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Abstract:

Antibodies arehighly functional glycoproteincapable of providingmmune protection
throughmultiple mechanisms, includingdirect pathogen neutralization atite engagement
of their Feportionswith surroundhg effectorimmunecells and immune componentbait
induce antipathogenic responseSmall madalifications to multiple antibod/ biophysical
featuresnduced by vaccines and other therapeutic regimansignificantly alter functional
immune outcomes though it is difficult to predict whicltombinationsconfer protective
immunity. ln order to give insight into the highly complex and dynamic processedrivet
an effective_humoral immune responsere we discussecent applications of “Systems
Serology”/“a’ new approach that uses dhiteen (also called ‘machine learning’)
computationabnalysisand highthroughput experimental data infer networks ofmportant
antibody features associated with protective humoral immunity and/or Fcolualcaictivity
This approach offers the ability tonderstand humoral immunity beyosihglecorrelates of
protection, “assessingthe relative importance of multipléiophysical modifications to
antibody featuresvith multivariate computatiomal approachesSystemsSerology has the
exciting potentialto help identify novel correlates of protection from infection and may
generatea more comprehensive understanding of the mechanisms behatelction,
including key.relationships betweespecific Fc functionsand antibody biophysical features
(e.g. antigen ecognition, isotype, subclass and/or glycosylation eyeReviewed here are
some ofthe experimental and computational technologies avaifabl&ystems Serology
researctand evidence that the application has bnedelvancdo multiple differentinfectious

diseases including viruses, bacteria, fungi and parasites.

Word count: 3955words excluding abstract, references, tahled figure legends

I ntroduction:

In 1776, Edward Jenner inoculated a child with matter from a cowpox sore on a mitkmaid’
hand, andwnoted that the child was then protected against smallpox infecfidris event

was the_beginning of modeday vacanes, which have transformed society and saved
millions of lives. As the success of vaccines has been wonderfully beneficial, it has
influenced our approach to the study and treatment of infectious diseases. Vaccination
methods today remain largely based on broad stagiget approaches, similar to those first
employed by Jenner more than 200 years addore specifically, many of the currently

licensed vaccines focus onducinga single immune correlate, with the detectiontaiél

This article is protected by copyright. All rights reserved



66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99

binding antigerspecific antibodiesor neutralizing antibodiedeing the most common
assessmentor protection against pathogens includimplio, influenza, wellow fever,
hepatitis, HPV pertussis anggtneumococcud % However for many of the world'sleadliest
pathogens, includingbola, malariaand HIV, the development of an effective vaccine has
been hindered-largely due to our inabilibyelucidate the immune correlateSprotectionby

traditional @pproaches.

The importance of Fc-mediated functional antibodies for protection and control of
diseases

Antibodies (Abs) are highly functionglycoproteins that are a vital immune component for
protection@and control of infectious diseades. a number ovaccineqe.g.,polio, influenza,
tetanus, etc.neutralizingAbs against the pathogen or toxins have been identdiedhe
correlates of protectioninterestingly, for manyother vaccines(eg., Hepatitis A) total
pathogerspecific bindingAbs have been identified asorrelatesof protection, yetthe
specific mechanisms behind thgsehogerspecific binding Abs remainunclear®. Beyond
neutralizationAbs are capable of providing immune protection through multiple additional
mechanisms, via engagemefttheir Fc(Fragment crystalizablgjortions. To date, only one
licensed human vaccind’ifeumococcyshas identified Fenediated functionaAbs as a
correlate of protection. However, there is growing evidence that supports the rol&dor
functional Abs in the control of a wide range of pathogens including bacterial, viral, fungal
and parasitic infections. Thesds have theunique capacity to bridge the gap between innate
and adaptive immunityhy harnessingoth thespecificity of the humoral adaptive immune
responserovided by the Als Fab(Fragment antigebinding) region which recognizeshe
pathogenas wdl as by rapidy activaing Fc Receptor (FcR)jnnate immuneeffector cell
responsesge.g., complementyia the Ab’s Fc regionActivation caninduce a range of anti
pathogenic.immune responses including but not limitedbtdependent cellular cytotoxicity
(ADCC), Ab dependent cellular phagocytosis (ADCR)y dependent complement activity
andAb dependent cytokine, chemokine &rcenzyme releas@-igure 1) Importantly, FCcR
innate immune=ffectorcells are abundantly locatéaroughout the body and can be recruited

by these noh-neutralizingbs without any need for prior antigen sensitizafioh

Emerging evidence from multiplefectious disease models stronglygast tlat functional
Abs are important for mediating control and/or protection againat, \bacterial, fungal and

parasitic pathogens. Moreover, the fact that several bacteralSgeptococcug) and viral
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100 (e.g., HSV ?) pathogens have evolved to encode proteins that specifically pifeéactfrom

101  Fc mediatedAb functions®®, further supports the notion that these -nentralizing anti

102  microbial properties ofAbs play a vital role in protection from infectious diseases. Examples
103  of the importance ofc functional Abs in the control and/or protection of different pathogens

104 are summarizetoh Table 1.

105

106  Lessonslearned from HIV Vaccines Trials

107 Despite three decades of intense research, the development of an effective vaccine against
108 HIV continues,to produce lackluster results. To date, only one human Phase Ill HIWevacci
109 trial has shown a modest, but significant level of efficacy (31.2%)Surprisingly, this

110 RV144 vaccine trial did not induce CD8+ T cell cellular immunity, broadly neutralixing

111  responses or high binding antigspecificAb levels'! 2 Instead immune correlates analysis

112  identified the importance oAbs targeting the V1V2 region of the HIV envelope afb

113 dependent cellular cytotoxicitADCC) activity, in theabsencef high levels of IgA'* 3

114  Follow-up “analyses discovereddditional features of the humoral immune response
115  associated-with-protection, including the preferential induction®8Igesponse¥" *> which

116  were able to mediated multiphd effector functions including ADC@\b mediated cytokine

117 and chemokine production from NK cells ad mediated cellular phagocytosis (ADCP) in
118  a coordinatedsmanner, otherwise known as polyfunatiah immunity *°.

119

120  Furthermare multiple norhuman primate (NHP) SIV/SHIV vaccine studies have recently
121 been conducted highlighting the complexity of potential correlates of protection.
122 Administration of an adenovirus vector 26 (AD26) prime followed by an envelope protein
123 boost in NHP was able to provide 50% protection against repetitive SIV challthges
124  Interestingly, protective efficacy was not associated with a neutralization, but instead
125  polyfunctional Ab immune responses (incorporatisg different Ab Fc functions)were

126  associated*withprotectiofi. Similarly, other NHP studies have correlated both ADCP and
127  Ab dependent=complement deposition (ADCD) with protective efficdcore recently,

128  partial protection from SHIV infection was observed in NHP when administered with a
129  canary pox'ptime (ALVAC)/ recombinant pentavalenvelopeprotein vacciné®. Multiple

130 humoral immune correlates were associated with demleask of infection, including

131  plasmaAb binding to HI-infected cells, ADC@Ab titers, NK celtmediated ADCC anéb

132  mediated activation of MH2 R,

133
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These recent human and NHP HIvaccines studies have highlighted our limited
understanding of humoral immune responses @mallenges us to shift our analysis of
potential humoral immune correlates from being a univariate or “one componerninaf’ a t
paradigm (ey., reutralization or totalAb binding titers alone) to a multivariate “many
componentsTat-once”, or systems comdep design of new strategies for more difficult to
vaccinate [diseases, based on systiewel properties of humoral immunity or as it has been

more simply termedSystemsSerology”*® 2°

Complexity.of functional antibodies:

Upon vaccination or infection by a pathogen, the humoral immune response aims to produce
diverse, highly polyclonalbsto target the foreign pathogehe functional capacity of the
humoral mmuneresponseas determined bynultiple cumulative factors defined tan Ab’s
biophysicalfeaturesthat are modulated by genetic, molecular and environmental factors
(Figure 1and summarized in Table).ZThese includehe ability of theAb to effectively
recognize ‘the foreign antigatictated by anAb’s Fab (Fragment antigebinding) region,

along with_the.eapacity of th&b to engage with surrounding Fc effector cells and immune

components (modulated by tAé Fc-portion).

Despite anAb’s” Fc region often being referred to as tleonstarit region, the Fc is
surprisingly diverse, with subtle modifications having the capacitgidaificantly alter
engagement and affinity t6cRs andor other Fc binding immune componentscluding
complement and mucinghese include differences immunoglobulin isotypes: IgA, IgD,
IgE, 1gG and IgM of which IgG is the most predominant immunoglobulin present in healthy
human plasm&’. While each isotypéas their own characteristic properties and functions,
IgG is most. commonly associated with mediatingffector responses, although IGA IgM

23 and IgE* alsoinduce vital roles in protective immunity by &etting their respectivécR
innate immune: cells and/or complement e.g. the importance of IgE and activatien of F
epsilonR effector cells for protection against paras infections has been well documedt

5. As an.additional level of complexity, immunoglobulin isotypes also esgpdifferent
subclasses for,exampleyG consists of four subclasses, 1gG1, 1gG2, 1gG3 and |gG@dh

binding with varying affinity to different R&Rs** %’

Beyond subclass, Fc function is also determined by changes in Ab glycosylation, particularly

the glycan structure attached at asparagine 297 (Asn297) of the Ab Fc heav§’chain
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168 which can have important functional consequenpesfluencing theaffinity of IgG's for

169 their repective FgRs on effector cellandcomplement protein€omplete aglycosylation of
170 an Ab abolishes FgR and complement bindind’, whereasthe presece or absence of
171 particular glycan forms can alternatively inhibit or enhance Fc functipridli®? Table 2

172 summarizes the many different features of the antigEnAb and Ab Fc-FcR interactions
173  that can modulate Fc functionality and lists example assays available tdalliwein-depth

174 assessment of thegd features. SystemSerology therefore aims to use higfroughput

175 assays, tojcollate a holistic assessment oflalfeaures that can potentially modulate Fc
176  functionality, providing us with detailedportrait or humoral immunésignaturé associated

177  with protection.or control of infectiotWhile many of these assays have been developed and
178  optimized fér/iSe predominately against viruses (especially’#it\}, these assaysavethe

179  potential to'be adapted and optimized for examination of other infectious di¥tases

180

181 Generating insightsinto the complexity of the humoral response: Systems Serology

182  Given the.complexity ofAb biophysical features, a quantitative, systems appreeth

183  provide new.persSpective anidsight into key quantitative relationships between the features
184 that characterize a vaccine response, confer protection, or underpin ed desictional

185 response.A quantitativeunderstanding ofelationships betweefAb biophysicalfeatures Fc

186  functional responses and clinical outconuesild enabledesignof new vaccine regimens
187  specifically targeted to enhance or suppress key parts of this system; altering evexak n
188 humoral immunityrather than a single component (Figure 1B). Though advancements in
189 experimental technolags now enable the measurement of large numbers of biophysical
190 features (detailed in Tabl®), a major challenge still remains in determugnithe relative
191 importance_of alterations in thes&b features that occur with vaccination, and key
192 quantitative relationships thatide a desired immune responseconfer protection. “Data

193  driven” modelling approache¥ (also called “machine learning” approaches) hold great
194 promise for-better understandiddp systems, as they enabteegration of higkthroughput

195 experimentaldata to mathematically identify relationships betwdehiophysical features
196 that aresassociated with important functional out®meaccine regimen, or
197 protection/control of infection (Figure 2). These apphesccan be applied as useful
198 hypothesisgenerating tools for new systeitevel mechanisms involving multipléb

199 features and have the potential to accelerate our understanding of the humoral immune
200 system by helping to define areas of interest for furéx@erimental testing and additional

201 quantitative models. The value of dakaven approaches in identifying gene and
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202 transcriptional signatures correlated with vaccine response has been demonstrated in a wide
203 range of vaccinology application§>’. However many of these previous studies have
204  specifically focused onidentifying genetic andtranscriptional correlates ofaccine

205 protection especially for cellular immunityln contrast,application of SystemsSerology
206 instead aimstéocus upon gaining insightse functional humoral immunity.

207

208

209

210 Data-driven.toels. overview and examples

211  Datadriven,models have the potential to provide both better classification of vaccine
212 responses‘(eigbetween protective and nqgmotective vaccines) as well as give systems
213  level insight into networks ofAb biophysical features involved in important @tional

214  responses. Altogethethey are able to generate a valuable network “pict(Fajure 1B)of

215  key events that may contribute to a specific functional immune responbeical outcome.

216  In general, all datariven approaches involve analysisa large data setX’: Figure 2). In

217 the case ofSystems Serology, this may include measurements of &i®Es biophysical
218 features (&)s. Ab Fab recognitionAb isotype, glycosylation, Fc receptotce detailed in
219 Table 2) believe to contribute to a particulasutcome (i.e. functional response, vaccine
220 regimen, or_protection). A subset of ddtavzen modelling approaches (including principal
221  component analysis (PCA) and correlation networks) only employ this X data setjregarc
222  for significant multivariate relationships between measured featurbs subset of
223  approaches is considereansupervised” in that they evaluate relationships between features
224  in X without information about an outcome. The strength of unsupervisedaapeolies in
225 the ability to_search for features involved in the differentiation of outcomascompletely
226  unbiased way. Systemic, unbiased, examination of bibaarofiles provides us with a more
227  comprehensive ‘understanding of the mechanisms behindfispinctions, potentially
228 revealing novel correlates between Ab features and functions that would not norenally b
229 identified bystraditional approaches.

230

231  Other datedriven approaches are consideredgervised” (including partial least squares
232 discriminant analysis PLSDA), partial least squares regress{@h.SR) anddecision trees
233 Figure 3, as they identify key relationships in X that are related to an impdutactional or

234  clinical outcome(*Y”; e.g., functional response, vaccine regimen, ainical outcomég

235 (Figure 2). Supervised approaches are especially useful for gaining mechasight into
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networks or systems of immune parameters driving a response, because they identify direct
relationships between the two. Both unsupervised and supervised approaches are useful i
SystemsSerology research, depending on the question being asked and nature of the data.
One major advantage of all datdven approaches is integration, or the abilitymterge
disparatedatarsetsnto a whole. By combining measurements from different sources into the
same model, quantitative relationships between biophysical features associatedinithla

or functional outcomecan be linked across experimental assays, tissue compartments, and
time. Below we give examples of specific ddtazen approaches that have been applied in
Systems Serology research. In each case, we leave detailed mathematical descriptions to
other published work, but highlight applications, advantages and limitations ofrediod |

contextof SystemsSerology use.

Unsupervised approaches:

Perhaps the simplest way to visualize relationships between many different measured
parameters is via the constructionoofrelation networks (Figure 2)' * These diagrams

allow for the.visualization of significant correlative relationships between paired measured
features ofyinterest. These networks can be created by first computing either the Pearson
(parametric) or Spearman (rpammetric) correlation coefficient for each pair of measured
variables.Relationships across all features cdnen be visualized via either a wdie
structure or aheat mapthat indicates the direction and strength of each significant
correlation. The main advantage of correlation networks is that they are easy to create and
interpret, and thus often give useful insight into potential mechanisticoredhtps between
featues. One drawback is that they are unsuperviseddanubt directly relate identified
correlative relationships to @inical or functional outcome ointerest(Y). Therefore they

have little use as predictive tools. Additionally, only pairwise relatigssbetween measured
features are.considered; thtrsie multivariate signatures involving three or more meessu
features are"unattainabl€his approach has been used previously to exadmeetwork
connectivity=betweerAb biophysical features and functiorssociated with the humoral
responseelicited by four different HIV vaccan€VAX003, RV144, HVTN204, and
IPCAVD001) 2. Vastly dfferent network topographies or ‘humoralgnatures were
observed between the different vaccinemls and were able to highlight important
mechanisms behind the moderately protective RV144 Miate specifically, IgG1 and IgG3

where highly connected wittmultiple Ab Fc effector functions including ADCC, ADCP and
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ADCD indicating their importance in modulating multiple Fc functiomghile these

interactions were not observed for the other effitacious vaccine trials

Principal*component analysis (PCA) *° is an unsupervised approach that can be used to
determine/ signatures of measured features that account for the most vérettaen
samplesjn a set of measured features. For example, given daxis@figure 2) containing
measurements oAb biophysical features, PCA identifies orthogonal, linear combinations
(‘signatures’)of.these measured features (termed “Principal Components”) that account for
the most variation in the data, without any information about functmmelinical outcoms

(Y). Both adyantages and disadvantages of PCA arise from the fact that it is a@rvisedp
approach —the algorithm receives no information about the outcome. This is advaniageous,
that response differences da@ visualized in an unbiased way, but disadvantageous in that it
is not inherently hypothesdriven. While the identified principal components represent
signatures.of measured features that account for the most variationdatéhe¢hey are not
specifcally .identified to discriminate between outcomes of intereas a functional or
clinical response (Y) is not included in the model. Thus, they can give insight into important
relationship between measured features, but they cannot directly predict how those features
are associated'with a functiorwlclinical outcome. PreviousI$ystems Serologgpplication

of PCA applied toMycobacterium tuberculosis serology tudies were able to identify the

importance ofAb glycosylation in distinguishing latent from active infectfdn

Supervised approaches:

Partial least squares discriminant analysis (PLSDA) and partial least squares regression
(PLSR) “°* are supervised methods that identify signatures of measured features (X)
guantitatively. releed toa functional or clinicaloutcome (Y) (Figure 2). Thuspth PLSDA

and PLSRerequire input of both a data set of measbddatures (X), as well as a measured
outcome(Y)=PRPLESDA and PLSR are differentiated by the fact that in PLSDA, Y contains a
discrete claser label informatione.g.yaccine 1, vaccine 2,@} for eachoutcome while Y

for PLSR contains continuous numeric daay{ ADCC measurements theanrange from
0-100% cytotoxicity. Y is often a single column of date.¢, only 1outcomevariable), but

it can also be a matrix with multiple columns in situations for which there are several
outcomes of interest.These algorithms determin@rthogonal linear combinations

(‘signatures’) of experimentally measured features (X) that best diffate between
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outcomeqY). Each sample can thée scored and plotted on these signatussméd|atent
variables) to determine model accuracy for predicteignical outcome based on measured
featuresEach identified latent variablgignature) cortains‘loadings’, or specified amoust

of each of the measured featurB&SDA and PLSRare especiall useful for hypothesis

driven Systems &ology researchas they specifically search for signatures directly
associatedvith anoutcome (in contrast to PCA, which only evalsateerall variation in the

data set (X)). An important consideration in using PLS algorithms is to ensure models are not

‘overfit 9

; i.e. that the model containgnly information about important underlying
relationslipsrather thanincludingrandom error or noise. This can be avoided by performing
crossvalidation(reviewed for PLSDA in %), whereby a smaller portion of the data is
reserved to test a model generated by majority of the data. The ability afdithel to
accuately predict each sample in the test set can then be used to calculatealidasi®n

error, a measure of the model’'s predictive ability. If crealdation error is high, the model

can be improved by performing ‘feature selection’ to remove features that cantribout
random error. There are a number of different feature selection algorithms that may be used
depending.en.the nature of the data seime examples ohéseinclude use ofvariable
importance.projection (VIP) scorésand the least absolute shrinkage and selection operator
(LASSO)**“4One key dvantage of PLS approaches for Systems Serology research is that
loadings on latent variables of @atureselectednodel can give great insight into-garying
serological features that are most involved in differentiating a functional or clinical outcome
In other words, the “minimum signature” that best defines a vaccine response can give a
picture of keyAb featuresthat would be best used teconstruct the system (Figure 1B) for

theoretical analysis.

The applicatiorof PLSDA/PLSRanalysis has beesuccessfullyappliedin a wide range of
Systems, Serology settings, including to identifyhumoral immune correlates b the
moderately=protectivéiuman HIV RV144 vaccinetrial, in nonfhuman primate SIV/SHIV
vaccine studigsand to examine the humoral responses induced by topicaktoivirals for
pre-exposuré| prophylaxis following HIV infectio}, °, ** > In the study oftopical anti
retrovirals forspreexposure prophylaxis following HIV infectioff, a PLSDA model used
with LASSO feature selection identified signature of 7 measureflb features that
differentiated women in the topical anétrovirals and placebo groups with 77% cress

validation accuracyindicating that topical antetroviral application was associated wigh
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336  specific Ab signature includinmeasurements fromlifferent timepoints(6 and 12 months)
337 and tissue compartmenfplasma and cervicovaginal lavagé)dividual Ab measurements
338 we unable to differentiate between groupgogether this illustrates the utility of PLSDA for
339 differentiating functional or clinical outcomes and for integrating Ab measurentents
340 identify newrhypotheses for mechanisms that may vary over time or tissue coargartm
341

342

343  Decision trees ¢ °8

(Figure 2)provide unique insight into humoral responses in that they are
344 easy to interpret, and can give useful information about the hierarchy of importance and
345 critical rangege@.,. concentrationbindingaffinity) of measuredib featuredor a particular

346  functional or clinical outcome For thesereasonsthey can be especially useful for giving
347 insight into potential mechanistic relationships between measured serological features. A
348 decision tree algorithmwvorks by performing a series of binary tests on the data set of
349 measuredAb features (X), to split samples into groups based on the funciondinical

350 outcome(Y). The specific binary test performedsdslectedby the userand called a ‘split

351 criterion’ *°.Each split further purifies samples basedfurctionalor clinical outcomesof

352 interest €.g; Vaccine 1 vs. vaccine 2 vs. vaccine 3,;effegure 2) The result is a trekke

353  structure that'illustrates the hieraycof importance of measured featubased on outcome

354  with specific.measrement rangesequiredfor each nodeselectedoy the algorithmAs with

355 other supervised approaches,important consideration in using deoisitree algorithmss

356  crossvalidation to prevent overfitting (described abovdf crossvalidation determines a

357 decision tree is overfitpruning’ may be used to improve the modehereby peripheral

358 branches of the tree are removed if they contribute little to classification. More detailed
359  information on decision tree crosafidation and prunings reviewed irf'°.

360

361

362  Future Outlook

363  While thewdatadriven modelsused in current Systems Serology applicatioffer the

364  exciting opportunity to integrate highroughput data to identify kefb features associated

365 with a protective immune response, insight is still limited to multivariate statistical
366 associations, without quantitative understanding of true eaffset relationships that

367 underpin mechanistic function. While carefully planned experiments based odridata

368 models give some insight in this direction, they too are limited. Other quantitatireaapes

369 will be needed to truly understand the underlying complexity of these systems; moving
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beyond statistical associations and towardguantitative systemlkevel understanding of
mechanism. This will require use of equatlmsed methods, also called “theadnywen”
approaches, where mathematical models are constructed based on prior knowladge of
system. Datalriven models can provide the underlying framework for these mededed to
decide keyparameters that should be included for a given question, boundaries and important
input/output. Once constructed, these thealyven models will providea valuable
hypothesigestingtool, lending insight intol) the importance of key Aparametersn the
formation of immune complexes and #)e relative importance and synergistic effects of
multiple Ab. alterations involved in a functionadr clinical outcome. These types of
approaches_have abdy been employed to optimize the desigiilo$ that trap viruses in
mucus of theffemale reproductive tractietermining optimal quantitative ranges Ab

binding affifities that maximizboth virion binding ané\b mobility in mucus®’.

Clearly Systems Serology technologies, both experimental assays and the application of
analytical technologies are still in their infancy. Otiare, highthrougtput asaysto assess
biophysical.Ab.features and functions will continue to be developed and improved
encapsulating,.a wider range of infectious diseases allow for the examination of Ab
features and functions relevant to different tissue compartments and lockticinermore,
Systems Serology applications can potentially lexpandedto addressother dseases
associated witthumoral immunity, includig autoimmune diseases and selective cancers.
There is no doubt thaBystems Serology will continue to evolve to capture broader
applications providing us with an increasingly comprehensive understanding oftipeotec

humoral immunity.
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Figure 1. Dynamic complexity of the humoral immune response

A). The functional capacity of the humoral immune response is determined by complex
biophysical antibody featas including i). the pathogen being targeted and the ability of the
antibody’s Fab. taecognizedifferent antigens, ii)an antibody’s Fc region's diversity which

in turn can,modulate the antibodies capacity to engage with iii). Fc Receptamienm
molecules#andiv). availability of the Fc Receptors on different effector cells/immune
molecules in the surrounding environmeB). The combination of the pathogen targeted
(e.g. nfected cell versus small infectious particles) and binding bjkas Fab determins
opsonisation, neutralization and immune complex formation. The composition of the Fc
regions ofithesébs can in turn modulate the functional immune response by surrounding
effector cells/immune molecules potentially inducing a range of functions inglimlit not
limited to ADCC, Ab mediated secretion of cytokines, Ab mediatgdryme release/NET
(neutrophil”“extracellular trap)formation, Ab dependent Ipagocytosis, Ab mediated
complement.activity, mucus trapping edependent othe cellular Faeceptor expression or

immunecomponentsvailable.

Figure 2. Systems serology data-driven modelling appr oaches

SystemsSerology involves running higthroughput experimentassays that measusdb
biophysical _and functional data () parallelwith a functional or clinical outcomes (Y).
Upon collation, the datasetain beinterrogated by unsupervised and supervised machine
learning eomputational techniques, including Principal Component Analysis (PCA),
correlation=networks, Partial Least Square Distcrant Analysis and Regression (PLSDA
and PLSR)y7and decision tre€orrelation networKigure waskindly contributed by Manu

Kumar and Doug Lauffenburger (MIT).

Table 1: Examples of functional antibodies in the control of infectious viral, bacterial,

fungal and parasitic pathogens
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Antibody Virus Bacteria Fungus Parasite
Function
ADCC HIV 125 1848980 qyimonellatyphi | Cryptococcus | Schistosomiasis
Influenza®>>?, > Chlamydia neoformans®, | %
Ebola®* > HSV?® | trachomatis Aspergillus® | Strongyloides
%8 Mycobacterium stercorali€?,
tuberculosis 3 Plasmodiunt?
Antibody Hivy 174 Salmonella Paracoccidioide{ Plasmodiun®,
mediated Influenza® paratyphi A ©, Brasiliensis®®, | Toxoplasma
Phagocytosis Clostridium Aspergillus Gondii *
difficiletoxin A%, | fumigatus
Mycobacterium |
tubercul osis ®/
Antibody Ebola™, HIV " * | Pseudomonas Aspergillus Strongybides
mediated aeruginosa, fumigatus Stercoralis®?,
Complement Salmonella?, % Candida Plasmodium
Borrelia Albicans’™ &
burgdorferi 3
Antibody HIv 1> 18454876 1 Mycobacterium Paracoccidioide{ Schistosomiasis
mediated Influenza®? > tuberculosis 3 Brasiliensis® | %, Leishmanid’
Enzyme 80
and/or Plasmodium
cytokine 8,79
release
Non- HIv & Coxiella burnetii Plasmodium
neutr alizing 8 Chlamydid® 62,84
Antibody
mediated
Pathogen
inhibition
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Table 2: Antibody Biophysical Featuresthat can modulate Fc functionality

Fab Examples Example Assays References
measur ements
Masking/ Abundance of antige 85,86
Availability, available on
Antigen Density | pathogen/infected cells
Size Smaller pathogen € Immune complex assay| °" ®
virus
Larger pathogen e
parasite, or infected cell
Antigen target Protein Protein, glycan| %%
Glycoprotein glycolipid, glycoprotein
Glycan screening arrays,
Glycolipid
Epitope Conformational Overlapping peptide | %’
Linear arrays
Protein scaffold arrays
Multiplex
ELISAs
ICS
Antibody-antigen | Equilibrium constant | Surface plasmof %1%
affinity Resonance
Chaotrope
Distance Distance from cell Assays with variable | *™*
membrane epitope distances
Breadth Clades, Straing Protein arrays 102,103
serotypes Multiplex
Fc Examples Assays Reference
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444
445
446
447
448
449
450
451
452
453
454

95,104

Isotype I9G, IgA, IgM, IgE,| Multiplex
IgD ELISAs
Subclass IgG1, 1gG2, IgG3, Multiplex 95, 104
9G4, ELISAs
IgA1, IgA2
Glycosylation Fucose Mass Spec 31,33, 104,105
Galactose HPLC
Bisecting GICNAC CE
Sialic Acid Multiplex
Allotype IgG1 (6 alleles) Sequencing 106108
IgG2 (1 allele) ELISAs
IgG3 (13 alldes)
IgA (3 alleles)
FcR/Complement| C1g, MBL, FcyRI, | ELISA 102, 104
binding FcyRlla, FoRIIb, | Multiplex
FcyRllla, FcRylllb,
FcaR, FcER (and
respective
polymorphisms)
FcR affinity FcR binding kinetics | Surface plasmof %% 10
Resonance
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