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jitter in the generation of indistinguishable photons. In order to realize single pho-

ton source at room temperature suitable for quantum information protocol, we study

resonance fluorescence in GaN quanum dots. Incase of Monolayer transition metal

dicalcogenides (MX2), where light matter interaction in atomically thin MX2 is very

strong, time resolved photoluminescence measurements had been used for estimat-

ing radiative lifetime of excitons. Unfortunately, these photoluminescence results

depends on material defects and impurities, and population decay of the excited

state is affected by presence of dark states[9], rendering estimation of radiative life-

time of excitons using photoluminescence measurement alone difficult. Inorder to

overcome this difficulty, the monolayer sample is resonantly excited. In our study,

we perform resonance excitation spectroscopy of exfoliated MX2 based monolayer

sample at room temperature.

1.1 Introduction to Quantum Information

Quantum Information involves the study of information processing using a quan-

tum mechanical system. Advances have been achieved in the study of such systems

with the advent of experimental techniques to control and manipulate the quantum

system such as: application of penning trap for trapped ion quantum computa-

tion(Wineland et al. 1973), application of quantum dot for single photon generation

for quantum information[5], optically driven quantum dot for quantum computa-

tion[6]. This ability to generate, control and manipulate the quantum system holds

the key towards the implementation of a quantum information system.

One of the key applications of Quantum information processing is towards the

realization of high precision sensors that can overcome standard quantum limit due

to statistical fluctuation. Moreover, quantum entanglement overcomes shot noise
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limit that can find application in realization of chemical and biological sensors such

as measuring concentration of blood protein[47] etc.. Further, relativistic quantum

metrology framework enables realization of high precision acceleration sensor for

detecting gravitational anomalies in space[8].

Quantum computation yet another frontier of quantum information. Proposal

of Deutsch’s model for quantum computation initiated a discussion of the existence

of an even superior form of quantum computation than Church-Turing thesis[6].

Moreover, Shor’s algorithm for factorization, and Grover’s search algorithm over

unstructured space were some of the key driving motivations toward race for quantum

computers[7].

1.2 Quantum information: Application of Resonance fluorescence

1.2.1 Quantum information using trapped ion

To implement any quantum algorithm, experimental setup system must satisfy

so called DiVincenzo criteria[10]. The fifth criterion underlines that for any given

qubit after processing or computation, it must be read out or measured. In case of

trapped ion system[2], an ion such as Al ion is confined using Paul’s trap. In this

arrangement, trapping field and field to change the state of the qubit is provided

by set of DC and RF electrodes. If two hyperfine level of ground state of Al ion is

represented by —0¿ and —1¿ respectively, then using a laser beam in resonance with

atomic transition, electron can be excited to one of the hyperfine levels. If the qubit

was in —1¿, then on an application of resonant excitation, the fluorescent signal can

be detected using CCD camera. In this work, we demonstrate the phenomenon of

resonance fluorescence in monolayer sample of MX2 material at room temperature.
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1.2.2 Quantum information using quantum dot

Quantum dot is yet another approach towards realization of scalable quantum

computer architecture. Solid state quantum dots or ”artificial atoms” are commonly

used in the implementation of quantum information due to its discrete energy levels

and flexibility to tune its properties during the process of fabrication.Here, we are in-

sterested in understanding the realization of room temperature quantum information

storage device using GaN quantum dots.

Trion is a quasiparticle that can be either negative, consisting of pair of electrons

and hole, or positive, consisting of pair of holes and an electron. When trion state

decays off via spontaneous emission process, the polarization state of the emitted

photon is entangled with the spin state of the quantum dot. Idea is to establish a

strong light coupled coherent Quantum Dots (QD) system[13] and tune these QDs

to optical mode of the cavity thereby creating a node. Consequently, photon thus

generated can interact with both of these QDs connected via an integrated optical

waveguide. In order to read out spin information, resonance fluorescence can be used

to map a particular spin state to excited state population. This can further decay

off emitting photons that can be detected by an appropriate photodetector.

In this work, we study the feasibility of observing resonance fluorescence in GaN

based quantum dot structures.

1.3 Chapter summary

In this chapter resonance fluorescence is introduced from quantum information

perspective. Primary conation of this study is to analyze the feasibility of observing

resonance fluorescence in GaN based quantum dots, and realize the same in MX2

based monolayer sample.



CHAPTER II

Introduction to III-Nitride based semiconductor quantum
dots

Solid state quantum dots are zero dimensional semiconductor nanostructures, also

known as ”artificial atoms”, providing 3D confinement to carriers. The 3D confine-

ment results in discretization of energy states of confined carriers, leading to electron

and hole localization. This discretization of energy levels of the carriers and local-

ization of the carriers resembles an atom.

Solid state quantum dots find application as non classical light source for on

demand generation of single photon[14,15] in quantum communication[16], precision

measurement[17,18] and random number generation[19]. Additionally, quantum dots

are commonly used for the generation of entangled photon source by using indistin-

guishable photon source[20,21] or from biexciton to exciton transition[22,23]. These

semiconductor nanostructures can be grown either by self-assembled process or site

controlled process. Those quantum dots which are self assembled, exhibit random

spectral and spatial properties as a result of which they cannot be scaled and inte-

grated with photonic components. Also, self assembled quantum dots require low

temperature for operation to maintain three dimensional confinement[12]. In order

to overcome these issues, III-N based site controlled quantum dots are developed.

Site controlled wide band quantum dots overcome the issue of scalability and require-

6
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Figure 2.1: Light matter interaction in quantum dot.

ment for higher operating temperature. InGaN/GaN based quantum dots have been

thoroughly investigated by [12] and optically pumped single photon source upto 90K

and electrically driven single photon source upto 10K have been demonstrated. In

this theses, all estimations are based on the quantum dot developed in [12].

2.1 Light matter interaction in Quantum Dots

Quantum Dots interact with photons through formation of excitons or recombi-

nation. Figure 2.1 represents interaction of quantum dot with photon and formation

of exciton. We can express wavefunction of the exciton in terms of wannier function

as electrons and holes are localized in near vicinity of its center of mass[24]. If me

and mh represents effective mass of electron and hole respectively, then Hamiltonian
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for exciton can be expressed as:

(2.1) H = − ~2

2me

∇2
Re −

~2

2me

∇2
Rh
− e2

ε|re − rh|
+ Vδ

where Vδ is perturbation term due to confinement potential for electron and hole

as shown in figure the 2.1 and Re, Rh are postion of unit cell. Further, the exciton

wave function can be written as:

(2.2) ψ(re, rh) =
∑
ReRh

φ(Re, Rh)WRe(re)WRh(rh)

φ(Re, Rh) is exciton envelop wavefunction and wannier funcition for electron and

hole can be written in terms of Bloch state as:

(2.3) WRe(r) =
1√
N

∑
k

e−ik·Reψk(r)

(2.4) WRh(r) =
1√
N

∑
k

e−ik·Rhψk(r)

Here, N is number of primitive cell in crystal. From the equation 2.1, we can write

the Schrodinger equation in terms of center of mass of exciton as:
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(2.5)
−~2

2M
∇2
Rψ(R) = ERψ(R)

where R is coordinate of center of mass and M is the total mass of exciton.

We can further treat exciton alone as free particle and we can write equation

for wavefunction for center of mass. We can further describe wave function for free

exciton considering their center of mass using generic solution to time dependent

Schrodinger equation:

ψ(R, t) =
1√
2π

∫ +∞

−∞
φ(K)e

i(KR−
~K2

2M
t)
dK

(2.6)

Initial wave function can be written as;

(2.7) ψ(R, 0) =
1√
2π

∫ +∞

−∞
φ(K)eiKRdK

The solution to the equation above can be obtained using Fourier transform:

(2.8) φ(K) =
1√
2π

∫ +∞

−∞
ψ(R, 0)e−iKRdR

and the eigen value can be expressed as:

(2.9) ER =
~2K2

2M

K = ke + kh

As shown in figure 2.1, one of the methods for creation of exciton is by photon

absorption. Interband absorption of photon with energy ~ωi can occur anywhere in

the Brillouin zone where:
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(2.10) ~ωi = Ec(K)− Ev(K)

corresponding to conduction and valence band respectively.

and

(2.11) ∇KEc(K) = ∇KEv(K)

The equation above describes the fact that for absorption and hence for the for-

mation of exciton, group velocities of electron and hole must be equal allowing for

coulombic interaction[24].

We can further write decoupled equation of relative motion for electron and hole

as the coulomb interction is independent of center of mass coordinate.

(2.12)
−~2

2µ
∇r

2 + V (r)ψ(r) = Erψ(r)

The equation above can be interpreted as Schrodinger equation for a particle with

mass µ in a central coulombic potential.This can be treated as a simple hydrogen

atom problem. By using this approach we can describe quantization of energy in

quantum dots that is why it is referred to as ”artificial atom”. The solution to the

equation can be expressed in a form containing an angular part defined by spher-

ical harmonic termYlm(θ, φ) and a radial part. Also, the equation is spherically

symmetric, we can write the Schrodinger equation in spherical coordinates as:

[
−~2

2M

1

r

∂2

∂r2
+

1

2Mr2
L2 + V (r)]ψ(r) = Eψ(r) (2.13)

Where first term corresponds to radial kinetic energy and second term represents

rotational kinetic energy and ψ(r) can be expressed as product of radial wavefunction

and spherical harmonics. Further, we can express L2 in spherical harmonics as:
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(2.14) L2Ylm(θ, φ) = l(l + 1)~2Ylm(θ, φ)

On multiplying by factor 2Mr2 and dividing with Rnl(r)Ylm(θ, φ), we can write

eqn. 2.5 as:

(2.15) [
−~2r

Rnl

∂2

∂r2
(rRnl + 2Mr2(V (r)− E)] + [

L2Ylm(θ, φ)

Ylm(θ, φ)
] = 0

We can substitute U(r)=rRnl on further simplifying the equation above, we can

write the equation in terms of reduced mass as:

(2.16) − ~2

2µ

d2U(r)

dr2
+ [

l(l + 1)~2

2µr2
− e2

r
]U(r) = EU(r)

at r=0, U(r)=0 and second term diverges and can be disregarded.

Under this boundary condition, solution to the equation above

U(r) is of the form rl+1 further we can subject the equation to boundary condition

where r is very large. On combinig the solutions in the above mentioned boundary

conditions, we can express U(r) as:

U(r) = rl+1Q(r)e−γr γ =
√

2µ(−E)/~

(2.17)

we can assume power solution for the equation 2.8 with U(r) defined in 2.9. Solution

is of the form:

(2.18) Q(r) =
N∑
i=0

air
i
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For a valid solution equation 2.10 must terminate at some value of N i.e. corre

sponding coefficient must be zero. With this boundary condition, on substituting 

equation 2.10 in 2.8, we will find discretized energy in the form: 

(2.19) En= 
-Const

n2

2.2 Properties of GaN 

A significant portion of the research is oriented towards estimation of resonance 

fluorescence in GaN based quantum dots. It would be interesting to look into prop

erties of GaN. One of the interesting properties of GaN in optoelectronic application 

is the presence of direct band gap in visible spectrum. However, GaN based de

vices suffers from dislocation due to lattice mismatch of substrate thereby affecting 

its optical and electrical performance[25]. For example, all the estimation in this 

thesis is based on GaN based quantum dot grown on c-plane sapphire substrate. 

Consequently, we can expect deterioration in optical characteristics of the device 

due to lattice mismatch. If the lattice mismatch with the substrate layer is small, 

then "stress can be relieved by nearby layer undulation"[26]. If the strain is large, 

depending on nature of strain, "the unit cell along the growth direction will expand 

or contract". Further, threading dislocation which is common in GaN is observed 

when dislocation from substrate propagate to layers below[26]. Figure 2.2 

represents band structure of Wurtzite GaN. Direct band gap is found to be 3.5eV, 

whereas HH to LH gap is 6meV and split off hole and LH has gap of 37meV. 

In presence of perturbation term and spin orbit coupling, Hamiltonian for GaN 
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Figure 2.2: TEM micrograph image of GaN cross section grown on c-sapphire substrate[26].
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Figure 2.3: Band structure of Wurtzite GaN.
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can be written as: 

(2.20) 

here scalar product k*p is the perturbative term expressed as: 

(2.21) k * p = kx (-in�) + k (-in�) + kz ( -in�)ax Y 8y az 

last term in the equation 2.21 represents contribution due to spin orbit coupling. 

2.3 GaN based semiconductor quantum dot 

In this thesis, estimation of resonance fluorescence signal from GaN based quan

tum dot is based on the quantum dot developed by[12]. It would be useful to under

stand the properties of the quantum dot. The structure consists of disk in nanowire 

which is basically a truncated cone shaped GaN pillar. Each disk is made of a 3nm 

thick In0.15Ga0.85 N nano disk in a 120nm tall GaN pillar.Nano disk is further char

acterized by 10nm thick GaN at the top, and has sidewall slope of 75° . Structure 

of nanopillar has great influnce on the emission signal from the quantum dot. 

"First lens collection efficiency is defined the ratio of far field within collection cone 

of objective lens and total radiation power". The collection efficiency from these 

dots are affected by diameter of the nano disks, radial position of the dipole and 

polarization of the dipole[12]. It has been observed that the first lens collection 

efficiency decreases with increase in the diameter of the nanodisk. This is because 

portion of the emitted signal is internally reflected from GaN air interface. [12] has 

underlined that although ND with smaller diameter can have better first lens 

collection efficiency, it has detrimental effect on the local density of photon state 

which directly depends on the size of the nanodisk. To optimize the design, it has 

been suggested that conformal coating the sample with GaN layer enhancement 

in local density of photon 
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Figure 2.4: Representation of single GaN nanopillar with InGaN nanodisk.
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state can be achieved without affecting the first lens collection efficiency, and first

lens collection efficiency of 15% can be maintained. Moreover, it has been reported

that first lens collection efficiency averaged over entire nanodisks for all polarization

varies from 2% for quantum well limit to 30% to quanutm dot limit.

Another factor that affects the first lens collection efficiency is position of dipole

emitter[27]. It has been observed that in case of small nanopillars emission in free

space mode is relatively better than large nanowires. In large nanowires emission is

coupled into two guided HE11 modes[28]. The one propagting in upward direction

is reflected back from the GaN air interface into the substrate.

2.4 Summary

Light matter interaction in quantum dots is discussed. Further, discretization of

energy in quantum dots has been explained in detail. In the subsequent section,

material property of GaN and defects in GaN has been discussed. Further, band

diagram for GaN has been introduced. In the last section, quantum dot used in this

thesis for theoretical estimation of resonant fluorescence signal has been explained.



CHAPTER III

Optical properties of TMDC materials

3.1 Structure of TMDCs

Transition Metal DiChalcogenides (TMDC) are atomically thin 2D materials.

They consist of transition metals like Tungsten sandwiched between DiChalcogenides

layers like Se. In bulk TMDCs are indirect bandgap material, and monolayer sample

of TMDCs are direct bandgap material with hexagonal crystal structure as shown

in figure 3.1. This transition from indirect band gap to direct band gap is due to

inter layer hopping. Direct band gap can be found at the extrema of band edge in

the hexagonal crystal lattice, also known as +/-K points.

In case of monolayer sample valence band maxima and conduction band minima

are located on the corners of the first Brillouin zone of the hexagonal crystal lattice

at the K points. At the band edge of valence band at K points, dxy and dx2−y2 of

transition metals hybridize with px and py orbitals of chalcogen atoms. On the band

edge of conduction band minima, d3z2−r2 from transition metal hybridizes with px

and py orbitals of chalcogen atoms. These orbitals are localized in xy plane[29].

One of the important properties of TMDC monolayer is strong light matter in-

teraction. It can absorb around 10 to 20% of incident light. Optical conductivity of

18
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Figure 3.1: Crystal lattice structure of TMDC, top down view.Red dot represents chalcogen atoms,
blue dot represents Transition metal atoms.
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material is given by[29]: 

(3.1) � 1 f dS 
2 a(w) = A(w) 

� 21r
2 Js IV (E _ E )I 

ldvcl
v ,c Sw k C V 

In the equation 3.1, a(w) diverges if lv7k(Ec - Ev)I = 0. This can be intepretated 

as peak in optical conductivity and term within the integral sign as joint density of 

states. The divergence condition with lv7v l = lv7
c
l occurs where conduction band is 

parallel to valence band. This is also known as band nesting[29]. Minima of 

conduction and maxima of valence band is located at K/K- at each corner of 

the hexagonal lattice in the first brillouin zone. These K points exhibit time 

reversal symmetry and unlike in graphene, it exhibits broken inversion 

symmetry[29,33]. So, theoretical modeling of TMDCs involves starting with 

graphene and introducing staggered sublattice potential to break inversion 

symmetry[33]. This affects the spin orbit coupling term in the Hamiltonian. 

Consequently, spin splitting is dependent on the variation of band maxima/

minima, or valley. Also, "due to this lack of inversion symmetry, bands are split 

by intrinsic spin orbit coupling except at points where time reversal symmetry 

is preserved'' i.e. Valence band located at K points will exhibit spin splitting and 

spin polarization[33]. 

In figure 3.2, spin split in conduction and valence band is denoted by 2b.cb and 

2b.vb These valleys exhibit non equilibrium charge imbalance, and absorbs left 

handed polarized differently than right handed polarized light[32]. This K 

dependent degree of polarization between maxima of valence band and minima of 

conduction and is given by: 

(3.2) 
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3 

Figure 3.2: Band diagram of TMDC[33] 

The equation above represents normalized difference in degree of absorption between 

right hand and left hand polarization between valence and conduction band[32].

3.2 Luminescence properties of TMDC 

Indirect band gap to direct band gap transition has a significant impact of lumi

nescence properties of TMDCs. This transition from multi-layer to monolayer can 

be observed from the shift in PL peak towards higher energy and increase in PL 

intensiy counts. This decrease can be gradual as observed in chemically exfoliated 

M 082, but there was a sharp drop in quantum yield from a monolayer to bilayer in 

case of mechanically exfoliated M 082. This gradual decrease has been explained as a 

consequence of weaker interlayer coupling due to rotational stacking disorder[29,30]. 

PL emission intensity also depends on the ambient temperature. In case of single 

layer M 082, PL intensity was observed to decrease with temperature, but for few 
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layers it increases with temperature. The decrease in PL intensity is usually due 

to increase in non radiative recombination process. However, unsual behavior in 

few layers is due to degenerate direct and indirect band gaps.Further simulation[31] 

confirmed the behavior attributed to thermal decoupling of nearby layers by thermal 

expans10n. 

Interestingly for ReS2, PL intensity decreases from monolayer to bulk[Tongay 

et al. 2014]. The band gap simulation for ReS2 shows that bandgap is direct for 

both monolayer and bulk due to weak interlayer coupling. Consequently, bulk of 

ReS2 behaves as 2D material. 

Source of single photon has been found in W Se2 monolayer samples. It was noted 

when certain region of the sample was excited, it resulted in emission characterized 

by high intensity and narrow linewidth[Koperski et al. 2015]. These narrow 

linewidth emission also exhibited photon antibunching confirming the emission of 

single photon source and three dimensional confinement. 

Origin of single emitters are not yet clear. It has been found that these single 

emitters occurs along the edge of W Se2 monolayer and at the interface of monolayer 

and multilayer. Irrespective of location, these single emitters are understood to 

originate from crystal defects. These single emissions obtained from the edges of 

monolayer sample were robust against ambient conditions withstanding temperature 

cycles. However, the emission characteristic if noisy and exhibit time scale jitter in 

the order of linewidth, can be improved by resonantly exciting the sample. 

Photoluminescence tuning is another important concept towards the realization of 

resonance fluorescence in charged excitons. Photoluminescence tuning in TMDCs has 

been studied by the application of hydrostatic pressure, uniaxial strain, and electrical 
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gating of the sample in field effect transistor arrangement[29]. Enhancement in PL 

intensity was observed for M oS2 monolayer sample when the applied gate voltage was 

varied from -50V to +50V, while zero phonon line wavelength was nearly constant. 

No enhancement in PL was observed for bilayer MoS2. For WS2 samples PL for 

monolayer was observed to reduce on application of gating voltage, while in case of 

bilayer W S2 it increases on application of lateral electric field[Newaz et al. 2016]. 

For resonance fluorescence excitation, it would be interesting to observe change 

in emission pattern by tuning the bandgap. In the current setup, excitation wave

length was scanned through the entire wavelength range in steps of 1nm. Since the 

suppression is very sensitive to wavelength, for each excitation wavelength, the setup 

was optimized to suppress the background laser. By employing the band tuning 

technique, we can optimize the setup to suppress background laser and simply tune 

the bandgap by applying the gate voltage. 

3.3 Excitons in TMDCs 

In chapter 2 we have discussed the formation of excitons. In ionic crystals where 

dielectric constant is large, the binding energy of E-H pair is high (upto eV). These ex

citons are called Frenkel excitons. Whereas in semiconductor materials, the dielctric 

constant is relatively large. Additionally, due to electric field screening, coulombic 

interaction is reduced. So, exciton radius is larger. These excitons are called Wannier 

excitons as we can include the effect of lattice potential in the exciton wavefunction. 

Exciton binding energy is expressed as[29]: 

(3.3) 

where a is dimensionality of the system, n is principal quantum number and E0
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is the exciton rydberg. For monolayer sample, impact of dielectric screening is less 

as excitons are confined in 2D plane. So, we observe stronger binding energy than 

in bulk . As a consequence, excitons are large enough and have high binding energy 

i.e they can be modelled as Wannier type and Frenkel type excitons.

For 2D materials, it has been shown that only circularly polarized lights couple to

bandedge located at K points[35] as a consequence of inversion asymmetry. Conse

quently, exciton in single valley can emit circularly polarized light. In order to obtain 

linearly polarized emission exciton emission must be in coherent superposition from 

two valley states[35]. Although, emission from neutral exciton is circularly polarized, 

when the monolayer is excited with linearly polarized light, resulting emission from 

neutral exciton is highly polarized and emission of H component photoluminescence 

is stronger than V component. So, right handed light couples to-K and left handed 

light couples to + K valleys. When we excite a sample using linealy polarized source, 

it can be considered as coherent superposition of left and right handed circular po

larization. So, it will excite both +K and -K, thereby converting quantum coherence 

to valley coherence[36]. 

(3.4) 

In the equation above, "a( q) is coefficient of linear combination and q is wave vector 

measured from point K. I¢> represents intial band condition where conduction band 

is completely free and valence band is occupied. ei
+
�,.i creates spin down electron 

in conduction band with momentum K and correspondingly, h�
K+ �,t creates spin 

up hole with momentum -K in valence band". Since emission from neutral 

exciton is linearly polarized irrespective of the orientation of linearly polarized 

excitation, it represents conservation of valley coherence[36]. 
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3.4 Summary

In this chapter band structure of TMDC was introduced. Exciton formation and

luminescence properties in TMDC material were explained further to understand un-

derlying principle and characteristics of PL emission from WSe2 monolayer sample.



CHAPTER IV

Resonance fluorescence in semiconductor nanostructures

Resonance fluorescence phenomenon has been studied in two level system as an

interaction with driving laser whose frequency is at resonance with transition fre-

quency of the two level system. In this chapter we will study resonance fluorescence

as scattering phenomenon. We will further look into resonance fluorescence in quan-

tum dot system and quantum well system.

4.1 Resonance fluorescence as scattering phenomenon

Consider a simple two level system with tansition frequency ωf . When this

two level system is excited with near resonance, single mode, coherent field with

frequencyωnr, we can expect two components in the scattered radiation: As per en-

ergy conservation we expect elastically scattered photons having frequency ωscattering =

ωnr, also known as Rayleigh component. Associated with this scattering, we have

fluorescence from atom itself. This emission has central frequency in spectrum same

as the two level transition frequency.

As evident from the figure 4.1, the elastic component has its wavelength near to

fluorescence from the atom. Consequently, these two components cannot be spec-

trally filtered. In order to observe this fluorescence from the two-level system, we

must suppress the elastic component due to excitation laser.

26
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Figure 4.1: Resonance fluorescence in two level system

In two-level modeling for a single atom, assuming rabi frequency is much smaller

than radiative decay rate, scattering of single mode coherent light by two level system

can be spectrally written as[37]:

(4.1) F (ωs) =
γ‘ − γ
γ‘

γ‘/π

(ω0 − ωs)2 + γ‘2
+
γ

γ‘
δ(ωs − ω)

Equation 4.1 is significant as it explains characteristics of the resonant fluores-

cence emission. The first part of the equation has lineshape similar to absorption or

photoluminescence of the atom. Followed by rayleigh elastic part with delta function

characteristics. In the later section where we discuss resonant fluorescence spectrum

for a three level quantum well system, the delta function appearing in the equation

is due to rayleigh scattering.
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Figure 4.2: Resonance fluorescence as radiative cascade process

4.2 Resonance fluorescence as dressed atom phenomenon

Apart from semi classical Bloch equation based approach, phenomenon of res-

onance fluorescence can also be explained based on dressed atom approach[38].

Dressed atom exhaustively explains formation of mollow triplet, which using semi

classical approach, we observe it in high rabi frequency regime. Here, we will restrict

our scope to explaining the phenomenon of resonance fluorescence from dressed atom

point of view.

Figure 4.2[38])represents three manifolds E(N), E(N-1) and E(N-2) consisting un-

coupled state of atom laser system. The small arrow pointing towards right represents

the phenomenon of absorption, and that pointing towards right represents stimulated

emission. Wiggle line represents spontaneous emission process between manifolds.
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As seen from the figure 4.2, while making rabi oscillation beween < a,N + 1|and

|b,N >, it can make quantum jump from |b,N > to |a, n > by the process of spon-

taneous emission. Before rabi oscillation between |a,N > and |b,N − 1 > can again

start to undergo spontaneous emission. It would be interesting to understand the

time interval between two spotaneous phenomenon. Considering first emission occurs

from |b,N > to a,N > at t=0, next spontaneous emission will occur from |b,N−1 >

with some delay dτ , where τ is interval between two successive spontaneous emission.

Distribution of τ for resonance condition is then expressed as[38]:

(4.2) K(τ) = Γ
Ω2

λ2
sin2(

λτ

2
)e
−Γτ

2

where

(4.3) λ2 = Ω2
1 −

Γ2

4

4.3 Resonance fluorescence in GaN based quantum dot

In this section we will look into details of resonance fluorescence from quantum

dots. Based on this, we will then estimate emission profile from GaN based quantum

dots. Aim of this estimation was to find out, considering characteristics of GaN based

quantum dots, is it feasile to observe resonance fuorescence. We further compare the

estimation for GaAs based quantum dots.

Resonance fluorescence as semi classical approach has been studied[39].

If Ĥ0(r) is non interacting Hamiltonian of an isolated quantum system, and V̂ (r, t)

represents ineraction of time dependent, classical optical field interacting with the

quantum system, we can represent the Hamiltonian as: Ĥ(r, t) = Ĥ0(r) + V̂ (r, t). If

ψn(r) represents eigenstate of Ĥ0, then we can write an arbitary wavefunction as:
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(4.4) ψ(r, t) =
∑
n

an(t)ψn(r)

So, from Schrodinger wave equation:

(4.5) i~
∂ψ

∂t
= [Ĥ0(r) + V̂ (r, t)]ψ(r, t)

from equation 4. and 4.5:

i~
∑

n ȧn(t)ψn(r) = Ĥ0(r)
∑

n an(t)ψn(r) + V̂ (r, t)
∑

n an(t)ψn(r)

(4.6)

standard solution to Schrodinger wave equation can be written as:

H0 |n〉 = En |n〉(4.7)

with: |ψ(r, t)〉 =
∑

n an(t)ψn(r) , we can write:

i~
∑

n ȧn(t) |n〉 = H0(r)
∑

n an(t) |n〉+ V (t)
∑

n an(t) |n〉

multiplying with complex conjugate of the wavefunction and integrating it both

side in equation 4.6, we can write:

i~
∑

n ȧn(t) = Enan(t)ψn(r) +
∑

m Vnm(t)am(t)

(4.8)
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In matrix notation, we can write equation 4.8 as:

(4.9) i~ȧn(t) = Ea(t) + V (t)a(t)

On writing elements of the matrix element V(t) and applying rotating wave approx-

imation, we can write equation 4.9 as;

(4.10) i~ȧ(t) =
~
2

 −ω0 Ω0
∗(t)eiωt

Ω0(t)e−iωt ω0


So, Hamiltonian can be written as:

(4.11) H(t) =

 −ω0 Ω0
∗(t)eiωt

Ω0(t)e−iωt ω0


In the equation above, if E0 is the amplitude of the driving field, µ is the dipole

moment, then we can define Ω0 =
µE0

~
is called Rabi frequency.

Further, in interaction representation, we can write equation of motion as:

˙ρ11(Z, t) = −iχ∗ρ21
′
(Z, t) + iχ∗ρ12

′
(Z, t) + γ2ρ22(Z, t)(4.12)

˙ρ22(Z, t) = iχ∗ρ21
′
(Z, t)− iχ∗ρ12

′
(Z, t)− γ2ρ22(Z, t)(4.13)

˙ρ12(Z, t) = −(γ − iδ)ρ12
′
(Z, t)− iχ∗(Z, t)[ρ22(Z, t)− ρ11(Z, t)](4.14)

˙ρ21(Z, t) = −(γ + iδ)ρ21
′
(Z, t) + iχ∗(Z, t)[ρ22(Z, t)− ρ11(Z, t)](4.15)

and χ(Z, t) = −µE0(Z,t)
2~

Here we are interested in finding excited state population ρ22.

In steady state condition,

˙ρ22(Z, t) = 0

i.e.
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(4.16) ρ22 =

2γ

γ2

|χ(Z)|2

γ2 + δ2 + 4 γ
γ2
|χ(Z)|2

Intensity of emitted fluorescence can be expressed as:

(4.17) Intensity = ρ22γ2ητ

where γ2 is excited state decay rate, η is setup detection efficiency, τ is integration

time. Based on this theory, we report feasibility of observing resonance fluorescence

in GaN based quantum dots. Further, we compare the estimation with GaAs based

quantum dots.

Based on the setup in the figure: considering objective lens collection efficiency

with solid immersion lens on the sample as 70% ( typical value from literature com-

parison). We consider 50% of transmission due to beam splitter, in 400nm, detector

efficiency for picoquant SPAD 9%, 50% transmission loss through cross polarizer,

coupling efficiency into single mode fiber of 50%. Also, by choosing solid immersion

lens we can reduce beam spot size forming on the sample, thereby increasing the in-

tensity for given excitation power. We are using GT polariser which has exctinction

ratio of 105. Also, considering signal efficiency due to absorption in sample to be

70% at given wavelength range of 400nm, we expect beam spot size of 259.5nm.

Also,

(4.18) Intensity =
Power

π
beamspotsize2

4

Once we obtain intensity for given input power, we can find electric field as: Electricfield =√
Intensity

ηGaNcε0
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c and ε being constant. Here ηGaN is refractive index= 2.53 for GaN. This excited

state decay time is related to dipole moment as:

(4.19) γ2 =
ω3η|µ|2

3πε0~c3

with η is refractive index = 2.53 for GaN and µ is the dipole moment in terms of

Debye. 1D approximately = 3.34x10−34 C m. From the equation above, we find

dipole moment for GaN to be around 8D.

With 1meV=1.610−22J, we can estimate decoherence time due to linewidth broad-

ening as:

(4.20) γ =
linewidth ∗ 1meV

2~

Input electric field dependent Rabi frequency can be written as:

(4.21) ΩRabi(Power) =
µEfield(Power)

~

and χ =
ΩRabi

2
From equation 4.16 and 4.17, considring resonant condition

i.e. δ=0, we can find excited state population and Intensity count as function of

linewidth:

Figure 4.3 represents variation of excited state when excied by laser of 400nm

wavelength and 1uW input power, and considering 6% radiative recombinaion ef-

ficiency[12]. Linewidth unit along x axis is in meV. Further, figure 4.4 represents

variation of emitted intensity as function of linewidth, for a given excited input power

of 1uW.
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Figure 4.3: Variation of excited state population in GaN based quantum dot as a function of
linewidth for input excitation power of 1 uW. Linewidth in meV.
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Figure 4.4: Variation of emitted intensity in GaN based quantum dot as function of linewidth
for input excitation power of 1 uW, and considering radiative recombination of 6%.
Linewidth in meV.

From the figure 4.4, it can be estimated that peak emission at resonance is around

3775 cps for 10meV of linewidth and excitation power of 1uW i.e. 2x1012 photon

counts. In chapter 5 we discuss the experimental setup that has suppression of

10−9. So, we can achieve signal to noise ration of over 1 i.e. it is possible to

observe resonance fluorescence in GaN under above mentioned conditions. For the

quantum dot discussed in[12], excited state decay time is 1ns i.e. excited state decay

rate γ=1000MHz. On similar lines, we have estimated the intensity of emission at

resonance in GaAs based quantum dot.

Estimation is based on details discussed in [11]. For GaAs, we have considered

dipole moment of 25D, 200nW of excitation power, 100% radiative recombinaion

efficiency. Then at resonance, we expect emission intensity as shown in figure 4.6.

This estimation for GaAs was compared with the experimental result obtained
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Figure 4.5: Variation of excited state population in GaAs based quantum dot as function of
linewidth for input excitation power of 200nW, and considering radiative recombination
of 100%. Linewidth in ueV.
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Figure 4.6: Variation of excited state population in GaAs based quantum dot as function of
linewidth for input excitation power of 200nW, and considering radiative recombination
of 100%. Linewidth in ueV.
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Figure 4.7: Measured resonance fluorescence intensity in GaAs quantum dot trion state[11].

in [11]. On comparing counts on resonance between figure 4.6 and 4.7, we estimate

linewidth from figure 4.6 for GaAs quantum dot to be around 1ueV which holds true

from figure 4.7.

4.4 Summary

Phenomena of resonance fluorescence is explained. Further spectrum for resonance

fluorescence is derived in two-level system. Finally, we estimate intensity counts in

GaN and GaAs based quantum dots.



CHAPTER V

Experimental study of Resonance Fluorescence in WSe2
monolayer sample

This chapter mainly deals with describing experimental setup and techniques to

perform resonant fluorescence spectroscopy in WSe2 monolayer sample. We then

describe our results and look into theoretical details of resonance fluorescence signal

in WSe2 monolayer quantum well by considering it as three level system.

5.1 Experimental setup

Figure 5.1 shows block diagram representation of the reflection based experimental

setup for the study of resonance fluorescence. We are using CW Ti:Saphire SolTis

laser for exciting the sample. The laser is input to the setup through a single mode

fiber. We use continuous ND filter to control the excitation power. Input laser

is polarized to H or V using glan thompson polarizer. Before exciting the sample

through a beam splitter and an objective lens, the beam is expanded. Reflected beam

from the sample and emission is collected through collection arm that consists of W1,

quarter waveplate to eliminate ellipticity introduced due to birefringence in optics.

W2, quarter waveplate is used to rotate the polarization of the analyzing polarizer.

To create cross polarization condition in the setup we don’t rotate polarizer as it

shifts the beam outgoing into the single mode fiber at the collection port to the

39
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Figure 5.1: Experimental setup to study Resonance fluorescence in TMDC material

spectrometer. White light image ( show in blue dash line) is obtained on the CCD

camera. The red arrow represents excitation laser, and the black arrow represents

path of emission from the sample. One of the major challenges in the experiment is

to suppress the background laser. We have achieved the suppression by using cross

polarization technique in association with confocal rejection of the scattered laser by

using a single mode fiber as a coherent detector.

5.2 Polarization dependent beam deformation in resonant fluorescence
setup

In normal incidence setup beam spot smaller than that in angular excitation

setup. Consequently, less power is required to obtain the given excitation intensity.

In addition, unlike in angular excitation setup where the scattered beam is more

likely to be un-polarized, in normal incidence setup scattered beam from diffraction

limited focused beam spot is polarized. Consequently, this polarized scattering can
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Figure 5.2: Microscope image of WSe2 Monolayer sample 5X magnification(sample prepared by
Timothy Chou)
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Figure 5.3: Microscope image of WSe2 Monolayer sample 40X magnification(sample prepared by
Timothy Chou)
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form interference pattern that further suppresses excitation laser. Care must be

taken to obtain diffraction limited beam spot size in order to observe the interference

pattern when an objective lens in placed between a pair of crossed polarizers.

In the collection arm of the setup, laser scattered from the sample surface is

collimated to quarter waveplate which removes any birefringence introduced by the

excitation optics. Further, half wave plate together with Glan Thomson GTH10A as

an analyzer creates cross polarization for the excitation laser. While in the excitation

arm, a single mode fiber is the source of excitation laser (coherent illumination). This

single mode fiber can be considered as circular aperture, and when focused it results

in point spread function, as shown in figure [40], in the form of airy disk pattern

whose intensity can be described in terms of Bessel function[40]. Intensity pattern

above can be obtained by integrating over wavefront in the pupil for any given point

in 3D [40] which defines the confocal volume which is same as the observation volume

in confocal imaging in normal incidence setup. So, the confocal volume observed in

the confocal plane is simply product of both the respective psf. Alternatively, each of

these psf can be understood as probability of photon into the volume and probability

of receiving the photon from this volume into the confocal plane. So, if we use a

single mode fiber for detection, we need to convolve psf and pinhole. Mathematically,

it is just convolution of two psf and multiplying with pinhole [40]. The idea behind

using confocal technique is that it has better resolution than wide field microscopy

and convolved psf is sharper. So, we have less contribution in background noise

as side lobe of the diffraction pattern is not present in the confocal function. In

diffraction pattern formed by a confocal system, we have less energy in outer lobe

than in the pattern formed by a single lens which has diffraction pattern described

by airy function[40]. Also, size of pinhole matters. Image of pinhole in focal plane
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Figure 5.4: Point spread function of circular aperture in focal plane [40]
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Figure 5.5: : Diagram showing absence of side lobe in diffraction pattern in confocal microscopy
[40].
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denotes the area from which photons will be collected. Any size less than 1 AU 

will result in signal loss. So, the selected pinhole size should be near lAU. Pinhole 

determines focal volume on the sample surface. If source and detector pinholes are 

large, we approach widefield limit. When using pinhole in confocal system, 

"lateral improvement is much more sensitive to the pinhole size than the axial 

resolution. So, changing the NA of fiber launching lens is same as change in 

pinhole size". So, we can use either multimode fiber or a single mode fiber 

as detector. However, usage of a single mode fiber has its own advantage[41]. 

In case of a "single mode fiber as detector, the detected field is the overlap integral 

between field at the input of the fiber and the mode pattern"[41]. Propagation of 

modes in optical fiber has been studied in[42]. 

(5.1) Et = L a(p) * e(p) Ht = L a(p) * h(p)
p p 

j

for pth mode. Where excitation efficiency of the pth mode: 

(5.2) a(p) =  e(p)xh(q) * zdA 

is O if p7'=q, and 1 if p=q. 

i.e. overlap integral determines extent of propagation of the transverse wave in the 

fiber. Moreover, detected intensity= la
p
l 2

For fundamental mode: 11 = I J J�
00 

E * e1dsl 2

Consequently, excitation efficiency of the given mode reduces with the value of over

lap integral. Based on this idea, we tried to reduce the overlap integral by deforming 

the mode of the beam input to the single mode fiber. Apart from using con-focal 

rejection, we also used polarization microscopic technique. Since coupling of mode 

into a single mode fiber depends upon overlap integral, we found that diffraction 

image in polarized microscopy is not Gaussian but an interference pattern in the 
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Figure 5.6: : Formation of Maltese pattern due to birefringent sample.

form of Maltese pattern. Consequently, coupling of background noise can be further

reduced as overlap integral of the diffraction image with a single mode fiber is less.

These interference patterns or Maltese pattern is generated due to polarization aber-

ration. These aberrations can occur either due to interaction of optical wavefronts

and surface of lens. Here, diverging beam incidents obliquely to the surface of the

lens along the edge has different Fresnel reflection coefficient for S and P polariza-

tion. Consequently, we have rotation in the polarization state. Or it can be obtained

when a polarized beam is focused on a birefringent material like a sample or half

ball lens where polarization state of the beam is distorted. Birefringent sample is

one of the common sources of interference pattern in polarization microscopy. When

polarized excitation laser is focused on a birefringent sample, polarization of trans-

mitted along the optical axis remains unchanged. However, due to birefringence of

the sample, polarization of the off axis transmitted light is distorted. So, when an

analyzer is placed in crossed configuration w.r.t polarizer, light along the optical axis

gets extinguished, but those towards periphery, passes through orthogonal forming

an interference pattern.

Formation of an interference pattern in birefringent sample is shown in the dia-

gram below: Figure 5.7 represents interference patterns in different minerals. These
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Figure 5.7: : Chromolithograph of optical interferences[43].
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patterns are used to characterize minerals based on their composition. Moreover,

the interference pattern in bi-axial minerals is shown in the figure 5.8.

Inorder to understand the source by which we can generate such interference

pattern in our setup, we used birefringent waveplate as a test sample. Figure 5.8 and

5.9 represents the interference pattern observed by using the birefringent waveplate.

From figure 5.10 and 5.11, it was understood that birefringence is one of the

important factors in the formation of such an interference pattern. However,the

central portion of the pattern is still not completely extinguished. Consequently,

this would result in coupling of scattered background laser in the detector. In order

to overcome this, we searched for other sources that can be used to introduce such

polarization aberation.

From the diagram 5.12, it is clear that incident beam striking the curved surface

of the objective lens is obliquely incident along the periphery. Each of these can

be resolved in perpendicular and parallel components. These two vectors have a

different reflection. Consequently, an effective vector of the transmitted beam results

in rotation in the polarization of the incident beam. As obvious from the Fresnel

equation, the component normal to the plane of incident has more reflection. The

extent to which rotation will occur has been studied in [44].

It is due to this polarization aberration, either due to birefringence nature of the

sample because of varying retardation of converging/diverging light source or rota-

tion on the curved surface of the high NA lens that results in four bright quadrants

separated by the dark cross as shown in the figure below. The two respective dark

arms are called Isogyres and the central region where Isogyres intersects are called

melatope. Mathematical analysis of the formation of such structures has been exten-

sively studied in [45]. In polarization microscopy, lenses produce rotation in plane of
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Figure 5.8: : Optical interferences in bi-axial crystals;Bombicci Porta [1889].
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Figure 5.9: : Optical interference effect during heat treatment of glass, David Brewster, 1815.
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Figure 5.10: :Maltese like pattern obtained with 532nm laser.
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Figure 5.11: :Maltese like pattern on camera.

Figure 5.12: :Formation of Maltese structure in reflection setup.
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polarization due to difference in Fresnel coefficient for s and p polarized components 

of the excitation laser[46]. "If amplitude of light in the exit pupil of an objective lens 

is P(p, ¢), then the amplitude of the image in conjugate plane is given as the Fourier 

transform of P(p, ¢): 

(5.3) 1a127l" A(r, 0
) = 

o o P(p, 
¢)eizpcos(0-</J)Pd

p
d¢

(r, 0) and (p, ¢) are the polar coordinates of the exit pupil and in image plane, a is 

21rr 
the radius of the exit pupil, and z = where 1 is distance between exit pupil 

A * l 

and image plane"[46].  It has been shown in [46] that the intensity distribution as derived 

using circle polynomials, take the form of airy disk. Assuming ideal objective lens, 

in cross polarized configuration, A can be expressed in terms of sin20 form[46]. 

So, for theta = 0 and 90, Intensity = 0. So, we have light coming from four 

different quadrants. In order to satisfy the above relation, "the light in 

four alternate zones are phase shifted to interfere destructively and give dark 

cross"[46]. Mathematically, we can write the intensity distribution in terms of 

Bessel function as[46]: ( ) 2 
. J3 az 

I= canst* sm2 (0) 
2 (5.4) 

a2z 

Initially we had argued that it is the nature of the sample, like uni-axial structure, 

which results in formation of such structures. It was observed that origin of so called 

Maltese structure has same mathematical representation. This explains why we can 

obtain Maltese structure by two different techniques. 

Figure 5.14, 5.15 and 5.16 represents 2D pixel plot and 3D of the Maltese pattern 

generated in the setup respectively. It is important to note that inorder to reject 

the background laser, we must suppress the central region of the pattern.This dark 

region is also called melatope. Consequently, this beam deformation reduces overlap 

integral between mode pattern and detected field, resulting in rejection of excitation 
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Figure 5.13: : Contour map of Maltese pattern formed in polarization microscopy [46].
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Figure 5.14: : Maltese pattern generated in the setup.

laser.

5.3 Results

In this section, we discuss the resonance fluorescence measurement in the setup

shown in figure 5.1. As a first step towards measuring the resonance fluorescence, we

obtained emission profile from photoluminescence excitation where the sample was

excited with energy higher than the transition energy.

From the figure 5.17 and 5.18, it can be observed that zero phonon line is located

around 745nm, and linewith is approximately 18nm. All measurements have been

taken at room temperature.

In the experiment, the excitation laser was linearly polarized by using Glan

Thompson polarizer. We used white light setup to locate the monolayer sample.

In the next step we made sure to excite the monolayer. Further,the excitation wave-

length was fixed at 710nm and optics was aligned to obtain maximum PL emission.
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Figure 5.15: : Contour pattern for Maltese generated in the setup.

Figure 5.16: :3D Contour pattern for Maltese generated in the setup.



58

Figure 5.17: :PL profile of WSe2 sample when excited with 532nm laser, with 24uW of excitation
power and 50s integration time.

Figure 5.18: :PL profile of WSe2 sample when excited with 705nm laser, with 90uW of excitation
power and 50s integration time.
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Figure 5.19: :PL profile of WSe2 sample when excited with 710nm laser, with 25uW of excitation
power and 5s integration time.

Figure 5.20: :PL profile of WSe2 sample when excited with 744nm laser, with 25uW of excitation
power and 5s integration time.

Once, the setup has been optimized for maximum PL intensity, we optimize the ori-

entation of half waveplate and quarter waveplate to suppress the background laser.

This step was repeated for each scan wavelength. We scanned the excitation near

the ZPL.

For comparison, figure 5.19, 5.20 and 5.21 represents the experimental and curve

fit graph for excitation wavelength of 710nm, 744nm and 760nm respectively.

Figure 5.23 represents variation of integrated counts as function of excitaton wave-

length.

Variation of linewidth as a function of excitation wavelength is shown in the figure

5.24. It can be observed that linewidth variation is almost uniform throughout,

indicating that the linewidth is mainly homogeneously broadened.
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Figure 5.21: :PL profile of WSe2 sample when excited with 760nm laser, with 25uW of excitation
power and 5s integration time.

Figure 5.22: :PL profile of WSe2 sample when excited laser wavelength is scanned from 740nm to
760nm, with 25uW of excitation power and 5s integration time. These are curvefit
values.
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Figure 5.23: :Integrated counts variation as a function of excitation wavelength.

Figure 5.24: :Linewidth variation as a function of excitation wavelength.



62

Figure 5.25: :Normalized PL intensity as function of excitation wavelength.

Figure 5.26: :Normalized PL intensity as function of excitation wavelength.
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5.4 Theoretical analysis of resonance fluorescence from WSe2 monolayer 

sample 

Resonance fluorescence in a three level system has been studied by[D Schwedt et al. 

2003]. Resonance fluorescence consists of two components: secondary emission and 

rayleigh scattering. If r 1 and r 2 represents effective incoherent relaxation rate, 

then for inhomogeneously broadened ensemble, spectrum is calculated as: 

(5.5) 

(5.6) 

(5.7) 

Equation 5.5 and 5.6 represents parallel component of resonance fluorescence. 

The parallel component has coherent part and incoherent part. While perpendicular 

component has only incoherent part. Coherent part in parallel component has delta 

behaviour with speckle formation. In our experiment, we have measured the per

pendicular component. Parallel component has delta characteristic behaviour due to 

rayleigh scattering and can be obtained from angular excitation setup. 



CHAPTER VI

Conclusion and Future scope

6.1 Conclusion and Future direction

In this thesis, we have discussed fundamentals of low dimensional semiconductors

and resonant spectroscopy of such systems. We have also shown the feasibility of

observing resonant fluorescence in GaN based quantum dot which has not been re-

ported earlier. Consequently, we can strive towards observing performing resonance

fluorescence at higher temperature using GaN based quantum dots. We have also

shown resonance fluorescence signal from TMDc material, which is an important step

towards TMDC based quantum information application.As a next step, modification

in the setup shown in figure 5.1 can be performed to obtain resonance fluorescence

signal in GaN and compare the characteristics with theoretical estimation discussed

in this thesis. In order to proceed, usage of solid immersion lens is required. Not only

it increases the collection efficiency of the emission, but also the excitation beam spot

size is smaller. Consequently, less power is needed to realize emission as a function

of excitation. Hence better suppression of the scattered laser is expected.
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