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ABSTRACT
Genome-wide association studies (GWAS) for complex diseases have focused primar-

ily on single-trait analyses for disease status and disease-related quantitative traits. For

example, GWAS on risk factors for coronary artery disease analyze genetic associa-

tions of plasma lipids such as total cholesterol, LDL-cholesterol, HDL-cholesterol,

and triglycerides (TGs) separately. However, traits are often correlated and a joint

analysis may yield increased statistical power for association over multiple univari-

ate analyses. Recently several multivariate methods have been proposed that require

individual-level data. Here, we develop metaUSAT (where USAT is unified score-

based association test), a novel unified association test of a single genetic variant with

multiple traits that uses only summary statistics from existing GWAS. Although the

existing methods either perform well when most correlated traits are affected by the

genetic variant in the same direction or are powerful when only a few of the correlated

traits are associated, metaUSAT is designed to be robust to the association structure of

correlated traits. metaUSAT does not require individual-level data and can test genetic

associations of categorical and/or continuous traits. One can also use metaUSAT to

analyze a single trait over multiple studies, appropriately accounting for overlapping

samples, if any. metaUSAT provides an approximate asymptotic P-value for asso-

ciation and is computationally efficient for implementation at a genome-wide level.

Simulation experiments show that metaUSAT maintains proper type-I error at low

error levels. It has similar and sometimes greater power to detect association across

a wide array of scenarios compared to existing methods, which are usually powerful

for some specific association scenarios only. When applied to plasma lipids summary

data from the METSIM and the T2D-GENES studies, metaUSAT detected genome-

wide significant loci beyond the ones identified by univariate analyses. Evidence from

larger studies suggest that the variants additionally detected by our test are, indeed,

associated with lipid levels in humans. In summary, metaUSAT can provide novel

insights into the genetic architecture of a common disease or traits.
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1 INTRODUCTION

Meta-analysis of multiple independent studies is routinely

performed to test genetic association of traits by aggregat-

ing information on a large number of individuals. Individual

data are often not available due to restrictions on data shar-

ing, and hence analysis using summary statistics proves use-

ful. Combining association results from multiple samples of

individuals increases statistical power to detect subtle genetic

effects. For example, Willer et al. (2013) meta-analyzed lipid

traits from 188,577 individuals in 60 studies and detected 62

genome-wide significant loci that were not previously associ-

ated with lipid levels in humans.

Although statistical approaches for analysis of individual-

level data have moved from the single-trait single-marker

paradigm (e.g., Kang et al., 2010) to multiple markers (e.g.,

Ray, Li, Pan, Pankow, & Basu, 2015; Wu et al., 2011), mul-

tiple traits (e.g., Ferreira & Purcell, 2009; Ray, Pankow, &

Basu, 2016), and multiple markers and traits (e.g., Basu et al.,

2013; Wu & Pankow, 2016), standard approaches for meta-

analysis have focused on the analysis of a single trait and a

single marker. Many complex disease related traits are cor-

related. Joint analysis of traits borrows information across

all traits and may increase power to detect genetic associa-

tions by increasing effective sample size (Diggle, Heagerty,

Liang, & Zeger, 2002). For individual-level data, many arti-

cles have developed and advocated statistical methods for

jointly analyzing correlated traits (see Majumdar, Witte, &

Ghosh, 2015; Ray & Basu, 2017; Zhou & Stephens, 2014).

Porter and O'Reilly (2017) performed a comprehensive com-

parison of some of these multitrait methods.

It is only recently that joint meta-analysis of multiple traits

using summary statistics has received attention. Stephens

(2013) proposed a unified framework for multiple traits

single-marker analysis using Bayesian model comparison and

model averaging for multivariate regression. This framework

allows for approximate testing and explaining genetic asso-

ciations by using summary statistics. Zhu et al. (2015) pro-

posed a general framework for integrating association evi-

dence using GWAS summary statistics. Their framework can

accommodate statistics of multiple continuous or categori-

cal traits, correlated or independent, from a single study or

multiple studies. Zhu et al. proposed two tests: S𝐻𝑜𝑚 (which

assumes equal genetic effect across all traits and studies) and

S𝐻𝑒𝑡 (which allows for trait heterogeneity). Kim, Bai, and Pan

(2015) proposed an adaptive sum of powered score (aSPU)

test, which lacks a closed form null distribution and depends

on Monte Carlo simulations to evaluate P values. Cichonska

et al. (2016) proposed metaCCA (where CCA is canonical

correlation analysis) that tests association of multiple traits

with multiple markers using CCA (Ferreira & Purcell, 2009)

framework.

Here, we propose the novel multivariate meta-analysis

approach metaUSAT (where USAT is unified score-based

association test), a unified score-based association test for

the meta-analysis of multiple traits with a single marker

using GWAS summary statistics. Current multivariate meta-

analysis methods are powerful under certain association pat-

terns (such as sparsity of signals, or homogeneity of signals),

and there is a need for a robust association test. metaUSAT is

based on the theoretical and empirical findings of Ray et al.

(2016) regarding complimentary power performances of

CCA/MANOVA (multivariate analysis of variance) and sum

of squared score (SSU) tests (Pan, 2009) for individual-level

data. Ray et al. (2016) demonstrated that MANOVA may

lose significant power when the genetic marker is associated

with all the traits, and any test statistic, such as SSU, that

does not include the trait correlation structure can be more

powerful in such a situation. On the other hand, MANOVA is

usually more powerful than other tests when a subset of the

correlated traits is associated. The true underlying association

scenario (which varies from one genetic marker to another)

is not known, and a fixed choice of association test may not

be powerful enough. metaUSAT seeks to maximize power by

adaptively combining the MANOVA and the SSU tests based

solely on the univariate summary statistics. Although both

metaMANOVA (the MANOVA test based on summary statis-

tics) and the SSU tests are chi-squared distributed, metaUSAT

does not have a closed form null distribution. However, it

does not require compute intensive permutations to evaluate

P values; instead, we calculate an approximate P-value using

a fast one-dimensional numerical integral. metaUSAT retains

the flavor of Zhu et al.'s statistics by accommodating sum-

mary statistics for continuous and/or binary traits, correlated

and/or independent, from one or more studies, which may

include overlapping samples. Using metaUSAT, one may

perform meta-analysis of a single trait over multiple studies,

or multiple traits over one or more studies.

2 MATERIAL AND METHODS

2.1 Model and notation
Consider a single GWAS with data on 𝑛 individuals, geno-

typed on 𝑝 genetic variants (say, single nucleotide polymor-

phisms or SNPs), and measured for 𝐾 traits. Let 𝒀 𝑘 be the

𝑛 × 1 vector of values for the 𝑘th trait and 𝒀 be the 𝑛 ×𝐾
matrix of all traits for all individuals. For a given SNP, let

𝑋𝑖 = 0, 1, or 2 be the number of copies of minor alleles for

individual 𝑖 and𝑿 be the 𝑛 × 1 vector of genotypes for all indi-

viduals. For simplicity, we assume there is no other covari-

ate (note that this assumption can be relaxed easily). For the

time being, we are interested in testing association between

the SNP and the 𝐾 correlated traits from a single study.
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The usual approach is to test for association of each trait

separately and report the summary statistics and the P values

for each trait based on the marginal/univariate model:

𝒀 𝑘 = 𝜶𝑘 + 𝛽𝑘𝑿 + 𝝐𝑘, 𝝐𝑘 ∼ 𝑁𝑛(𝟎, 𝜎2𝑘𝑰𝑛)

for all 𝑘 = 1, 2,… , 𝐾 (1)

for continuous traits, or marginal model

logit(𝑃 (𝒀 𝑘 = 1|𝑿)) = 𝜶𝑘 + 𝛽𝑘𝑿 for all 𝑘 = 1, 2,… , 𝐾 (2)

for binary traits. For the 𝑘th trait, 𝛽𝑘 is the genetic effect and

our null hypothesis is 𝐻0,𝑘 ∶ 𝛽𝑘 = 0. The Wald test statistic

for 𝐻0,𝑘 is 𝑍𝑘 = 𝛽𝑘∕ se(𝛽𝑘), where 𝛽𝑘 is the maximum like-

lihood estimate (MLE) of 𝛽𝑘 and se(𝛽𝑘) is its standard error.

Under𝐻0,𝑘,𝑍𝑘 has an asymptotic𝑁(0, 1) distribution. How-

ever, for 𝑘th and 𝑙 th traits, 𝑍𝑘 and 𝑍𝑙 are not independently

distributed if the trait correlation is nonzero. In fact, one can

show that corr(𝑍𝑘,𝑍𝑙) ≈ corr(𝑌𝑘, 𝑌𝑙) when the variability in

the estimators of 𝛽𝑘 and 𝛽𝑙 are ignored (Kim et al., 2015; Zhu

et al., 2015).

To test the global null hypothesis of no association with

any trait 𝐻0 ∶ 𝛽1 = … = 𝛽𝐾 = 0, one can use the summary

statistics 𝒁 = (𝑍1,… , 𝑍𝐾 )′. Under𝐻0, 𝒁 has an asymptotic

multivariate normal distribution with mean 𝟎 and covariance

matrix 𝑹, where 𝑹 is the 𝐾 ×𝐾 correlation matrix of the

original traits. Details on estimating 𝑹 (using single trait sum-

mary statistics) are provided in section 2.4.

2.2 Existing methods
Here, we describe how summary statistics of the𝐾 traits for a

given SNP can be used to test 𝐻0. Later, in section 2.5, we

describe how these methods can be used to conduct meta-

analysis using summary statistics from multiple GWAS.

2.2.1 minP
The minimum P-value (minP) approach selects the most sig-

nificant result among the𝐾 single trait association tests using

the test statistic

𝑇minP = max
1≤𝑘≤𝐾 |𝑍𝑘|. (3)

Its asymptotic P-value accounting for correlated 𝑍 statistics

(Conneely & Boehnke, 2007) is given by:

𝑝minP = 1 − P
(
max{|𝑍1|, ..., |𝑍𝐾 |} < 𝑡minP

)

= 1 − ∫
𝑡minP

−𝑡minP

…∫
𝑡minP

−𝑡minP

𝑓𝒁 (.) 𝑑𝑧1...𝑑𝑧𝐾,

where 𝑓𝒁 (.) is the multivariate 𝑁𝐾 (𝟎, 𝑹̂) density of 𝒁, 𝑹̂ is

the estimate of 𝑹 and 𝑡minP is the observed minP statistic.

Computation of 𝑝minP requires numerical integration, which

can be implemented in R using pmvnorm() in the mvtnorm
package (Genz et al., 2016).

2.2.2 metaMANOVA
An alternative is to carry out a joint analysis of all the𝑍 statis-

tics using a test similar to the multivariate score:

𝑇metaMANOVA = 𝒁′𝑹̂
−1
𝒁

𝑎∼
𝐻0
𝜒2
𝐾
. (4)

We will call this test metaMANOVA because of its simi-

larity to MANOVA statistic in the context of testing multi-

ple trait association with an SNP using individual-level data

(Ray et al., 2016). Although multiple authors (Bolormaa et al.,

2014; He et al., 2016; Pausch, Emmerling, Schwarzenbacher,

& Fries, 2016) employed this approach, metaMANOVA's

type I error and power have not been explored previously for

stringent significance levels.

2.2.3 S𝑯𝒐𝒎 and S𝑯𝒆𝒕

Zhu et al. (2015) proposed a meta-analysis test 𝑆𝐻𝑜𝑚 (similar

to O'Brien's (1984) test for individual-level data):

𝑆𝐻𝑜𝑚 =
(
𝟏′(𝑹̂𝑾 )−1𝒁

)′ (𝟏′(𝑾 𝑹̂𝑾 )−1𝟏
)−1

(
𝟏′(𝑹̂𝑾 )−1𝒁

) 𝑎∼
𝐻0
𝜒2
1 , (5)

where 𝑾 is a diagonal matrix of weights for the 𝑍 statis-

tics, and 1 is a vector of K ones. Zhu et al. (2015) took

sample sizes for the weights. 𝑆𝐻𝑜𝑚 achieves maximum

power when the genetic effects for all traits are equal

and in the same direction. Zhu et al. proposed a sec-

ond statistic 𝑆𝜏 , which seeks to include only 𝑍 statistics

corresponding to traits with nonzero genetic effects: 𝑆𝜏 =
(𝟏′
𝜏
(𝑹̂𝜏𝑾 𝜏 )−1𝒁𝜏 )′(𝟏′𝜏 (𝑾 𝜏𝑹̂𝜏𝑾 𝜏 )−1𝟏𝜏 )−1(𝟏′𝜏 (𝑹̂𝜏𝑾 𝜏 )−1𝒁𝜏 ),

where, for a given 𝜏 > 0, 𝒁𝜏 is the subvector of 𝒁 satisfying

|𝑍𝑘| > 𝜏 and the submatrices 𝑾 𝜏 , 𝑹̂𝜏 , 𝟏𝜏 are defined simi-

larly. For large enough 𝜏, it is possible to have all |𝑍𝑘| < 𝜏.

In this scenario, set 𝑆𝜏 = 0. Zhu et al. define the test statistic:

𝑆𝐻𝑒𝑡 = max
𝜏>0

𝑆𝜏. (6)

The null distribution for 𝑆𝐻𝑒𝑡 can be approximated by a

gamma distribution and P-value estimated using simulations

in Zhu et al.'s R program CPASSOC.

2.2.4 aSPU and SSU
Kim et al. (2015) defined the sum of powered score (SPU) test

as 𝑆𝑃𝑈 (𝛾) =
∑𝐾

𝑘=1𝑍
𝛾

𝑘
, where 𝛾 is a positive integer. They

constructed multiple𝑆𝑃𝑈 (𝛾) tests, with 𝛾 values 1, 2, ..., 8, or

∞, that put more weight on traits with larger 𝑍 statistics as 𝛾

increases. Kim et al. showed that 𝑆𝑃𝑈 (1) = 𝑆𝐻𝑜𝑚. 𝑆𝑃𝑈 (2),
also known as the SSU statistic, is approximately distributed

as 𝑎𝜒2
𝑑
+ 𝑏 under 𝐻0, where 𝑎, 𝑏, 𝑑 can be estimated from
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𝑹̂ (Pan, 2009). The aSPU test adaptively selects the SPU test

with minimum P-value. The SPU(𝛾) statistics for 𝛾 > 2, and

hence the aSPU statistic, do not have closed form null dis-

tributions and require Monte Carlo simulations to estimate P
values.

2.3 Proposed method: metaUSAT
In the presence of individual-level data, Ray et al. (2016) pro-

posed a unified score-based association test (USAT) to ana-

lyze association of multiple traits with a single SNP. USAT

seeks to maximize power by adaptively combining SSU (well

suited to scenarios when most or all traits have nonzero

genetic affects) and MANOVA (well-suited to most scenar-

ios unless most or all correlated traits are associated). Here,

we propose metaUSAT, a meta-analysis version of USAT,

that can be calculated using univariate summary statistics.

We consider the weighted statistic 𝑇𝜔 = 𝜔𝑇metaMANOVA +
(1 − 𝜔)𝑇SSU, 𝜔 ∈ [0, 1], where 𝑇SSU = 𝒁′𝒁 is the SSU test

statistic. Because 𝑇metaMANOVA and 𝑇SSU have asymptotic chi-

square distributions under 𝐻0 for a given weight 𝜔, 𝑇𝜔 is

approximately distributed as a linear combination of (poten-

tially dependent) chi-squared variables. The P-value 𝑝𝜔 of

𝑇𝜔 can be calculated using many algorithms (e.g., Davies,

1980; Liu, Tang, & Zhang, 2009). We define metaUSAT as

the weighted combination with the most significant P-value:

𝑇metaUSAT = min
𝜔∈[0,1]

𝑝𝜔. (7)

We consider a grid of 11 equi-spaced values of 𝜔 from 0 to 1,

and approximate the corresponding P-value using a fast one-

dimensional numerical integral (see supplementary S1).

2.4 Estimation of 𝑹 and its effect on
metaUSAT
To estimate the trait correlation matrix 𝑹, we use the Z-

statistics of the SNPs that are not associated with any of

the 𝐾 traits (i.e., SNPs with P values greater than a prede-

fined significance threshold, say 10−5, for any trait). Zhu et al.

(2015) showed that under the null hypothesis of no associa-

tion, the correlation matrix of the univariate summary statis-

tics (obtained by calculating the sample correlation matrix 𝑹̂

of the𝒁′s over a large number of null SNPs) is the same as the

trait correlation matrix. This result holds even in the presence

of covariates in (1) or (2) (Liu & Lin, 2017).

It is noteworthy that the performance of metaUSAT and the

other afore-mentioned summary statistic based tests depend

on the estimation of 𝑹. In a GWAS, we expect most SNPs to

be not associated with any trait, and these null SNPs can be

conveniently used to estimate 𝑹. However, as pointed out by

one reviewer, recent evidence from heavily studied complex

traits such as height and schizophrenia seems to suggest that

these traits are highly polygenic. Consequently, a large portion

of the genome in linkage disequilibrium (LD) with the causal

variants is also associated with the traits. For the joint analysis

of such highly polygenic complex traits using summary statis-

tics, the relation corr(𝑍𝑘,𝑍𝑙) ≈ corr(𝑌𝑘, 𝑌𝑙) may not be valid

and the estimate of𝑹 will be affected. The extent to which this

misspecified 𝑹 affects the validity of the tests depends on the

strength of association (of the nonnull SNPs used to estimate

𝑹) as well as on the structure of the test statistic. Our simula-

tion experiments (see supplementary S4) show that if nonnull

SNPs with low to moderate strengths of association are used

to estimate 𝑹, the type I error estimates for metaUSAT and

minP are largely unaffected, whereas S𝐻𝑜𝑚, S𝐻𝑒𝑡, and meta-

MANOVA may be heavily affected. It seems to us that test

statistics that directly incorporate 𝑹 (e.g., metaMANOVA)

are heavily affected by its misspecification, whereas test statis-

tics incorporating 𝑹 indirectly only through its null distri-

bution (e.g., minP) are mostly unaffected. The validity of

metaUSAT (a data-adaptive minimum P-value approach) is

largely unaffected by misspecified estimate of 𝑹 arising due

to polygenicity of traits. It is important to mention that our

conclusion is based on a limited simulation experiment. It is

beyond the scope of this paper to explore this aspect in more

detail.

2.5 Extension to meta-analysis of multiple
GWAS
Consider summary statistics 𝑍𝑗𝑘 for association with a

given SNP for trait 𝑘 (𝑘 = 1, 2,… , 𝐾) from study 𝑗 (𝑗 =
1, 2,… , 𝐽 ). Some or all 𝐽 studies may or may not have over-

lapping samples. Let 𝒁𝑗 be the vector of 𝐾 summary statis-

tics for study 𝑗, 𝒁 be the 𝐽𝐾 × 1 vector of summary statis-

tics from all traits across all studies, and 𝜷 be the correspond-

ing 𝐽𝐾 × 1 vector of effect sizes. We wish to test𝐻0 ∶ 𝜷 = 𝟎
against the two-sided alternative that at least one of the traits

has nonzero genetic effect in at least one of the studies.

For 𝑘th and 𝑙th traits from two studies 𝑗 and 𝑗′,

Lin & Sullivan (2009) showed that corr(𝑍𝑗𝑘,𝑍𝑗′𝑙) ≈
𝑛𝑗𝑗′ ,𝑘𝑙√
𝑛𝑗𝑘𝑛𝑗′𝑙

corr(𝑌𝑗𝑘, 𝑌𝑗′𝑙), where 𝑛𝑗𝑗′,𝑘𝑙 is the number of over-

lapping samples, in studies 𝑗 and 𝑗′, and 𝑛𝑗𝑘 & 𝑛𝑗′𝑙 are the

sample sizes in the two studies. When the studies are indepen-

dent (𝑛𝑗𝑗′,𝑘𝑙 = 0), summary statistics from the two studies are

uncorrelated. For the perfect overlap scenario (𝑛𝑗𝑗′,𝑘𝑙 = 𝑛𝑗𝑘 =
𝑛𝑗′𝑙), the correlation of summary statistics is approximately

same as the correlation of the traits (same as that of a single

study with multiple traits). We estimate the 𝐽𝐾 × 𝐽𝐾 corre-

lation matrix 𝑹 from the 𝐽𝐾 Z-statistics for the SNPs that do

not exceed a predefined significance threshold (say, P-value

= 10−5) for any trait. The formulation of the 𝒁 statistic and

the estimation of its correlation in this fashion addresses cryp-

tic relatedness arising from overlapping samples in the studies

(Kim et al., 2015; Zhu et al., 2015). Once𝒁 and𝑹 are defined,

we can use any of the existing methods and metaUSAT.
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When meta-analyzing across studies, different studies may

have varying sample sizes. Because sample sizes may vary

widely across traits and/or studies, we suggest weighting the

univariate summary statistics by the corresponding sample

sizes. If 𝑛𝑗𝑘 is the sample size for trait 𝑘 in study 𝑗, we use

weighted statistics
√
𝑛𝑗𝑘𝑍𝑗𝑘 to put more weights on statistics

coming from larger studies. Note that this weighting scheme is

incorporated in𝑆𝐻𝑜𝑚 and𝑆𝐻𝑒𝑡 statistics in (5) and (6) respec-

tively.

2.6 Simulation experiments
We conduct simulation experiments to assess type I error

and compare power of metaUSAT and the existing meth-

ods. For type I error simulations, we consider significance

levels 𝛼 = 10−2, 10−3,… , 10−6, 5 × 10−7. For power simula-

tions, we report empirical powers, based on corrected critical

values, at level 𝛼 = 10−4. All analyses used the estimated 𝑹

based on summary statistics across null replicates.

2.6.1 Simulation 1: A single study
We generated a single study of 𝑛 = 1,000 unrelated individu-

als, each measured for 𝐾 = 5 or 10 traits and a biallelic SNP

𝑋 with minor allele frequency (MAF) 0.1 at Hardy-Weinberg

equilibrium. For each individual, we simulate 𝐾 phenotypes

using a multivariate normal linear model: 𝒀 𝐾×1 = 𝛽0𝟏𝐾×1 +
𝑋𝜷𝐾×1 + 𝝐𝐾×1, where 𝛽0 = 1 and the error 𝝐 is simulated

from 𝑁𝐾 (𝟎, 𝜎2𝑹(𝜌)). We took 𝑹(𝜌) as an exchangeable cor-

relation matrix with pair-wise correlation 𝜌 ∈ {0.2, 0.4, 0.6}.

For type I error simulations, the genetic effects 𝜷 are 0 for all

𝐾 traits. For power simulations, we choose the genetic effect

𝛽𝑘 for an associated trait 𝑘 so that the SNP explains 0.5% of

the trait variance (𝑘 = 1, 2, ..., 𝐾). This, alongwith the MAF

of the SNP, determines the genetic effect sizes (see Basu et al.,

2013, “Simulations”). We took positive direction of the effect

size for all associated traits. The total variance of an associ-

ated trait is fixed at 10, which ensures that the variance due

to SNP is 0.05 while the residual variance is 𝜎2 = 9.95. We

wish to test 𝐻0 ∶ 𝜷 = 𝟎.

Based on 108 null datasets, we estimate type I error of

S𝐻𝑜𝑚, S𝐻𝑒𝑡, minP, metaMANOVA, and metaUSAT as the

proportion of null datasets that give P-value ≤ 𝛼. Our liter-

ature search did not yield any article where type I errors of all

these summary-statistic-based multivariate methods are stud-

ied at a level as low as 5 × 10−7. We do not consider aSPU for

type I error analysis because it requires Monte Carlo simu-

lations, making calculations for 108 datasets computationally

undesirable. For comparing statistical powers of all methods

(including aSPU), we simulate 104 nonnull datasets assuming

20–100% of the traits are positively associated with the SNP.

To avoid clutter, we are not including SSU (a special case of

aSPU) in any of these comparisons.

2.6.2 Simulation 2: Two independent studies
We consider two independent studies of 1,000 independent

individuals, each with measurements on a single SNP with

MAF 0.1 and four traits inspired by the METSIM lipids data

on total cholesterol (TC), high-density lipoprotein (HDL),

low-density lipoprotein (LDL), and triglycerides (TGs). We

use the trait correlation matrix𝑹metsim (supplementary Figure

S1(a)) to simulate the four traits using the model described

in section 2.6.1 (Simulation 1). We consider five associa-

tion scenarios: (i) only TC is associated, (ii) TC and LDL

are associated, (iii) TC, LDL and TG are associated, (iv) all

four traits are associated, and (v) none of the traits is associ-

ated. As before, the SNP explains 0.5% of the trait variance

when associated. We assume TC, LDL, and TG have nega-

tive genetic effects, whereas HDL has positive effect when

associated. We simulate two study types: “homogeneous” and

“heterogeneous.” For “homogeneous” studies, the association

pattern of the traits is same across both studies. For “heteroge-

neous” studies, we assume association scenarios (i)–(iv) in the

first study, while the traits are not associated (scenario (v)) in

the second study. Supplementary Figure S1(c) shows the esti-

mated correlation matrix. For type I error analysis, we assume

scenario (v) for both studies and simulate 107 null datasets.

2.6.3 Simulation 3: Two studies with
overlapping samples
We keep everything the same as in Simulation 2 except that

the two studies now have 200 overlapping individuals. For

“homogeneous” studies, we assume the association pattern

is same across the two studies. For “heterogeneous” studies,

excluding the overlap, we assume the association scenarios

(i)–(iv) in one study, while the traits are not associated (sce-

nario (v)) in the other study. For individuals common to both

studies, we assume scenario (v). Supplementary Figure S1(d)

shows the estimated correlation matrix, which is similar to

the correlation structure of lipid traits from the METSIM and

T2D-GENES studies (supplementary Figure S1(b)).

2.7 Application to lipids data
2.7.1 METSIM study
The METSIM study is a single-site, longitudinal study of

10,197 men (aged 45 − 73) randomly selected from the

population of Kuopio, Finland (Stančáková et al., 2009).

Participants were genotyped with the Illumina OmniExpress

GWAS chip and the Illumina exome chip. Here, we focus on

the association statistics of four lipid traits from the first visit:

TC, HDL, LDL, TG. Before obtaining the summary statistics,

individuals on lipid-lowering medication are removed and

TG is log-transformed. The traits are, then, regressed on

age and age2, and residuals are inverse-normalized. We

focus on 622,950 autosomal SNPs with MAF≥ 1%. We used
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kinship matrix in the mixed model framework of EMMAX

(Kang et al., 2010) to account for within-ancestry population

structure and relatedness.

2.7.2 T2D-GENES study
The T2D-GENES consortium carried out exome sequencing

on 6,504 T2D cases and 6,436 controls from five ancestry

groups (Fuchsberger et al., 2016). Here, we consider the 4,541

individuals of European origin, 983 of which are part of the

METSIM study sample. As before, we focus on the four lipid

traits. Exclusions, transformations, and analysis parallel those

for the METSIM lipid traits. Here, we also adjusted sex as a

covariate.

3 RESULTS

3.1 Simulation 1: A single study
The type I error estimates of metaUSAT and other methods

are presented in Table 1. Regardless of the number of traits

and the strength of trait correlations, all methods control type

I error for moderate levels (𝛼 ≥ 10−4). For more stringent lev-

els, we observe slightly inflated type I errors for all methods

except S𝐻𝑜𝑚. The inflation seems to increase with increase

in number of traits. We note that type I error of metaUSAT

is worst at 𝛼 = 5 × 10−7; in what follows we correct for this

by computing power using empirical threshold. The empirical

threshold is based on 105 null replicates.

T A B L E 1 Simulation 1: Type I error estimates at various significance levels 𝛼

𝑲 = 𝟓 𝑲 = 𝟏𝟎
𝐋𝐞𝐯𝐞𝐥 𝜶 Method 𝝆 = 𝟎.𝟐 𝝆 = 𝟎.𝟒 𝝆 = 𝟎.𝟔 𝝆 = 𝟎.𝟐 𝝆 = 𝟎.𝟒 𝝆 = 𝟎.𝟔
10−2 S𝐻𝑜𝑚 0.95 [0.95, 0.95] 1.00 [1.00, 1.00] 1.03 [1.03, 1.03] 1.00 [1.00, 1.00] 1.07 [1.07, 1.07] 1.01 [1.01, 1.01]

S𝐻𝑒𝑡 1.05 [1.05, 1.05] 1.05 [1.04, 1.05] 0.98 [0.98, 0.98] 1.01 [1.01, 1.01] 1.06 [1.06, 1.06] 1.02 [1.01, 1.02]
minP 1.03 [1.03, 1.03] 1.03 [1.03, 1.03] 1.02 [1.02, 1.02] 1.04 [1.04, 1.04] 1.03 [1.03, 1.03] 1.03 [1.03, 1.03]
metaMANOVA 1.05 [1.05, 1.05] 1.05 [1.04, 1.05] 0.98 [0.98, 0.98] 1.04 [1.04, 1.04] 0.97 [0.97, 0.97] 1.06 [1.06, 1.06]
metaUSAT 0.82 [0.82, 0.82] 0.92 [0.92, 0.92] 0.93 [0.93, 0.93] 0.93 [0.93, 0.93] 1.01 [1.01, 1.01] 1.06 [1.06, 1.06]

10−3 S𝐻𝑜𝑚 0.93 [0.93, 0.93] 1.00 [1.00, 1.00] 1.03 [1.03, 1.03] 1.00 [1.00, 1.00] 1.11 [1.11, 1.12] 1.02 [1.02, 1.03]
S𝐻𝑒𝑡 1.11 [1.10, 1.11] 1.12 [1.11, 1.12] 1.02 [1.02, 1.02] 1.01 [1.01, 1.02] 1.10 [1.09, 1.10] 1.02 [1.02, 1.03]
minP 1.05 [1.05, 1.06] 1.05 [1.05, 1.06] 1.05 [1.05, 1.06] 1.07 [1.07, 1.08] 1.06 [1.06, 1.06] 1.07 [1.07, 1.07]
metaMANOVA 1.09 [1.09, 1.10] 1.08 [1.08, 1.08] 0.99 [0.99, 1.00] 1.08 [1.07, 1.08] 0.98 [0.98, 0.98] 1.11 [1.11, 1.12]
metaUSAT 0.90 [0.90, 0.90] 1.00 [1.00, 1.00] 1.02 [1.01, 1.02] 1.05 [1.05, 1.05] 1.13 [1.12, 1.13] 1.19 [1.18, 1.19]

10−4 S𝐻𝑜𝑚 0.90 [0.89, 0.91] 1.00 [1.00, 1.00] 1.09 [1.08, 1.10] 1.01 [1.00, 1.02] 1.17 [1.16, 1.18] 1.04 [1.03, 1.05]
S𝐻𝑒𝑡 1.18 [1.17, 1.19] 1.22 [1.21, 1.23] 1.09 [1.08, 1.10] 1.04 [1.03, 1.05] 1.14 [1.13, 1.15] 1.05 [1.04, 1.06]
minP 1.10 [1.09, 1.11] 1.10 [1.09, 1.11] 1.13 [1.12, 1.14] 1.13 [1.12, 1.14] 1.11 [1.10, 1.12] 1.13 [1.12, 1.14]
metaMANOVA 1.14 [1.13, 1.15] 1.13 [1.12, 1.14] 1.03 [1.02, 1.04] 1.11 [1.10, 1.12] 0.99 [0.98, 1.00] 1.17 [1.16, 1.18]
metaUSAT 1.21 [1.20, 1.22] 1.29 [1.28, 1.30] 1.18 [1.17, 1.19] 1.59 [1.58, 1.61] 1.49 [1.48, 1.51] 1.39 [1.38, 1.40]

10−5 S𝐻𝑜𝑚 0.88 [0.85, 0.91] 1.00 [0.97, 1.03] 1.12 [1.09, 1.15] 1.07 [1.03, 1.10] 1.28 [1.25, 1.32] 1.11 [1.08, 1.14]
S𝐻𝑒𝑡 1.31 [1.27, 1.34] 1.36 [1.32, 1.40] 1.17 [1.14, 1.21] 1.12 [1.09, 1.16] 1.27 [1.23, 1.31] 1.12 [1.09, 1.16]
minP 1.14 [1.10, 1.17] 1.16 [1.12, 1.19] 1.30 [1.27, 1.34] 1.23 [1.20, 1.27] 1.13 [1.09, 1.16] 1.25 [1.21, 1.28]
metaMANOVA 1.17 [1.14, 1.20] 1.16 [1.12, 1.19] 1.03 [1.00, 1.06] 1.19 [1.16, 1.23] 1.03 [1.00, 1.06] 1.31 [1.27, 1.34]
metaUSAT 1.38 [1.35, 1.42] 1.45 [1.41, 1.49] 1.28 [1.25, 1.45] 1.92 [1.88, 1.97] 1.74 [1.70, 1.79] 1.58 [1.54, 1.62]

10−6 S𝐻𝑜𝑚 0.80 [0.71, 0.89] 0.92 [0.82, 1.02] 1.11 [1.00, 1.22] 1.12 [1.01, 1.23] 1.49 [1.37, 1.61] 1.26 [1.15, 1.38]
S𝐻𝑒𝑡 1.44 [1.32, 1.56] 1.43 [1.31, 1.55] 1.26 [1.15, 1.37] 1.21 [1.10, 1.32] 1.47 [1.35, 1.59] 1.26 [1.15, 1.38]
minP 1.31 [1.20, 1.42] 1.27 [1.16, 1.38] 1.64 [1.51, 1.77] 1.30 [1.19, 1.41] 1.16 [1.05, 1.27] 1.45 [1.33, 1.57]
metaMANOVA 1.19 [1.08, 1.30] 1.10 [0.99, 1.21] 1.00 [0.90, 1.10] 1.32 [1.21, 1.43] 1.23 [1.12, 1.34] 1.54 [1.42, 1.66]
metaUSAT 1.46 [1.34, 1.58] 1.48 [1.36, 1.60] 1.33 [1.22, 1.45] 2.38 [2.23, 2.53] 2.21 [2.06, 2.36] 2.08 [1.94, 2.22]

5 × 10−7 S𝐻𝑜𝑚 0.72 [0.60, 0.84] 0.82 [0.69, 0.95] 1.00 [0.86, 1.14] 1.20 [1.05, 1.35] 1.50 [1.33, 1.67] 1.25 [1.09, 1.41]
S𝐻𝑒𝑡 1.30 [1.14, 1.46] 1.42 [1.25, 1.59] 1.32 [1.16, 1.48] 1.30 [1.14, 1.46] 1.38 [1.21, 1.55] 1.17 [1.02, 1.32]
minP 1.46 [1.29, 1.63] 1.30 [1.14, 1.46] 1.90 [1.71, 2.10] 1.42 [1.25, 1.59] 1.08 [0.93, 1.23] 1.64 [1.46, 1.82]
metaMANOVA 1.20 [1.05, 1.36] 1.25 [1.09, 1.41] 1.15 [1.00, 1.30] 1.32 [1.16, 1.48] 1.20 [1.05, 1.35] 1.62 [1.44, 1.80]
metaUSAT 1.54 [1.36, 1.72] 1.74 [1.55, 1.92] 1.54 [1.36, 1.71] 2.52 [2.30, 2.74] 2.42 [2.20, 2.64] 2.18 [1.97, 2.39]

Notes: This table lists the type I error estimates divided by the significance level 𝛼 and the corresponding 100(1 − 𝛼)% confidence intervals in brackets. The ideal point

estimate for any cell is 1. Estimates are based on 108 null datasets, each with 𝐾 traits, 1 SNP and sample size 1,000.
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F I G U R E 1 Simulation 1: Empirical power curves (based on corrected critical values) of S𝐻𝑜𝑚, S𝐻𝑒𝑡, metaMANOVA, metaUSAT, minP, and

aSPU at significance level 𝛼 = 10−4

Notes: Power estimates are based on 104 datasets with 1,000 unrelated samples. Each sample has 𝐾 = 5 or 10 traits with pairwise trait correlations

𝜌 = 0.2, 0.4, or 0.6.

Figure 1 summarizes the empirical powers (based on cor-

rected critical values) of all methods. We observe that as cor-

relation becomes stronger and the number of associated traits

increases, S𝐻𝑜𝑚, minP, and aSPU lose power in most associa-

tion scenarios. S𝐻𝑒𝑡 is dominated by metaMANOVA, which is

usually most powerful. However, metaMANOVA loses power

considerably as the proportion of associated traits increases.

This phenomenon of metaMANOVA's power loss is the

same as what Ray et al. (2016) observed for MANOVA (for

analyzing individual-level data) and provided an explanation

for. When most or all of the traits are associated, aSPU and

S𝐻𝑜𝑚 are quite powerful. Irrespective of the number of asso-

ciated traits and the strength of correlation, metaUSAT, being

data-adaptive, has near optimal power to detect association

at all association scenarios. Results for genetic marker with

MAF 0.5 (not shown) are qualitatively similar. Apart from

exchangeable correlation, we also consider an AR1(𝜌) corre-

lation structure (autoregressive correlation matrix of order 1

with parameter 𝜌) and, as before, we find metaUSAT's power

to be robust across association scenarios (supplementary

Figure S2).

3.2 Simulation 2: Two independent studies
The estimated correlation matrix, based on 5,000 null

summary statistics, is given in supplementary Figure S1(c).
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T A B L E 2 Simulation 2: Comparison of empirical powers (based on corrected critical values) for two independent studies at level 𝛼 = 10−4

Meta-analysis method

Study type
No. of traits
associated S𝑯𝒐𝒎 S𝑯𝒆𝒕 minP aSPU metaMANOVA metaUSAT

Homogeneous 1 0.999 0.923 0.034 0.009 𝟏.𝟎𝟎𝟎 𝟏.𝟎𝟎𝟎
2 0.000 0.111 0.046 0.082 𝟎.𝟏𝟓𝟏 0.133

3 0.306 0.254 0.078 𝟎.𝟑𝟔𝟒 0.250 0.285

4 0.009 𝟎.𝟕𝟐𝟓 0.100 0.387 0.665 0.632

Heterogeneous 1 0.357 0.661 0.019 0.004 𝟎.𝟗𝟗𝟓 0.992

2 0.000 0.016 𝟎.𝟎𝟐𝟒 0.019 0.023 0.020

3 0.017 0.036 0.035 0.044 0.038 𝟎.𝟎𝟒𝟓
4 0.001 𝟎.𝟏𝟗𝟒 0.050 0.068 0.159 0.141

Notes: Power is estimated based on 104 nonnull datasets. For a given association scenario, the method with highest power is bold-faced and the method with lowest power

is italicized.

T A B L E 3 Simulation 3: Comparison of empirical powers (based on corrected critical values) for two studies with overlapping samples at level

𝛼 = 10−4

Meta-analysis method

Study type
No. of traits
associated S𝑯𝒐𝒎 S𝑯𝒆𝒕 minP aSPU metaMANOVA metaUSAT

Homogeneous 1 0.984 0.852 0.034 0.018 𝟏.𝟎𝟎𝟎 𝟏.𝟎𝟎𝟎
2 0.000 0.048 0.051 𝟎.𝟎𝟗𝟗 0.083 0.093

3 0.244 0.127 0.077 𝟎.𝟑𝟎𝟎 0.146 0.216

4 0.005 𝟎.𝟒𝟖𝟓 0.103 0.435 0.456 0.472

Heterogeneous 1 0.101 0.495 0.006 0.001 𝟎.𝟖𝟔𝟓 0.807

2 0.000 0.004 𝟎.𝟎𝟎𝟗 0.006 0.007 0.006

3 0.007 0.009 0.011 𝟎.𝟎𝟏𝟐 𝟎.𝟎𝟏𝟐 𝟎.𝟎𝟏𝟐
4 0.001 0.038 0.018 0.026 𝟎.𝟎𝟒𝟏 0.034

Notes: Power is estimated based on 104 nonnull datasets. For a given association scenario, the method with highest power is bold-faced and the method with lowest power

is italicized.

Supplementary Figure S1(a) and (c) show that trait correla-

tions can be approximated by the correlations of summary

statistics. Type I error estimates (supplementary Table S1)

indicate all methods control type I error for low error levels.

Table 2 suggests S𝐻𝑒𝑡, metaMANOVA, and metaUSAT are

usually most powerful. metaMANOVA and metaUSAT have

similar powers. S𝐻𝑜𝑚 and minP are least powerful in most

cases. aSPU is least powerful when a small proportion of

traits is associated. Results for MAF 0.5 (not shown) are

qualitatively similar. We also conducted this power compari-

son for binary traits and found metaUSAT to be robust across

association scenarios (supplementary Table S4).

3.3 Simulation 3: Two studies with
overlapping samples
Type I error estimates (supplementary Table S2) are as

expected from the earlier type I error analyses. Empirical pow-

ers (Table 3) of the methods in the presence of overlapping

samples are similar to the simulation without shared individ-

uals (Table 2). We observed similar conclusions when this

power comparison is conducted for binary traits (supplemen-

tary Table S5).

3.4 METSIM Study: Joint analysis of lipid
traits
Single-trait analysis identified 118 associated variants at

the four-trait Bonferroni-corrected threshold of 1.25 × 10−8
(Figure 2(a)). metaMANOVA and metaUSAT, respectively,

identified 159 and 158 associated variants at threshold 5 ×
10−8. To identify independent association signals, we grouped

significant variants (with pairwise distance < 500 kb) into

loci using LD 𝑟2 > 0.1. Both metaMANOVA and metaUSAT

identified 28 such independent loci, 27 of which (except

rs3093032, a 3'-UTR variant in ICAM1 gene) are known to be

associated with lipids from published literature (supplemen-

tary Table S6). Additionally, we jointly analyzed individual-

level data on these lipid traits using USAT. Figure 2(b) shows

concordance of P values based on individual-level data and P
values based on summary statistics.
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F I G U R E 2 METSIM Study: (a) Venn diagram of the number of

SNPs (and not independent loci) found significant by each of metaUSAT,

metaMANOVA, and single-trait analyses

Notes: A total of 622,950 SNPs (MAF ≥ 1%) are tested. For the single-

trait analysis, a variant is declared as significant if its P-value for at least

one trait is< 1.25 × 10−8 (four-trait Bonferroni-corrected GWAS thresh-

old). It should be noted that most of these significant SNPs are in LD.

(b) metaUSAT P values (joint analysis based on summary data) plotted

against USAT P values (joint analysis based on individual-level data).

3.5 METSIM + T2D-GENES studies:
Meta-analysis of a single trait from studies with
overlapping samples
We tested genetic associations of TC with 31,897 variants

(MAF ≥ 1%) using summary statistics from METSIM and

T2D-GENES studies. metaUSAT, metaMANOVA, and

single-trait analyses, respectively, found 12, 12, and 9 SNPs

as significant (Figure 3(a)). Published literature indicate that

signals identified by metaUSAT (or metaMANOVA) are

known to be associated with cholesterol levels (supplemen-

tary Table S7). Figure 4(a) plots the metaUSAT P values

when overlap is present against metaUSAT P values when

the overlapping individuals are excluded from the METSIM

sample. Concordance of the P values suggest metaUSAT

appropriately accounted for overlapping samples.

3.6 METSIM + T2D-GENES studies: Joint
meta-analysis of lipid traits from studies with
overlapping samples
metaUSAT, metaMANOVA, and single-trait analysis, respec-

tively, found 26, 22, and 19 SNPs as significant (Figure 3(b)).

metaMANOVA and metaUSAT detected more signals by bor-

rowing information from correlated traits across studies. All

of the signals found by both metaMANOVA and metaUSAT

are known to be associated with lipid levels in humans from

previous studies (supplementary Table S8). All the SNPs

detected by metaMANOVA and by independent analysis of

each trait were identified by metaUSAT. Further, metaUSAT

exclusively reports four significant SNPs (of which three are

independent) that metaMANOVA fails to find (Table 4). For

these SNPs, we also report the empirical P values (calculated

using 8.5 × 109 Monte Carlo simulations) to ensure these are

not false associations detected as a result of slightly inflated

type I error of metaUSAT at stringent error levels. Details of

this empirical P-value calculation of metaUSAT are provided

in supplementary S2. Finally, in Figure 4(b), we again observe

concordance of metaUSAT P values with and without shared

individuals.

4 DISCUSSION

Most GWAS have focused on testing genetic association to

single traits. Several recent articles have advocated the joint

analysis of multiple traits for improving statistical power to

detect associated genetic variants. In this article, we propose

a new method for multivariate meta-analysis, metaUSAT, an

extension of our multivariate association test USAT (Ray

et al., 2016). For a given genetic variant, metaUSAT tests the

association of multiple traits from a single/multiple studies

using univariate summary statistics. Importantly, it bypasses

the need for individual-level data, which is often unavailable

or difficult to obtain.

Our simulation experiments and real data analyses establish

that metaUSAT is often more powerful than any of the exist-

ing tests for multivariate meta-analysis. It can be especially

advantageous in detecting highly pleiotropic variants that

simultaneously influence multiple traits. Apart from propos-

ing new method metaUSAT, we also study power and type

I error performances of metaMANOVA and other summary

statistic based multitrait methods at stringent error levels.

metaUSAT and metaMANOVA can accurately control type I
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F I G U R E 3 METSIM+T2D-GENES studies: Venn diagram of the number of SNPs (and not independent loci) found significant by each of

metaUSAT, metaMANOVA, and single-trait analyses

Notes: A total of 31,897 SNPs (MAF ≥ 1%) are tested. For the single-trait analysis, a variant is declared as significant if its P-value for at least one

trait is < 1.25 × 10−8 (four-trait Bonferroni corrected GWAS threshold). It should be noted that most of these significant SNPs are in LD.

T A B L E 4 T2D-GENES + METSIM studies: Meta-analysis of all four lipid traits

P-value

rsID chr Position meta-USAT meta-MANOVA
Empirical P-value
metaUSAT Known association result

rs2483205 1 55518316 𝟐.𝟓 × 𝟏𝟎−𝟖 1.1 × 10−7 𝟑.𝟐 × 𝟏𝟎−𝟖 Lipids, Lipoprotein fractionsa

rs1367117b 2 21263900 𝟏.𝟓 × 𝟏𝟎−𝟗 2.3 × 10−7 𝟐.𝟖 × 𝟏𝟎−𝟗 Lipids, Lipoprotein fractionsc

rs2304130 19 19789528 𝟏.𝟓 × 𝟏𝟎−𝟗 1.8 × 10−6 𝟑.𝟑 × 𝟏𝟎−𝟗 Lipids, Lipoprotein fractions, T2Dd

Notes: This table lists the SNPs exclusively detected by metaUSAT only. Only the independent SNPs (pairwise distance > 500 kb and 𝑟2 < 0.1) are listed. We also report

the empirical P values of metaUSAT based on 8.5 × 109 Monte Carlo simulations. P values exceeding the genome-wide threshold of 5 × 10−8 have been bold-faced. The

known association results are based on previously reported GWAS associations within 500 kb of and 𝑟2 > 0.7 with any of our SNPs from the NHGRI GWAS catalog

(Welter et al., 2014) and our in-house GWAS catalog.
aNear many known GWAS hits for lipids (Surakka et al., 2015), lipoprotein fractions (Kettunen et al., 2012), and cardiovascular endpoints (Kathiresan et al., 2009).
bIllumina OmniExpress Exome Chip ID is exm176096.
cKnown GWAS hit for lipids (Teslovich et al., 2010; Willer et al., 2013; Surakka et al., 2015)
dKnown GWAS hit for lipids (Kristiansson et al., 2012; Willer et al., 2013)

F I G U R E 4 METSIM+T2D-GENES studies: metaUSAT P-values, with the overlapping individuals in the two studies, are plotted on the x-axis,

while metaUSAT P-values after removing the overlap from METSIM are plotted on the y-axis

error for moderate 𝛼 levels, but produce slightly inflated type I

error rates at very small 𝛼 levels (like the other methods). We

found that metaMANOVA has a serious drawback: it may fail

to detect association when most or all traits are associated (this

behavior explored by Ray et al. (2016) in detail). The joint

analysis of all lipid traits using METSIM and T2D-GENES

studies further confirmed this. The power of metaMANOVA

(and other multivariate tests) depends on a complex inter-

play of the number of truly associated traits, their correlation

structure, and the directions of the signals. The underlying
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association scenario changes from one variant to another,

and is not known a priori for any real dataset. There is no

uniformly most powerful multivariate test, and a particular

choice of association test may not be powerful enough to

detect true signals. metaUSAT, being data-adaptive in nature,

is less affected by the true (unknown) association scenario,

and proves to be a robust yet computationally efficient choice

for investigators.

The assumption of equal genetic effects across traits and

studies is hardly tenable, making S𝐻𝑜𝑚 unlikely to be pow-

erful, especially when there is a moderate to large number

of traits. aSPU relies on compute intensive P-value calcu-

lation approach, which is not feasible when analyzing large

GWAS data. S𝐻𝑒𝑡 is usually dominated by metaMANOVA.

On the other hand, metaUSAT is at least as powerful as meta-

MANOVA and a fast P-value calculation approach makes it

suitable for testing genetic associations across multiple traits

from multiple large-scale genome wide studies. Power of

metaUSAT is robust to the proportion of associated traits.

To alleviate any concern of inflated association signals of

metaUSAT at stringent levels, we can calculate empirical

metaUSAT P values (as described in supplementary S2). This

need not be done for all variants; instead we can focus only

on the handful of variants that have metaUSAT P values just

crossing the chosen significance threshold.

metaUSAT can be used in a few different ways. We can

test association of one or more traits from a single or multiple

studies, which may or may not be independent. metaUSAT

does not assume homogeneity of trait effects across studies.

If the studies are nearly independent and the trait effects are

believed to be homogeneous across studies, we can use meta-

analyzed summary statistics for each trait (e.g., Z-statistic out-

put from METAL; Willer, Li, & Abecasis, 2010) to perform

joint meta-analysis of multiple traits. metaUSAT, also, does

not require the independence of samples. When samples are

related (e.g., in family-based GWAS), metaUSAT can use

summary statistics from EMMAX (or other univariate mixed

model framework) to appropriately test for genetic associa-

tions.

A potentially important contribution of metaUSAT can be

in the emerging field of phenome-wide association studies

(PheWAS) based on epidemiological cohorts. PheWAS sys-

tematically analyzes the impact of a genetic variant on a

wide variety of human traits. Restrictions on data sharing

necessitate use of meta-analysis for PheWAS (Bush, Oetjens,

& Crawford, 2016). In this age of using publicly available

data for increasing power and decreasing sequencing costs,

overlapping samples may be a concern when it comes to

meta-analysis. Furthermore, current single-trait meta-analysis

approach for PheWAS is burdened by multiple comparison

testing both at the variant level and at the trait level (Heb-

bring, 2014). We recommend using metaUSAT to overcome

these challenges.
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