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Abstract: 33 

Antibodies are highly functional glycoproteins capable of providing immune protection 34 

through multiple mechanisms, including direct pathogen neutralization and the engagement 35 

of their Fc-portions with surrounding effector immune cells and immune components that 36 

induce anti-pathogenic responses. Small modifications to multiple antibody biophysical 37 

features induced by vaccines and other therapeutic regimens can significantly alter functional 38 

immune outcomes, though it is difficult to predict which combinations confer protective 39 

immunity.  In order to give insight into the highly complex and dynamic processes that drive 40 

an effective humoral immune response, here we discuss recent applications of “Systems 41 

Serology”, a new approach that uses data-driven (also called ‘machine learning’) 42 

computational analysis and high-throughput experimental data to infer networks of important 43 

antibody features associated with protective humoral immunity and/or Fc functional activity.  44 

This approach offers the ability to understand humoral immunity beyond single correlates of 45 

protection, assessing the relative importance of multiple biophysical modifications to 46 

antibody features with multivariate computational approaches. Systems Serology has the 47 

exciting potential to help identify novel correlates of protection from infection and may 48 

generate a more comprehensive understanding of the mechanisms behind protection, 49 

including key relationships between specific Fc functions and antibody biophysical features 50 

(e.g. antigen recognition, isotype, subclass and/or glycosylation events). Reviewed here are 51 

some of the experimental and computational technologies available for Systems Serology 52 

research and evidence that the application has broad relevance to multiple different infectious 53 

diseases including viruses, bacteria, fungi and parasites. 54 

 55 

Word count: 3955 words excluding abstract, references, tables and figure legends 56 

Introduction:  57 

In 1776, Edward Jenner inoculated a child with matter from a cowpox sore on a milkmaid’s 58 

hand, and noted that the child was then protected against smallpox infection 1.  This event 59 

was the beginning of modern-day vaccines, which have transformed society and saved 60 

millions of lives. As the success of vaccines has been wonderfully beneficial, it has 61 

influenced our approach to the study and treatment of infectious diseases.  Vaccination 62 

methods today remain largely based on broad single-target approaches, similar to those first 63 

employed by Jenner more than 200 years ago 2. More specifically, many of the currently 64 

licensed vaccines focus on inducing a single immune correlate, with the detection of total 65 
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binding antigen-specific antibodies or neutralizing antibodies being the most common 66 

assessment for protection against pathogens including polio, influenza, yellow fever, 67 

hepatitis, HPV, pertussis and pneumococcus 3, 4

 72 

. However, for many of the world’s deadliest 68 

pathogens, including ebola, malaria and HIV, the development of an effective vaccine has 69 

been hindered largely due to our inability to elucidate the immune correlates of protection by 70 

traditional approaches. 71 

The importance of Fc-mediated functional antibodies for protection and control of 73 

diseases 74 

Antibodies (Abs) are highly functional glycoproteins that are a vital immune component for 75 

protection and control of infectious diseases. For a number of vaccines (e.g., polio, influenza, 76 

tetanus, etc.) neutralizing Abs against the pathogen or toxins have been identified as the 77 

correlates of protection. Interestingly, for many other vaccines (eg., Hepatitis A), total 78 

pathogen-specific binding Abs have been identified as correlates of protection, yet the 79 

specific mechanisms behind these pathogen-specific binding Abs remain unclear 4. Beyond 80 

neutralization, Abs are capable of providing immune protection through multiple additional 81 

mechanisms, via engagement of their Fc (Fragment crystalizable) portions. To date, only one 82 

licensed human vaccine (Pneumococcus) has identified Fc-mediated functional Abs as a 83 

correlate of protection 5.  However, there is growing evidence that supports the role for Fc 84 

functional Abs in the control of a wide range of pathogens including bacterial, viral, fungal 85 

and parasitic infections. These Abs have the unique capacity to bridge the gap between innate 86 

and adaptive immunity, by harnessing both the specificity of the humoral adaptive immune 87 

response provided by the Ab’s Fab (Fragment antigen-binding) region, which recognizes the 88 

pathogen, as well as by rapidly activating Fc Receptor (FcR) innate immune effector cell 89 

responses (e.g., complement) via the Ab’s Fc region. Activation can induce a range of anti-90 

pathogenic immune responses including but not limited to Ab dependent cellular cytotoxicity 91 

(ADCC), Ab dependent cellular phagocytosis (ADCP), Ab dependent complement activity 92 

and Ab dependent cytokine, chemokine and/or enzyme release (Figure 1).  Importantly, FcR 93 

innate immune effector cells are abundantly located throughout the body and can be recruited 94 

by these non-neutralizing Abs without any need for prior antigen sensitization 6, 7

 96 

.  95 

Emerging evidence from multiple infectious disease models strongly suggest that functional 97 

Abs are important for mediating control and/or protection against viral, bacterial, fungal and 98 

parasitic pathogens. Moreover, the fact that several bacterial (e.g., Streptococcus 8) and viral 99 

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



This article is protected by copyright. All rights reserved 

(e.g., HSV 9) pathogens have evolved to encode proteins that specifically protect them from 100 

Fc mediated Ab functions 10

 105 

, further supports the notion that these non-neutralizing anti-101 

microbial properties of Abs play a vital role in protection from infectious diseases. Examples 102 

of the importance of Fc functional Abs in the control and/or protection of different pathogens 103 

are summarized in Table 1. 104 

Lessons learned from HIV Vaccines Trials  106 

Despite three decades of intense research, the development of an effective vaccine against 107 

HIV continues to produce lackluster results. To date, only one human Phase III HIV vaccine 108 

trial has shown a modest, but significant level of efficacy (31.2%) 11.  Surprisingly, this 109 

RV144 vaccine trial did not induce CD8+ T cell cellular immunity, broadly neutralizing Ab 110 

responses or high binding antigen-specific Ab levels 11, 12. Instead immune correlates analysis 111 

identified the importance of Abs targeting the V1V2 region of the HIV envelope and Ab 112 

dependent cellular cytotoxicity (ADCC) activity, in the absence of high levels of IgA 12, 13. 113 

Follow-up analyses discovered additional features of the humoral immune response 114 

associated with protection, including the preferential induction of IgG3 responses 14, 15, which 115 

were able to mediated multiple Ab effector functions including ADCC, Ab mediated cytokine 116 

and chemokine production from NK cells and Ab mediated cellular phagocytosis (ADCP) in 117 

a coordinated manner, otherwise known as polyfunctional Ab immunity 15

 119 

.  118 

Furthermore, multiple non-human primate (NHP) SIV/SHIV vaccine studies have recently 120 

been conducted highlighting the complexity of potential correlates of protection. 121 

Administration of an adenovirus vector 26 (AD26) prime followed by an envelope protein 122 

boost in NHP was able to provide 50% protection against repetitive SIV challenges 16. 123 

Interestingly, protective efficacy was not associated with a neutralization, but instead 124 

polyfunctional Ab immune responses (incorporating six different Ab Fc functions) were 125 

associated with protection 16. Similarly, other NHP studies have correlated both ADCP and 126 

Ab dependent complement deposition (ADCD) with protective efficacy 17. More recently, 127 

partial protection from SHIV infection was observed in NHP when administered with a 128 

canary pox prime (ALVAC)/ recombinant pentavalent envelope protein vaccine 18. Multiple 129 

humoral immune correlates were associated with decreased risk of infection, including 130 

plasma Ab binding to HIV-infected cells, ADCC Ab titers, NK cell-mediated ADCC and Ab 131 

mediated activation of MIP-1ß 18

 133 

. 132 
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These recent human and NHP HIV vaccines studies have highlighted our limited 134 

understanding of humoral immune responses and challenges us to shift our analysis of 135 

potential humoral immune correlates from being a univariate or “one component at a time” 136 

paradigm (e.g., neutralization or total Ab binding titers alone) to a multivariate “many 137 

components at once”, or systems concept for design of new strategies for more difficult to 138 

vaccinate diseases, based on systems-level properties of humoral immunity or as it has been 139 

more simply termed “Systems Serology” 19, 20

 141 

.   140 

Complexity of functional antibodies: 142 

Upon vaccination or infection by a pathogen, the humoral immune response aims to produce 143 

diverse, highly polyclonal Abs to target the foreign pathogens. The functional capacity of the 144 

humoral immune response is determined by multiple cumulative factors defined by an Ab’s 145 

biophysical features that are modulated by genetic, molecular and environmental factors 146 

(Figure 1 and summarized in Table 2). These include the ability of the Ab to effectively 147 

recognize the foreign antigen dictated by an Ab’s Fab (Fragment antigen-binding) region, 148 

along with the capacity of the Ab to engage with surrounding Fc effector cells and immune 149 

components (modulated by the Ab Fc-portion). 150 

 151 

Despite an Ab’s Fc region often being referred to as the ‘constant’ region, the Fc is 152 

surprisingly diverse, with subtle modifications having the capacity to significantly alter 153 

engagement and affinity to FcRs and/or other Fc binding immune components, including 154 

complement and mucins. These include differences in immunoglobulin isotypes: IgA, IgD, 155 

IgE, IgG and IgM, of which IgG is the most predominant immunoglobulin present in healthy 156 

human plasma 21. While each isotype has their own characteristic properties and functions, 157 

IgG is most commonly associated with mediating Fc effector responses, although IgA 22, IgM 158 

23 and IgE 24 also induce vital roles in protective immunity by activating their respective FcR 159 

innate immune cells and/or complement e.g. the importance of IgE and activation of Fc-160 

epsilon R effector cells for protection against parasitic infections has been well documented 161 

25. As an additional level of complexity, immunoglobulin isotypes also express different 162 

subclasses for example: IgG consists of four subclasses, IgG1, IgG2, IgG3 and IgG4, each 163 

binding with varying affinity to different FcγRs 26, 27

 165 

. 164 

Beyond subclass, Fc function is also determined by changes in Ab glycosylation, particularly 166 

the glycan structure attached at asparagine 297 (Asn297) of the Ab Fc heavy chain 28, 29,  167 
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which can have important functional consequences by influencing the affinity of IgG’s for 168 

their respective FcγRs on effector cells and complement proteins. Complete aglycosylation of 169 

an Ab abolishes FcγR and complement binding 30, whereas the presence or absence of 170 

particular glycan forms can alternatively inhibit or enhance Fc functionality 31, 32. Table 2 171 

summarizes the many different features of the antigen-Fab Ab and Ab Fc-FcR interactions 172 

that can modulate Fc functionality and lists example assays available to allow for the in-depth 173 

assessment of these Ab features. Systems Serology therefore aims to use high throughput 174 

assays, to collate a holistic assessment of all Ab features that can potentially modulate Fc 175 

functionality, providing us with a detailed portrait, or humoral immune “signature” associated 176 

with protection or control of infection. While many of these assays have been developed and 177 

optimized for use predominately against viruses (especially HIV 18, 19), these assays have the 178 

potential to be adapted and optimized for examination of other infectious diseases 33

 180 

.  179 

Generating insights into the complexity of the humoral response: Systems Serology 181 

Given the complexity of Ab biophysical features, a quantitative, systems approach will  182 

provide new perspective and insight into key quantitative relationships between the features 183 

that characterize a vaccine response, confer protection, or underpin a desired functional 184 

response.  A quantitative understanding of relationships between Ab biophysical features, Fc 185 

functional responses and clinical outcomes could enable design of new vaccine regimens 186 

specifically targeted to enhance or suppress key parts of this system; altering overall network 187 

humoral immunity rather than a single component (Figure 1B).  Though advancements in 188 

experimental technologies now enable the measurement of large numbers of biophysical Ab 189 

features (detailed in Table 2), a major challenge still remains in determining the relative 190 

importance of alterations in these Ab features that occur with vaccination, and key 191 

quantitative relationships that drive a desired immune response or confer protection. “Data-192 

driven” modelling approaches 34 (also called “machine learning” approaches) hold great 193 

promise for better understanding Ab systems, as they enable integration of high-throughput 194 

experimental data to mathematically identify relationships between Ab biophysical features 195 

that are associated with important functional outcomes, vaccine regimen, or 196 

protection/control of infection (Figure 2).  These approaches can be applied as useful 197 

hypothesis-generating tools for new systems-level mechanisms involving multiple Ab 198 

features, and have the potential to accelerate our understanding of the humoral immune 199 

system by helping to define areas of interest for further experimental testing and additional 200 

quantitative models. The value of data-driven approaches in identifying gene and 201 
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transcriptional signatures correlated with vaccine response has been demonstrated in a wide 202 

range of vaccinology applications 35-37

 207 

. However many of these previous studies have 203 

specifically focused on identifying genetic and transcriptional correlates of vaccine 204 

protection, especially for cellular immunity. In contrast, application of Systems Serology 205 

instead aims to focus upon gaining insights to functional humoral immunity.  206 

 208 

 209 

Data-driven tools: overview and examples 210 

Data-driven models have the potential to provide both better classification of vaccine 211 

responses (e.g., between protective and non-protective vaccines) as well as give systems-212 

level insight into networks of Ab biophysical features involved in important functional 213 

responses. Altogether, they are able to generate a valuable network “picture” (Figure 1B) of 214 

key events that may contribute to a specific functional immune response or clinical outcome. 215 

In general, all data-driven approaches involve analysis of a large data set (‘X’: Figure 2). In 216 

the case of Systems Serology, this may include measurements of the Ab’s biophysical 217 

features (e.g.,. Ab Fab recognition, Ab isotype, glycosylation, Fc receptor etc.; detailed in 218 

Table 2) believed to contribute to a particular outcome (i.e. functional response, vaccine 219 

regimen, or protection).  A subset of data-driven modelling approaches (including principal 220 

component analysis (PCA) and correlation networks) only employ this X data set, searching 221 

for significant multivariate relationships between measured features. This subset of 222 

approaches is considered “unsupervised” in that they evaluate relationships between features 223 

in X without information about an outcome. The strength of unsupervised approaches lies in 224 

the ability to search for features involved in the differentiation of outcomes in a completely 225 

unbiased way. Systemic, unbiased, examination of broad Ab profiles provides us with a more 226 

comprehensive understanding of the mechanisms behind specific functions, potentially 227 

revealing novel correlates between Ab features and functions that would not normally be 228 

identified by traditional approaches. 229 

 230 

Other data-driven approaches are considered “supervised” (including partial least squares 231 

discriminant analysis (PLSDA), partial least squares regression (PLSR) and decision trees, 232 

Figure 2), as they identify key relationships in X that are related to an important functional or 233 

clinical outcome (“Y”; e.g., functional response, vaccine regimen, or clinical outcome) 234 

(Figure 2).  Supervised approaches are especially useful for gaining mechanistic insight into 235 
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networks or systems of immune parameters driving a response, because they identify direct 236 

relationships between the two. Both unsupervised and supervised approaches are useful in 237 

Systems Serology research, depending on the question being asked and nature of the data. 238 

One major advantage of all data-driven approaches is integration, or the ability to merge 239 

disparate data sets into a whole. By combining measurements from different sources into the 240 

same model, quantitative relationships between biophysical features associated with a clinical 241 

or functional outcome can be linked across experimental assays, tissue compartments, and 242 

time. Below we give examples of specific data-driven approaches that have been applied in 243 

Systems Serology research. In each case, we leave detailed mathematical descriptions to 244 

other published work, but highlight applications, advantages and limitations of each in the 245 

context of Systems Serology use.  246 

 247 

Unsupervised approaches: 248 

Perhaps the simplest way to visualize relationships between many different measured 249 

parameters is via the construction of correlation networks (Figure 2) 19, 38. These diagrams 250 

allow for the visualization of significant correlative relationships between paired measured 251 

features of interest. These networks can be created by first computing either the Pearson 252 

(parametric) or Spearman (non-parametric) correlation coefficient for each pair of measured 253 

variables. Relationships across all features can then be visualized via either a web-like 254 

structure or a heat map that indicates the direction and strength of each significant 255 

correlation.  The main advantage of correlation networks is that they are easy to create and 256 

interpret, and thus often give useful insight into potential mechanistic relationships between 257 

features.  One drawback is that they are unsupervised, and do not directly relate identified 258 

correlative relationships to a clinical or functional outcome of interest (Y). Therefore they 259 

have little use as predictive tools. Additionally, only pairwise relationships between measured 260 

features are considered; thus, true multivariate signatures involving three or more measured 261 

features are unattainable. This approach has been used previously to examine Ab network 262 

connectivity between Ab biophysical features and functions associated with the humoral 263 

response elicited by four different HIV vaccines (VAX003, RV144, HVTN204, and 264 

IPCAVD001) 19.  Vastly different network topographies or ‘humoral signatures’ were 265 

observed between the different vaccines trials and were able to highlight important 266 

mechanisms behind the moderately protective RV144 trial. More specifically, IgG1 and IgG3 267 

where highly connected with multiple Ab Fc effector functions including ADCC, ADCP and 268 
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ADCD indicating their importance in modulating multiple Fc functions, while these 269 

interactions were not observed for the other non-efficacious vaccine trials. 270 

 271 

 272 

Principal component analysis (PCA) 39 is an unsupervised approach that can be used to 273 

determine signatures of measured features that account for the most variation between 274 

samples, in a set of measured features. For example, given dataset ‘X’ (Figure 2) containing 275 

measurements of Ab biophysical features, PCA identifies orthogonal, linear combinations 276 

(‘signatures’) of these measured features (termed “Principal Components”) that account for 277 

the most variation in the data, without any information about functional or clinical outcomes 278 

(Y).  Both advantages and disadvantages of PCA arise from the fact that it is an unsupervised 279 

approach – the algorithm receives no information about the outcome. This is advantageous, in 280 

that response differences can be visualized in an unbiased way, but disadvantageous in that it 281 

is not inherently hypothesis-driven.  While the identified principal components represent 282 

signatures of measured features that account for the most variation in the data, they are not 283 

specifically identified to discriminate between outcomes of interest,  as a functional or 284 

clinical response (Y) is not included in the model. Thus, they can give insight into important 285 

relationships between measured features, but they cannot directly predict how those features 286 

are associated with a functional or clinical outcome. Previously Systems Serology application 287 

of PCA applied to Mycobacterium tuberculosis serology studies were able to identify the 288 

importance of Ab glycosylation in distinguishing latent from active infection 33

 290 

. 289 

Supervised approaches: 291 

Partial least squares discriminant analysis (PLSDA) and partial least squares regression 292 

(PLSR) 40, 41 are supervised methods that identify signatures of measured features (X) 293 

quantitatively related to a functional or clinical outcome (Y) (Figure 2). Thus, both PLSDA 294 

and PLSR require input of both a data set of measured Ab features (X), as well as a measured 295 

outcome (Y). PLSDA and PLSR are differentiated by the fact that in PLSDA, Y contains a 296 

discrete class or label information (e.g.,vaccine 1, vaccine 2, etc.)  for each outcome, while Y 297 

for PLSR contains continuous numeric data (e.g., ADCC measurements that can range from 298 

0-100% cytotoxicity). Y is often a single column of data (e.g., only 1 outcome variable), but 299 

it can also be a matrix with multiple columns in situations for which there are several 300 

outcomes of interest. These algorithms determine orthogonal linear combinations 301 

(‘signatures’) of experimentally measured features (X) that best differentiate between 302 
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outcomes (Y). Each sample can then be scored and plotted on these signatures (termed ‘latent 303 

variables’) to determine model accuracy for predicting clinical outcome based on measured 304 

features. Each identified latent variable (signature), contains ‘loadings’, or specified amounts 305 

of each of the measured features. PLSDA and PLSR are especially useful for hypothesis-306 

driven Systems Serology research as they specifically search for signatures directly 307 

associated with an outcome (in contrast to PCA, which only evaluates overall variation in the 308 

data set (X)). An important consideration in using PLS algorithms is to ensure models are not 309 

‘overfit’  40, i.e. that the model contains only information about important underlying 310 

relationships rather than  including random error or noise. This can be avoided by performing 311 

cross-validation (reviewed for PLSDA in 40), whereby a smaller portion of the data is 312 

reserved to test a model generated by majority of the data. The ability of the model to 313 

accurately predict each sample in the test set can then be used to calculate cross-validation 314 

error, a measure of the model’s predictive ability. If cross-validation error is high, the model 315 

can be improved by performing ‘feature selection’ to remove features that contribute to 316 

random error. There are a number of different feature selection algorithms that may be used 317 

depending on the nature of the data set, some examples of these include use of variable 318 

importance projection (VIP) scores 42 and the least absolute shrinkage and selection operator 319 

(LASSO) 43, 44

 326 

. One key advantage of PLS approaches for Systems Serology research is that 320 

loadings on latent variables of a feature-selected model can give great insight into co-varying 321 

serological features that are most involved in differentiating a functional or clinical outcome. 322 

In other words, the “minimum signature” that best defines a vaccine response can give a 323 

picture of key Ab features that would be best used to reconstruct the system (Figure 1B) for 324 

theoretical analysis.   325 

The application of PLSDA/PLSR analysis has been successfully applied in a wide range of 327 

Systems Serology settings, including to identify humoral immune correlates of the 328 

moderately protective human HIV RV144 vaccine trial, in non-human primate SIV/SHIV 329 

vaccine studies, and to examine the humoral responses induced by topical anti-retrovirals for 330 

pre-exposure prophylaxis following HIV infection 18
, 

19
, 

43, 45. In the study of topical anti-331 

retrovirals for pre-exposure prophylaxis following HIV infection 43, a PLSDA model used 332 

with LASSO feature selection identified a signature of 7 measured Ab features that 333 

differentiated women in the topical anti-retrovirals and placebo groups with 77% cross-334 

validation accuracy, indicating that topical anti-retroviral application was associated with a 335 
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specific Ab signature including measurements from different time points (6 and 12 months) 336 

and tissue compartments (plasma and cervicovaginal lavage). Individual Ab measurements 337 

we unable to differentiate between groups. Altogether this illustrates the utility of PLSDA for 338 

differentiating functional or clinical outcomes and for integrating Ab measurements to 339 

identify new hypotheses for mechanisms that may vary over time or tissue compartments.  340 

 341 

 342 

Decision trees 46 38 (Figure 2) provide unique insight into humoral responses in that they are 343 

easy to interpret, and can give useful information about the hierarchy of importance and 344 

critical ranges (e.g.,. concentration, binding affinity) of measured Ab features for a particular 345 

functional or clinical outcome. For these reasons, they can be especially useful for giving 346 

insight into potential mechanistic relationships between measured serological features. A 347 

decision tree algorithm works by performing a series of binary tests on the data set of 348 

measured Ab features (X), to split samples into groups based on the functional or clinical 349 

outcome (Y). The specific binary test performed is selected by the user, and called a ‘split 350 

criterion’ 46. Each split further purifies samples based on functional or clinical outcomes of 351 

interest (e.g., vaccine 1 vs. vaccine 2 vs. vaccine 3, etc.; Figure 2). The result is a tree-like 352 

structure that illustrates the hierarchy of importance of measured features based on outcome, 353 

with specific measurement ranges required for each node selected by the algorithm. As with 354 

other supervised approaches, an important consideration in using decision tree algorithms is 355 

cross-validation to prevent overfitting (described above). If cross-validation determines a 356 

decision tree is overfit, ‘pruning’ may be used to improve the model, whereby peripheral 357 

branches of the tree are removed if they contribute little to classification. More detailed 358 

information on decision tree cross-validation and pruning is reviewed in 46

 360 

.   359 

 361 

Future Outlook 362 

While the data-driven models used in current Systems Serology applications offer the 363 

exciting opportunity to integrate high-throughput data to identify key Ab features associated 364 

with a protective immune response, insight is still limited to multivariate statistical 365 

associations, without quantitative understanding of true cause-effect relationships that 366 

underpin mechanistic function. While carefully planned experiments based on data-driven 367 

models give some insight in this direction, they too are limited. Other quantitative approaches 368 

will be needed to truly understand the underlying complexity of these systems; moving 369 
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beyond statistical associations and towards a quantitative systems-level understanding of 370 

mechanism. This will require use of equation-based methods, also called “theory-driven” 371 

approaches, where mathematical models are constructed based on prior knowledge of a 372 

system. Data-driven models can provide the underlying framework for these models – used to 373 

decide key parameters that should be included for a given question, boundaries and important 374 

input/output. Once constructed, these theory-driven models will provide a valuable 375 

hypothesis-testing tool, lending insight into 1) the importance of key Ab parameters in the 376 

formation of immune complexes and 2) the relative importance and synergistic effects of 377 

multiple Ab alterations involved in a functional or clinical outcome. These types of 378 

approaches have already been employed to optimize the design of Abs that trap viruses in 379 

mucus of the female reproductive tract, determining optimal quantitative ranges of Ab 380 

binding affinities that maximize both virion binding and Ab mobility in mucus 47

 382 

.   381 

Clearly Systems Serology technologies, both experimental assays and the application of 383 

analytical technologies are still in their infancy. Over time, high-throughput assays to assess 384 

biophysical Ab features and functions will continue to be developed and improved, 385 

encapsulating a wider range of infectious diseases and allow for the examination of Ab 386 

features and functions relevant to different tissue compartments and locations. Furthermore, 387 

Systems Serology applications can potentially be expanded to address other diseases 388 

associated with humoral immunity, including autoimmune diseases and selective cancers. 389 

There is no doubt that Systems Serology will continue to evolve to capture broader 390 

applications providing us with an increasingly comprehensive understanding of protective 391 

humoral immunity. 392 

 393 
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 407 

Figure 1: Dynamic complexity of the humoral immune response 408 

A). The functional capacity of the humoral immune response is determined by complex 409 

biophysical antibody features including i). the pathogen being targeted and the ability of the 410 

antibody’s Fab to recognize different antigens, ii). an antibody’s Fc region's diversity which 411 

in turn can modulate the antibodies capacity to engage with iii). Fc Receptor/immune 412 

molecules and iv). availability of the Fc Receptors on different effector cells/immune 413 

molecules in the surrounding environment. B). The combination of the pathogen targeted 414 

(e.g. infected cell versus small infectious particles) and binding by an Ab's Fab determines 415 

opsonisation, neutralization and immune complex formation. The composition of the Fc-416 

regions of these Abs can in turn modulate the functional immune response by surrounding 417 

effector cells/immune molecules potentially inducing a range of functions including but not 418 

limited to ADCC, Ab mediated secretion of cytokines, Ab mediated enzyme release/NET 419 

(neutrophil extracellular trap) formation, Ab dependent phagocytosis, Ab mediated 420 

complement activity, mucus trapping etc. dependent on the cellular Fc receptor expression or 421 

immune components available. 422 

 423 

 424 

Figure 2: Systems serology data-driven modelling approaches 425 

Systems Serology involves running high-throughput experimental assays that measure Ab 426 

biophysical and functional data (X) in parallel with a functional or clinical outcomes (Y). 427 

Upon collation, the datasets can be interrogated by unsupervised and supervised machine 428 

learning computational techniques, including Principal Component Analysis (PCA), 429 

correlation networks, Partial Least Square Discriminant Analysis and Regression (PLSDA 430 

and PLSR), and decision trees. Correlation network figure was kindly contributed by Manu 431 

Kumar and Doug Lauffenburger (MIT). 432 

 433 

 434 

Table 1: Examples of functional antibodies in the control of infectious viral, bacterial, 435 

fungal and parasitic pathogens 436 
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 437 

Antibody 

Function 

Virus Bacteria Fungus Parasite 

ADCC HIV 12, 15, 18, 48, 49,50 

Influenza 51-53, 

Ebola 54, 55, HSV56

Salmonella typhi 

 

57, Chlamydia 

trachomatis 
58, Mycobacterium 

tuberculosis 33

 

 

Cryptococcus 

neoformans 59

Aspergillus 

, 
60

Schistosomiasis 

 

25

Strongyloides 

stercoralis 

 

61, 

Plasmodium 62

 

 

Antibody 

mediated 

Phagocytosis  

HIV 15, 17, 45. 

Influenza 63, 64

Salmonella 

paratyphi A  65

Clostridium 

difficile toxin A 

, 

66

Mycobacterium 

tuberculosis 

, 

67

Paracoccidioides 

Brasiliensis 

 

68, 

Aspergillus 

fumigatus 
69

 

 

Plasmodium 70, 

Toxoplasma 

Gondii 71

 

 

Antibody 

mediated 

Complement 

Ebola 55, HIV 17, 45 Pseudomonas 

aeruginosa, 

 

Salmonella 72, 

Borrelia 

burgdorferi 73

 

 

Aspergillus 

fumigatus 
69, Candida 

Albicans 74

 

 

Strongyloides 

Stercoralis 61

Plasmodium 

, 

 75 

Antibody 

mediated 

Enzyme 

and/or 

cytokine 

release  

HIV 15, 18, 45, 48, 76, 

Influenza 52, 53

Mycobacterium 

tuberculosis  33

Paracoccidioides 

Brasiliensis  68

 

 

Schistosomiasis 
25, Leishmania 77 
80

Plasmodium 

 

 78, 79 

Non-

neutralizing 

Antibody 

mediated 

Pathogen 

inhibition 

HIV 81 Coxiella burnetii  
82, Chlamydia 83

 

 

Plasmodium 
62, 84 A
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 438 

 439 

 440 

Table 2: Antibody Biophysical Features that can modulate Fc functionality 441 

 442 

Fab Examples 

measurements 

Example Assays References 

Masking/ 

Availability, 

Antigen Density 

Abundance of antigen 

available on 

pathogen/infected cells 

 85, 86 

Size 

 

Smaller pathogen eg 

virus 

Larger pathogen eg 

parasite, or infected cell 

Immune complex assays 87, 88 

Antigen target Protein 

Glycoprotein 

Glycan 

Glycolipid 

Protein, glycan, 

glycolipid, glycoprotein 

screening arrays,  

89-92 

Epitope Conformational 

Linear 

Overlapping peptide 

arrays  

Protein scaffold arrays 

Multiplex 

ELISAs 

ICS 

93-97 

Antibody-antigen 

affinity 

Equilibrium constant Surface plasmon 

Resonance 

Chaotrope 

98-100 

Distance Distance from cell 

membrane 

Assays with variable 

epitope distances  

 

101 

Breadth 

 

Clades, Strains, 

serotypes 

Protein arrays 

Multiplex 

102, 103 

Fc Examples  Assays Reference 

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



This article is protected by copyright. All rights reserved 

Isotype IgG, IgA, IgM, IgE, 

IgD 

Multiplex 

ELISAs 

95, 104 

Subclass IgG1, IgG2, IgG3, 

IgG4, 

IgA1, IgA2 

Multiplex 

ELISAs 

95, 104 

Glycosylation 

 

Fucose 

Galactose 

Bisecting GlcNAC 

Sialic Acid 

Mass Spec 

HPLC 

CE 

Multiplex 

31, 33, 104, 105 

Allotype 

 

 

IgG1 (6 alleles) 

IgG2 (1 allele) 

IgG3 (13 alleles) 

IgA (3 alleles) 

Sequencing 

ELISAs 

106-108 

FcR/Complement 

binding  

 

C1q, MBL, FcγRI, 

FcγRIIa, FcγRIIb, 

FcγRIIIa, FcRγIIIb, 

FcaR, FcER (and 

respective 

polymorphisms) 

ELISA 

Multiplex 

102, 104 

FcR affinity 

 

FcR binding kinetics Surface plasmon 

Resonance 

109, 110 

 443 

 444 
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