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 38 

ABSTRACT 39 

 40 

Climatic or environmental change is not only driving distributional shifts in species today, but it 41 

has also caused distributions to expand and contract in the past. Inferences about the geographic 42 

locations of past populations, especially regions that served as refugia (i.e., source populations) 43 

and migratory routes are a challenging endeavor. Refugial areas may be evidenced from fossil 44 

records or regions of temporal stability inferred from ecological niche models. Genomic data 45 

offer an alternative and broadly applicable source of information about the locality of refugial 46 

areas, especially relative to fossil data, which are either unavailable or incomplete for most 47 

species. Here we present a pipeline we developed (called X-ORIGIN) for statistically inferring the 48 

geographic origin of range expansion using a spatially explicit coalescent model and an 49 

Approximate Bayesian Computation testing framework. In addition to assessing the probability 50 

of specific latitudinal and longitudinal coordinates of refugial or source populations, such 51 

inferences can also be made accounting for the effects of temporal and spatial environmental 52 

heterogeneity, which may impact migration routes. We demonstrate X-ORIGIN with an analysis of 53 

genomic data collected in the Collared pika that underwent post-glacial expansion across Alaska, 54 

as well as present an assessment of its accuracy under a known model of expansion to validate 55 

the approach.  56 

 57 
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INTRODUCTION 59 

 60 

Population expansions leave signatures in the distribution of population genetic variation 61 

across a landscape. This pattern of genetic variation is commonly used for making inferences 62 

about the underlying demographic processes. For example, the decreasing pattern of genetic 63 

diversity along expansion routes has been used to infer the origin of human migrations 64 

(DeGiorgio, Jakobsson, & Rosenberg, 2009; Ramachandran et al., 2005). Similarly, such genetic 65 

signatures have been applied to study post-glacial expansions in other species, as well as their 66 

corresponding geographic refugia during glacial periods of the Pleistocene (reviewed in Hewitt, 67 

2000).  68 

However, this approach comes with an inherent issue. Specifically, genetic diversity 69 

patterns (e.g., heterozygosity, FST

Attempts to address the issue of complex historical processes shaping the current genetic 86 

patterns have witnessed the development of spatially-explicit demographic models as well as 87 

spatial genetic indices. Ray, Currat, Berthier, & Excoffier (2005) systematically tested the 88 

likelihood of different geographic locations as human origins by evaluating the goodness-of-fit 89 

) can reflect not only signatures from recent distributional 70 

shifts, but also local habitat suitability or long-term geographic isolation (Austerlitz, Jung-71 

Muller, Godelle, & Gouyon, 1997; Ray, Currat, & Excoffier, 2003). Thus, while the isolation-72 

by-distance model applies relatively well to species that have a broad habitat, such as human 73 

beings, species with narrower niches tend to track their habitats, displaying a genetic diversity 74 

pattern of isolation-by-barriers or resistance (McRae & Beier, 2007). Therefore, sole reliance on 75 

the gradients of population size/heterozygosity or the principal components without spatial 76 

models is inadequate for making accurate inferences about the ancestral source population or 77 

directions of expansion (François et al., 2010). Due to the rich, yet confounding information 78 

retained in the genetic diversity patterns, most phylogeographic studies infer the location of 79 

hypothesized refugia from the data that are independent of the genomic information (reviewed in 80 

Knowles, 2009). Ecological niche models (ENMs), for instance, could be applied to infer areas 81 

with temporal stability as suitable habitats. In addition, the associated genetic data could then be 82 

used to evaluate the hypothesis that such geographic regions would have served as refugial 83 

source population (e.g., see Carnaval, Hickerson, Haddad, Rodrigues, & Moritz, 2009; Knowles, 84 

Massatti, He, Olson, & Lanier, 2016). 85 A
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of RST

Spatial genetic indices, on the other hand, are designed to pick up “ range expansion”-97 

specific signatures – that is, the directions of gene flow. By analyzing the allele frequency clines 98 

created by consecutive founder events during the expansion of a population across a landscape, 99 

as captured by a directionality index Ψ, Peter & Slatkin (2013) demonstrated how information on 100 

the geographic origin and the direction of expansion could be extracted from genomic data 101 

through asymmetrical gene flow. That is, regression between pairwise differences of Ψ and 102 

geographic distances between populations can be used to directly infer the geographic origin of 103 

expansion. However, several aspects of this approach limit its utility in practice. For example, 104 

this method does not account for the heterogeneity in the underlying landscape during the 105 

inference procedure (i.e., assuming a strict isolation-by-distance model). Ψ may also be biased 106 

toward non-zero values when local population sizes differ substantially (Peter & Slatkin, 2013). 107 

Also, although it is possible to recover a signature of expansion from the magnitude of Ψ, 108 

assessing the significance of Ψ-values, and hence, the confidence of the inferred origin, is not 109 

straightforward. 110 

 values from different spatial simulations of expansions using the empirical values. Itan, 90 

Powell, Beaumont, Burger, & Thomas (2009) estimated the origin of lactase persistent mutations 91 

in Europe by fitting empirical frequencies of lactase persistent mutations to those from spatial 92 

simulations of the gene expansion along with dairy groups. These pioneer studies demonstrate 93 

the potential of using spatially-explicit models for estimating migration histories. However, these 94 

models do not take temporal changes in habitat suitability into account, which limit their 95 

applicability in flora and fauna that underwent expansions largely driven by climatic oscillations. 96 

Here, we present a pipeline specifically developed for making statistical inferences about 111 

the geographic origin of range expansion (called X-ORIGIN) that addresses these aforementioned 112 

shortcomings. This pipeline builds upon earlier developments in spatial demographic models 113 

(e.g., Ray et al., 2010) and spatially explicit summary statistics (e.g., Peter & Slatkin, 2013). 114 

Specifically, with the X-ORIGIN we couple the Ψ-index (Peter & Slatkin, 2013) with a spatially 115 

explicit coalescent model for hypothesis testing in an Approximate Bayesian Computation 116 

(ABC; Beaumont, Zhang, & Balding, 2002) framework. Information based on current and/or 117 

historical habitat suitability can be estimated using ENMs and subsequently incorporated into the 118 

spatially explicit coalescent model (i.e., a modified application of SPLATCHE2; Ray, Currat, Foll, 119 

& Excoffier, 2010). In addition, with the ABC framework, the estimation of the geographic 120 
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origin of range expansion will not be sensitive to the uncertainties in the underlying demographic 121 

parameters if a wide range of priors of demographic parameters is specified in spatial simulations. 122 

Hereafter, we refer to the geographic origin of range expansion as a parameter, Ω. Together, the 123 

significance of expansion and the confidence of a particular geographic location for the ancestral 124 

source population are provided by the X-ORIGIN. As such, the pipeline couples information from 125 

a series of independent analyses (Fig. 1), making X-ORIGIN a useful tool for inferring the 126 

geographic origin of ancestral sources with confidence. 127 

It should be noted that there are general procedural parallels with the integrative 128 

distributional, demographic, and coalescent (iDDC) approach for model selection, which also 129 

involves a series of independent analyses (i.e., estimates of habitat suitability, demographic 130 

modeling, and spatially explicit coalescent; He, Edwards, & Knowles, 2013). However, the X-131 

ORIGIN pipeline differs in that (i) it infers a novel model parameter of interest Ω (i.e., the actual 132 

latitudinal and longitudinal coordinates), and (ii) it utilizes information from spatial summary 133 

statistics, specifically, pairwise population measures of FST

Here we describe the approach and test the accuracy of the X-ORIGIN pipeline in inferring 140 

Ω under a known expansion history (i.e., simulated history; see Fig. 2). Specifically, we model a 141 

history of expansion that involves temporal shifts in the habitat suitability of a landscape (i.e., we 142 

validate the approach by implementing a complex model which cannot be accommodated by any 143 

other currently existing programs). We also demonstrate the utility of the X-ORIGIN with an 144 

analysis of empirical data. Specifically, we analyze the SNP dataset collected in the Collared 145 

pika (Ochotona collaris) (i.e., data from Lanier, Massatti, He, Olson, & Knowles, 2015). The 146 

impact of the glaciations is pronounced in small Alaskan mammals (Galbreath, Cook, 147 

Eddingsaas, & DeChaine, 2011; Knowles et al., 2016; Lanier et al., 2015).  While previous 148 

analyses in the Collared pikas also suggested that contemporary environmental factors contribute 149 

less to genomic structure than a dynamic history involving the founding of current populations 150 

 and the directionality index, Ψ (Peter 134 

& Slatkin, 2013). As such X-ORIGIN is an approach that focuses on the estimation of a specific 135 

parameter of interest – Ω, whereas the iDDC is an approach for model selection among a set of 136 

biologically informed demographic hypotheses, the foci of which vary significantly among 137 

studies (e.g., Bemmels, Title, Ortego, & Knowles, 2016; Knowles & Massatti, 2017; Massatti & 138 

Knowles, 2016).  139 
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by ancestral source populations (Lanier et al., 2015), the location of putative ancestral source 151 

populations remains unclear.  152 

 153 

METHODS 154 

 155 

Statistic Inferences using the X-ORIGIN pipeline  156 

 157 

The X-ORIGIN pipeline couples information from a series of independent analyses to make 158 

inferences about Ω, the geographic location of ancestral source populations, by estimating the 159 

posterior probability of Ω under an ABC framework (Fig. 1). Scripts are provided in the X-160 

ORIGIN pipeline for all the steps involved and a detailed tutorial is provided on GitHub (see 161 

https://github.com/KnowlesLab/X-ORGIN). 162 

Briefly, the approach employs a spatially explicit coalescent to generate expected patterns 163 

of genomic variation under a set of priors, including a prior on Ω and priors on demographic 164 

parameters of the expansion process (i.e., k and m, the local population sizes and migration rates, 165 

and an ancestral population size, NA

 To make inferences using X-ORIGIN that consider the effects of spatial and temporal 173 

environmental heterogeneity on the expansion process, X-ORIGIN models the impact of this 174 

environmental heterogeneity on the expansion process. Specifically, heterogeneity in habitat 175 

suitability might be derived from ecological niche models (ENMs) for the present or the past 176 

(Sindato et al., 2016; Waltari et al., 2007), or from information on known barriers (e.g., mountain 177 

ranges, glaciers, and bodies of water; Boehm et al., 2013; Knowles & Massatti, 2017; Waltari & 178 

Hickerson, 2013). These suitability maps are used to inform demographic dynamics associated 179 

with the expansion process by specifying different likely migration events as a function of spatial 180 

and/or temporal environmental heterogeneity. Specifically, the habitat suitability scores for each 181 

). That is, genomic simulations of range expansion are 166 

initiated at different random locations within the geographic range specified by the prior on Ω 167 

and for different population size and migration rate values. If there is no prior knowledge on 168 

possible geographic origins, all demes on the map used for demographic simulations will be 169 

tested. Otherwise, a prior on Ω can be based on the fossil record, or a general candidate region 170 

might be based on the regression between pairwise population differences of Ψ and geographic 171 

distances (see Peters & Slatkin 2013). 172 
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deme determine local population sizes, thereby influencing the actual number of migrants across 182 

demes per generation. If distributional shifts are induced by climatic changes, then temporal 183 

shifts in habitat suitability can be incorporated into the demographic modeling (i.e., applying 184 

different relative weighting of suitability information from past versus current ENMs to mirror 185 

trends of climatic change; see Brown & Knowles, 2012), given that shifts in connectivity over 186 

time can influence the expansion process, and consequently, the patterns of genetic variation 187 

across the landscape. 188 

 189 

Programs called up in the X-ORIGIN pipeline 190 

 191 

In the X-ORIGIN pipeline, demographic and spatially explicit coalescent simulations are 192 

performed in SPLATCHE2 (Ray et al., 2010) in conjunction with a customized script in the X-193 

ORIGIN pipeline to allow for temporally changing landscapes. Local demographic parameters 194 

(i.e., k and m) are informed from habitat suitability by scaling these parameters proportionally to 195 

the habitat suitability values of local demes (Fig. 1), which might be temporally dynamic (i.e., 196 

the habitat suitability for a particular location may change each generation based on shifting 197 

climatic conditions; see Brown & Knowles, 2012). Each generation, m proportion of the 198 

population migrates out of the local deme; migration occurs to the adjacent four cells (north, 199 

south, west, east). After the exchange of individuals, local demes grow logistically with a rate r, 200 

and are regulated by the local carrying capacity (which are also rescaled as a function of the 201 

habitat suitability of a deme); r can be set to a specific value (e.g., He et al., 2013), and as we do 202 

here (r = 1), or it can also be estimated as a parameter. For each time-forward simulation (i.e., a 203 

spatially explicit map of per generation local population sizes and migration events), a series of 204 

corresponding time-backward coalescent genetic simulation are run, with a separate coalescent 205 

simulation generated for each independent locus in the study. The ancestry of an allele will trace 206 

back from the present into ancestral source populations, where the pattern of gene lineage 207 

coalescence across the landscape and the timing of coalescence is defined by the time-forward 208 

local demographic simulations (i.e., the per generation k and m parameter values). SNP mutation 209 

models are then used to simulate patterns of genomic variation in SPLATCHE2, where the state of 210 

each SNP is generated across the independent coalescent simulations.  211 
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To generate patterns of genomic variation to compare with the empirical data, the 212 

simulated datasets are constructed by sampling the same populations (in geographic space), the 213 

same number of individuals, and the same number of SNPs as the empirical scenario. Summary 214 

statistics are calculated for both the empirical and simulated datasets. These include the spatial 215 

summary Ψ statistics calculated within, between, across all populations, as well as pairwise 216 

population FST-values; ARLEQUIN 3.5 (Excoffier & Lischer, 2010) is used to calculate FST. 

The empirical summary statistics are compared to those from the simulated data using 223 

approximate Bayesian computation (ABC), as implemented with ABCESTIMATOR in 224 

ABCTOOLBOX (Wegmann, Leuenberger, Neuenschwander, & Excoffier, 2010). Rather than 225 

conducting ABC analyses directly on the summary statistics, principal components (PCs) are 226 

extracted from all predictor variables to remove the effects of interactions between summary 227 

statistics, as well as to reduce "the curse of dimensionality" (i.e., when too many statistics are 228 

included, the distance between the simulated and empirical values systematically increases, 229 

reducing the accuracy of parameter estimates and making it more difficult to distinguish among 230 

models) (Wegmann & Excoffier, 2010; Wegmann, Leuenberger, & Excoffier, 2009). 231 

 Note 217 

that other non-spatial statistics often used in ABC analyses were also considered (e.g., K, the 218 

number of haplotypes, and H, observed heterozygosity). These additional summary statistics are 219 

not used in the analyses presented here because of the lack information they contained under the 220 

expansion scenarios (see Supplementary Fig. S1); however, a user could employ them in X-221 

ORIGIN if they determine they are relevant to the expansion history under study.  222 

Five thousand simulations (0.5%) whose transformed summary statistics are closest to 232 

those calculated from the empirical genomic data are retained for estimating the model 233 

parameters (i.e., Ω, the geographic locations of the ancestral source populations, and the 234 

demographic parameters k, m, and NA

To check if the inferred model is capable of generating the observed data, the likelihood 240 

of the empirical data given the model is compared with the likelihoods of the retained 241 

simulations. The fraction of simulations that have a smaller likelihood than the empirical data is 242 

). In order to jointly estimate the likelihood of a specific 235 

deme as the origin Ω (i.e., a specific longitude and latitude), the kernel densities of Ω across the 236 

retained simulations was estimated and used as the likelihood. This provides a non-parametric 237 

way of smoothing and estimating the likelihood of the origin based on the limited retained 238 

simulations (i.e., from the 0.5%, or five thousand retained simulations).  239 A
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expressed as a P-value, with small P-values indicating that a model is highly unlikely (Wegmann 243 

et al., 2010). Likewise, we conduct standard evaluations of the quality of the inferences from 244 

ABC (e.g., bias in parameter estimates; described below). 245 

 246 

Performance of the X-ORIGIN pipeline 247 

 248 

We tested the pipeline on a simulated scenario (Fig. 2A) to evaluate the performance of the 249 

approach for inferring the geographic location of the source population, Ω, under a temporally 250 

changing landscape. Specifically, simulations were conducted on a 50 × 50 deme landscape with 251 

a centrally located geographic barrier that was present in the past but not the present and 252 

expansion proceeding from the upper left deme (Fig. 2A). Simulations were run for 500 253 

generations, in which the barrier persisted for 250 generations. At the end of the simulations, 10 254 

diploid individuals were sampled from 10 demes from across the distributional map. A range of 255 

migration rate, ancestral population size, and carrying capacity values per deme were simulated 256 

to check if the inferred origin is sensitive to particular details of the demographic expansion 257 

process (Table 1).  258 

 The accuracy of X-ORIGIN was evaluated by measuring the geographic distance between 259 

the actual and inferred geographic location of the source population (i.e., differences in the actual 260 

and inferred latitudinal and longitudinal coordinates). In addition to evaluating the accuracy of 261 

the estimated Ω under the model in which expansion proceeded from the upper left deme (Fig. 262 

2), we also tested whether the accuracy of Ω varied depending upon the geographic origin of the 263 

expansion. Specifically, we investigated the performance of the model by inspecting the average 264 

error of the inferred Ω of 10 pseudo-observed datasets (i.e., PODs from the simulations) in which 265 

the geographic origin of the expansion differed. Specifically, Ω was systematically varied so that 266 

each deme across the entire map served as the source of expansion.  267 

In addition, the accuracy of X-ORIGIN pipeline is compared with Peter & Slatkin’s (2013) 268 

original “time difference of arrival location estimation” (TDOA) approach as well as a modified 269 

TDOA approach, which incorporates spatial heterogeneity in migration patterns (Olave, He, & 270 

Knowles, in prep). Specifically, we calculated the distance between the actual geographic origin 271 

with the one estimated from the TDOA approaches. The TDOA approach identifies the origin of 272 

the expansion by identifying the deme that explains the highest proportion of variation in the 273 
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correlation of pairwise Ψ differences and the pairwise differences of geographic distances of the 274 

populations to the potential origin. The modified TDOA approach correlates pairwise Ψ 275 

differences with pairwise resistance differences (McRae & Nürnberger, 2006) in which 276 

heterogeneous landscape is considered (Olave et al., in prep), whereas the original TDOA (Peter 277 

& Slatkin, 2013), assumes migration occurs on a homogeneous landscape (i.e., according to a 278 

random diffusion model). We conducted a cursory examination of the robustness of X-ORIGIN to 279 

model mis-specification as well.  280 

 281 

Demonstration of X-ORIGIN with application to Alaskan Collared pika  282 

 283 

In addition to details about the ABC analyses (see below), here we briefly describe the empirical 284 

genomic data we analyzed with X-ORIGIN, given that all data used here are from previous 285 

publications and are referenced below. Specifically, we analyze a genomic dataset collected in 286 

the Alaskan Collared pika (for details on library construction and rigorous quality filtering see 287 

Lanier et al. 2015). Maps of environmental heterogeneity used in the X-ORIGIN analyses to infer 288 

Ω, the geographic location of the ancestral source population for the Collared pika, were 289 

generated from ENMs for the present and the last glacial maximum, LGM (see details in 290 

Knowles et al. 2016). 291 

 292 

Genomic dataset. We analyzed RADseq data for 8 populations; note we excluded the Pika Camp 293 

(Wrangell-St. Elias Mtns; GIS coordinates 61.2170, -138.2670) from our analyses because 294 

previous analyses indicate that it was founded from a separate ancestral refugial source (Lanier et 295 

al. 2015).  Of the 23,493 RADseq loci with at least one biallelic SNP across populations, we 296 

analyzed 6816 loci with one SNP retained per RADseq loci in 50 individuals (i.e., 6-8 297 

individuals per population, with the exception of Jawbone Lake, where n = 2); loci in less than 298 

50% of the samples or were not present in more than one individual per population were 299 

excluded. Note that this is an expanded dataset relative to those previously published (i.e., Lanier 300 

et al. 2015; Knowles et al. 2016) because we recovered more genetic information using ddRAD 301 

aligned to a reference genome for Ochotona princeps (American pika; ID: 771).  302 

The directionality index Ψ requires information on the ancestral versus derived states of 303 

SNPs because the statistic is calculated by counting the difference in derived allelic frequencies 304 
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between pairs of populations (see Eq. 1 in Peter & Slatkin 2013). Ancestral states of independent 305 

biallelic SNPs were determined by aligning the sequences with Ochotona princeps (American 306 

pika; ID: 771; https://www.ncbi.nlm.nih.gov/genome).  307 

 308 

Prior on Ω, the geographic locations of the origin of expansion. The TDOA approach was 309 

conducted to select candidate regions of origin to inform the prior on Ω (as opposed to 310 

considering the entire state of Alaska). Specifically, for each potential geographic location as the 311 

site of the ancestral source population (i.e., each deme from the distributional map), linear 312 

regression was performed between pairwise Ψ differences and the pairwise differences of 313 

geographic distances of the populations to the potential origin. The linear regression was 314 

repeated for each of the different potential geographic origins and the geographic locations with 315 

R2-values larger than 0.5 were used to specify the prior on the geographic location of the 316 

ancestral source population (regression analyses were conducted using modified scripts from 317 

Peter & Slatkin, 2013, which we provide on KnowlesLab/Github). This generated a target area of 318 

approximately 442,300 km2 (i.e., 1302 demes, with a size of 18.4 × 18.4 km2

 323 

 for each deme; 319 

Table 1) to analyze in detail regarding the posterior probability of Ω, the geographic location of 320 

the ancestral source population for the set of 8 Collared pika populations collected across its 321 

range (see Lanier et al. 2015 for details). 322 

Estimates of habitat heterogeneity across space and time. Maps of environmental heterogeneity 324 

for the Collared pika were generated from ENMs (see details in Knowles et al. 2016). Briefly, 325 

inferences about differences in habitat suitability across space were made for the present and the 326 

LGM from ENMs based on bioclimatic data for the present and paleoclimatic data from 21 kya. 327 

The models were tested over combinations of regularization parameters from 0.25 to 3 in 328 

intervals of 0.25 and the Linear, Quadratic, Hinge, Product and Threshold features using 329 

SDMTOOLBOX (Brown, 2014). Each model parameter class was replicated 25 times using cross-330 

validation.  331 

In addition, temporal shifts in habitat suitability were represented using differences in the 332 

relative weighting of habitat suitabilities estimated for the present and LGM across time to 333 

reflect climatic trends in the region over the past 21,000 years (Brown & Knowles 2012). 334 

Specifically, the current ENM suitability map was used to represent the present to 5,000 years 335 
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ago, an intermediate suitability map (i.e., an average suitability between the current and LGM 336 

ENMs) for the time period 5,000 - 11,000 years ago, and the LGM ENM suitability map for 337 

11,000 – 21,000 years ago. 338 

 339 

ABC analyses. Datasets were simulated for 2100 generations (based on a scaling factor of 10 to 340 

reduce the computational requirements; see He et al. 2013) to represent the range expansion from 341 

last glacial maximum. Priors for the local carrying capacity (k), ancestral population size (Nans), 342 

and migration rates (m) are set according to Lanier et al. (2015) (see Table 1). Note that a 343 

geographic grid of 18.4 × 18.4 km2 corresponded to a single deme and expansion was modeled 344 

across the Alaskan landscape (i.e., over approximately 2,197,850 km2

 As with tests of the general performance of X-ORIGIN, we compared the estimates of Ω, 346 

the geographic location of the ancestral source of expansion, with results from: 1) the TDOA 347 

method, where heterogeneity in the present landscape is not incorporated (i.e., the geographic 348 

distances separating populations were represented as pairwise Euclidean distances), 2) the 349 

modified TDOA method, where resistance distances based on heterogeneity in the current habitat 350 

suitability is used, and 3) X-ORIGIN, where temporal shifts in the heterogeneity of the landscape 351 

over time are accounted for. To evaluate the accuracy of estimates of Ω, five thousand pseudo-352 

observations were generated from the prior distributions of the parameters. If the estimated 353 

parameters are unbiased, posterior quantiles of the parameters from the pseudo datasets should 354 

be uniformly distributed (Cook, Gelman, & Rubin, 2006; Wegmann et al., 2010). The posterior 355 

quantiles of true parameters for each pseudo run were calculated based on the posterior 356 

distribution of the regression adjusted 5000 simulations closest to the pseudo-observed datasets. 357 

).  345 

 358 

RESULTS 359 

 360 

Performance of the X-ORIGIN pipeline 361 

 362 

For the example history considered here, which involved a central barrier that was present in the 363 

past, but not the present (i.e., there is both spatial and temporal heterogeneity in habitat 364 

suitabilities) X-ORIGIN gives more accurate inferences of Ω, the geographic location of the 365 

source population of the expansion, than the TDOA approach. In fact, the performance of X-366 
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ORIGIN was quite good, estimating the most likely origin within 1- 4 demes of the actual origin 367 

(mean P-value = 0.67) from different starting positions across the map (and hence, differences in 368 

when and where the expansion process interacted with the geographic barrier), except for the 369 

lower left grid of the geographic area (Fig. 3A, C; see Supplementary Fig. S2 for detailed 370 

examples of variation in inferences across PODs for different locations of origins).  371 

In contrast, the majority of analyses with the TDOA approach give inferred locations that 372 

differ markedly from the actual area where the expansion originated, irrespective of where on the 373 

map the expansion originates (Fig. 3B). The performance of the TDOA approach was especially 374 

poor (i.e., large discrepancies between the inferred and actual geographic origin of expansion) 375 

when the ancestral source area was near the barrier (Fig. 3D). This variation in accuracy 376 

highlights the importance of explicitly modeling the temporal heterogeneity of landscapes (also 377 

see Wegmann, Currat, & Excoffier, 2006), as it strongly distorts the Ψ signatures, especially if 378 

the heterogeneity is present in the early stage of the expansion. 379 

 380 

Inferred geographic origin of expansion in the Alaskan Collared Pika  381 

 382 

 For the set of Collared pika populations studied here, the highest likelihood (marginal 383 

density: 1.82x10-8

The geographic origin of expansion inferred using X-ORIGIN differed from the TDOA 390 

results (Fig. 4). Moreover, neither the inferred area based on the pairwise Ψ matrix on a 391 

homogeneous landscape (TDOA-diffusion) nor the one based on a resistance map of the current 392 

landscape suitabilities (TDOA-resistance), are in areas with high likelihoods. That is, simulated 393 

genetic data sets where expansion proceeded from the inferred areas under the TDOA 394 

approaches do not correspond to the observed genetic data (i.e., there is a mismatch between the 395 

empirical summary statistic and those calculated from the simulations).   396 

; P-value: 0.996) for the location of the expansion origin, Ω, is the Mackenzie 384 

Mountains in Yukon Territory, Canada (Fig. 4). This inference is based on the retained 5000 385 

simulations whose summary statistics were to those of empirical data. The geographic origin of 386 

expansion (i.e., the latitudinal and longitudinal coordinates) was estimated using a two-387 

dimensional kernel density of the retained simulations, implemented using the kde2d function in 388 

the MASS package of R (Venables & Ripley, 2002).  389 
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Based on the distances between actual versus inferred origin for each of the different 397 

method, X-ORIGIN outperformed TDOA, although the accuracy of inferred Ω-values varied 398 

depending upon the geographic origin of the expansion (Fig. 5). We also note that the accuracy 399 

was generally lower for the heterogeneous landscape inferred for pikas relative to the landscape 400 

used to validate the X-ORIGIN package (Fig. 5 versus Fig. 3). In particular, populations that 401 

originated from the southeast region exhibited the lowest accuracy (i.e., the greatest difference 402 

between the inferred and actual value of Ω). This is most likely due to the lack of samples from 403 

that area, and consequently little information of the direction of asymmetrical gene flow 404 

expected under an expansion model (see Peter & Slatkin, 2013). Nevertheless, comparison of the 405 

accuracy of inferences between X-ORIGIN and TDOA approaches, indicate those from X-ORIGIN 406 

are more accurate for an expansion originating from the Mackenzie Mountain range. 407 

Specifically, analyzing simulated data of expansions from the Mackenzie Mountain range (i.e., 408 

the PODs from the ABC simulations), the TDOA approaches give estimates that are generally 409 

displaced by 15 to 30 demes from the actual origin of expansion (i.e., a discrepancy of 750 to 410 

1500 km), and curiously these were more inaccurate than inferences with a south-west 411 

geographic origin of expansion (Fig. 5), despite sampling of populations in that region (see 412 

discussion below).  413 

 414 

DISCUSSION 415 

 416 

Patterns of genetic variation in individuals sampled in the present harbor rich information about 417 

past movements of species. In contrast to those from non-spatial models of population 418 

demography (e.g., changes in population size or admixture proportions; see Hey, 2005; Theis, 419 

Ronco, Indermaur, Salzburger, & Egger, 2014), recent developments have focused on inferences 420 

from spatially explicit approaches. Specifically, departure from equilibrium status of population 421 

movements under a diffuse model, ‘isolation-by-distance’, caused either by range 422 

expansion/contraction history, long distance admixture or habitat heterogeneity is tested through 423 

different approaches. One general approach is to quantify discrepancies between spatial genetic 424 

patterns and the expectations from geographic distances. For example, discrepancies between 425 

population’s positions on a genetic PCA map can be visualized against a map of their 426 

geographical distribution using Procrustes analyses to examine where on a landscape patterns of 427 
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genetic variation depart from isolation by distance (Knowles et al., 2016; Wang, Zöllner, & 428 

Rosenberg, 2012), or a “geogenetic map” can be used to infer potential long-range admixture 429 

among populations (Bradburd, Ralph, & Coop, 2016). Similarly, disruptions to past movement 430 

might be inferred by relating the effective migration rates to expected genetic dissimilarities for 431 

an interpolated geographical map of barriers or corridors among populations (see Petkova, 432 

Novembre, & Stephens, 2016).  433 

 Instead of quantifying discrepancies from isolation-by-distance, our approach directly 434 

models expected patterns of genetic variation using spatial genetic indices and makes inferences 435 

about historical movements – specifically, the geographic origin of expansion, Ω – under an 436 

ABC framework, while incorporating temporal shifts in habitat suitability over time. This is not 437 

the first approach for directly evaluating genetic variation under models of historical movement. 438 

For example, the spatial genetic indices applied here were developed to directly infer historical 439 

movements based on shifts in the genetic summary statistics across a landscape (Peter & Slatkin, 440 

2013), and spatial-autocorrelation of genetic covariance information has been applied to 441 

distinguish among spatially-explicit demographic scenarios (Alvarado-Serrano & Hickerson, 442 

2016; Bertorelle & Barbujani, 1995; Coop, Witonsky, Rienzo, & Pritchard, 2010). However, our 443 

approach infers and evaluates the parameter Ω – the actual latitudinal and longitudinal 444 

coordinates for the origin of an expansion– that is not based on the assumption of a diffusion 445 

model that provides statistical rigorousness and flexible applications for inferences about 446 

historical expansion scenarios. First, we can evaluate the likelihood of different geographic 447 

locations for the origin of a population expansion, accounting for both spatial and temporal 448 

heterogeneity in habitat suitability of the landscape. Second, with the freely available X-ORIGIN 449 

pipeline we developed, users can validate any inference by determining whether the inferred 450 

model is capable of generating data that generally corresponds to the empirical data, which is 451 

equally important as estimating the most likely model for the origin of expansion (i.e., the most 452 

likely location for the origin of expansion may nonetheless be a poor fit to the observed data). 453 

Such attributes are not currently implemented in other methods for inference about expansion 454 

histories (e.g., compare with Ray et al., 2005). 455 

           Below we discuss how these attributes make X-ORIGIN not only a practical tool, but as our 456 

analyses demonstrate, also one whose performance is better than not accommodating such 457 

dynamic histories. Likewise, we highlight how this pipeline can easily be adapted for a more 458 
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general inference approach beyond inferring the origin of expansions, especially with the 459 

development of new spatial indices. However, we also note the difference in performance of X-460 

ORIGIN between a simple demographic history (i.e., the one used to validate the approach) and 461 

the one with more extreme habitat heterogeneity, and caution users of the importance for 462 

validating the accuracy of the inference, which can be implemented in the X-ORIGIN pipeline. We 463 

apply this practice when interpreting the results from the X-ORIGIN analysis of the Collared pikas, 464 

as well as discuss aspects of the data that might contribute to uncertainty in the inferred origin of 465 

expansion, and the importance of corroborative evidence not based on the genetic data itself. 466 

 467 

Factors impacting the accuracy of inferences about the geographic origin of expansion 468 

 469 

     The Ψ index directly captures the overall trend of differences in frequencies of derived 470 

polymorphic alleles in populations based on the fact that expanding front of populations are 471 

experiencing serial bottlenecks. Therefore, Ψ indices are informative as long as current 472 

populations have not yet reached equilibrium. If the majority of the pairwise Ψ indices are close 473 

to zero in the system (which is not the case for pikas; Supplementary Table 1), the lack of spatial 474 

gradient in the Ψ indices indicate that either there was not an expansion or a sufficient amount of 475 

time since the expansion has passed such that its genetic signature can no longer be detected by 476 

the Ψ indices (see also Peter and Slatkin 2013). We tested a scenario in the Pika dataset where 477 

there is no expansion origin to examine the performance of X-ORIGIN. Specifically, we simulated 478 

1000 replicate data sets in which all populations started from their sampling areas to reach 479 

equilibrium states. For these datasets, although Ψ indices deviate strongly from zero, no origin 480 

can be estimated from TDOA as no positive relationship between pairwise differences of Ψ and 481 

geographic distances among populations can be established (Supplementary Table 2). Likewise, 482 

with X-ORIGIN, marginal densities of the expansion model are extremely low (on the order of 483 

10-200 to 10-12 as compared to 10-8

     Any inference that extracts information on the geographic distribution of genetic variation 487 

requires adequate sampling of populations as well as number of independent SNPs (i.e., at least 488 

more than 1,000 independent SNPs; Peter & Slatkin, 2013; Bradburd et al., 2016). Our results 489 

 for PODs that experienced expansion from a single origin) and 484 

P-values are zero (Supplementary Table 2). Therefore, X-ORIGIN, like TDOA, will not give 485 

misleading results about the potential origin for expansion when no such expansion occurred.  486 A
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clearly show that inferences become less accurate when sampled populations are located further 490 

from the location where an expansion originated (e.g., see higher error rate at south-east corner 491 

of Fig. 5A). Therefore, researchers should carefully consider the sampling design. In particular, 492 

our results (see also Peter & Slatkin, 2013; Bradburd et al., 2016) suggest that obtaining accurate 493 

inferences that utilize spatial information about the distribution of genetic variation may be 494 

dependent upon which populations are sampled, rather than whether there is sufficient power for 495 

such inferences related to the number of loci analyzed. Although it’s beyond the scope of this 496 

study, this general question is something that could be explored using the X-ORIGIN pipeline.    497 

 Another factor impacting the accuracy of inference relates to model mis-specification. 498 

Specifically, complicated demographic scenarios such as those involving two or more 499 

geographic origins of expansion will give misleading results if not accommodated (see also Peter 500 

& Slatkin 2013). There are a number of ways to accommodate and/or test whether an assumed 501 

expansion from a single source might be violated. For example, clustering algorithms can be run 502 

to delineate populations into different groups with potentially different expansion origins and 503 

validated by a minimum spanning tree built from a matrix of Ψ-values (Peter & Slatkin, 2013), 504 

followed by separate inferences of Ω for each subgroup of populations. Alternatively, competing 505 

explanatory models with multiple origins versus one expansion origin can be analyzed in X-506 

ORIGIN and compared in a model selection framework. Our results also suggest that any model, 507 

even those that might be more probable than others, should be interpreted with caution if Ω is 508 

located in areas with low confidence (based on reference to simulated datasets), or if the most 509 

likely model nevertheless has a low probability of generating data that resembles the empirical 510 

data (i.e., low P-value; Wegmann et al. 2010; see He et al. 2013 for details of model validation).   511 

 Despite positive aspects of X-ORIGIN related to estimating the likelihood of the expansion 512 

origin, and consequently, uncertainty surrounding this inference (e.g., the geographic area 513 

spanned by the 90% highest posterior density of Ω), as well as validating the inference using 514 

PODs (see Fig. 5), one unexplored issue is how errors early in the pipeline might get amplified 515 

and generate misleading results. We did a cursory examination of how such errors might impact 516 

an inferred expansion origin. Specifically, we examined how robust the inferred origin might be 517 

to uncertainties regarding the temporal changes in habitats – in this case, the duration of a 518 

barrier, as in the scenario we used to validate X-ORIGIN (see Fig. 2). When we varied the true 519 

duration of the barrier to simulate data (i.e., simulate data with a barrier that persisted for 200 to 520 
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300 generations, rather than 250 out of the 500 generations), we observed no difference in the 521 

accuracy of the Ω estimation (Supplementary Fig. S3). This shows that the pipeline can be robust 522 

to misspecification of temporal dynamics of a historical scenario (at least for the parameter space 523 

examined here). This clearly should not be interpreted as general evidence of robustness to 524 

model mis-specification. Rather we present it here to show that X-ORIGIN exhibits some 525 

robustness, but also to emphasize that all users can conduct their own investigation to robustness 526 

tailored to the specifics of their application. 527 

There are of course other paths for errors that could impact the accuracy of inferences 528 

about Ω. For example, we use ENMs to estimate potential suitable areas to inform demographic 529 

models (see Fig. 1). As a consequence, the results from X-ORIGIN could be impacted by poor 530 

ENMs (i.e., validation and best practices of ENMs should be followed). In addition, applying 531 

different transformation of habitat suitabilities into local carrying capacities can affect patterns of 532 

genetic variation (see Brown & Knowles 2012). There are different strategies one might take to 533 

avoid biases that could result from unrealistic assumptions or errors in the upstream steps of the 534 

pipeline (Figure 1). For example, instead of using a fixed suitability score from an ENM model 535 

for each deme, suitability scores between maximum and minimum range inferred for each deme 536 

might be randomly sampled during the simulation process to generate expected patterns of 537 

genetic variation that incorporate some uncertainties in the ENM modeling. This might increase 538 

the number of simulations required for inferring Ω to get an unbiased and precise estimate under 539 

an ABC framework, given that accommodating such uncertainties may increase the variance in 540 

observed patterns of genetic variation in simulated datasets. Likewise, different transformations 541 

of habitat suitabilities into local carrying capacities (scaling habitat suitability linearly with local 542 

carrying capacity versus a step function; Brown & Knowles, 2012) could be incorporated as 543 

alternative models to be tested (i.e., treated in a model selection framework, even when the 544 

primary interest is on inferring the origin of expansion, Ω). 545 

Although such flexibility in accounting for uncertainty or potential errors in upstream 546 

steps (Fig. 1) is a strength of the X-ORIGIN package we developed, the application of X-ORIGIN 547 

(especially compared with TDOA; Peter & Slatkin, 2013) comes with much more computational 548 

expense. For example, a typical spatially explicit simulation of 2000 generations on a 150 x 150 549 

grid layer and the generation of 1000 SNPs takes more than 7 minutes. Users are advised to 550 

calculate required computational resources before experimenting with the pipeline. This includes 551 
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reducing the size of the Ω prior (e.g., by applying TDOA as a preliminary step for data 552 

inspection, as applied in the Collared pika example). 553 

 554 

The Mackenzie Mountain region as the most likely origin of expansion in Collared pika 555 

 556 

 As an alpine small mammal, suitable habitats for Collared pika are spatially highly 557 

heterogeneous, but also temporally heterogeneous given that Alaska was directly impacted by 558 

the glacial cycles (Fig. 2B). Previous analyses have suggested a potentially complex 559 

biogeographic history involving expansion from multiple ancestral sources (Knowles et al., 560 

2016; Lanier et al., 2015; Lanier & Olson, 2009). Limited sampling of populations inhibits 561 

analysis of data subsets to explore such models with X-ORIGIN (i.e., multiple populations are 562 

required to estimate potential sources of expansion), and therefore is beyond the scope of this 563 

manuscript.  Nevertheless, it is informative to consider how our inference compares to previous 564 

characterizations for the populations analyzed here.  565 

 Previous studies that made inferences about the biogeographic and demographic history 566 

of the Collared pika applied analyses that assumed equilibrium status (e.g., FST, STRUCTURE 567 

analyses, estimates of phylogenetic relationships among populations). For example, in an 568 

analysis of the relationship between FST-values among populations and the geographic distance 569 

separating them (Lanier et al., 2015), the most north-eastern sampled population Jawbone Lake 570 

(Fig. 4) appeared to be an outlier under the expectation of isolation-by-distance. Based on this 571 

result, and the relative genetic distinctiveness of the Jawbone Lake population and the other two 572 

north-central populations from the Yukon-Tanana Uplands (specifically, the Eagle Summit and 573 

Cresent Creek populations), these populations were analyzed separately and a distinct pattern of 574 

isolation by distance at the regional level was interpreted as possible evidence of different 575 

ancestral source populations (Lanier et al., 2015). However, our analyses here provide a 576 

compelling argument for an alternative explanation. Specifically, the genetic similarities between 577 

Jawbone Lake and the Eagle Summit and Crescent Creek populations (See Fig. 5 in Lanier et al., 578 

2015) may not reflect a refugial source that was differed from the refugial source of other 579 

sampled populations. Instead, it may reflect their proximity to the geographic origin of expansion 580 

in an ancestral species, Ω in the Mackenzie mountains (see Fig. 4), and more specifically, the 581 

similar geographic distance of the populations from the source of expansion. Even though our 582 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

validation tests indeed show that the degree of reliability about expansion can be considerable 583 

(e.g., differing by as much as 1500 km from the actual expansion origin depending upon where 584 

on the landscape the expansion proceeded from; Fig. 5), the mean error surrounding estimates of 585 

Ω as a function of the distance from the actual origin is quite low (i.e., less than 5 demes away, 586 

or 250 km) for the geographic region with the highest likelihood of Ω (Fig. 4). Interestingly, 587 

Procrustes analyses in the Collared pikas, as well as other co-distributed alpine mammals, 588 

suggest a stronger deviation along the longitudinal axis between genetic variation and geography 589 

(i.e., genetic similarities more centrally located than the geographic space occupied by the 590 

populations; Knowles et al., 2016). Our analysis supported this deviation as a result of an 591 

expansion history along this axis, offering an alternative interpretation to the hypothesis of a 592 

centrally located refugium.  593 

          Lastly, ENMs for the LGM are not inconsistent with our estimate (Fig. 2B). However, if 594 

we consider information from the ENMs by themselves, the region of high habitat suitability 595 

encompasses a broad area that does not offer much detail about the potential location of ancestral 596 

populations. This even includes a potential north-western source population (Fig. 2B), even 597 

though former genetic (Knowles et al., 2016; Lanier et al., 2015) and fossil studies (Gunderson, 598 

Jacobsen, & Olson, 2009; Lanier & Olson, 2013) suggest the lack of support for such a putative 599 

ancestral source  (e.g., in the Brooks Range). Both X-ORIGIN and TDOA analyses reinforce that 600 

despite projections from the ENM for the LGM, this region does not appear to be a likely 601 

candidate as an ancestral source of expansion.  602 

 603 

 604 

CONCLUSIONS 605 

 Our results show that failing to consider the impact of spatial and temporal heterogeneity 606 

on the expansion process can lead to much less accurate inferences (Fig. 3A compared with 3B, 607 

and Fig. 5A compared with 5B). Furthermore, there are also ways to minimize potential errors 608 

when inferring the origin of expansion. For example, in our simulations, we place a broad prior 609 

on parameters that are not targets of interest, but may influence estimates of Ω (e.g., ancestral 610 

population, carrying capacity; see Table 1), thereby accounting for uncertainty about the 611 

demography of the expansion process. Moreover, the summary statistics used in the inference 612 

procedure (i.e., Ψ and FST-values) are not sensitive to the absolute effective population sizes, but 613 
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rather the ratio of size differences between population pairs. Lastly, despite the lower accuracy of 614 

inferences for complicated scenarios, as with the analysis of the Collared pika, relative to simple 615 

expansion scenarios (Fig. 3, 5), accounting for the effects of spatial and temporal heterogeneity 616 

is generally more accurate than applying an oversimplified model if the goal is to infer the 617 

geographic location of an expansions origin (Fig. 3). Therefore, we argue that the caveats and 618 

concerns associated with inferring the origin of expansion do not nullify the utility of spatially 619 

and temporally explicit models, such as those applied here in the new X-ORIGIN pipeline. In 620 

particular, we show that it is incorrect to assume that environmental heterogeneity (whether 621 

temporal or spatial) will not impact inferred origins of expansion, and that despite the caveats we 622 

highlight with X-ORIGIN, they are less problematic than many implicit assumptions made in 623 

approaches that ignore geographic and temporal constraints on population movements or 624 

population size fluctuations (see Knowles & Alvarado-Serrano 2010). Moreover, the reliability 625 

of any inference about the origin of expansion under the more complex models implemented in 626 

the X-ORIGIN pipeline can be (and should be) rigorously explored using validation procedures.  627 

 628 

 629 
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 784 

TABLE 785 

Table 1. Prior ranges for demographic and genetic parameters used in the demographic 786 

simulations. 787 

Parameters Description Prior Ranges Distribution 

m migration rate between demes (10-3.6, 10-2) log-uniform 

N ancestral population size before expansion ans (36,880, 508,318) uniform 

K carry capacity per deme (103.3, 104.6) log-uniform 

Lat latitude range of origin (1,073,893, 1,850,478) uniform 

Long longitude range of origin (616,487, 899,496) uniform 
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 791 

Figure 1. The required data inputs (shown in boxes) and workflow of the X-ORIGIN pipeline are 792 

highlighted in the schematic. Specifically, to infer the geographic location from which an 793 

expansion originates, Ω (i.e., the actual latitudinal and longitudinal coordinates of the ancestral 794 

source population), a habitat suitability map, candidate regions of Ω, and priors for demographic 795 

parameters are required. To consider how habitat heterogeneity might impact the range 796 

expansion process, the habitat suitability map can be informed by spatial (as well as temporal) 797 

variation in suitability (e.g., from ENMs based on contemporary bioclimatic variables, or 798 

paleoclimatic variables; see He et al. 2013). Otherwise, the expansion process can be modeled as 799 

a diffusion process (i.e., equal habitat suitability across space and time). Likewise, users have the 800 

option of either entering candidate regions of Ω (e.g., a region identified by the regression 801 

approach of Peter and Slatkin 2013; as discussed in the text), or the entire map area can be 802 

evaluated during the inference procedure. The pipeline calls up different software packages for 803 

downstream generation of simulations and estimation of the expansion origin, candidate regions 804 

of Ω. Specifically, spatially explicit coalescent simulations are used to generate expected patterns 805 

of genetic variation under a demographic model the expansion process (either informed or not by 806 

spatial and temporal heterogeneity of the landscape) using a modified version of the program 807 

SPLATCHE2 (Ray et al. 2010). Summary statistics are calculated from each simulated data set 808 

using R script that are incorporated in the pipeline, which are compared with those calculated for 809 

empirical data to inform the posterior distribution of Ω using ABC. Note that all steps can be 810 

performed seamlessly in X-ORIGIN, which has a wrapper for connecting all the steps in R or 811 

python scripts. Scripts for the pipeline are shown in grey shaded boxes, while external programs 812 

called in the pipeline are shown without boxes. 813 

 814 

Figure 2. Simulated scenario used to evaluate the performance of the X-ORIGIN pipeline for 815 

inferring the geographic origin of a range expansion. In the simulated scenario, A) expansion 816 

proceeded from the lower-left corner of the map (shown as the red dotted area) across a 817 

homogeneous landscape with a centrally located geographic barrier during the first 250 818 

generations, but not the last 250 generations (i.e., there is spatial and temporal habitat 819 

heterogeneity, where the area of the barrier has zero suitability). Due to the symmetry of the 820 

landscape, we varied the origin of expansion in the simulations within the red dotted area instead 821 
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of the whole map. Circles mark populations that are sampled and for which summary statistics 822 

are calculated from multiple individuals.  B) An empirical application of X-ORIGIN in the 823 

Collared pika in which habitat suitability varied spatially and temporally across the Alaskan 824 

landscape.  Ecological niche models were used to estimate habitat suitabilities for the present and 825 

past (i.e., the LGM) using climatic data (see Lanier et al. 2015 for details about ENMs). 826 

Specifically, the demographic expansion process proceeded across a temporally and spatially 827 

heterogeneous landscape, in which the habitat suitabilities from an ENM estimated for the LGM 828 

was used to inform the first 5,000 years of the simulated demographic expansion, followed by 829 

6,000 simulated years of expansion across an intermediate surface (i.e., a map with average 830 

habitat suitability scores between those from the ENM for the present and LGM), and then 831 

10,000 years of expansion with the habitat suitabilities from an ENM based on current climatic 832 

conditions. 833 

 834 

Figure 3. Distribution of the mean errors in the estimated Ω across the map (i.e., for different 835 

geographic locations for the origin of expansion) under the simulated scenario (see Fig. 2A, the 836 

red dotted area) using (A) X-ORIGIN versus (B) the TDOA approach. Color of each deme shows 837 

the accuracy of origin estimation if the expansion starts from that particular deme, which is 838 

measured by the distance between its inferred origin, Ω, and the actual origin, averaged across 10 839 

simulations. Also shown are the histograms of accuracy across all 5000 instances (C) from X-840 

ORIGIN versus the TDOA approach. Distances are in the units of the number of demes from the 841 

actual origin.  842 

 843 

Figure 4. Estimates of the origin of expansion, Ω, inferred in the Collared pika using X-ORIGIN 844 

compared with the TDOA approach. The deme with the highest likelihood inferred from X-845 

ORIGIN is marked with a black “X”, whereas the location of origins estimated using TDOA 846 

methods are marked with crosses. The heat map shows differences in the probability density 847 

estimates of different demes across the map being the origin of expansion, as estimated in X-848 

ORIGIN, with the greener shades representing higher probabilities; the shaded square area 849 

represents the prior area for Ω, a region identified by the regression approach of Peter and 850 

Slatkin (2013). Each deme in the map has equal relative size (i.e., the map is projected using the 851 

North American Datum – NAD83 – readjustment of the global positioning system that accounts 852 
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for the earth’s curvature) and population localities of sequenced individuals are marked by grey 853 

circles.  854 

 855 

Figure 5. Distribution of mean errors in the estimated Ω across the map (i.e., for different 856 

geographic locations for the origin of expansion) for pseudo-observations in the Pika simulations 857 

(see Fig. 2B) using (A) X-ORIGIN versus (B) the TDOA approach. 5000 pseudo-observations are 858 

generated and color of each deme shows the accuracy of origin estimation if the expansion starts 859 

from the particular deme, which is measured by the average distance between its inferred origins 860 

and the actual origin. White area on the map contains demes where not all populations can be 861 

colonized if the expansion starts from there. Also shown are the histograms of accuracy across 862 

all 5000 instances (C) from X-ORIGIN versus the TDOA approach. Distances are in the units of 863 

the number of demes from the actual origin and each deme is 18.4km in length.  864 
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TABLE 

Table 1. Prior ranges for demographic and genetic parameters used in the demographic 

simulations. 

Parameters Description Prior Ranges Distribution 

m migration rate between demes (10-3.6, 10-2) log-uniform 

Nans ancestral population size before expansion (36,880, 508,318) uniform 

K carry capacity per deme (103.3, 104.6) log-uniform 

Lat latitude range of origin (1,073,893, 1,850,478) uniform 

Long longitude range of origin (616,487, 899,496) uniform 
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