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Abstract— We present a new application of proper orthogonal
decomposition (POD) to optimal control. By restricting the
Lagrangian of an optimal control problem to a suitable affine
subspace, we can achieve a reduction in computational cost
leading to faster turnaround times with minimal degradation
in controller performance. An explicit algorithm for nonlinear
model predictive control (NMPC) reduction using POD is
presented along with some initial error analysis. To the best
of our knowledge, this is the first time such an approach
has been presented. We applied this approach to the control
of a vehicle during a double lane change maneuver using
NMPC and achieved 2 times faster turnaround times with
excellent controller performance. This reduction approach for
the development of real-time optimal controls is very promising
and introduces some new research directions.

I. INTRODUCTION

With advances in modelling software and computation

we can now build and simulate highly complex systems.

Subsequently, there is a strong desire within industry to use

these new models with advanced control strategies, such as

model predictive control (MPC), to push their technologies

to greater levels of efficiency and autonomy. These models,

however, often suffer from one major drawback: they are

expensive to compute. Historically, this has meant that these

models have been limited to purely research settings or

control applications with slow sample times. In an effort to

expand the application of these models, significant research

has been devoted to model reduction. In model reduction

the goal is to capture a model’s desired behaviour by a

computationally simpler one. These reduced models can

then act as a surrogate within the controller leading to fast

advanced controllers.

One of the most successful and widely utilized model

reduction strategies is the proper orthogonal decomposition-

Galerkin (POD-Galerkin) projection method which we refer

to simply as POD. It is a reduction method that stems

from linear theory but has nonetheless been successfully

applied to a wide variety of nonlinear models. Applications

include modeling and control of in-cylinder flow [1], the heat

diffusion equation [2], [3], fluid channel flow [4], distributed

reactor systems [5] and vehicle dynamics [6], to list a few.

POD has been applied to control problems by reducing

the order of the original plant models. Interestingly, POD

when applied to a nonlinear model does not reduce its
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computational burden for fixed-step integrators typically used

in controls applications. However, due to the reduction of

model order achieved by this method, the dimension of the

resulting optimization problem is reduced and a speedup in

controller computation has been observed, e.g. [7].

In this paper we present a strategy to reduce the compu-

tational burden of MPC by a novel application of POD. We

are able to reduce the dimension of the finite horizon optimal

control problem (FHOCP) found within each timestep of an

MPC. This is done by applying POD to the Lagrangian of the

FHOCP - not the plant model. We extract an affine subspace

of reduced dimension that best captures the trajectory of

the FHOCP solutions over the controller timesteps. Then we

restrict the Lagrangian to that affine subspace. This is a new

strategy that to the authors knowledge has not been presented

elsewhere.

This paper is organized as follows. In Section II we

review the fundamentals of POD and its application to

model reduction. In Section III we briefly review the role of

Newton’s method in MPC and in Section IV we describe the

algorithm to reduce an MPC via POD and provide an initial

error analysis of the method. In Section V we apply the POD-

reduced NMPC to the control of a simple car model during a

double lane change maneuver and analyze the results. Lastly,

in Section VI we summarize our findings and provide future

directions for investigation.

II. POD AND MODEL REDUCTION

Suppose we are given a model represented by a system of

explicit ordinary differential equations

ẋ(t) = f(x(t)), x(0) = x0

where x(t) ∈ R
n. The POD-reduced model can be found by

the following algorithm:

1) Construct a zero-mean snapshot matrix X =(
x(t1)− x̂ · · · x(tN )− x̂

) ∈ R
n×N made up of

N > n observations of the model over a collection of

simulations where x̂ = 1
N

∑N
i=1 x(ti).

2) Compute the singular value decomposition (SVD) of

the snapshot matrix X = UΣVT and then truncate U
to its first r < n columns to form Ur ∈ R

n×r.

3) Construct the reduced order model using a Galerkin

projection

ẏ(t) = UT
r f(Ury(t)+x̂), y(0) = UT

r (x0−x̂) (1)

where y(t) ∈ R
r are coordinates of the reduced space.

The original states can be approximated via xr(t) =
Ury(t) + x̂ ≈ x(t).
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Underlying POD is a data compression problem. POD

captures the system’s output data in as few dimensions as

possible by solving the following constrained optimization

problem for a fixed r < n,

min
Ur∈Rn×r

N∑
i=1

∥∥(I−UrU
T
r )(x(ti)− x̂)

∥∥2

subject to UT
r Ur = I

where ‖ · ‖ denotes the Euclidean norm. The truncated Ur

found in step 2) of the algorithm presented above is the

optimal solution to this constrained optimization problem

[8]. Typically r is chosen such that
∑n

k=r+1 σ2
k∑n

k=1 σ2
k

< ε where

σk ∈ σ(X) and σ(X) = [σ1, σ2, . . . , σn] denotes the list of

singular values of X in descending order and 0 < ε < 1 is

a threshold close to 0.

We note that as U is an orthogonal matrix so that Pr =
UrU

T
r ∈ R

n×n is an orthogonal projection matrix onto 〈Ur〉
which denotes the column space of Ur. From this we can

see that (1) is equivalent to

ẋr(t) = Prf(xr(t)), xr(0) = Prx0 +P⊥
r x̂

which is the projection of the restriction of f to the affine

space 〈Ur〉+ x̂ where P⊥
r = I−Pr is the projection matrix

orthogonal to Pr and xr ∈ 〈Ur〉+ x̂.

It is important to note that model reduction via POD re-

quires an offline stage where the snapshot matrix is computed

using simulations of the original model. Different choices

of snapshot matrix will lead to different error statistics of

the reduced model and for nonlinear models choosing which

simulations are best to use in constructing your snapshot

matrix remains a difficult problem, see [9].

III. NEWTON’S METHOD IN MPC

MPC is a closed-loop control strategy that solves a

FHOCP at each timestep. Broadly speaking there are two

approaches to solving the FHOCP: direct and indirect meth-

ods [10]. In the following, we focus on the direct approach

where the FHOCP is transcribed directly to a constrained

optimization problem. To solve this problem we need to

find the minima of a suitably formulated unconstrained

Lagrangian L(z) : R
l → R where z ∈ R

l contains all

states and controls over the horizon, any slack variables

and Lagrange multipliers. The optimum is found by solving

for the root of the gradient of the Lagrangian, i.e. the z∗

satisfying ∇L(z∗) = 0. This is most often done using

an optimization routine that utilizes Newton’s (or a quasi-

Newton) method since Newton’s method converges to the

solution very quickly (quadratically) given a good enough

initial guess. Beginning with an initial guess z(0), approxi-

mations to the solution are computed by iteratively updating

the latest approximation via z(k+1) = z(k) + Δz
(k)
NS where

Δz
(k)
NS is the Newton step which is found by solving the

following linear system of l equations

HL(z(k))Δz
(k)
NS = −∇L(z(k)) (2)

where HL is the Hessian of L.

The computational burden of Newton’s method in MPC
applications is dependent on the solution of (2). Taking

advantage of the symmetry of the Hessian, the cost of solving

(2) is O( 13 l
3) operations, in the worst case, using LDLT

factorization [11]. Further speedup can be had if the Hessian

is sparse, which is the case for some direct transcription

methods, e.g. direct collocation. In the next section we

demonstrate how one can use POD to reduce the cost of

this step by reducing the dimension of the linear system to

be solved.

IV. POD-REDUCED MPC

We can reduce the computational cost of computing the

Newton step if we restrict the Lagrangian L of the FHOCP

to a reduced dimensional space. In particular, if we restrict

L to an affine subspace containing its minimum z∗, then a

minimum of the restricted function when embedded in the

full space will be exactly z∗. Thus, given a good enough

initial guess z(0), Newton’s method applied to L restricted

to an affine subspace containing {z(0), z∗} will converge to

z∗. For a real world application of MPC we can make use of

this observation only in an approximate sense as the solutions

z∗ are not known.

A. Algorithm

In MPC we solve a sequence of optimization problems

that are connected to one another through the history of the

variables. Typically one problem is not too different from its

neighbours which means we can take advantage of using the

optimum at one timestep to determine the initial guess at the

next timestep. Due to the interconnectedness of the sequence

of optimization problems we might expect that there is some

common direction shared in the progression of Newton steps

across solutions. We can collect these directions in a snapshot

matrix and use POD to find the r dimensional subspace

that best captures these directions. Then at each timestep

ti we can approximate the affine subspace (which contains

{z(0)(ti), z∗(ti)}) and solve for the minimum of L restricted

to that space to get an approximation of z∗(ti). We expect

that the quality of our approximated minimum is dependent

on the choice of r and the snapshot.

The above provides us with an algorithm to apply POD

to MPC:

1) Construct a snapshot matrix Z =(
z(0)(t1)− z∗(t1) · · · z(0)(tN )− z∗(tN )

) ∈
R

l×N by running the MPC over a representative

control scenario with N > l timesteps.

2) Compute the SVD of the snapshot matrix Z = UΣVT

and then truncate U to its first r < l columns to form

Ur ∈ R
l×r.

3) Construct the reduced order Lagrangian

L̄[z′](y) = L(Ury + z′)

where z′ ∈ R
l and y ∈ R

r are coordinates of the affine

space 〈Ur〉+ z′.
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4) At timestep ti within the MPC apply Newton’s method

to L̄[z(0)] to compute its minimum y∗ which can be

used to approximate the original minimum by z∗r =
Ury

∗ + z(0) ≈ z∗.

The computational savings of this method comes from

using the reduced order Lagrangian to find an approximation

of the minimum. Since

∇L̄[z(0)](y) = UT
r ∇L(Ury + z(0)),

HL̄
[z(0)]

(y) = UT
r HL(Ury + z(0))Ur

the reduced Newton’s step Δy
(k)
NS can be computed by

solving the following system of r linear equations

UT
r HL(Ury

(k)+z(0))UrΔy
(k)
NS = −UT

r ∇L(Ury
(k)+z(0))

(3)

or equivalently,

H U
L1 (Ury

(k) + z(0))Δy
(k)
NS = −∇LU

1 (Ury
(k) + z(0)) (4)

where UTHLU =

(
H U

L1 H U
L2

H U
L3 H U

L4

)
with H U

L1 ∈ R
r×r and

∇LU
1 ∈ R

r is a column vector made up of the first r entries

of UT∇L. We call an NMPC that uses (3) or (4) and the

transformation z∗r = Ury
∗ + z(0) to compute its Newton

steps a ‘POD-reduced NMPC’ or POD-rNMPC, for short.

From (4) we can see that if HL is positive definite then

so to is H U
L1 by applying Sylvester’s criterion and noting

that U is orthogonal. This means if the original Newton step

Δz
(k)
NS can be computed so too can the reduced Newton step

Δy
(k)
NS . We also note that H U

L1 inherits the symmetry of HL
but not its sparsity.

The updates of the reduced problem proceed as usual

y(k+1) = y(k) + Δy
(k)
NS until convergence. In these re-

duced coordinates the initial guess is always y(0) = 0
since the initial guess z(0) gets updated between timesteps.

Since the reduced problem is nothing but an unconstrained

optimization problem we expect the same rate of quadratic

convergence to the reduced optimum y∗.

There is an equivalence of the reduced problem to the

following linearly constrained optimization problem

min L(z)
subject to (U⊥

r )
T z = (U⊥

r )
T z(0)

where U⊥
r ∈ R

l×l−r is the matrix made up of the last

l − r columns of U. Essentially what we have done is

add linear constraints to our original problem and then we

eliminated those constraints by restricting the Lagrangian to

a constraint submanifold. This approach turns out to be very

similar to the idea for mechanical model reduction found

in [12]. There they propose a model reduction method for

mechanical systems by first imposing constraints to restrict

the Lagrangian to a constraint submanifold and then deriving

the equations of motion via the Euler-Lagrange equations.

In this way the reduced dynamics will still satisfy many

truly mechanical properties like preservation of symmetries

and energy. As minima correspond to stationary orbits we

Fig. 1. A depiction of optimization (function represented by the contours)
when restricted to an affine subspace. We can see that if ‖P⊥

r (z∗−z∗r)‖ =
0 then z∗ = z∗r and no error is incurred by approximating the original
minimum with that of the restricted minimum.

are trying to accomplish the same task as in [12] but for

a different purpose. Further, we have proposed an explicit

algorithm to do so using POD.

It should be noted that the snapshot only captures the

controller outputs and thus the algorithm should, in theory,

be able to accommodate a wide variety of controller formu-

lations.

B. Error Analysis

Applying POD in this manner yields good performance

because the error in approximation of the minimum is related

to the truncated POD modes. In Fig. 1 we present a depiction

of the original and reduced optimization problems. In this

subsection we analyse the error incurred by approximating

the minimum using the reduced minimum for a single op-

timization problem. We assume that this exact optimization

problem is captured in the snapshot matrix.

Recall that Ur is an optimal solution to

min
Ur∈Rl×r

N∑
i=1

∥∥∥P⊥
r (z

∗(ti)− z(0)(ti))
∥∥∥2

subject to UT
r Ur = I

for fixed r < l. Given the optimal Ur we have the relation

N∑
i=1

∥∥∥P⊥
r (z

∗(ti)− z(0)(ti))
∥∥∥2

=

l∑
k=r+1

σ2
k

where σk ∈ σ(Z). Thus, at our particular timestep the error

between the actual and approximate minimum is

‖z∗ − z∗r‖2 = ‖Pr(z
∗ − z∗r)‖2 + ‖P⊥

r (z
∗ − z∗r)‖2

≤ ‖Pr(z
∗ − z∗r)‖2 +

l∑
k=r+1

σ2
k.

The quantity ‖Pr(z
∗−z∗r)‖ is dependent on L and the initial

guess z(0) for which no simple bound has been found. In the
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following we provide a way to estimate this quantity using

a quadratic approximation of L about z∗.

In the case L = 1
2z

TQz+cT z+b is a convex quadratic we

can compute an exact bound for ‖Pr(z
∗ − z∗r)‖. We know

z∗ = −Q−1c and given an initial guess z(0) then z∗r =
Ury

∗ + z(0) where y∗ = −[UT
r QUr]

−1UT
r (c + Qz(0)).

Thus

‖Pr(z
∗ − z∗r)‖ = ‖Ur[U

T
r QUr]

−1UT
r (c+Qz(0))

+Pr(z
∗ − z(0))‖

and with some manipulation we can find a bound

‖Pr(z
∗ − z∗r)‖ ≤

maxσ(QU
2 )

minσ(QU
1 )
‖z∗ − z(0)‖

≤ κ(Q)‖z∗ − z(0)‖

where we have written UTQU =

(
QU

1 QU
2

QU
3 QU

4

)
in block

form with QU
1 ∈ R

r×r and κ(Q) = maxσ(Q)
minσ(Q) is the

condition number of Q. The last inequality follows from

the Cauchy interlacing theorem and Theorem 1 of [13]. This

bound can be used to better estimate the error in the general

case by replacing Q with HL(z∗) to get the following

approximate bound

‖z∗ − z∗r‖2 � κ(HL(z∗))2‖z∗ − z(0)‖2 +
l∑

k=r+1

σ2
k.

Thus we can say, with some confidence, that provided the

Hessian is well-conditioned we can control the error of the

approximation by selecting r large enough and making a

good initial guess z(0). It should be noted that since the POD-

reduced NMPC provides different solutions at each timestep

we expect that the initial guesses for increasing timesteps

over the NMPC simulation will diverge and so the error may

accumulate.

V. NUMERICAL STUDY

A. Car Model and Test Scenario

The vehicle model used is a common single-track nonlin-

ear car model with Pacejka tires. The model has 7 states and

3 inputs. A detailed description of the model including the

parameters and equations of motion can be found in [14],

[15]. The states of most interest to our investigation are the

position (x, y), speed v and yaw angle ψ of the vehicle.

The values x, y, v are taken at the center of gravity of the

vehicle. The control inputs are the steering angle speed wδ ∈
[−0.5, 0.5] (rad/s), the total braking force FB ∈ [0, 15000]
(N) and the throttle position φ ∈ [0, 1]. We denote the state

and control vectors by x = [x, y, v, β, ψ, wz, δ]
T and u =

[wδ, FB , φ]
T , respectively, where the hitherto unmentioned

states are side slip angle β, rate of change of yaw wz and

steering angle δ. We note that the equations of motion of

this model are given by ordinary differential equations and

so we can express the model by ẋ = c(x,u) where c is the

nonlinear model. The only change made by the authors was

to fix the gear input at μ = 2 to yield a continuous model.

-200 0 200
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200
-0.5
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0.8

0  200 400 600 800
0

0.1
0.2

Fig. 2. The reference NMPC simulation from which the snapshot matrix
was generated for the POD-rNMPC. On the left is the reference trajectory
and controlled vehicle position and on the right is the obtained controls.
Note: the reference trajectory excites slow dynamics leading to very smooth
controls over the simulation apart from the initial acceleration from rest.

Control of the car using POD-rNMPC was tested using a

double lane change maneuver with constant forward speed of

12 m/s as the reference trajectory. The simulated maneuver

is set on a straight road 128 m in length with a lane offset

of 3.2 m. The reference trajectory was generated using a

piecewise linear interpolation of the maneuver waypoints.

To demonstrate the flexibility of the POD reduction

approach, the snapshot matrix for the POD-rNMPC was

generated using a different reference trajectory, see Fig. 2.

B. NMPC Formulation

The method of direct collocation was used to formulate

the FHOCP. A horizon length of H = 10 was selected

along with a constant timestep of Δt = 100 ms. We

denote the states (controls) at timestep ti over the prediction

horizon by x̄(ti) = [x(ti),x(ti+1), . . . ,x(ti+H−1)] (ū(ti) =
[u(ti),u(ti+1), . . . ,u(ti+H−1)]). The cost function was cho-

sen to minimize controller effort and position tracking error.

We included penalty functions in the cost to enforce the

inequality constraints on the control inputs. The cost function

is given by

J(x̄(ti), ū(ti)) =

H−1∑
k=0

Δx(ti+k)
TQΔx(ti+k)

+ u(ti+k)
TRu(ti+k) +

∑
j

ρp(gj(u(ti+k)))

where Δx = x − xref and xref is a reference trajectory,

Q = diag(100, 100, 0, 0, 0, 0, 0), R = diag(10, 0.001, 10),
g(u) ≤ 0 is the vector of inequality constraints and the

penalty function ρp is given by

ρp(z) =

{
0 z ≤ −1
(z + 1)p z > −1 .

This penalty function was chosen to enforce constraints of

the form z ≤ 0 due to its behaviour in the limit p→∞. In

our study we fixed p = 8.

The dynamics of the model are discretized using the

explicit Euler method so that at each timestep ti we minimize
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Fig. 3. The maximum position error of a POD-rNMPC over the double
lane change maneuver with r variables. We provide the maximum error of
the original NMPC as a reference. No red bar indicates that the simulation
with that number of reduced variables failed to complete.

J subject to the following vector of equality constraints

h(x̄(ti), ū(ti)) =⎛
⎜⎜⎜⎝

x(ti)− x0

x(ti+1)− x(ti)− c(x(ti),u(ti))Δt
...

x(ti+H−1)− x(ti+H−2)− c(x(ti+H−2),u(ti+H−2))Δt

⎞
⎟⎟⎟⎠

where x0 is the initial condition of the FHOCP which is

derived from the solution of the previous timestep. The

Lagrangian of the FHOCP is then L(x̄, ū,λ) = J(x̄, ū) +
λTh(x̄, ū) where λ is the vector of Lagrange multipliers.

The dimension of the full FHOCP is 170.

C. Implementation Details

All simulations were run using MATLAB 2016a on a

desktop PC with an Intel i7-4790 CPU. Simulations were

begun with a warm start computed using fmincon to

find the initial values of x̄ and ū. The initial Lagrange

multipliers were then computed using least-squares [16]. The

gradient ∇L and Hessian HL were computed symbolically

using MAPLE-generated optimized code which was then

converted to MEX files. Our optimization method employed

full Newton steps with only a single iteration per timestep.

All matrices were declared sparse where appropriate to

take advantage of MATLAB’s sparse solvers and timing data

was found using tic and toc. In our implementation of

POD-rNMPC the full gradient and Hessian are computed

and then transformed within each timestep following (3).

D. Results

By applying the snapshot matrix generated from the figure-

eight trajectory to the double lane change maneuver we found

that the optimal number of reduced variables was r = 55.

In Fig. 3 we can see the effect that choice of r has on the

quality of the POD-rNMPC’s performance. We note that for

many choices of r the POD-rNMPC failed to operate over

the entirety of the simulation due to the transformed Hessian

becoming ill-conditioned at some timestep. In the subsequent

discussion we focus on the results of the POD-rNMPC with

r = 55.

The POD-rNMPC resulted in turnaround times on average

2 times faster than the original NMPC. In Table I we present

TABLE I

MEAN COMPUTATION TIME OF 100 SIMULATIONS

Linear System Solution Time Turnaround Time

NMPC 0.48 ms 0.59 ms
POD-rNMPC (r=55) 0.083 ms 0.30 ms
POD-rNMPC (r=80) 0.14 ms 0.39 ms
POD-rNMPC (r=115) 0.25 ms 0.57 ms

measured computation times averaged over all timesteps

over 100 simulations. Despite the fact that the reduced

linear system is dense and the original system sparse, the

dimensional reduction resulted in a 5.8 times faster solution

of the linear system by going from 170 to 55 equations.

As can be seen in Figs. 4 and 5 the performance of the

POD-rNMPC is remarkably similar to the original NMPC.

Surprisingly, in terms of maximal position error and lateral

position error the POD-rNMPC marginally improved the

performance of the controller reducing the error from 22
cm to 21 cm and from 6.8% to 6.6% of the lane offset,

respectively. Greatest error was seen in the speed where the

POD-rNMPC deviated by at most 3.0% from the reference

values compared to the NMPC which deviated at most

1.8%. It is expected this could be improved by including

a speed tracking term in the cost function. In Fig. 6 we

can see that the control inputs of the POD-rNMPC are of

the same magnitude as the controls of the original NMPC.

We do notice that the controls obtained by the POD-rNMPC

exhibit greater rates of change than the NMPC controls.

This is a direct result of the dimensional reduction. On

average the POD-rNMPC and NMPC inputs for steering

angle speed, braking force and throttle position differed by

4.6%, 4.3×10−7% and 3.0% of the input range, respectively.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We introduced a novel application of POD to NMPC.

Instead of using POD to reduce the order of the plant model,

we instead applied POD to the Lagrangian of the opti-

mization problem within NMPC. This allows for a greater

reduction of the dimension of the optimization problem

leading to faster controller turnaround times. In our study

of the control of a nonlinear car model during a double

0 20 40 60 80 100 120
-2

0

2

4

6

Fig. 4. Vehicle position during the controlled double lane change maneuver.
Note that the axes are not scaled equally. The waypoints defining the
maneuver are: {(0, 0), (0, 50), (3.2, 63.5), (3.2, 74.5), (0, 88), (0, 128)}.

3815



0

0.2

0.4

0

0.2

0.4

0  20 40 60 80 100
0

0.2

0.4

Fig. 5. The absolute error of position, speed and yaw relative to the
reference trajectory over the double lane change maneuver.
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Fig. 6. The obtained control inputs over the double lane change maneuver.

lane change maneuver we halved the turnaround time of an

NMPC while introducing minimal degradation in controller

tracking performance.

B. Future Work

The introduction of this new approach brings up many

questions to be answered. Some are fundamental, such as,

does POD-reduced MPC preserve stability or controllability

of an MPC? Others are more numerics-oriented, like, how

does the integration of POD-reduced Newton steps affect the

behaviour of more complex nonlinear programming methods

like interior-point or sequential quadratic programming? Be-

yond these important questions our results bring up a few

immediate points to be investigated. How sensitive is POD-

rNMPC to the choice of snapshot? Can we get past the

ill-conditioning of some reduced Hessians to achieve even

greater dimensional reduction? What are the exact compu-

tational savings of POD-rNMPC in an HIL simulation? In

future work we will address these questions along with new

applications.
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