana Uplands (specifically, the Eagle

Summit and Crescent Creek populations), these populations were

analysed separately and a distinct pattern of isolation by distance at

the regional level was interpreted as possible evidence of different

ancestral source populations (Lanier et al., 2015). However, our anal-

yses here provide a compelling argument for an alternative explana-

tion. Specifically, the genetic similarities between Jawbone Lake and

the Eagle Summit and Crescent Creek populations (See Figure 5 in

Lanier et al., 2015) may not reflect a refugial source that was dif-

fered from the refugial source of other sampled populations. Instead,

it may reflect their proximity to the geographic origin of expansion

in an ancestral species, Ω in the Mackenzie mountains (see Figure 4),

and more specifically, the similar geographic distance of the popula-

tions from the source of expansion. Even though our validation tests

indeed show that the degree of reliability about expansion can be

considerable (e.g., differing by as much as 1,500 km from the actual

expansion origin depending upon where on the landscape the expan-

sion proceeded from; Figure 5), the mean error surrounding esti-

mates of Ω as a function of the distance from the actual origin is

quite low (i.e., less than five demes away, or 250 km) for the geo-

graphic region with the highest likelihood of Ω (Figure 4). Interest-

ingly, Procrustes analyses in the Collared pikas, as well as other

codistributed alpine mammals, suggest a stronger deviation along the

longitudinal axis between genetic variation and geography (i.e.,

genetic similarities more centrally located than the geographic space

occupied by the populations; Knowles et al., 2016). Our analysis sup-

ported this deviation as a result of an expansion history along this

axis, offering an alternative interpretation to the hypothesis of a cen-

trally located refugium.

Lastly, ENMs for the LGM are not inconsistent with our estimate

(Figure 2b). However, if we consider information from the ENMs by

themselves, the region of high habitat suitability encompasses a

broad area that does not offer much detail about the potential loca-

tion of ancestral populations. This even includes a potential north-

western source population (Figure 2b), even though former genetic

(Knowles et al., 2016; Lanier et al., 2015) and fossil studies (Gunder-

son, Jacobsen, & Olson, 2009; Lanier & Olson, 2013) suggest the

lack of support for such a putative ancestral source (e.g., in the

Brooks Range). Both X-ORIGIN and TDOA analyses reinforce that

despite projections from the ENM for the LGM, this region does not

appear to be a likely candidate as an ancestral source of expansion.

5 | CONCLUSIONS

Our results show that failing to consider the impact of spatial and tem-

poral heterogeneity on the expansion process can lead to much less

accurate inferences (Figure 3a compared with b, and Figure 5a com-

pared with b). Furthermore, there are also ways to minimize potential

errors when inferring the origin of expansion. For example, in our sim-

ulations, we place a broad prior on parameters that are not targets of

interest, but may influence estimates of Ω (e.g., ancestral population,

carrying capacity; see Table 1), thereby accounting for uncertainty

about the demography of the expansion process. Moreover, the sum-

mary statistics used in the inference procedure (i.e., Ψ and FST values)

are not sensitive to the absolute effective population sizes, but rather

the ratio of size differences between population pairs. Lastly, despite

the lower accuracy of inferences for complicated scenarios, as with

the analysis of the Collared pika, relative to simple expansion scenar-

ios (Figures 3 and 5), accounting for the effects of spatial and tempo-

ral heterogeneity is generally more accurate than applying an

oversimplified model if the goal is to infer the geographic location of

an expansions origin (Figure 3). Therefore, we argue that the caveats

and concerns associated with inferring the origin of expansion do not

nullify the utility of spatially and temporally explicit models, such as
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those applied here in the new X-ORIGIN pipeline. In particular, we show

that it is incorrect to assume that environmental heterogeneity

(whether temporal or spatial) will not impact inferred origins of expan-

sion, and that despite the caveats we highlight with X-ORIGIN, they are

less problematic than many implicit assumptions made in approaches

that ignore geographic and temporal constraints on population move-

ments or population size fluctuations (see Knowles & Alvarado-Ser-

rano, 2010). Moreover, the reliability of any inference about the origin

of expansion under the more complex models implemented in the X-

ORIGIN pipeline can be (and should be) rigorously explored using valida-

tion procedures.
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