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We study a single-stage, continuous-time inventory model where unit-sized demands arrive according to

a renewal process and show that an (s,S) policy is optimal under minimal assumptions on the order-

ing/procurement and holding/backorder cost functions. To our knowledge, the derivation of almost all exist-

ing (s,S)-optimality results for stochastic inventory models assume that the ordering cost is composed of a

fixed setup cost and a proportional variable cost; in contrast, our formulation allows virtually any reasonable

ordering-cost structure. Thus, our paper demonstrates that (s,S)-optimality actually holds in an important,

primitive stochastic setting for all other practically interesting ordering cost structures such as well-known

quantity discount schemes (e.g., all-units, incremental and truckload), multiple setup costs, supplier-imposed

size constraints (e.g., batch-ordering and minimum-order-quantity), arbitrary increasing and concave cost,

as well as any variants of these. It is noteworthy that our proof only relies on elementary arguments.

Key words : stochastic inventory models; (s,S)-optimality; general ordering/procurement cost structures

History : Received: May 2017; accepted: September 2017 by Qi Annabelle Feng after one revision.

1. Introduction

Inventory management is at the core of supply chain optimization and Operations Management. In

standard inventory models, it is typical to assume a fixed-plus-proportional ordering cost structure;

that is, there is a fixed cost for ordering any strictly positive quantity together with an incremental

cost proportional to this quantity. However, inventory models with more general ordering-cost

structures are prevalent in practice. For example, discount schemes such as all-unit discounts,

incremental discounts, truckload discounts are widely-used and studied in the literature (cf.Altintas

et al. (2008), Benton and Park (1996), Chen (2009), Federgruen and Lee (1990), Li et al. (2004), Li

et al. (2012), and Zipkin (2000)). Even more sophisticated cost structures, such as modified all-unit

discounts (cf. Chan et al. (2002)), generalized truckload discounts (cf. Li et al. (2004)), multiple

setup costs (cf. Alp et al. (2014), Lippman (1969, 1971)), piecewise concave costs (cf. Koca et al.

(2014), Tunc et al. (2016)), and quantity-dependent fixed costs (cf. Caliskan-Demirag et al. (2012)),

are also abundant in applications. Surprisingly, the extant literature on the optimality of (s,S)

policies—policies that raise the net-inventory level to S every time it decreases to s—in inventory
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models with stochastic demand is almost exclusively limited to the fixed-plus-proportional ordering

cost structure. Scarf (1960), Veinott (1966), and Zheng (1991) are classical examples, and Table 1

provides a short summary of the related literature. We refer the reader to the papers listed in the

table, as well as to the books Beyer et al. (2010) and Porteus (2002) for thorough discussions.

Paper Time Horizon/
Review Method

Ordering
Cost

Demand/Performance
Measure

Scarf (1960) Finite/Periodic F+P IID/DC
Beckmann (1961) Infinite/Continuous F+P Arbitrary inter-arrival and

quantity distributions/DC
Veinott (1966) Finite/Periodic F+P ID/DC
Constantinides and
Richard (1978)

Infinite/Continuous F+P Diffusion/DC

Sulem (1986) Infinite/Continuous F+P Diffusion/DC & AC
Zheng (1991) Infinite/Periodic F+P IID/AC & DC
Bensoussan et al. (2005) Infinite/Continuous F+P Compound Poisson with

diffusion and exponentially
distributed jump sizes/DC

Presman and Sethi (2006) Infinite/Continuous F+P Compound Poisson with
constant rate/AC & DC

Benkherouf and
Bensoussan (2009)

Infinite/Continuous F+P Compound Poisson with
diffusion and arbitrarily
distributed jump sizes/DC

F+P: Fixed plus proportional

IID: Independent and identically distributed with a common distribution

ID: Independently distributed with possibly different distributions

DC: Discounted cost

AC: Average cost

Table 1 Summary of papers on (s,S)-optimality.

Interestingly, in the arguably simpler setting of deterministic EOQ-type inventory models, the

optimality of (s,S) policies has been established under weaker cost assumptions; see, e.g., Lippman

(1971), Beyer and Sethi (1998) and Perera et al. (2017). In particular, Perera et al. (2017) provides a

characterization of when an (s,S) policy is optimal in the EOQ setting with general cost structures.

In the same spirit as Perera et al. (2017), we establish in this paper the existence of an optimal (s,S)

policy for a model with renewal demand under a minimal set of cost assumptions. To the best of

our knowledge, this appears to be the first demonstration in a primitive stochastic setting of (s,S)-

optimality under completely general cost structures. We do note however that in a recent paper1,

He et al. (2017) has shown that in a different stochastic setting where demand is governed by a

1 This was brought to our attention while our work was in progress.
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Brownian motion, (s,S)-optimality holds when the fixed-plus-proportional ordering cost structure

is relaxed to allow the setup cost to be a bounded and lower-semicontinuous function of the order

quantity.

More specifically, we study a single-stage, continuous-time inventory model where unit-sized

demands arrive according to a renewal process and orders are allowed to be placed only at arrival

epochs (see, e.g., Beckmann (1961), Sahin (1979), and references therein). The objective is to

minimize the long-run expected average cost. We assume that the cost of ordering is finite for at

least one positive order size and that the inventory holding/backorder cost is governed by a quasi-

convex2 function that approaches infinity when the amount of inventory/backorder approaches

infinity. These assumptions are rather minimal and they cover any reasonable cost structure of

practical interest, including the examples noted above as well as supplier-imposed size constraints

such as batch-ordering (see, e.g., Chen (2000) and Li et al. (2004)) and minimum-order-quantity

(see, e.g., Zhao and Katehakis (2006)). Under our cost assumptions, we show that an optimal (s,S)

policy always exists. Our proof is based on a lower-bounding approach that only involves elementary

arguments. Thus, the primary merits of this paper are the generality of the (s,S)-optimality result

and the simplicity of our proof (to be summarized shortly).

It is important to note that when the ordering-cost function deviates from the fixed-plus-

proportional form, an optimal (s,S) policy may not exist in the standard periodic-review inven-

tory models with IID/ID stochastic demands; see, e.g., Porteus (1990), Chao and Zipkin (2008),

Caliskan-Demirag et al. (2012), Alp et al. (2014), Lu and Song (2014), and references therein.

In particular, Porteus (1971, 1990) shows that a generalized (s,S) policy is optimal for periodic-

review models with a fixed plus an increasing and strictly concave variable ordering cost and with

an arbitrary (not necessarily unit-sized) demand distribution. In contrast, we show that (s,S)-

optimality continues to prevail with almost no assumptions on the ordering/holding/shortage cost

functions if (i) unit-sized demands arrive according to a renewal process and (ii) orders are placed

at demand-arrival epochs.

Our assumption of unit-sized demands guarantees that the inventory trajectory never decreases

more than one level at an arrival epoch; we shall refer to this feature as the skip-free-to-the-left

(or simply skip-free) property. It will be shown later in the paper (see Lemma 7) that this is the

primary driving force behind our strong conclusion. Not coincidentally, it is interesting to observe

that the inventory trajectories in the deterministic-demand EOQ model of Perera et al. (2017) and

in the Brownian-demand model of He et al. (2017) also satisfy the same property for a continuous

state space. Hence, preserving (and exploiting) this property appears to be essential when one

2 A real-valued function f on the set of integers, Z, is quasi-convex if there exists z∗ ∈ Z such that g(·) is non-increasing
on {· · · , z∗ − 2, z∗ − 1, z∗} and non-decreasing on {z∗, z∗ +1, z∗ +2, · · · }.
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attempts to weaken the standard linear-cost requirements (except for the setup cost) in inventory

models. While all of these three different demand assumptions share the skip-free property, we

do note, however, that the conditions on the cost functions in He et al. (2017) are significantly

stronger than those in Perera et al. (2017) and in the present paper. A more-detailed discussion of

this disparity will be provided in Section 5 below.

We now briefly summarize our proof. There are four basic steps. First, we show that it is sufficient

to consider policies in a slightly modified model that maintain the net-inventory level between a

judiciously-chosen pair of lower and upper thresholds. This is a key step in our approach as it

reduces the solution of our problem to one with a finite number of states and actions. Second, we

show that the optimal cost in this stochastic, continuous time inventory problem is lower bounded

by the optimal cost in a deterministic, discrete-time inventory problem in which a period is of

length equal to the expected interarrival time in the original model. This lower-bounding problem

is thus a deterministic dynamic program (DP). In our third step, we show that the assumption of

unit-sized demands implies that any stationary policy in this DP is an (s,S) policy. In our final

step, we invoke standard results for DPs with finite state and action spaces (see, e.g., Bertsekas

(2001)) to show that, under our cost assumptions, an optimal stationary policy, now necessarily

of the (s,S) type, exists in our lower-bounding DP, that this policy is feasible for the original

problem, and that its cost equals the above lower bound on the optimal cost. Therefore, this (s,S)

policy must be optimal for the original problem.

As in Perera et al. (2017), where a different set of lower-bounding arguments is developed for the

EOQ setting, the proof of each of the steps outlined above is again quite elementary. As will be seen,

with the exception of our use of the optimality of a deterministic, stationary policy in finite state,

finite action, deterministic DPs, our proof is entirely based on first principles. While the classic

discrete-time papers on (s,S)-optimality (Scarf (1960), Iglehart (1963a,b), Veinott (1966), and

Zheng (1991)) are all elegant in their own terms, their analyses are considerably more involved and

necessarily so (as the model setups are different). The corresponding (s,S)-optimality proofs in the

literature for continuous-time models (Beckmann (1961), Constantinides and Richard (1978), Sulem

(1986), Bensoussan et al. (2005), Presman and Sethi (2006), Benkherouf and Bensoussan (2009))

involve even more sophisticated mathematical machineries such as Quasi-Variational Inequalities

(QVIs). The simplicity of the analysis in our setting is therefore noteworthy.

The remainder of the paper is organized as follows. The model, assumptions, and our main

result are given in Section 2. The proof of the main result is presented in Section 3. In Section 4,

we show that when the interarrival times are assumed to be exponential (i.e., demands follow a

Poisson process), our (s,S)-optimality result can be extended to the case with a positive (constant)

replenishment lead time. Finally, we provide some concluding remarks in Section 5.
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2. Model Formulation and the Main Result

Consider a single-product inventory model where demands of unit size arrive according to a renewal

process. We assume for simplicity that a demand occurs at time 0; and that the successive inter-

demand times are IID random variables with mean 1/λ, where λ> 0.

Denote by Z and N
0 the set of integers and the set of non-negative integers, respectively; and let

An := the arrival epoch of the n-th demand, with A0 = 0;

Ān :=E[An], the expected time to the n-th arrival/demand epoch;

c(q) := the non-negative cost for ordering q units, where q ∈N
0;

g(x) := the non-negative holding/shortage cost rate when net-inventory is x, where x∈Z; and

I0 := the net-inventory level at time 0, right after demand arrival but prior to any order.

Then, we will make the following assumptions on the ordering and holding/shortage cost functions.

Assumption 1 The function c(·), not necessarily finite-valued, satisfies c(0) = 0 and c(q)<∞ for

some q≥ 1.

Assumption 2 The function g(·), with g(0) < ∞, is non-increasing on {· · · ,−2,−1,0} and

non-decreasing on {0,1,2, · · · } (i.e., g(·) is quasi-convex with g(0) ≤ g(x) for x ∈ Z); moreover,

limx→±∞ g(x) =∞.

These assumptions are minimal3. In particular, the ordering-cost function c(·) need not be increas-

ing, nor everywhere-finite; thus, it indeed covers all of the cost schemes noted in Section 1, including

any possible constraints on order sizes. The function g(·) is also general, and it allows potential

warehouse capacity constraints as well as backordering limits.

We next define the class of policies considered in this paper. In general, a policy is any rule for

replenishing inventory. However, we shall limit attention to policies that place orders only at arrival

epochs. With this assumption, let qπn be the size of the order placed by a policy π at the n-th arrival

epoch; here, qπn is allowed to be zero, which simply indicates that a “genuine” order is not placed.

We then claim that the sequence {qπn, n≥ 0} fully characterizes the inventory trajectory under π.

This follows immediately from the fact that the net-inventory level just after the placement of the

n-th order is, independent of the arrival/demand process, given by Iπn := I0 +
∑n

i=0 q
π
i − n. Note

in addition that, for n≥ 1, Iπn depends on the “history” {qπi , 0≤ i≤ n− 1} only via the “current”

3 While c(0) = 0 is assumed, a finite c(0) is actually sufficient in our analysis. Moreover, g(0)<∞ is not explicitly
needed for (s,S)-optimality; this is because if g(0) is not finite, then any (s,S) policy will be optimal with an infinite
average cost.
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state Iπn−1 − 1 (or equivalently, via the sum
∑n−1

i=0 qπi ); that is, the sequence {Iπn , n ≥ 0}, i.e., the

inventory trajectory under π, is Markovian. Next, without loss of generality, we will also limit

attention to policies that only involve finite ordering costs and finite holding/shortage cost rates.

Thus, we shall define an admissible policy as follows:

Definition 1 Given I0, an admissible policy π is a non-negative deterministic sequence {qπn, n≥ 0}

with c(qπn)<∞ and g(Iπn )<∞ for every n≥ 0.

Now, for 0 ≤ a < b, let Cπ[a, b) denote the total cost (i.e., the sum of ordering, holding and

backordering costs) incurred over the time interval [a, b) for a given policy π. The performance of

a policy π will be measured by its long-run expected average cost, which is defined4 as

fπ := limsup
T→∞

E[Cπ[0, T )]

T
. (1)

Our objective is to minimize fπ over all admissible policies. Denote by Π the set of all admissible

policies. Note that, in general, the set Π could be empty5 under Assumptions 1 and 2. A simple

sufficient condition for Π to be non-empty and for the existence of a π in Π with fπ <∞ will be

provided shortly6.

For s < S, an (s,S) policy is defined as a policy that raises the net-inventory level to S every

time it decreases to s. Note that it is implicit in this definition that an (s,S) policy may involve (if

I0 < s) an initialization phase7 that terminates at an arrival epoch where the net-inventory strictly

up-crosses level s for the first time. Clearly, such an initialization phase need not be unique; thus,

multiple instances of an (s,S) policy could exist. Unless an explicit clarification is necessary, we

shall henceforth refer to any instance of an (s,S) policy simply as an/the (s,S) policy. Note that,

in general, an arbitrary (s,S) policy need not be admissible for the given I0. Consider now any

admissible (s,S) policy (assuming one exists). Since all cost parameters in an admissible policy are

finite by definition, it follows immediately from standard renewal theory (see, e.g., Ross (1996), p.

133, Theorem 3.6.1) that if s= x and S = y, then, the long-run expected average cost under this

(x, y) policy is, independent of I0, given by

4 The adoption of an open right endpoint in Cπ[0, T ) here is only for convenience. This can be argued as follows.
Observe that the inequality Cπ[0, T ]≥ Cπ[0, T ) holds, and that these costs could differ only if there is an order at
epoch T . Note that, in general, we do not have a uniform upper bound on this potential cost difference for an arbitrary
policy π. However, it follows from the above inequality that if an (s,S) policy is optimal with respect to the choice
Cπ[0, T ), which is established in the paper, then, the same policy is also optimal with respect to Cπ[0, T ].

5 For a simple example, let: I0 =−1; c(q)<∞ holds only for q= 0 and for q≥ 4; and g(z) =∞ for all |z| ≥ 2.

6 See Assumption 3 below, as well as related discussions surrounding that assumption.

7 It is important to note that we do not assume that the ordering costs are finite for all order sizes; see Assumption
1. Hence, starting from an arbitrarily given I0, it is not guaranteed that a single admissible order could be placed to
take the net-inventory up to level S, for every S > I0.
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α(x, y) :=

c(y−x)+

y
∑

z=x+1

g(z)/λ

(y−x)/λ
. (2)

Our goal is to investigate whether or not an optimal (s,S) policy exists in Π. We next argue

that the search for such a policy can be limited to (x, y) vectors satisfying the constraint x< 0≤ y.

To see this, consider, irrespective of the initial state I0, an arbitrary vector (x, y) of integers with

x < y and α(x, y) < ∞. Observe that for any such vector, Assumption 2 implies that if 0 ≤ x,

then α(x, y)≥ α(−1, y− x− 1). Similarly, if y < 0, then α(x, y)≥ α(x− y,0). Clearly, both of the

“relocated” vectors (−1, y−x− 1) and (x− y,0) satisfy the above constraint.

As a final preparation for the formal statement of our main (s,S)-optimality result, we will next

address, and then eliminate, the special case where the sequence {Iπn , n≥ 0} is non-increasing for

every π ∈Π. We will argue that this case, which is of little practical interest, has a trivial solution.

It is easily seen that the above case could occur under two scenarios: (i) c(q)<∞ holds only for

q ≤ 1; and (ii) c(q)<∞ for some q ≥ 2 but the “range/coverage” of the set {z ∈ Z : g(z)<∞} is

finite and is too narrow to admit/accommodate any order of size greater than one. For Scenario (i),

Assumption 2 implies that the (s,S) policy of ordering one unit each time the net-inventory drops

down to min{−1, I0} is optimal8. For Scenario (ii), the policy prescribed for Scenario (i) is again

optimal if c(1) is finite; otherwise, an admissible policy does not exist (i.e., the set Π is empty) for

any I0. Interestingly, while these scenarios are pathological, an optimal (s,S) policy, which could

be functionally dependent on the initial state I0, exists nonetheless.

The above discussion suggests that a compatibility condition between the cost functions c(·) and

g(·) is necessary to ensure that upward movements in inventory trajectories are permitted for at

least some policies in Π. This is formalized in the following new assumption:

Assumption 3 For some q ≥ 2, c(q) is finite. Moreover, let qL := min{q ≥ 2 : c(q) <∞}, zL :=

inf{z ≤ 0 : g(z)<∞}, and zH := sup{z ≥ 0 : g(z)<∞}; then, the inequality zH − zL +1≥ qL holds

whenever both zL and zH are finite.

It is easily seen that Assumption 3, which can be readily verified in practice, precisely excludes the

special case discussed above.

Next, let α∗ := inf{α(x, y) : x< 0≤ y}. Then, we claim that Assumption 3 implies that a vector

(x̃, ỹ) satisfying x̃ < 0≤ ỹ and α(x̃, ỹ)<∞ exists; that is, we have α∗ <∞. To see this, note that

if zH is finite, then α(zH − qL, zH) <∞; otherwise, α(−1, qL − 1) <∞. Now, as discussed in the

8 If I0 ≥ 0 with g(I0)<∞, then the (−1,0) policy is optimal; and if I0 < 0 with g(I0 +1)<∞, then the (I0, I0 +1)
policy is optimal.
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paragraph below (2), these vectors can be relocated (if necessary) to one that meets the requirement

x̃ < 0≤ ỹ while achieving a possibly-lower expected average cost; this establishes the claim.

A further important consequence of Assumption 3 is as follows. Suppose both zL and zH are

finite. Then, observe that whenever the net-inventory drops down to level zL−1, a series of orders of

size qL can be placed9 to take it up to level zH . It follows that starting from any I0 ∈ [zL−1, zH ], i.e.,

from any admissible I0, the inventory trajectory can reach/access any level in the set {zL, . . . , zH}

at a finite expected cost. Observe on the other hand that if at least one of zL and zH is not finite,

then this “accessibility” property also holds10 under the sole requirement that c(q) is finite for

some q≥ 2. These two observations together imply that for any admissible I0 and any (x, y) vector

satisfying x< y and α(x, y)<∞, an admissible instance of the corresponding (x, y) policy always

exists.

Finally, let f∗ := infπ∈Π fπ; and we are ready for the statement of the main result of this paper:

Theorem 1 Under Assumptions 1–3, there exist x∗ and y∗, with x∗ < 0≤ y∗, such that α(x∗, y∗) =

α∗ = f∗; that is, any admissible instance of the (x∗, y∗) policy is optimal over Π.

The proof of Theorem 1 is given in the next section.

3. Proof of Theorem 1

We will begin by motivating and organizing the main steps in our argument. Detailed proofs are

then given in an Appendix and two subsections.

Our model has a countably-infinite state space Z. The first simplifying step in our proof is to

reduce the necessary argument to that for a modified model in which only a finite subset of the

state space needs to be considered. The modified model will be referred to as Model U ; and it

will have a pair of ordering and holding/shortage cost functions that are suitably designed so that

the search for an optimal policy in that model can be limited to policies with uniformly-bounded

inventory trajectories.

Specifically, let UL and UH be a given pair of integers satisfying UL ≤ 0, UH ≥ 0, UL ≤ I0 <

UH , and UH − UL ≥ 2. (The last specification is only intended to simplify notation below.) The

holding/shortage cost rates for Model U will be defined as:

gU(z) :=







g(z), if UL ≤ z ≤UH ,

∞, otherwise.
(3)

9 If zH − zL +1= qL, then a single order is sufficient. Otherwise, wait until the net-inventory drops down to level zL
and then place another order, resulting in a net increment of size one beyond the level right after the placement of
the first order. Repeat this process if necessary.

10 For the scenario with zH − qL < I0 < zH <∞, let net-inventory drop down to level zH − qL and then place an order
of size qL. Otherwise, place an order of size qL immediately and then follow a prescription similar to Footnote 9.
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In contrast with the original model where c(·) is a function of order size only, the ordering-cost

function for Model U will be state dependent. Suppose the net-inventory levels right before and

right after the placement of an order at an arrival epoch are given by x and y, respectively; then,

the cost for such an order is defined as:

cU(x, y) :=







c(y−x), if UL ≤ x< y <UH ,

0, otherwise.
(4)

The set of admissible policies for Model U, to be denoted by ΠU , is defined in the same manner

as that for the original model. Note that ΠU ⊂Π does not necessarily hold; this is because when y

in (4) equals, for example, UH or UL, the corresponding ordering cost in the original model could

be infinite. In addition, recall that Assumption 3 ensures that Π is nonempty; our argument below

will show that ΠU is nonempty as well. For a given π ∈ ΠU , denote by Cπ
U [a, b), with 0 ≤ a < b,

the total cost in the interval [a, b) for Model U; the corresponding long-run expected average cost

associated with π, denoted by fπ
U , is defined similar to (1).

The rationale behind the definitions in (3) and (4) is as follows. The intent of (3) is simply

to ensure that any policy for Model U that takes the inventory trajectory outside the set B :=

{UL,UL + 1, · · · ,UH} is excluded from consideration (i.e., is inadmissible). We next turn to (4),

which is more intricate. Observe first that the cost of ordering up to either UH or UL in Model U

from any level below, including in particular UL − 1, is zero; this implies that whenever necessary,

the inventory or backorder level in Model U can be maintained at UH or UL, respectively, with zero

ordering costs (by following a “just-in-time” policy). Observe further that whenever the inventory

trajectory in Model U meanders within the set B∗ := {UL + 1, · · · ,UH − 1}, every order incurs

the same cost as specified in the original model. Consider now a policy π ∈ Π for the original

model; then, we claim that, by exploiting the above-noted features of (4) to “truncate” possible

excursions of the inventory trajectory of π outside the set B to stay at the boundaries UH or UL,

we could construct a corresponding policy π̂ ∈ΠU for Model U that always maintains the inventory

trajectory within the set B with a possibly-lower ordering cost for every order. Moreover, this

claim, in conjunction with (3) and Assumption 2, implies that the cumulative holding/shortage

cost under π in the original model will also be no less than that of π̂ in Model U. Thus, we actually

have an expanded claim that sums up the purpose of the definitions in both (3) and (4); and this

is stated in the following lemma:

Lemma 1. For every π ∈Π, there exists a corresponding π̂ ∈ΠU satisfying fπ ≥ f π̂
U .

Given the above discussion, the formal proof of this lemma is straightforward; it will be given in

Appendix A.
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We now motivate the remaining steps in our proof. Clearly, Lemma 1 immediately implies that

inf
π∈Π

fπ ≥ inf
π∈ΠU

fπ
U . (5)

Recall that our aim is to reduce the solution of the original model to that of Model U. With that

objective in mind, observe that inequality (5) is of little use unless the magnitude of UH −UL is

sufficiently large so that at least one optimal policy in the original model, if one exists, meets the

following requirements: (i) It is in ΠU ; (ii) it is also optimal for Model U; and (iii) it never takes

the inventory trajectory outside the set B∗. Requirement (i) is obvious. Requirement (ii) is needed

because Model U has a different cost structure. Finally, requirement (iii) is mandated because,

according to (4), such a policy will necessarily have identical cumulative cost for both models.

We will actually establish the stronger result that there exists an (s,S) policy that satisfies

requirements (i)–(iii). The strategy is to judiciously select a pair of UL and UH to ensure that the

right-hand side of (5) is bounded from below by α∗ and, furthermore, that α∗ is attained by an

(s,S) policy in ΠU with UL ≤ s < S ≤UH −1 (i.e., with its inventory trajectory confined to the set

B∗).

Formally, we will prove the following pair of lemmas:

Lemma 2. There exist integers UL and UH such that an (s,S) policy in Π violating UL ≤ s < S ≤

UH −1 is never optimal for the original model. Moreover, any such policy in ΠU is also not optimal

for Model U.

Lemma 3. Consider any UL and UH satisfying Lemma 2. Then, the inequality infπ∈ΠU fπ
U ≥ α∗

holds; moreover, there exists an (s,S) policy in ΠU whose long-run expected average cost exactly

equals α∗.

Lemma 2 implies that if an optimal (s,S) policy exists in the original model, then that policy

is necessarily admissible in Model U with the same long-run expected average cost. Lemma 3

establishes that an (s,S) policy that attains α∗ is optimal in Model U; in light of (5), this policy,

namely an (x∗, y∗) policy in ΠU with α(x∗, y∗) = α∗, is then also optimal for the original model.

Hence, Lemmas 2 and 3, together, imply Theorem 1.

The remainder of this section will consist of two subsections, devoted to the proofs of Lemma 2

and Lemma 3, respectively.

3.1. Proof of Lemma 2

We will consider four possible scenarios: (i) Both zL and zH are finite; (ii) both zL and zH are not

finite; (iii) zL is finite but zH =∞; and (iv) zH is finite but zL =−∞. For each scenario, we will
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provide suitable choices for UL and UH . The argument is actually the same for both the original

model and Model U. We will therefore focus only on the original model.

Scenario (i) is easy. The settings UL =min{zL−1, I0} and UH = zH +1 would satisfy the stipula-

tions in Lemma 2, as the long-run expected average cost of any (x, y) vector with either x≤UL−1

or y≥UH is infinite.

Next, consider Scenario (ii), where g(z) is finite for all z ∈Z. Recall from Section 2 that, under

Assumptions 3 and 2, there exists a vector (x̃, ỹ) with x̃ < 0≤ ỹ and α̃ := α(x̃, ỹ)<∞. Our choices

for UL and UH will be tied to the value α̃, and they are defined as follows. Since limx→±∞ g(x) =∞

from Assumption 2, we can pick integers uL and uH that satisfy uL <min{I0, x̃}, uH >max{I0, ỹ},

g(uL)> 2α̃, and g(uH)> 2α̃. Let ∆ := uH − uL; then, we define UH := uH +∆ and UL := uL −∆.

Note that the inequalities UL <uL < x̃≤ 0≤ ỹ < uH <UH hold. These definitions are illustrated in

Figure 1.

 

0 

UH 

uH 

uL 

UL 

g(uH)>2�̃ 

g(uL)>2�̃ 

= uH -uL 

Inventory Level 

検̃ 

捲̃ 

Figure 1 Selection of uL, uH , UL and UH .

We now need to show that the above pair of UL and UH meets the requirements in Lemma 2.

Consider any (x, y) vector with α(x, y)<∞ that violates UL ≤ x< y ≤UH − 1. Then, at least one

of the following holds: (a) x≤UL− 1 and (b) y≥UH . We claim that for both cases, we must have

α(x, y)> α̃ and hence the corresponding (x, y) policy cannot be optimal.
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To prove the claim, observe that from (2), we have

α(x, y) =
c(y−x)+

∑y

z=x+1 g(z)/λ

(y−x)/λ
≥

∑y

z=x+1 g(z)/λ

(y−x)/λ
=

∑y

z=x+1 g(z)

y−x
, (6)

where the inequality is due to the non-negativity of c(·). Now, observe further that whenever

z is outside the set {uL + 1, . . . , uH − 1}, which has cardinality uH − uL − 1 or ∆ − 1, we have

g(z)>min{g(uL), g(uH)}> 2α̃. It follows that if g(z)> 2α̃ holds for a least half (i.e., no less than

a majority) of the z’s in {x+1, . . . , y}, a set with cardinality y−x, then (6) implies that

α(x, y)>
2α̃ (y−x)/2

y−x
= α̃. (7)

Consider now Case (a) with a given x satisfying x≤ UL − 1. In this case, the possible ranges for

y are: x < y ≤ uL, uL < y < uH , or y ≥ uH . Note that our definitions of ∆ and UL imply that the

cardinality of the set {UL, . . . , uL} is given by uL −UL +1=∆+1; and that this count is greater

than ∆− 1, the cardinality of the set {uL + 1, . . . , uH − 1}. It is then easily seen from Figure 1

that, for any corresponding choice of y with y > x, no less than a majority of the values in the

set {x+ 1, ..., y} lie outside the set {uL + 1, ..., uH − 1}. Similarly, a symmetric analysis for Case

(b) with a given y satisfying y ≥ UH will yield this same conclusion. Hence, our claim above is a

consequence of inequality (7). This completes the argument for Scenario (ii).

Our choices for UL and UH in the remaining two scenarios are similar to those in the first two.

Consider Scenario (iii). Let UL =min{zL− 1, I0} on the negative side. For the positive side, let uH

be as defined in Scenario (ii) but now let ∆ := uH −UL. Again, set UH := uH +∆. Then, it should

be clear that these choices would meet the requirements in Lemma 2. Finally, Scenario (iv) can be

handled in a symmetric manner; and this completes the proof.

3.2. Proof of Lemma 3

Our proof will be based on a further reduction of the solution of Model U to that of a corresponding

deterministic model in which every inter-demand time has a constant duration of size 1/λ. We shall

refer to this new model as Model D. Following our original notation, the n-th demand in Model

D, for n≥ 0, will then occur precisely at epoch Ān. The cost functions (3) and (4) and the set of

admissible policies ΠU in Model U will be shared with Model D.

For 0≤ a< b, let Cπ
D[a, b) denote the total costs incurred in Model D over the time interval [a, b)

for a given policy π ∈ΠU . For Model D, our objective will be to minimize

fπ
D := lim inf

T→∞

Cπ
D[0, T )

T
(8)

over all π ∈ ΠU . The reason behind the adoption of lim inf in (8) will become clear later in the

proof (see (17) below).

Paralleling the spirit of Lemma 1, the key step in our argument is the following lemma:
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Lemma 4. For every π ∈ΠU , we have fπ
U ≥ fπ

D.

This lemma implies that the optimal solution of Model D would serve as a lower bound for that

of Model U. We will first establish several preliminary results before proving Lemma 4.

For n≥ 1, let Xn :=An −An−1. Recall from (3) and (4) that, for any π ∈ΠU and all i≥ 0,

Cπ
U [Ai,Ai+1) =







c(qπi )+ g(Iπi )Xi+1, if UL < Iπi <UH ,

g(Iπi )Xi+1, if Iπi =UL or Iπi =UH .
(9)

Note that the admissibility of π implies that the case for Iπi = UL or Iπi = UH in (9) is applicable

only when g(UL) or g(UH) is finite (cf. the first paragraph in Section 3.1). Next, the finiteness of

the state space of Model U implies that

cM := sup
π∈ΠU

sup
i≥0

c(qπi )<∞ and gM := sup
π∈ΠU

sup
i≥0

g(Iπi )<∞.

It then follows from (9) that for any π ∈ΠU and all i≥ 0, we have

Cπ
U [Ai,Ai+1)≤ cM + gMXi+1. (10)

For T > 0, let N(T ) :=max{i≥ 0 :Ai ≤ T}. Then, since all costs are non-negative, we have

E
[

Cπ
U [0,AN(T ))

]

T
≤

E [Cπ
U [0, T )]

T
≤

E
[

Cπ
U [0,AN(T )+1)

]

T
. (11)

Note that, by definition,

E
[

Cπ
U [0,AN(T )+1)

]

T
−

E
[

Cπ
U [0,AN(T ))

]

T
=

E
[

Cπ
U [AN(T ),AN(T )+1)

]

T
, (12)

and that, in light of (10), E[Cπ
U [AN(T ),AN(T )+1)] is bounded from above by cM + gME[XN(T )+1].

Hence, a standard result from renewal theory implies that the right-hand side of (12) converges to

0 as T →∞; see, e.g., Part (ii) of Theorem 3.6.1 in Ross (1996) (cf. page 134; let E[RN(t)+1] there

be E[XN(t)+1]). This convergence, together with (11), then yields the following lemma:

Lemma 5. For every π ∈ΠU ,

fπ
U = limsup

T→∞

E
[

Cπ
U [0,AN(T )+1)

]

T
. (13)

In the next lemma, we relate E
[

Cπ
U [0,AN(T )+1)

]

, the numerator in (13), to the expectation of a

corresponding cumulative cost in Model D that is terminated just before the demand epoch with

the random index N(T )+ 1 from Model U.

Lemma 6. For every π ∈ΠU ,

E
[

Cπ
U [0,AN(T )+1)

]

=E
[

Cπ
D[0, ĀN(T )+1)

]

. (14)
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Proof: The argument is a simple adaptation of the proof of Wald’s equation; see, e.g., Theorem 3.3.2

in Ross (1996) (cf. page 105). For i≥ 1, let Yi be the indicator function of the event {Ai−1 ≤ T}.

Then, we have, for any π ∈ΠU ,

E
[

Cπ
U [0,AN(T )+1)

]

= E

[

N(T )+1
∑

i=1

Cπ
U [Ai−1,Ai)

]

= E

[

∞
∑

i=1

Cπ
U [Ai−1,Ai)Yi

]

=
∞
∑

i=1

E [Cπ
U [Ai−1,Ai)Yi]

=
∞
∑

i=1

E [Cπ
U [Ai−1,Ai)]E[Yi]

=
∞
∑

i=1

Cπ
D[Āi−1, Āi)E[Yi]. (15)

The 3rd equality above is due to monotone convergence (since all costs are non-negative); the 4th is

due to the independence of Cπ
U [Ai−1,Ai) and Yi, as well as the bound (10) which ensures the finite-

ness of E [Cπ
U [Ai−1,Ai)] for all i≥ 1; and the 5th is due to the fact that E [Cπ

U [Ai−1,Ai)] depends

on Xi only through its mean (cf. (9)). Clearly, the same argument shows that E
[

Cπ
D[0, ĀN(T )+1)

]

can also be written as (15); and this completes the proof. �

We are now ready to prove Lemma 4.

Proof of Lemma 4: From Lemma 5 and Lemma 6, we have, for any π ∈ΠU ,

fπ
U = limsup

T→∞

E
[

Cπ
U [0,AN(T )+1)

]

T

≥ lim inf
T→∞

E
[

Cπ
U [0,AN(T )+1)

]

T

= lim inf
T→∞

E
[

Cπ
D[0, ĀN(T )+1)

]

T
. (16)

We will complete the proof by showing that the last limit above is bounded from below by fπ
D.

Since the costs are non-negative, the well-known Fatou’s lemma implies that

lim inf
T→∞

E

[

Cπ
D[0, ĀN(T )+1)

T

]

≥E

[

lim inf
T→∞

Cπ
D[0, ĀN(T )+1)

T

]

. (17)

Observe that

lim inf
T→∞

Cπ
D[0, ĀN(T )+1)

T
= lim inf

T→∞

Cπ
D[0, ĀN(T )+1)

N(T )+ 1

N(T )+ 1

T
.

Since

lim inf
T→∞

Cπ
D[0, ĀN(T )+1)

N(T )+ 1
= lim inf

n→∞

Cπ
D[0, Ān)

n
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and

lim
T→∞

N(T )+ 1

T
= λ

with probability 1 (cf. Proposition 3.3.1 of Ross (1996), page 102), we obtain (noting that n/λ= Ān)

lim inf
T→∞

Cπ
D[0, ĀN(T )+1)

T
= lim inf

n→∞

Cπ
D[0, Ān)

Ān

, (18)

which is a constant.

Now observe that, for any T > 0, we have

Cπ
D[0, Ām(T ))≤Cπ

D[0, T )≤Cπ
D[0, Ām(T )+1) ,

where m(T ) denotes the index that satisfies Ām(T ) ≤ T < Ām(T )+1. It follows that

lim inf
T→∞

Cπ
D[0, Ām(T ))

Ām(T )

Ām(T )

T
≤ lim inf

T→∞

Cπ
D[0, T )

T
≤ lim inf

T→∞

Cπ
D[0, Ām(T )+1)

Ām(T )+1

Ām(T )+1

T
. (19)

Clearly, both sides of (19) converge to the right-hand side of (18). Therefore,

fπ
D = lim inf

n→∞

Cπ
D[0, Ān)

Ān

. (20)

Finally, (16)–(18) and (20) together yield that fπ
U ≥ fπ

D, completing the proof. �

Our next step is to consider Model D and show that infπ∈ΠU fπ
D ≥ α∗. Note that (20) implies that

the solution of Model D is equivalent to that of a discrete-time deterministic dynamic program with

finite state and action spaces. Hence, we will employ basic concepts from dynamic programming11.

Observe that under the assumption that demands are unit sized, the inventory trajectory dictated

by any π ∈ΠU never decreases more than one level at an arrival epoch; that is, it has the so-called

“skip-free-to-the-left” property. Together with the fact that Model D has a finite state space, this

property implies the following important result.

Lemma 7. Every stationary policy in ΠU is an (s,S) policy.

Proof: Let π ∈ΠU be a stationary policy in Model D. Recall from Section 3.1 that UL ≤ I0 <UH .

Given this I0, suppose the first demand epoch at which a positive order is placed by π has index

i1. Let xi1 and yi1 , respectively, be the net-inventory levels just before and just after the placement

of this order. Clearly, we have UL−1≤ xi1 ≤ I0. We will consider two possible scenarios for yi1 : (a)

yi1 ≤ I0 +1 or (b) I0 +1< yi1 ≤UH .

11 Note that the analysis for the deterministic EOQ setting in Perera et al. (2017) is based on the idea of decomposing
the total cost over an interval into those in successive “ordering cycles”. It turns out that a parallel argument does
not apply in our setting here. To see this, recall that the ordering costs in Model U and hence Model D are state
dependent. This implies that Lemma 1 in Perera et al. (2017) does not have an obvious counterpart in Model D.
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For Scenario (a), observe that the skip-free-to-the-left property and the stationarity of π together

imply that, beyond epoch Āi1 , the next positive order under π would occur only when net-inventory

decreases to xi1 ; and furthermore, the order size would again equal yi1 − xi1 . By iterating this

argument, we see that π is an (xi1 , yi1) policy.

For Scenario (b), we will restart the entire argument at epoch Āi1+1 by pretending that yi1 − 1,

which is strictly greater than I0, is the “original I0”. Again, we will then either conclude that π is

an (s,S) policy or advance to the first subsequent demand epoch at which a positive order under

π takes the net-inventory level strictly above yi1 . In the latter case, we simply repeat the same

argument.

Finally, since the net-inventory level for Model D is bounded from above by UH , Scenario (b)

above can only occur a finite number of times. Hence, π must be an (s,S) policy. �

Recall from the proof of Lemma 2 that if α∗, which was defined in the original model, is attained

by an (x, y) vector, then we must have UL ≤ x< y≤UH −1. The fact that the total number of (x, y)

vectors satisfying this requirement is finite then implies that, indeed, there exists a vector (x∗, y∗)

satisfying UL ≤ x∗ < 0≤ y∗ ≤UH − 1 and α(x∗, y∗) = α∗. Next, for the given I0, recall further that

Assumption 3 implies that a finite number of positive orders can be prescribed, whenever I0 <x∗,

to take the net-inventory beyond level x∗ at a finite cost. Therefore, at least one instance of the

corresponding (x∗, y∗) policy is admissible in Model D; our next lemma strengthens this result to

a partial converse of Lemma 7.

Lemma 8. A stationary instance of the (x∗, y∗) policy exists in ΠU .

Proof: Obviously, we only need to address the case with I0 < x∗. The four scenarios in the proof

of Lemma 2 are again relevant in our argument. We will first handle Scenarios (ii) and (iii). For

these scenarios, we have g(UH)<∞. Note that, since I0 < x∗ < 0≤ UH , the difference UH − I0 is

positive. Hence, the placement of an order of size UH − I0, which incurs zero cost (see (4)), will

immediately take the net-inventory beyond level x∗. This clearly then yields a stationary instance

of the (x∗, y∗) policy in ΠU .

We next consider the remaining two scenarios where g(UH) =∞ and hence it is inadmissible to

order up to UH . To overcome this complication, the key idea is to construct a stationary ordering

sequence (i.e., a sequence of order quantities that are specified by a deterministic function of the

net-inventory levels just before ordering) that would also take the net-inventory level beyond x∗

but now no greater than either 0 or zH . For this purpose, it will be expedient to define and work

with a set of “ladder steps”: Let L0 := 0; and define Lj := Lj−1 − (qL − 1) for j ≥ 1. Note that

qL − 1≥ 1 holds by definition (see Assumption 3); hence, the Lj’s are distinct.
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We will begin with the simplest case with L1 ≤ I0 < L0. Observe that if zL ≤ L1, then we can

do nothing until the net-inventory level drops down to L1 − 1 and then place an order of size qL

to take it back up to L0; since x∗ <L0, we are done with the construction. Suppose on the other

hand that zL >L1; this implies that we must have I0 ≥ zL−1. We could then either order qL units

immediately (if I0 = zL − 1) or wait (if I0 > zL − 1) until net-inventory drops down to level zL − 1

and then order qL units; in either case, we will end up with a net-inventory level of zL − 1 + qL.

Note that Assumption 3 ensures that zL − 1+ qL ≤ zH holds; hence, these actions are admissible.

Since x∗ <L0 < 1≤ zL − 1+ qL, we are again done. We will next move on to other cases, where I0

is lower than L1.

Let J := sup{j ≥ 0 : Lj ≥ zL}; note that J is not necessarily finite. Suppose Lk ≤ I0 < Lk−1 for

some J ≤ k ≤ 2 (the case with k = 1 has already been dealt with above). Then, we will let net-

inventory decrease to level Lk − 1 and then place an order of size qL to take it back up to level

Lk−1. If Lk−1 > x∗, then we are done. Otherwise, we can simply repeat similar actions until the

net-inventory level after the placement of a size-qL order exceeds x∗ for the first time; this, then,

completes the construction. Note that the inventory trajectory ascends by consecutively stepping

up to the “next Lj” until a sufficient height is reached.

Finally, suppose J is finite; then, it is easily seen that the only remaining possibility satisfies the

conditions J ≥ 2 and LJ+1 ≤ zL − 1≤ I0 < LJ . For this case, we will order qL units immediately.

If the resulting net-inventory level (which overshoots LJ but not LJ−1) exceeds x∗, we are done;

otherwise, we continue as per the construction in the last paragraph, lowering the net-inventory

level to either LJ−1 − 1 (if I0 = LJ − 1) or LJ − 1 (if I0 < LJ − 1) first and then move further up

the “ladder”. This completes the proof. �

Lemma 8 and Lemma 7 now together imply that a stationary instance of the (x∗, y∗) policy is

optimal within the class of all stationary policies in ΠU . In our final step, we will further strengthen

this result to within all policies in ΠU by invoking standard results from dynamic programming.

Lemma 9. A stationary instance of the (x∗, y∗) policy is optimal within ΠU .

Proof: When Model D is treated as a DP, the standard setup is to have an arbitrary initial

state12 (i.e., not limited to I0). The proof of Lemma 8 actually shows that for any initial state,

a stationary instance of the (x∗, y∗) policy exists in ΠU . Hence, the optimal average cost over the

class of stationary policies in ΠU is equal to α∗ for all initial states. It then follows from Proposition

4.2.4 in Bertsekas (2001) (cf. page 203) that a solution to the standard “average-cost optimality

12 For given UL and UH , the boundaries of the set of possible initial states differ slightly for the four scenarios stated
at the beginning of Section 3.1. However, this has no bearing on our argument.
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equations” exists. Proposition 4.2.1 in the same reference (cf. pages 199) then implies that an

optimal stationary policy exists in ΠU ; and hence, any stationary instance of the (x∗, y∗) policy in

ΠU is optimal for Model D. �

Lemma 9 shows that any admissible instance of the (x∗, y∗) policy (stationary or not) is in fact

optimal for Model D. It then follows from Lemma 4 that infπ∈ΠU fπ
U ≥ infπ∈ΠU fπ

D ≥ α∗, where α∗

is attained by any instance of the (x∗, y∗) policy in ΠU . This completes the proof of Lemma 3, and

of Theorem 1 as well.

4. Optimality of (s,S) Policies with Constant Lead Times

Our original inventory model in Section 2 assumes that the supply is instantaneous, i.e., the lead

time is zero. In this section, we show that when the interarrival times are assumed to be exponential

(i.e., demands arrive according to a Poisson process), our (s,S)-optimality result can be extended

to cover the case with a positive constant replenishment lead time τ .

In this new setting, denote by ηπ(t) the net-inventory level at time t under a policy π; and let

η̂π(t) be the corresponding inventory position, defined as the sum of ηπ(t) and the total amount

of inventory in the pipeline at time t. An (s,S) policy is now defined to be one that raises the

inventory position to S every time it decreases to s.

We use the convention that ηπ(t) is a right-continuous step function with jumps only at demand

arrival epochs and order-delivery epochs (which occur after a constant time delay τ following the

demand epochs). That is, with ηπ(A0−) := I0, we have

ηπ(An) = ηπ(An−)− 1 for all n≥ 1;

and

ηπ(An + τ) = ηπ((An + τ)−)+ qπn for all n∈N
0.

Similarly, η̂π(t) is a right-continuous step function where jumps occur only at demand arrival

epochs. That is, with η̂π(A0−) := I0 and η̂π(A0) = η̂π(A0−)+ qπ0 , we have

η̂π(An) = η̂π(An−)− 1+ qπn for all n≥ 1.

It is well known that the two processes {ηπ(t) : t≥ 0} and {η̂π(t) : t≥ 0} are related through the

identity (see, e.g., Section 6.2 in Zipkin (2000))

ηπ(t) = η̂π(t− τ)− δ(t− τ, t] for all t≥ 0,

where δ(t− τ, t] is the total demand in (t− τ, t].
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Adopting standard inventory-theoretic convention (see Zipkin (2000)), we now define Cπ
τ [a, b) as

the sum of the ordering costs incurred in the time interval [a, b) and the holding/shortage costs

incurred in the time interval [a+ τ, b+ τ). Our new problem (with a lead time of τ > 0) is then to

minimize

fπ
τ := limsup

T→∞

E[Cπ
τ [0, T )]

T

over all π ∈ Π. This problem is mathematically identical to the inventory problem of Section 2

(with no lead time), i.e. the problem in (1), except for the following:

(I) For all n ∈ N
0, the inventory positions η̂π(An) and η̂π(An−), respectively, take the roles

played by Iπn and Iπn−1 − 1 (with Iπ−1 := I0) for the original model in Section 2.

(II) The holding and shortage cost rate at any instant is now given by the function gτ (η̂) if η̂ is

the inventory position at that instant, where

gτ (η̂) :=E[g(η̂−Q)]

and Q is a Poisson random variable with mean λτ .

Next, we will revisit Assumption 2 in Section 2. That assumption stipulated that the function

g(·) needs to satisfy the following properties: (a) limy→±∞ g(y) =∞, and (b) g(·) is quasi-convex

with zero as a minimizer (i.e., g(0)≤ g(y) for all y ∈Z). (Note that g(0)<∞ is not required for our

analysis; see Footnote 3.) However, it is easy to verify that the main result of Section 2, namely

Theorem 1, holds when (b) is replaced by the weaker assumption that g(·) is quasi-convex with

a minimizer z∗, for some z∗ ∈ Z. This fact, together with (II) above, implies that to establish the

optimality of an (s,S) policy for the case with a positive lead time, we now need to show that

(a) limη̂→±∞ gτ (η̂) =∞, and (b) gτ (·) is a quasi-convex function with a finite minimizer ζ∗; the

following lemma verifies these two conditions.

Lemma 10. The function gτ (·) satisfies the following properties: (a) lim
η̂→±∞

gτ (η̂) =∞; and (b) gτ (·)

is a quasi-convex function with a finite minimizer ζ∗.

Proof: (a) Observe that E[g(η̂−Q)]≥ P(Q= 0)g(η̂). Then, we have

lim
η̂→∞

gτ (η̂) = lim
η̂→∞

E[g(η̂−Q)]

≥ P(Q= 0) lim
η̂→∞

g(η̂)

=∞,

where the last equality is due to Assumption 2. A similar argument yields limη̂→−∞ gτ (η̂) =∞.

(b) The proof is based on Keilson and Gerber (1971). In particular, their statement S3 and the

proof of Theorem 3(a) (in their paper) imply the following: If l is a quasi-convex function and

This	article	is	protected	by	copyright.	All	rights	reserved

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



Perera, Janakiraman and Niu: Optimality of (s,S) Policies under General Cost Structures

20 Forthcoming in Production and Operations Management

Q is a Poisson random variable, then E[l(x−Q)] is a quasi-convex function of x. (See also the

discussion on page 1008 in Rosling (2002) and Lemma 5.4 in Huh et al. (2011).) Part (b) then

follows immediately as g(·) is quasi-convex and Q is a Poisson random variable. �

5. Concluding Remarks

This section is organized as follows. In Section 5.1, we complement the opening paragraphs of

Section 1 with a further discussion of the relevant history of the (s,S)-optimality problem in

inventory theory; this sets the stage for an ensuing summary of the contribution of our paper

relative to prior work. In Section 5.2, we comment on recent parallel developments under the

alternative stochastic framework where demand is governed by a Brownian motion. We conclude

in Section 5.3 with suggestions for future research.

5.1. Motivation and Contribution of the Paper

Ever since the influential paper of Scarf (1960), the question of “when and why an (s,S) policy is

optimal” has been a central research concern in inventory theory. The model examined by Scarf

assumes periodic review. Demands are i.i.d. and all costs are linear, except for a fixed setup cost

for ordering. It is very interesting to note that Scarf himself has wondered about the answer to the

above question in his setting. This was mentioned in the Introduction of Porteus (1971) with the

following quote from Scarf (1963):

“This type of cost function has appeared very frequently in the literature of inventory theory

not necessarily because of its realism, but because it provides one of the few examples of

cost functions with a decreasing average cost for which the analysis of inventory policies is

relatively easy.”

Perhaps motivated by its simplicity, the same cost assumptions were also made in the classical

EOQ model of Harris (1913). Perera et al. (2017) have recently re-visited Harris’s model. Their

work was precisely motivated by the same when/why question above; specifically, see the opening

paragraph of that paper. To investigate the answer to this question, Perera et al. (2017) worked with

an extended EOQ framework where the forms of the cost functions are left unspecified. While this

apparently is the simplest and cleanest setup, it is interesting to note that only a few isolated (s,S)-

optimality results under cost assumptions weaker than those in Scarf (1960) exist in the literature.

Moreover, even under the standard linear-cost assumptions, simple proofs of (s,S)-optimality are

not readily available. Nevertheless, Perera et al. (2017) established (in their Corollary 1) a simple

necessary and sufficient condition13 for (s,S)-optimality under their general, but deterministic,

framework. Their proof is constructive and elementary.

13 An (s,S) policy is optimal if and only if the average-cost function α(x, y) over all (x, y) policies has a minimizer.
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To push the above important theme further, it is then natural to ask: Can the results in Perera

et al. (2017) be fully extrapolated to an appropriate setting with stochastic demands. Clearly,

stochastic demands would add much greater realism, which is needed to support applications. Three

possible settings immediately emerge as potential candidates. The first is the standard periodic-

review model of Scarf (1960), where successive demands are i.i.d. random variables; the second is

the renewal-demand model in this paper; and the third is the Brownian-demand model initiated

in a pioneering paper by Bather (1966). We will discuss the first two in this subsection and defer

our comments on the third to the next subsection.

As noted in the quoted passage above, Scarf himself pointed out that it is unlikely for (s,S)-

optimality to prevail in his setting when cost functions are allowed to assume more-general forms.

Indeed, Porteus (1971) showed that when the ordering-cost function is concave and increasing, an

ordinary (s,S) policy need not be optimal. This result appears to be in direct “conflict” with that

in Perera et al. (2017); and hence it could be puzzling at first sight. However, observe that the

inventory trajectory in the EOQ setting does not have any downward jumps; that is, it is skip-free.

In contrast, observe further that this property typically does not hold in Scarf’s setting (unless

the demands are Bernoulli14). This suggests that, for (s,S)-optimality to prevail, it is essential to

preserve the skip-free property. Hence, the periodic-review model is not amenable for a stochastic

extension in the spirit of Perera et al. (2017). (It of course continues to be a very reasonable

framework for inventory analysis.)

The second candidate which is that demands arrive according to a renewal process is adopted in

our paper; we also assume that demands are unit-sized, which is now seen as necessary to preserve

the skip-free property in models with an integer-valued state space. Our choice of this demand

model is also motivated by the fact that the deterministic demand process (in the EOQ model)

is commonly taken in the stochastic-models (especially queueing) literature as the fluid limit of a

properly-scaled sequence of renewal processes (with increasing arrival rates and correspondingly

decreasing jump sizes). In other words, these two demand models are “natural” counterparts of

one another. Indeed, with the renewal-demand assumption, we are able to establish that (s,S)-

optimality continues to prevail with virtually no assumptions on the cost functions; and this fully

extends the strong conclusion in Perera et al. (2017) to an important, primitive stochastic setting.

It is noteworthy that while the essential “insight” of exploiting the skip-free property is common

to Perera et al. (2017) and the present paper, the constructions of the proper proofs are still rather

non-trivial in both cases. The proof in Perera et al. (2017) relied on path-wise cost dominance

of inventory trajectories as well as on carefully lower-bounding the cumulative total costs based

14 Noted by a reviewer of this paper.
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on a notion of ordering cycles. Our proof here relied instead on a novel reduction of the problem

to one with uniformly-bounded inventory trajectories. This reduction allowed us to constructively

exploit the skip-free property (see Lemma 7) so as to further link the problem to standard discrete

dynamic programming results. Thus, the methods of proof are distinctly different. In particular,

we note that the path-wise cost comparisons in Lemma 1 of Perera et al. (2017), which implicitly

depend on the skip-free property, do not have an obvious counterpart in the stochastic setting here

even after our reduction of the problem into one for the deterministic Model D (cf. Footnote 11).

We conclude this subsection with a few remarks on the practicality of our demand model. The

assumption of i.i.d. inter-demand times is reasonable when the pool of potential buyers in the

entire population is large. It is particularly applicable in the now-prevalent platform of online

retailing where buyers are mostly individual consumers. It is also a fairly standard assumption

in the inventory literature. Beckmann (1961) is a notable early example; and other references

include: Finch (1961), Rubalskiy (1972a,b), Sivazlian (1974), Tijms (1972), Sahin (1979, 1983), and

Federgruen and Schechner (1983). The special case of a Poisson process is popular; see Chapter 6 of

Zipkin (2000). Price-dependent Poisson demands have also been assumed in revenue-management

settings15; see, for example, Gallego and van Ryzin (1994). Finally, we believe the assumption of

unit-sized demands is quite reasonable for durable goods.

5.2. Comparison with the Brownian-Demand Model

The assumption that demand is driven by a Brownian motion is a direct stochastic generalization

of the deterministic demand in the EOQ model. This is because when the variance parameter σ

in a Brownion motion is set to zero, the resulting cumulative demand process is a deterministic

line with a slope given by the arrival/drift rate. However, it is important to note that when σ is

strictly positive, the cumulative demand process in this setting could potentially decrease by any

amount for any given time interval of positive duration, and furthermore that such decrements

are completely independent of orders placed on the “actual supplier” of a given product. In other

words, the Brownian-demand assumption implicitly features a second “hidden supplier” who is

constantly and randomly injecting inventory in the background, independent of the actions of the

actual supplier. Hence, it is arguable that the Brownian motion is a suitable choice for modeling

continuous demand processes in an inventory-control setting. Indeed, it is explicitly noted in Bather

(1966) (cf. page 539) that:

“. . . , we may hope that our model will lead to useful results provided that, in the final analysis,

the policy determined is such that restocking occurs relatively infrequently. Alternatively, the

15 Brought to our attention by a reviewer of this paper.
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present model can be regarded as a natural generalization of the deterministic inventory with

fixed demand µ per unit time, where we represent only the variances of random demands.”

Thus, Bather is fully aware of the difficulties with interpreting his optimality result in a realistic

inventory-control setting; and this is due to the fact that the Brownian motion could serve as a

reasonable approximation of a deterministic cumulative demand process only when σ is extremely

small relative to the demand rate µ.

In a recent paper, He et al. (2017) (also see Yao et al. (2015, 2017) for related results) worked

with Brownian demand and extended Bather’s result by showing that (s,S)-optimality prevails

under a host of weaker assumptions on the cost structure; specifically, see Conditions (S1)–(S4)

and Conditions (H1)–(H5) in that paper. Loosely speaking, their cost assumptions are: (a) The

ordering-cost function has a setup component and a linear component, where the setup component

is allowed to be a fairly general bounded lower-semicontinuous function of the order quantity;

and (b) the holding/shortage cost function is strictly convex, reasonably smooth and polynomially

bounded.

Note that the Brownian-demand model also preserves the skip-free property. In light of our

discussion in Section 5.1, it is then tempting to conjecture that (s,S)-optimality might again prevail

under conditions similar to those in Perera et al. (2017). However, the required conditions in He

et al. (2017) are easily seen to be much stronger. As a quick example, the simple and yet practical

fixed-plus-concave ordering cost function discussed in Porteus (1971) is not readily covered by their

assumptions; furthermore, any constraints on inventory level (e.g., the practical scenario of having a

concave holding-cost function up to a given warehouse capacity) and/or on order quantity (e.g., the

common vendor policies of batch ordering, minimum-order-quantity, or maximum-order-quantity)

are also not covered. The origin of this significant discrepancy, which exists regardless of whether

or not σ is close to 0 (i.e., whether the Brownian motion can serve as a reasonable approximation

to deterministic demand), is not apparent. One possible reason is that the existence of an extra

hidden supplier is not consistent with the fundamental physics of the deterministic EOQ setting.

Another is that the current tool set in the Brownian-control area is not yet sufficient for a further

weakening of their assumptions to the same extent as those in Perera et al. (2017) or the present

paper; if this is the case, it would be of interest to see any new progress in the development of

mathematical tools for the control of Brownian motion beyond what has been accomplished in He

et al. (2017).

5.3. Future Work

As discussed in Sections 1 and 5.1, almost all (s,S)-optimality results in the extant literature require

the standard linear-cost assumption. Hence, it has been the norm for many authors to simply
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assume that an (s,S) policy is optimal when the cost functions are more general. However, even

under this simplifying assumption, which is now fully supported theoretically for the deterministic-

demand setting (Perera et al. (2017)) and for the renewal-demand setting (the present paper), the

ensuing task of identifying an optimal policy is still by no means obvious for complicated cost

structures.

For the renewal-demand setting, we note that the proof of our Lemma 2 provides a procedure

for the selection of an explicit pair of UL and UH for a given g(·). That is, the search for an optimal

(s,S) vector has actually been reduced to one over a finite set of s and S values. Whether or not

further simplifications within this finite set exist will depend, in addition, on the specific structures

of the ordering-cost function c(·) as well as the average-cost function α(·, ·) defined in (2); and this

needs to be examined on a case-by-case basis.

As an example, consider the case of having a positive minimum order quantity qm, where the

cost of ordering q units is infinite when 0< q < qm but is equal to K + vq (with positive constants

K and v) for q≥ qm. For this scenario, it appears that the algorithm discussed in Federgruen and

Zheng (1992) could be adapted to compute the optimal values of s and S. The details, however,

are somewhat involved even for this simple example. Therefore, the computation of an optimal

(s,S) vector for specific, interesting cost structures is a useful area for future work.

To facilitate analysis, we have adopted the assumption that orders can be placed only at arrival

epochs. To the best of our knowledge, all papers with a renewal demand cited in the last para-

graph of Section 5.1 also make the same assumption. This is a helpful theoretical simplification

because knowledge of the net-inventory level at an arbitrary time epoch is, in general, not suf-

ficient to determine the stochastic law that governs the future inventory trajectory. Fortunately,

this assumption is readily justifiable in practice because it would greatly simplify the logistics of

inventory management. (Of course, the assumption of periodic-view is also rather practical.) In

general, a formulation that includes the time since the last arrival as part of the state definition

might be needed to answer the question of whether or not this assumption can be made without

loss of optimality (within the larger class of policies that allow restocking at any epoch). The

resulting mathematical complexity is a substantial challenge. For the Poisson case, which has the

memoryless property, we conjecture that there is no loss of optimality by limiting attention to

arrival epochs only. A formal proof even for this much simpler case, however, remains open.
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Appendix A: Proof of Lemma 1

Recall that the given initial state I0 is assumed to be in the set {UL, . . . ,UH − 1}. Clearly, if

g(UL) =∞ and/or g(UH) =∞, then the inventory trajectory of an admissible policy in the original

model will never down-cross level UL +1 and/or up-cross level UH − 1. It is therefore sufficient to

consider the case where both g(UL) and g(UH) are finite.

Let π be a policy in Π. If the inventory trajectory under π always stays within set B, then π

is also in ΠU . We will simply let π̂ = π. Now, the only difference between the original model and

Model U is that whenever π places an order that takes the net-inventory up to either level UL

(necessarily from level UL− 1) or level UH , the ordering cost in Model U will be zero by definition

(cf. (4)). Since such ordering costs are never greater than the corresponding ones in the original

model, it is immediate that fπ ≥ f π̂
U holds.

Next, suppose that the inventory trajectory under π has at least one excursion outside the

set B. Such an excursion necessarily begins with either (i) an up-crossing of level UH or (ii) a

down-crossing of level UL. Case (i) could occur whenever the net-inventory is no higher than UH

and a positive order is placed at the ensuing arrival epoch; and Case (ii) occurs whenever the

net-inventory drops down to level UL−1 due to a demand arrival but a positive order is not placed.

With initial state I0, let Aj, j ≥ 0, be the epoch at which the inventory trajectory first exits set

B under π. Let π̂ be identical to π prior to this epoch16. For both cases above, we will show how

to construct π̂ from Aj onward to meet the requirement of the lemma. Our prescription will be for

the first exit only. Further exits, if any, are handled in the same manner.

Suppose the exit at Aj is due to an up-crossing of level UH ; that is, Case (i) applies. Let xπ
j be

the net-inventory right before the placement of the order at Aj; then, we have UL − 1≤ xπ
j <UH

and xπ
j +qπj >UH . At Aj, we will let π̂ place an order of size qπ̂j =UH −xπ

j so that the net-inventory

under π̂ lands exactly at level UH . Beyond Aj, there are two scenarios for π; the inventory trajectory

either (i.a) never falls back to level UH again or (i.b) returns to level UH at a future arrival epoch

Ak, where k > j. For Scenario (i.a), we will let π̂ follow the just-in-time policy—a policy that orders

whenever a demand occurs—beyond Aj; that is, let qπ̂n = 1 for all n > j. For Scenario (i.b), we

will let π̂ follow the just-in-time policy up to epoch Ak (i.e., let qπ̂n = 1 for all j < n≤ k) and then

follow the same sequence of actions dictated by π until the next exit from set B occurs, if it exists.

Scenarios (i.a) and (i.b) are illustrated in Figure 2 and Figure 3, respectively.

Suppose on the other hand that Case (ii) applies at epoch Aj. Note that, by definition, π does

not place a positive order when net-inventory decreases from UL to UL − 1 at Aj; in contrast,

we will let π̂ place an order of size one at this epoch to bring the net-inventory back up to level

16 This statement is applicable only if j > 0.
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Figure 2 Construction of π̂ for Scenario (i.a).
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Figure 3 Construction of π̂ for Scenario (i.b).

UL. Beyond Aj, we will again have two scenarios under π; the inventory trajectory either (ii.a)

never up-crosses level UL − 1 or (ii.b) is elevated to level yπ
l at arrival epoch Al, where yπ

l ≥ UL

and l > j. For Scenario (ii.a), we will let π̂ follow the just-in-time policy. For Scenario (ii.b), let π̂

also follow this policy prior to Al and then place an order at Al to take the net-inventory up to

level min{yπ
l ,UH}. If y

π
l ≤ UH , let π̂ mirror π beyond Al until another exit of set B occurs, if it

exists; otherwise, let π̂ follow the prescription in Case (i), as we have an exit of set B at epoch Al.

Scenarios (ii.a) and (ii.b) are illustrated in Figures 4–6.

Clearly, the above construction yields a policy π̂ whose inventory trajectory always stays within

set B; that is, we have π̂ ∈ ΠU . We will next compare C π̂
U [0, T ) against Cπ[0, T ) for any T > 0.

From Figures 2–6, we see that the on-hand inventory and the backorder levels under policy π̂ are

never greater than that under π; hence, Assumption 2 implies that the cumulative holding and
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Figure 4 Construction of π̂ for Scenario (ii.a).
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Figure 5 Construction of π̂ for Scenario (ii.b) with yπ

l ≤UH .

backordering costs under π̂ are no greater than that under π within any time interval. Furthermore,

whenever π̂ places an order at an arrival epoch where the inventory trajectories under π̂ and π

are not in agreement, the cost of that order is zero. It follows that Cπ[0, T )≥ C π̂
U [0, T ) holds for

all T > 0. Dividing both sides of this inequality by T and letting T →∞ then yields fπ ≥ f π̂
U ; this

proves Lemma 1.
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