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ABSTRACT

Climatic or.environmental changgnot only driving distributional shifts in species today, ibut
hasalso causedistributionsto expand and contract in the past. Inferences about the geographic
locations ofpast populations, especially regions that served as refugis@uecepopulation$
and migratery routes are a challenging endeaRefugid areasmay be evidenced from fossil
recordsorsrégions oftempora stability inferred from ecologicahiche moded. Genomic data
offer an alternativeand broadly pplicablesource of information abouhe locality ofrefugial
areas, especiallyelative tofossil data, which are either uravailable orincomplete for most
speciesHere"we present a pipeline we developealledX-ORIGIN) for statisticaly inferring the
geographiewerigin of range expansiasing a spatially explicit coalescent modahd an
Approximate ByesianComputationtesting framework. In addition tassessinghe probability
of specific latitudinal and longitudinal coordinates mafugial or source populationsuch
inferences camlso be made accounting for the effects teimporal and spatianvironmental
heterogeneity, which may impact migration routes. We demonst@teGIN with an analysis of
genomicdatarcollected in the Collared pika that underwent-glastial expansion across Alaska

as well as‘present an assessment of its accuracy under a known model of expansion to validate

the approach.
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INTRODUCTION

Population expansions leave signatures in the distribution of population genetiowaria
across a landscape. This pattern of genetic variation is commonly used for making inferences
about the underlying demographic processes. For example, the decreasing pattern of genetic
diversity along expansion routes has been used to infer the origin of human migrations
(DeGiorgio;Jakobsson, & Rosenberg, 2009; Ramachandran et al., 3b0igrly, such genetic
signatures-have beeappliedto studypostglacial expansions in other specgias wellastheir
corresponding geographic refugia during glacial perafdbe Pleistocenéeviewed in Hewitt,

2000).

However, this apprad comes with an inherent issugpecifically, genetic diversity
patterns(e.g., heterozygosityk-sr) can reflectnot only signatures fronmrecent distributional
shifts but _alsolocal habitat suitability or longerm geographic isolatiofAusterliz, Jung
Muller, Godelle, & Gouyon, 1997; Ray, Currat, & Excoffier, 2Q0Bhus,while the isolation
by-distancesmadel applies relatively well to species that have a broad habdatas human
beings, species with narrower niches tend to track their habitats, displaying & derezsity
pattern ofuisolatiorby-barriers or resistane (McRae & Beier, 2007)Therefore, sole reliance on
the gradients of population size/heterozygosityttee principal components without spatial
models is inadequate for making accurate inferences about the ancestral source population or
directions"of expansiofFrancois et al., 2010Pue tothe rich, yet confoundinghformation
retainedingthengenetic diversity patternsost phylogeographic studi@sfer the location of
hypothesized«refugia frotme data that are independent of the genomic information (reviewed in
Knowles, 2009)Ecological niche model€ENMs), for instancecould be appliedo infer areas
with temporalstability as suitable habitatén addition,the associatedenetic dataould thenbe
used to evaluate the hypothesis that such geographic regions woulddragd as refugial
source population (e.g., see Carnaval, Hickerson, Haddad, Rodrigues, & Moritz, 2009; Knowles,
Massatti, He;"Olson, & Lanier, 2016).

Attempts toaddress the issue of complex historical processes shaping the current genetic
patternshave witnessedhe developmenbf spatiallyexplicit demographic models as well as
spatial genetic indicesRay, Currat, Berthigr & Excoffier (2005) systematically tested the
likelihood of different geographic locations as human origbsevaluating the goodnessit
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90 of Rgr valuesfrom different spatial simulations of expansionsingthe empirical valuesitan,

91  Powell, BeaumontBurger, & Thoma$2009)estimatedhe origin of lactase persistemiutations

92 in Europe by fitting empirical frequencies of lactase perdistartationsto those fromspatial

93  simulatiors of the gene expansicalongwith dairy groups.These pioneer studies demonstrate
94 the potentialof using spatiatgxplicit models for estimating igration histories However these

95 models do not take temporal changes in habitat suitability into accadmnth limit their

96 applicabilityin‘flora and fauna that underwent expansitargelydriven by climatic oscillations.

97 Spatial“genetiéndices, on tk otherhand, are designed fmck up “rangeexpansion”-

98  specificsignatures-that is, thedirectiors of gene flow By analyzing the allele frequency clines
99 created bysconsecutive founder events during the expansion of a population across a landscape,
100 as capturéby a directionality indeX¥?, Peter & Slatkin(2013) demonstrated how information on
101  the geographic) origin anthe direction of expansion could be extracted from genomic data
102  through asymmetrical gene flow. That is, regression between pairwise differeh#’ and

103  geographic distancdsetweenpopulations can be used dorectly infer thegeographiarigin of

104  expansionsHoweveseveralaspects ofttis approacHimit its utility in practice. For example,
105  this method ‘des not accountfor the heterogeneity in the underlying landscape during the
106  inferencesprocedur@.e., assuming astrict isolationby-distance model)? may also be biased
107 toward nenzero valuesvhen local population sizes differ substanyigfPeter & Slatkin, 2013)

108  Also, although it is possible toecovera signature of expansidinom the magnitude of?,

109  assessing the significance ®fvalues, and hence, the confidence of the inferred origin, is not
110  straightforward.

111 Here:we present a pipelingpecificallydeveloped fomaking statistical inferences about
112 the geographic origin of range expansioalledx-0ORIGIN) that addresseheseaforementioned

113 shortcomings This pipelinebuilds uponearlier developments in spatial demographic models
114 (e.g., Ray.et.al., 2010) argpatially explicit summary statistics (e.g., Peter & Slatkin, 2013).
115  Specifically, withthe X-ORIGIN we couplethe ?-index (Peter & Slatkin, 2013)vith a spatially

116  explicit coalescent moddor hypothesis testing in an Approximate Bayesian Computation
117  (ABC; Beaumont, Zhang, & Balding, 200&amework Information based on current and/o
118  historical habitat suitabilitgan be estimated using ENMs aubsequently incorporated into the
119  spatially explicit coalescent modgle., a modified application ;(fPLATCHE2; Ray, Currat, Foll,

120 & Excoffier, 2010) In addition, with the ABC framework, the estimation of the geographic
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origin of range expansion will not be sensitive to the uncertainties in the underlyiogrdgmc
parameters if a wide range of priors of demographic parameters is specified insgpatetions.
Hereafter, we refer to the geographic origin of range expansion as a par&né&tagethey the
significance of expansion and the confidence of a particular geographic location docéstral
source populatioareprovided bythe X-ORIGIN. As such, the pipeline couples information from
a series of independent analyses (Fig. 1), makir@RIGIN a useful tool for inferring the
geographicorigin of ancestral sources with confidence.

It should be noted that there are general procedural parallels with the integrative
distributional, demographic, and coalescent (iDDC) approach for model selectia, albo
involves asseries of independent analy§es, estimates of habitat suitability, demographic
modeling, ‘andsspatially explicit coalescent; He, Edwards, & Knowles, 2013). Howevet; the
ORIGIN pipelinediffers in that (i)t infers a novel model parameter of inter@si.e., the actual
latitudinal and_longitudinal coordinates), and (tiutilizes information from spatial summary
statistics, specifically, pairwise population measurdsspfand the directionality index? (Peter
& Slatkin,2023) As suchx-ORIGIN is an approach that focuses on the estimation of a specific
parameter-ofiinterest Q, whereas théDDC is an approach for modselectionamong a set of
biologically..informed demographic hypothesethe foci of which varysignificantly among
studies(e.g+; Bemmels, Title, Ortego, & Knowles, 2016; Knowles & Massatti, 2017; Mia&satt
Knowles, 2016).

Here we describe the approaaid testhe accuracy ofhe X-ORIGIN pipelinein inferring
Q under a&kmown expansion historyi.e., simulatedhistory; see Fig. 2 Specifically, we model a
history of expansiothat involvegempora shifts in the habitat suitability oflandscapdi.e., we
validate the approach by implementimgomplex modelvhich cannot be@ommodated by any
other currently existing programisWe also demonstrate the utility ofhe X-ORIGIN with an
analysis ofempirical data. Specifically, we analy#ge SNP datset collected irthe Collared
pika (Ochotonacollaris) (i.e., data from Lanier, Massatti, He, Olson, & Knowles, 2015). The
impact of sthe glaciations is pronounced in small Alaskan mammals (Galpr€aiok,
Eddingsaasy & DeChaine, 2011; Knowles et al.,, 2016; Lanier et al.,.20A/6)le previous
analysesn the Collared jkasalsosuggestdthat contemporary environmental factors contribute

less to genomic structure thandynamic history involving the founding of current populations
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151 by ancestral source populatiofisanier et al., 2015)the location of putative ancestral source
152  populations remains unclear.

153

154  METHODS

155

156  Satigtic Inferenees using the X-ORIGIN pipeline

157

158  The Xx-ORIGIN“pipeline coupts information from a series of independent analygesmake
159 inferences abou®, the geographic location of ancestral source populations, by estintla¢éing
160  posterior probability of2 under an ABC frameworkFig. 1) Scripts are provided in th&-

161  ORIGIN pipelinefor all the $eps involvedand a detailed tutorial is providexh GitHub (see
162  https://github.cam/KnowlesLabPORGIN).

163 Briefly, the approach employs a spatially explicit coalescent to generate expected patterns
164  of genomie variatiorundera set of priors, including a prior o2 and priors on demographic
165  parametergfithe expansion process (j.kandm, the local population sizes and migration rates,
166 and anancestral population siz&Js). That is, genomic gnulations of range expansion are
167 initiated at.different random locations within the geographic range specified by themgibr
168  and for_different population size and migration regdues If there is no prior knowledgeno
169  possible geographic origins, all demes on the map used for demographic simulations will be
170  tested.Otherwise, a prior o® can bebased orthe fossil record, or a general candidate region
171 might be based on the regression between pairwise poputtiierences of” and geographic
172  distancegseePeters & Slatkin 2013

173 Tol make inferences using-ORIGIN that considerthe effects of spatial and temporal
174  environmental heterogeneityn the expansionprocess,x-ORIGIN models the impact of this
175 environmental_heterogeneign the expansion procesSpecifically, heterogeneityn habitat
176  suitability might be derived from ecological niche models (ENNts)the present or the past
177  (Sindato etal’, 2016; Waltari et al., 20031 from information on known barriers (e.g., mountain
178  ranges, glaciers, and bodies of water; Boehm et al., 2013; Knowles & Massatti\aditef| &

179  Hickerson, 2013)These suitability mapsare used to inform demographiynamics associated
180  with the expansion proceby specifyingdifferert likely migration eventss a function o$patial

181  and/or temporaénvironmerdl heterogeneity. Specifically, the habitat suitability scores for each
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deme determine local population sizes, thereby influencing the actual number of sregrass
demes per generation. If distributional shifts are induced by climatic chathgestemporal
shifts in habitat suitabiliy can beincorporated into the demographic modelipg., applying
different relative weighting of suitability information from past versus current ENMs to mirror
trends of climatic change; see Brown & Knowles, 208®)en thatshifts in connectiviy over

time can Influence the expansion process, and consequin@lgatterns of genetic variation

across the'landscape

Programs called up in the X-ORIGIN pipeline

In the X-ORIGIN pipeline, @&mographic andspatially explicit coalescent simulationgre
performed insPLATCHE2 (Ray et al., 2010)n conjunction witha customized scripin the x-
ORIGIN pipelineto allow for temporally changing landscapes. Local demographic parameters
(i.e.,k andm) areinformed from habitat suitabilitiy scaling these parametgnoportionally to
the habitatssuitability valuesf local demes (Fig. 1which mightbe temporally dynamic (i.e.,
the habitat® suitability for a particular location melygange each generation basedsaifting
climatic eonditiors; see Bown & Knowles 2012). E&ch generationm proportion of the
populationsmigrates out of the local deme; migration occurs to the adjacent fau(nceth,
south, west, east). After the exchange of individuals, local demes grow logistithllg rater,
and are regulated by the local carrying capacftyhich are also ealed as a function of the
habitat suitabilityof a deme)r can be set to a specific val(eg., He et al.2013) andas we do
here ¢ = 1)porit can also be estimated as a paramé&tar eachtime-forward simulation (i.e., a
spatially explicit map of per generation local population sizes and migration g\ esesies of
correspondingtime-backward coalescent genetic simulatame run, wih a separate coalescent
simulation.generated for each independent lacdise study. Thancestry of an allele will trace
back from_the/present into ancestral source populations, where the pattern ofngage i
coalescence@cross the landscape and the timing of coalescence is defined by tHiertisuel
local demographic simulations (i.e., the per generdiandm parameter values). SNP mutation
models are then used to simulate patterns of genomic vanat8smATCHE2, where the state of

each SNP is generated acrtssindependent coalescent simulations.
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To generate patterns of genomic variation to compare with the empirical data, the
simulated datasets are constructed by sampling the same populations (in geogeaghjdise
same number of individuals, and the same number of &klftse empirical scenariSummary
statistics are calculated for both the empirical and simulated datasets. These include the spatial
summary ¥_statistics calculated within, between, across all populatiasswvell aspairwise
populationksr-values ARLEQUIN 3.5 (Excoffier & Lischer, 2010)s used to calculatés;. Note
that othernorrspatial statisticoften used in ABC analysewere also considered (e.i, the
number of‘haplotypes, ard, observedeterozygosity These additional summary statistics are
not used in the analyses presented here because of the lack information they contairteée under
expansiongsscenariose@ SuplementaryFig. S1); however, a user could employ thenxin
ORIGIN if they determine theare relevant to the expansibistory under study

The empirical summary statistiese compared to those frothhe simulated data using
approximate Bayesian computation (ABC), as implemented WABCESTIMATOR in
ABCTooLBOX (Wegmann, Leuenberger, Neuenschwander, & Excoffier, 2(R@her than
conducting=ABC analyses directly on the summary statistigscipal components (PCs) are
extracted fromall predictor variables to remove the effects of interactions between summary
statistics;=as well as to reduce "the curse of dimensionality" (i.e., when too many statistics are
included,-the distance between thienulated and empirical values systematically increases,
reducing the accuracy of parameter estimates and making it more ditficli#tinguish among
models) (Wegmann & Excoffier, 2010; Wegmann, Leuenberger, & Excoffier, 2009).

Fiverthousand simulations (0.5%) whose transformed summary statistics @&st ¢bos
those calculated from the empirical genomic data retained for estimatingthe model
parameters(i.e., Q, the geographic locations of the ancestral source populations, and the
demographic parameteksm, andN,). In order to jointly estimate the likelihood of a specific
deme as the origif? (i.e., a specific longitude and latitud#)e kernel densitiesf Q across the
retained simulationsvas estimated and used as likelihood. This provides anonparametric
way of smeothing and estimating the likelihood of the origin basethetimited retained
simulations(i.e., from the 0.5%, or five thousand retained simulations).

To check if thenferredmodel is capable of generating the observed data, the likelihood
of the empirical datagiven the modelis compared with the likelihoods of the retained
simulations. The fraction of simulations that have a smaller likelihood than the empiricel data
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expressedas aP-value, with smalP-values indicating that a model is highly unliké§/egmann
et al., 2010) Likewise, we conduct standard evaluations of the quality of the inferences from

ABC (e.g., bias in parameter estimates; described below).

Performance.ef.the X-ORIGIN pipeline

We testedthe pipeline on a simulated scenafkig. 2A) to evaluate the performance of the
approachfor‘inferring the geographic location of the source popul&iamder a temporally
changing landscap&pecifically, simulations were conducteda80 x 50 demdandscapevith
a centrdlyoecated geographidarrier that was present ithe pastbut not the preserand
expansion=proceeding from the upper left defRe. 2A). Simulations were run for 500
generations, in'which the barrier persisted for 250 generations. At the end of thdicirsul®
diploid individuals were sampled from 10 denfiesn across the distributional maf range of
migration rate, ancestral poputat size and carrying capacityaluesper demewere simulated
to check if«the infered origin is sensitive to particular details t¢fie demographi@xpansion
procesgTable:1).

The.accuracy ok-ORIGIN was evaluated byneasuringhe geographiclistance between
the actuabnd inferredyeographic location of the source population (i.e., differences ectoel
and inferred latitudinal and longitudinal coordinates). In addition to evafu#tie accuracy of
the estimated? under the model in which expansion proceeded from the upper left deme (Fig.
2), we alsortested whethtre accuracy of2 varied depending upon the geographic origin of the
expansionSpecifically,we investigated the performance of the model by inspecting the average
error ofthe inferred? of 10 pseudabsered dataset§.e., PODs from the simulations) which
the geographic origin of the expansidiffered. Specifically2 was systematically varied so that
each deme. across the entire map served as the source of expansion

In addition, he accuracy ok-ORIGIN pipeline is compared with Pet&r Slatkin’s (2013)
original “timerdifference of arrival location estimation” (TDOA) approach as well as a modified
TDOA approach, which incorporates spatial heterogeneity in migration pat@mse, He, &
Knowles, in prep)Specifically,we calculated the distance betwedbe actual geographic origin
with the one estimatefiom the TDOA approache$he TDOA approach identifies the origin of
the expansion by identifying the deme that expldies highest proportion of variatian the
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correlation of pairwise? differences andhe pairwisedifferences ofjeographic distances of the
populationsto the potential origin The modified TDOA approach correlates pairwigé
differences with pairwise resistance differendqddcRae & Nirnberger, 2006)n which
heterogeneous landscape is considé@dve et al., in prepwhereashe original TDOA (Peter

& Slatkin 2013),assumes migration occurs on a homogeneous landscape (i.e., according to a
random diffusion modelWe conducted a cursory examination of the robustnesso@iGIN to

model misspecification as well.

Demonstration of x-ORIGIN with application to Alaskan Collared pika

In addition'to details abotihe ABC analysesséebelow), rere we briefly describe trempirical
genomic data we analyzedwith X-ORIGIN, given that all data used here are from previous
publications and are referenced bel@pecifically, we analyze a genomidatasetcollected in
the AlaskanCollared pka (for detailson library construction and rigorous quality filterisge
Lanieret al=2015).Maps of environmental heterogeneity used inXh&rIGIN analyses to infer

Q, the geographic location of the ancestral source population for the Collaredwaka
generatedwfrom ENMs for the present and the last glacial maximum, (8B detailsin
Knowleset-al. 2016).

Genomic dataset. We analyzed RADseq data for 8 populationstenweexcludedthe Pika Camp
(WrangeltStr=Elias Mtns; GIS coordinates 61.217238.2670)from our analysedecause
previous analySes indicate thiatvas founded from separate ancestral refugial source (Ladier
al. 2015).; Of the 23,493RADseq loci withat least one biallelic SNBcross populationsye
analyzed 6816 loci with one SNPretained per RADseq lociin 50 individuals (i.e., @
individualsper. population, with the exception of Jawbone Lake, where n l@)in less than
50% of the,samples or were not present in more than one individual per popwat®n
excluded Nete that this is an expanded dataset relative to those previously pdiigh, Lanier
et al. 2015;"Knowlest al. 2016)because weecovered more genetic information using ddRAD
aligned to a reference genomoe Ochotona princeps (American pika; ID: 771)

The directionality indexX? requires information on the ancestral versus derived states of
SNPs becausthe statisticis calculated by counting the difference in derived allelic frequencies
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between pairs of populations (see Emm Peter & Slatkin 2013). Ancestral states of independent
biallelic SNPswere determinedby aligning the sequences wi@chotona princeps (American

pika; ID: 771 https://www.ncbi.nlm.nih.gov/genome

Prior on Q,.the geographic locations of the origin of expansion. The TDOA approach was
conducted, to_select candidate regions of origininform the prior onQ (as opposed to
consideringthe entire state of Alask8pecifically, for each potential geographic location as the
site of the“ancestral source population (igach deme from the distributional map), linear
regressionwas performed betweermpairwise ¥ differences and the pairwise differences of
geographie distances of the populations to the potential origwe linear regressiomwas
repeated for each of the different potential geographic origins and the geograpimasoadth
R’-values larger than 0.5were used to specify the prior on the geographic location of the
ancestral source populatigregression analyses were conductesthg modified scripts from
Peter& Slatkin, 2013, which we provide ¢fnowlesLab/Github)This generated atgetarea of
approximately=442,3068n7 (i.e., 1302demes,with a size 0f18.4 x 18.4kn?Y for each deme
Table ) to'analyze in detail regarding the posterior probabilit2pthe geographic location of
the ancestral source population the set of 8 Collared pika populations collected across its
range (seeLanier et al. 2015 for details).

Estimates of habitat heterogeneity across space and time. Maps of environmentdieterogeneity
for the Collared jxa were generated from ENMs (see detail&knowleset al. 2016).Briefly,
inferences about differences in habitat suitability across space were made for the prettent and
LGM from ENMsbased on bioclimatic data for the present and paleoclimatidrdata21 kya
The models were testeover combinations of regularization parameters from 0.25 to 3 in
intervals of 0.25 and the Linear, Quadratic, Hinge, Product and Threshold feasimgs
SDMTooLBox (Brown, 2014) Each model parameter class was replicated 25 tisiag aross
validation

In addition, temporal shifts in habitat suitability were represented diiegences in the
relative weighting ofhabitat suitabilities estimated for the present and LGM across time to
reflect climatic trend in the region overthe past 21,000 year8rown & Knowles 202).
Specifically,the current ENM suitability mapas used to represent the predens000 years
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336 ago, an intermediate suitability mdipe., anaverage suitabilitypetweenthe current and LGM
337 ENMSs) for the time priod 5,000 -11,000 years ago, and the LGM ENM suitability niap
338 11,000 — 21,000 years ago.

339

340 ABC analyses.Datasets were simulated for 2100 generat{basedon ascaling factor of 10 to
341 reduce the.computational requirements; see He et &) Rbdepresent the range expansion from
342 last glacialFmaximumPriorsfor thelocal carrying capacityk), ancestral population siz8l4:s),
343  and migration“rates ) are set according to Laniet al. (2015) (see Table 1)Note thata
344  geographic grid of 18.4 x 18k corresponded to a single demed expansion was modeled
345  across thesAlaskan landscape (i.e., over approximae8y,850knr).

346 As withrtests of the general performancexedrIGIN, we compared thestimates of?,
347 the geographicjlocatioof the ancestral souras expansionwith results from: 1}the TDOA
348 method whereheterogengy in the presentandscape is not incorporat€de., the geographic
349 distances ‘separating populations were represented as pairwise Euclidean disknties),
350 modified TDOAMethod whereresistance distancésased orheterogeneity ithe currentabitat
351  suitability is' used and3) x-ORIGIN, wheretemporalshifts in theheterogenigy of the landscape
352  over timeware accounted fofo evaluatehe accuracy of estimedof Q, five thousand pseudo
353  observationsvere generated fronthe prior distributions of the parameterd the estimagd
354 parameters aranbiased, posterior quantiles of the parameters fh@arpseudaatasetshould
355  be uniformly distributed (Cook, Gelman, & Rubin, 2006; Wegmann et al., 2010). The posterior
356 quantiles oftrue parameters for each pseudo ruaremcalculated based on the posterior
357 distributionvefithe regression adjusted 5000 simulations closest to the pseud@®dloseasets

358

359 RESULTS

360

361  Performance of the X-ORIGIN pipeline

362

363  For the example history consiéehere, which involved a central barrier that was present in the
364 past, but not the presefiite., there isboth spatial and tempordleterogeneity inhabitat
365 suitabilitieg X-ORIGIN gives more accurate inferences<af the geographic location of the
366  sourcepopulation of the expansiothanthe TDOA approachln fact, the performance of-
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367 ORIGIN was quite good, estimating tingost likely origin within * 4 demes of the actual origin
368 (meanP-value = 0.6] from different starting positions across the map (and hence, differences in
369 when and where the expansion process interacted with the geographid,atcept forthe

370 lower left_grid of the geographic ard&ig. 3A, C; see Supplementary Fig. S2 ttetaled

371 examplef.variation ininferencesacross POD#or different locations of origins).

372 In centrast, the majority of analyse#th the TDOA approaclgive inferred locationghat

373  differ markedly*from the actual area where the expansion originatesiective of where on the
374  map the expansion originates (Fig. 3B). The performantieedfDOA approach wasspecially

375 poor (i.e., large discrepancies between the inferred and actual geographic originnsi@)pa
376  when thesancestral source area wasr thebarrier (Fig. 3D). This variation in accuracy
377  highlights the importance of explicitly modeling the temporal heterogeneigndtcapesgalso

378 see Wegmann,)Currat, & Excoffier, 2006), as it strongly distort&?thignatures, especially if
379  the heterogeneity is present in the early stage of the expansion.

380

381 Inferred geographic origin of expansion in the Alaskan Collared Pika

382

383 Foruthe set of Collaregika populations studied here, the highest likelihood (marginal
384  density; 1:8%10°% P-value: 0.996) for théocation of the expansion origif2, is the Mackenzie
385  Mountains in YukonTerritory, CanadgFig. 4). This inference is based tme retained5000

386  simulationswhose summary statistiegere to those of empiricalata. The geographic origin of
387 expansiong(ive. the latitudinal and longitudinatoordinates) was estimated usig two

388 dimensionakkernel density of the retained simulationplemented usinghe kde2d function in

389 the MASS package & (Venables & Ripley, 2002).

390 The geographic origin of expansion inferred usxigrIGIN differed from the TDOA
391 results (Fig..4).. Moreover, neither the inferred area based onptisvise ¥ matrix on a
392 homogeneous.dandscape (TD@#fusion) northe one based caresistance mapf the current

393 landscape.suitabilities (TDO#£esistance), arm areas with high likelihoods. That, isimulated

394 genetic data,sets where expansion proceeded from the inferred areas under the TDOA
395 approaches do not correspond to the observed genetic data (i.e., there is a mismeaérhthet

396 empirical summary statistic and those calculated from the simondti
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Based orthe distances between actual versus inferred origin for each of the different
method, X-ORIGIN outperformed TDOA, although thaccuracy ofinferred Q-values varied
depending upon the geographic origin of the expansion (Fig. 5). We aésthabthe accuracy
was generally lower for the heterogeneous landscape inferred for pikas reldtieelandscape
used to validate th&-oRIGIN package (Fig. 5 versus Fig. 3). In particulpopulationsthat
originated from thesoutheastegion exhibitedhe lowest accurac{i.e., the greatest difference
between the“inferred and actual valueXf Thisis most likely due to th&ack of samples from
that arealand“consequently littlenformation of the direction of asymmetrical gene flow
expectedunder an expansion modgke Pete& Slatkin 2013).Nevertheless, comparison of the
accuracyofsinferencesetweenx-oRIGIN and TDOA approaches, indicate those froroRIGIN
are more waccurate for an expansion originating from the Mackenzie Mountain range.
Specifically, analyzing simulated data eXpansiongrom the Mackenzie Mountain rangee.,
the PODs from the ABC simulations), the TDOA approaches gstinateghat aregenerally
displacedby 15 to30 demedrom the actual origin of expansion (i.e., a discrepancy of 750 to
1500 km),s#and " curiouslythese were more inaccurate than inferencegh a southwest
geographie originof expansion(Fig. 5), despite sampling of pdations in that region (see

discussion:below).

DiscussioN

Patterns ofrgenetic variation in individuals sampled in the present harbanfocmation about
past movements of specielm contrast to thosdrom non-spatial models of population
demography(e.g., changes in population size or admixture proportions; see Hey, 2005; Theis,
Ronco, Indermaur, Salzburger, & Egger, 201dyent developments have focusedrdarences
from spatially.explicit approacheSpecifically, departure from equilibrium status of population
movements under a diffuse model, ‘isolatidoy-distance’, caused either by range
expansion/egntraction history, long distance admixture or habitat heterogsregtedthrough
different appreaches. @ general approach is to quantify discrepancies between Ispatietic
patterns and the expectations from geographic distances. For exammplepahcies between
population’s positionson a genetic PCA mapgan be visualized against a map of their
geographical distributionsing Procrustes analysesexamine wheren a landscape patterns of
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genetic variation depart from isolation by distariggmowles et al., 2016; Wang, Zollner, &
Rosenbey, 2012) or a“geogenetic mdpcan be used tinfer potential longrange admixture
among populations (Bradburd, Ralph, & Coop, 2016). Similarly, disruptions to past movement
might be inferred by relating the effective migration rates to expected genetic dissimilarities for
an interpolated geographical map of barriers or corridors among populéeasPetkova,
Novembre; & Stephens, 2016).

Instead“of quantifying discrepancié®m isolatiorby-distance our approactdirectly
modelsexpected patterns geneticvariationusing spatial genetic indicesdmakes inferences
about historical movements specifically, the geographic origin of expansi@gh,— under an
ABC framewark,while incorporating temporal shifts in habitat suitability over time. This is not
the first approach for directly evaluating genetic variation under models ofitedtmovement.

For example, the spatial genetic indices applied here were developedctty dirfer historical
movements based on shifts in the genetic summary statistics across a landscape (Peter & Slatkin
2013), andspatiatautocorrelation ofgenetic covariance information has been applied to
distinguish=among spatiablgxplicit demograplt scenariogAlvaradoSerrano & Hickerson,
2016; Bertorelle & Barbujani, 1995; Coop, Witonsky, Rienzo, & Pritchard, 2010). However, our
approachinfers and evaluates the@arameter? — the actual latitudinal and longitudinal
coordinatesfor the origin of an expansithat is not based on the assumption of a diffusion
model that provides statisticakigorousness andlexible applicatios for inferences about
historical ‘expansion scenarios. First, we can evaluate the likelihood of differegragkic
locations for“the origin of a population expansion, accounting for both spatial and temporal
heterogeaeity«in habitat suitability of the landscape. Second, with the freely avakabieGIN
pipeline we developed, users cealidate any inference by determining whether the inferred
modelis capable ofyeneraing datathat generally corresponds to the empirical data, which is
equally important as estimating the most likely model for the origin of expaisgrthe most

likely location_for the origin of expansion may nonetheless be a poor fit to the obseta¢d d
Such attributes are not currently implemented in other methods for inference apauosien
histories(e.g.,compare with Ray et al2005).

Below we discuss how these attributes ma@RIGIN not only a practical tool, but as our
analyses demaitrate, also one whose performance is better than not acconmgodath
dynamic histories. Likewise, we highlight how this pipeline can easily be adaptednforea
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general inference approach beyond inferring the origin of expansions, espectallyhei
development of new spatial indices. However,alg® note the difference in performance of X
ORIGIN between a simple demographic history (i.e., the one used to validate theeapprmh
the one with more extreme habitat heterogeneityd caution users of the importance for
validating the.accuracy of the inferenadnich can be implemented inélx-ORIGIN pipeline. We
apply this ‘practice when interpreting the results fronxto®iGIN analysis of the Collared pikas,
as well'as'discussspects of thdata that might contribute to uncertainty in the inferred origin of

expansion;, and‘the importanafcorroborative evidence not based on the genetic data itself

Factors impacting the accuracy of inferences about the geographic origin of expansion

The ¥ index directly captures the overall trend of differences in frequencies of dierive
polymorphic_alleles in populations based on the fact that expanding front of populations are
experiencing _serial bottlenecks. Therefot®, indices are informative as long asurrent
populationsthave not yet reached equilibriunthémajority of the pairwise? indices are close
to zero in the'systelfwhich is not the case for pikas; Supplementary Tahlthé&)lack of spatial
gradient'inithe? indices indicatehateither trere was noan expansion aa sufficientamount of
time sincethe expansiorhas passed such that its genetic signaturencdonger bedeteced by
the ¥ indices(see also Peter and Slatkin 201\8)e tested a scenario in the Pika dataset where
there is na.expansion origin examine the performance xforIGIN. Specifically, we simulated
1000 replicateydata sets in whiali populations started from their sampling areas to reach
equilibriumestateskor these datasetsl|tlaough ¥ indices deviate strongly from zero, no origin
can be estimated from TDOA as no positive relationship between pairwise differeii¢esnaf
geographic distances among populations can be estab{(Shpplementary Table) 2Likewise,
with X-ORIGIN, marginal densities of the expansion model are extremelfdawhe order of
10%°°to 10%2as/compared to for PODs that experienced expansion from a single oragid)
P-values_are”zerdSupplementary Table 2)Therefore,x-ORIGIN, like TDOA, will not give
misleadingresults about the potenbabin for expansion when no such expansion occurred.

Any inference that extracts information on the geographic distribution of genetatiofari
requires adequate sampling of populations as well as number of independerit. SNRdeast
more than 1,000 independent SNPster& Slatkin 2013 Bradburdet al, 2016) Our results
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490 clearly show that inferences become less accurate when saroplddtns are located further
491  from the location where an expansion originated (e.g., see higher error rate sasbudbrner

492  of Fig. 5A). Therefore, researchers should carefully consider the sampling dagugmti¢ular,

493  our resultgsee alsdreter &Slatkin, 2013Bradburdet al.,2016)suggest that obtaining accurate
494 inferences_that utilize spatial information about the distribution of genetiatiear may be

495  dependent.upon which populations are sampled, rather than whether there is sufficiebipower
496  such inferences related to thenmher of loci analyzed. Although it's beyond the scope of this
497  study, this'general question is something that could be explored usixgtheiN pipeline.

498 Another ffactor impacting the accuracy of inference relates to modedpadsfication.

499  Specificdlyy; eemplicated demographic scenarios such as those involving two or more
500 geographicorigins of expansion will give misleading results if not accommodateaidgPeter

501 & Slatkin 2013). There are a number of ways to accommodate and/or test whetramagdas
502  expansion from a single source might be violated. For example, clustering algaréhrbe run

503 to delineate_populations into different groups with potentially different expansion oagdhs

504 validated bygasminimum spanning tree bfribm a matrix & ¥-values(Peter& Slatkin 2013),

505 followed by separate inferences®ffor each subgroup of populatiorslternatively, competing

506  explanatory, models witlmultiple origins versus one expansion origgan be analyzed in -X

507 ORIGIN.and compared in a modslection frameworkOur results also suggest that any model,
508 even those that might be more probable than others, should be interpreted with cantsn if
509 located in“areas with low confidence (based on reference to simulated datasets), or if the most
510 likely model'nevertheless has a low probability of generating data that resembles the empirical
511 data(i.e., lowP<value; Wegmann et al. 2018ee He et al. 2013 for details of model validation).
512 Despite positive aspects ®fORIGIN related to estimating the likelihood of the expansion
513 origin, and consequently, uncertainty surrounding this inference (e.g., the geographic are
514 spanned by.the 90% highest posterior densit@)fas well as validating the inference using
515 PODs (see Eigh), one unexplored issue is how errors early in the pipeline might get amplified
516 and generate"misleading resulige did a cursory examination of how such errors might impact
517 an inferred"expansion origin. Specifically, we examined how robust the inferred orgjin e

518 to uncertainties regardinthe temporal changes in habitatsn this casethe duration of a

519 barrier, as in the scenario we used to validaterIGIN (see Fig. 2). When wearied the true

520 duration of the barrieto simulate data (i.e., simulate data with a barrier that persist@@@ao
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300 generations, rather than 250 out of the 500 generations), we observed no difference in the
accuracy of th& estimation(Supplementary Fig. S3). This shows that the pipelareberobust

to misspecification of temporal dynamics of a historical scenatieésfor the parameter space
examinedherd. This clearly should not be interpreted as general evidence of robustness to
model misspecification. Rather we present it here to show th&@R{GIN exhibits some
robustness, but also to emphasize that all users can conduct their own investigatostteess
tailoredto"the specifics of their application.

There are of course other paths for errors that could impact the accuracy of inferences
aboutQ. For example, we useNMs to estimatepotential suitable areao inform demographic
models (see Fig. 1). As a consequeribe, results fronx-oRIGIN could be impacted by poor
ENMs (i.e.y*validation and best practices of ENMs should be followeddddiion, applying
different transformation dfiabitat suitabilities into local carrying capacitem affect patterns of
genetic vaation (see Brown& Knowles 2012)There are different strategies one might take to
avoid biases that could result framrealistic assumptions or errors in the upstream steps of the
pipeline (Figure 1). For example, instead of using a fixed suitability score from lsinniddel
for each demey suitability scores between maximum and minimum range inferred for each deme
might bewrandomly sampled during the simulation process to generate expected patterns of
genetic_variation that incorporate some uncertainties in the ENM mgddlhis might increase
the number of simulations required for inferri@go get an unbiased and preeiestimate under
an ABC framework, given that accommodating such uncertainties may indneagariance in
observed patterns of genetic variation in simulated datdskésvise, different transformations
of habitat suitabilities into local carrying capacities (scaling habitat suitability linearly with local
carrying capacity versus a step function; Brown & Knowl¥12) could be incorporated as
alternative models to be tested (i.e., treated in a model selection framewen when the
primary interests on inferring the origin of expansiof).

Although' such flexibility in accounting for uncertainty or potential errors in upstream
steps (Fig.«12)s a strength othe x-ORIGIN package we developed, the applicatioxadRIGIN
(especially'eomparedith TDOA; Peter & Slatkin, 2003comes with much more computational
expense. For example, yptcal spatiallyexplicit simulation of 2000 generations on a 150 x 150
grid layer and the generation of 1000 SNPs takes more than 7 minutes. Users atketadvise
calaulate required computational resources before experimenting with the pigdlisencludes
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reducing the size of th& prior (e.g., by applyingTDOA as a preliminary step for data
inspection, as applied in the Collarablgpexample)

The Mackenzie Mountain region as the most likely origin of expansion in Collared pika

As ‘an_alpine small mammal, suitable habitats for Collgikd are spatially highly
heterogeneous; but also temporally heterogeneous given that Alaska was directly impacted by
the glacial~eycles (Fig. 2B). Previous analyses have suggested a potentially complex
biogeographic history involving expansion from mukiphncestral sourcednowles et al.,

2016; Lanierget al., 2015; Lanier & Olson, 2009). Limited sampling of populations inhibits
analysis of‘data subsets to explore such modéls X-ORIGIN (i.e., multiple populations are
required to estimate potential sources of expansemy therefordas beyond the scope of this
manuscript. Nevertheless, it is informative to consider how our inference compares toyzevi

characterizations for theopulations analyzed here

Previgus studies that made inferences about the biogeographic and demograplgic histor
of the Collaredpika appliedanalyses that assudhequilibrium status (e.gksr, STRUCTURE
analyses estimates of phylogenetic relationshipmong populations For example, in an
analysisef'the relationship betwedpsr-values among populations and the geographic distance
separating thenfLanier et al.,2015) the mostnorth-easern sampéd population Jawbone Lake
(Fig. 4) appeared to be autlier under the expectation ofalatiorby-distance Based on this
result,andsthe relative genetic distinctiveness of the Jawbone Lake population anlethievot
north-centralspopulations from the Yukeéranana Uplands (specifically, the Eagle Sumsmid
Cresent Creek populationghese populations were analyzed separately and a distinct pattern of
isolation by distance at the regional level was interpreted as possible evidence of different
ancestral ssource populations (Lanietr al., 2015). However,our analyses here provide a
compellingsargument for an alternative exgaton Specifically,the genetic similaritiebetween
Jawbone lake anithe Eagle Summit and Crescent Creek populat{@ee Fig. 5 in Lanier et al.,
2015) may notyreflect a refugial source that was differed from the refugial source of other
sampled populations. Instead, it ma§lect their proximity to the geographic origin of expansion
in an ancestral speciegQ, in the Mackenzie mountaingsee Fig. 4), and me specifically, the

similar geographic distana# the populations from the source of expansion. Even though
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583 validation tests indeed show that the degree of reliability adxquéinsioncan be considerable
584  (e.g., differing by as much as 1500 km from the actual expansion origin depending upon where
585 on the landscape the expansion proceeded from; Fig. 5), the mean error surrounditbgsestima
586 Q as a function_of the distance from the actual origin is quite(i@w less than 5 demes away,
587 or 250 km).for the geographic region with the highest likelihoo® ¢fFig. 4). Interestingly,

588  Procrustes, analyses in the Collared pikas, as well as othaistdbuted alpine mammals,
589  suggestia‘strongeleviation along the longitudinal axis between genetic variation and geography
590 (i.e., genetic“similarities more centrally located than the geographic spaopied by the

591  populations;Knowles et al. 2016). Our analysis supported this deviation as altresuan

592  expansionghistonalong this axisoffering an alternative interpretation to the hypothesis of
593  centrally located refugm.

594 Lastly, ENMsfor the LGM are not inconsistent with our estimdkgg. 2B). However, if

595 we consider_information from the ENMs by themselves, the region of high habitat |gyitabi
596 encompasseskaoad aredghatdoes not offer much detail about the potential location of ancestral
597 populations<Fhis even includes a potentiabrth-western source populatiofirig. 2B), even

598 thoughformerigenetidknowles et al., 2016; Lanier et al., 20E8)d fossil studie§Gunderson,

599  Jacobseny& Olson, 2009; Lanier & Olson, 2043ygest the lack of support for such a putative
600 ancestral.sourcge.g.,in the Brooks RangeBoth x-ORIGIN and TDOA analysegeinforcethat

601  despite projections from the ENNKbor the LGM, this region does not appear to be a likely
602  candidateas an ancestral source of expansion

603

604

605  CONCLUSIONS

606 Qurresults showvthatfailing to consider the impact of spatial and temporal heterogeneity

607 on the expansion process can lead to much less accurate inferences (Fig. 3A compared with 3B,
608 and Fig. 5A compared with 5B). Furthermore, there are also ways to mirpoteetialerrors

609  when inferring the origin of expansion. For example, in our simulations, we place a broad prior
610 on parameters‘that are nargets of interest, but may influence estimate® ¢€.g., ancestral

611 population, carrying capacity; see Table 1), theralogountingfor uncertainty about the

612 demography othe expansion process. Moreover, the summary statistics used in the inference
613  procedure (i.e.¥ andFgsr-values) are not sensitive to the absolute effective population sizes, but
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rather the ratio of size differeaes between population paitsastly, despite the lower accuracy of
inferences for complicated scenarios, as with the analysis of the Collared pika, relative to simple
expansion scenarios (Fig. 3, 5), accounting for the effects of spatial and tempaojdretity

is generally mare accurate than applying an oversimplified model if the goal is to infer the
geographic lecation of an expansions origin (Fig.T3erefore, we argue that the caveats and
concerns associated with inferring the origin of expansion do not nullify the utility of gpatial
and temporally” explicit models, such as those applied here in thexqmeaGIN pipeline. In
particular,”we“show that it is incorrect to assume that environmental heterogeneity (whether
temporal ar spatial) will not impact inferred origins of expansion, and that despdavibats we
highlight with»x-ORIGIN, they are less problematthan many implicit assumptions made in
approaches’ that ignore geographic and temporal constraints on population movements or
population sizeifluctuationsee Knowles & Alvarad&@errano 2010). Moreovethe reliability

of any inferenceabout the origin of expansiamder the more complex models implemented in

the X-ORIGIN pipelinecan be (ad should be) rigorously explored using validation procedures.
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Figure 1.The requireddata inputs (shown in boxes) and workflow of ¥3@RIGIN pipelineare
highlighted in the schematic. Specifically, to infére geographic location from whiclan
expansiorpriginates Q (i.e., the actualatitudinal and longitudinal coordinates of the ancestral
source populationk habitatsuitability map, candidate regions @f andpriors for demographic
parametersare/ required. To consider how habitat heterogeneity might impact the range
expansion‘preess, the habitat suitability map can be informed by spatial (as well as temporal)
variation in“suitability (e.g., from ENMs based on contemporary bioclimatic Vesialor
paleoclimatic variables; see He et al. 2013). Otherwise, the expansion processwateled as

a diffusionsproeess (i.e., equal habitat suitability across space and time). Likewise, users have the
option of ‘either entering candidate regionsdf(e.g., a region identified by the regression
approach of Peter and Slatkin 2013; as disclgsehe text), or the entire map area can be
evaluatedduring the inference procedurghe pipeline calls up different software packages for
downstream generation of simulations and estimation of the expansion origin, caretjizaie

of Q. Specifically,spatially explicit coalescent simulations are used to generate expected patterns
of genetic variation under a demographic model the expansion process (either infonmoebyor
spatial and.temporal heterogeneity of the landscape) using a modified version aidgitsmpr
SPLATCHE? (Ray et al. 2010)Summary statistics are calculated from esiohulated data set
using R scripthat are incorporated in the pipeljivéhich arecompared witlthose calculated for
empirical datato inform the posterior distribution @® using ABC Note that all steps can be
performedsseamlessly ix-ORIGIN, which has a wrapper for connecting all the steps in R or
python scriptsScripts for the pipeline are showngrey shaded boxeavhile external programs
called in the pipeline are shown without boxes.

Figure 2.Simulated scenariosed to evaluate the performance of #eRrIGIN pipeline for

inferring the _geographic origin of a range expanslanthe simulated scenarid,) expansion
proceededfrom the lower-left corner of the map(shown as the red dotted aremjrossa

homogeneous, landscapeith a centrally locatedgeographic barrieuring the first 250
generations but not the last 250 generations (i.e., there is spatidl tamporal habitat
heterogeneity, where the area of the barrier has zero suitalilitg) to the symmetry of the
landscape, we varidtie origin of expansion in the simulations within the red dottediastzad
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of the whole mapCircles mark populationsthatare sampled anfibr which summary statistics
are calculatedrom multiple individuals B) An empirical application ofX-ORIGIN in the
Collared pika in which habitat suitability varied spatially and temporallgcross the Alaskan
landscape Ecological niche modelaere used to estimate habitat suitabilif@sthe present and
past (i.e., the, LGM)using climatic datasee Lanier et al. 2015 for details about ENMSs)
Specifically, the demographic expansion process proceeded across a tempodalipadially
heterogeneous landscape, in which the habitat suitabilitiesandelNM estimated fothe LGM
was usedo inform the first5,000 years of the simulated demographic expansion, followed by
6,000 simulated years of expansion acrassintermediate surfacg.e., a mapwith average
habitat suitabilityscoresbetween thosdérom the ENM for thepresent and LGH) and then
10,000yearsof‘expansiorwith the habitat suitabities from anENM based orcurrent climaic

conditions.

Figure 3.Distribution of the rean errors irthe estimated2 across the map (i.e., for different
geographieslocations for the origin of expansion) undessitmellated scenari(see Fig. 2A, the
red dotted ar@ausing (A) x-ORIGIN versus (B) the TDOA approac@olor of each deme shows
the accuraey_of origin estimatioii the expansion starts fromahparticular demgwhich is
measured-byhe distancebetween its inferred origji2, and the actual origiraveragecrosslO
simulations Also shown are the histograms of accuracy across all 5000 ins{&)cesm Xx-
ORIGIN versus the TDOA approacbistancesare in the units of the number of demes from the

actual origin:

Figure 4.Estimates of therigin of expansionQ, inferred in the Collared pka usingx-ORIGIN
compared, with _the TDOA approach. The deme with the highest likelimdedred from x-

ORIGIN is marked with a black “X”, whereathe location of origins estimated using TDOA
methods are marked with crossé&ie heat map shows differences in the probability density
estimates_ofrdifferent demes across the map being the origin of expansion, as estimated in
ORIGIN, withi.the greener shades representing higher probabilities; the shaded square area
represents therior area forQ, a region identified by the regression approach of Peter and
Slatkin (2013) Each demen the maphas equal relative size (i.ehetmap is projected usinige

North American Dature- NAD83 — readjustment of the global positioning systeiat Htcounts
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for the earth’s curvatuyeand pulationlocalitiesof sequenced individuals are marked by grey

circles.

Figure 5. Distribution of mean errors in the estimadcross the map (i.e., for different
geographiclecations for the origin of expansion) for psealzkervations in the Pika simulations
(see Fig. 2B) using (AY-ORIGIN versus (B) the TDOA approach. 5000 pseotiservations are
generated“andcolor of eacbnde shows the accuracy of origin estimation if the expansion starts
from the particular deme, which is measured by the average distaivoeen its inferred origin

and the actual originWhite area on the map contailemes where not all populations can b
colonized if the, expansion starts from there. Also shown are the histograms of acmress

all 5000 instancefC) from X-ORIGIN versus the TDOA approach.idbancesare in the units of

the number of demes from the actual origin eadh deme i$8.4m in length.
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