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Summary:

Genome-wide association studies (GWAS) for complex diseases have focused primarily on single trait analyses

for disease status and disease-related quantitative traits. For example, GWAS on risk factors for coronary artery

disease analyze genetic associations of plasma lipids such as total cholesterol, LDL-cholesterol, HDL-cholesterol,

and triglycerides separately. However, traits are often correlated and a joint analysis may yield increased statistical

power for association over multiple univariate analyses. Recently several multivariate methods have been proposed

which require individual-level data. Here, we develop metaUSAT, a novel unified association test of a single genetic

variant with multiple traits that uses only summary statistics from existing GWAS. While the existing methods either

perform well when most correlated traits are affected by the genetic variant in the same direction or are powerful

when only a few of the correlated traits are associated, metaUSAT is designed to be robust to the association

structure of correlated traits. metaUSAT does not require individual-level data and can test genetic associations of

categorical and/or continuous traits. One can also use metaUSAT to analyze a single trait over multiple studies,

appropriately accounting for overlapping samples, if any. metaUSAT provides an approximate asymptotic p-value

for association and is computationally efficient for implementation at a genome-wide level. Simulation experiments

show that metaUSAT maintains proper type-I error at low error levels. It has similar and sometimes greater power to

detect association across a wide array of scenarios compared to existing methods, which are usually powerful for some

specific association scenarios only. When applied to plasma lipids summary data from the METSIM and the T2D-

GENES studies, metaUSAT detected genome-wide significant loci beyond the ones identified by univariate analyses.

Evidence from larger studies suggest that the variants additionally detected by our test are, indeed, associated with

lipid levels in humans. In summary, metaUSAT can provide novel insights into the genetic architecture of a common

disease or traits.
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Introduction

Meta-analysis of multiple independent studies is routinely performed to test genetic asso-

ciation of traits by aggregating information on a large number of individuals. Individual

data are often not available due to restrictions on data sharing, and hence analysis using

summary statistics proves useful. Combining association results from multiple samples of

individuals increases statistical power to detect subtle genetic effects. For example, Willer

et al. (2013) meta-analyzed lipid traits from 188, 577 individuals in 60 studies and detected 62

genome-wide significant loci that were not previously associated with lipid levels in humans.

While statistical approaches for analysis of individual-level data have moved from the

single-trait-single-marker paradigm (e.g., Kang et al., 2010) to multiple markers (e.g., Wu

et al., 2011; Ray et al., 2015), multiple traits (e.g., Ferreira and Purcell, 2009; Ray et al.,

2016), and multiple markers and traits (e.g., Basu et al., 2013; Wu and Pankow, 2016),

standard approaches for meta-analysis have focused on the analysis of a single trait and

a single marker. Many complex-disease-related traits are correlated. Joint analysis of traits

borrows information across all traits and may increase power to detect genetic associations by

increasing effective sample size (Diggle et al., 2002). For individual-level data, many articles

have developed and advocated statistical methods for jointly analyzing correlated traits (see

Zhou and Stephens, 2014; Majumdar et al., 2015; Ray and Basu, 2017). Porter and O’Reilly

(2017) performed a comprehensive comparison of some of these multi-trait methods.

It is only recently that joint meta-analysis of multiple traits using summary statistics has

received attention. Stephens (2013) proposed a unified framework for multiple-traits-single-

marker analysis using Bayesian model comparison and model averaging for multivariate

regression. This framework allows for approximate testing and explaining genetic associations

by using summary statistics. Zhu et al. (2015) proposed a general framework for integrating

association evidence using GWAS summary statistics. Their framework can accommodate
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statistics of multiple continuous or categorical traits, correlated or independent, from a single

study or multiple studies. Zhu et al. proposed two tests: SHom (which assumes equal genetic

effect across all traits and studies) and SHet (which allows for trait heterogeneity). Kim et al.

(2015) proposed an adaptive sum of powered score (aSPU) test, which lacks a closed form null

distribution and depends on Monte Carlo simulations to evaluate p-values. Cichonska et al.

(2016) proposed metaCCA that tests association of multiple traits with multiple markers

using canonical correlation analysis (CCA) (Ferreira and Purcell, 2009) framework.

Here, we propose the novel multivariate meta-analysis approach metaUSAT, a unified

score based association test for the meta-analysis of multiple traits with a single marker

using GWAS summary statistics. Current multivariate meta-analysis methods are powerful

under certain association patterns (such as sparsity of signals, or homogeneity of signals),

and there is a need for a robust association test. metaUSAT is based on the theoretical

and empirical findings of Ray et al. (2016) regarding complimentary power performances of

CCA/MANOVA (multivariate analysis of variance) and sum of squared score (SSU) tests

(Pan, 2009) for individual-level data. Ray et al. (2016) demonstrated that MANOVA may

lose significant power when the genetic marker is associated with all the traits, and any

test statistic, such as SSU, that does not include the trait correlation structure can be more

powerful in such a situation. On the other hand, MANOVA is usually more powerful than

other tests when a subset of the correlated traits is associated. The true underlying associ-

ation scenario (which varies from one genetic marker to another) is not known, and a fixed

choice of association test may not be powerful enough. metaUSAT seeks to maximize power

by adaptively combining the MANOVA and the SSU tests based solely on the univariate

summary statistics. Although both metaMANOVA (the MANOVA test based on summary

statistics) and the SSU tests are chi-squared distributed, metaUSAT does not have a closed

form null distribution. However, it does not require compute intensive permutations to
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evaluate p-values; instead, we calculate an approximate p-value using a fast one-dimensional

numerical integral. metaUSAT retains the flavor of Zhu et al.’s statistics by accommodating

summary statistics for continuous and/or binary traits, correlated and/or independent, from

one or more studies, which may include overlapping samples. Using metaUSAT, one may

perform meta-analysis of a single trait over multiple studies, or multiple traits over one or

more studies.

Material & Methods

Model and Notation

Consider a single GWAS with data on n individuals, genotyped on p genetic variants, and

measured for K traits. Let Y k be the n × 1 vector of values for the k-th trait and Y be

the n×K matrix of all traits for all individuals. For a given SNP, let Xi = 0, 1 or 2 be the

number of copies of minor alleles for individual i andX be the n×1 vector of genotypes for all

individuals. For simplicity, we assume there is no other covariate (note that this assumption

can be relaxed easily). For the time being, we are interested in testing association between

the SNP and the K correlated traits from a single study.

The usual approach is to test for association of each trait separately and report the

summary statistics and the p-values for each trait based on the marginal/univariate model

Y k = αk + βkX + εk, εk ∼ Nn(0, σ2
kIn) for all k = 1, 2, ..., K (Equation 1)

for continuous traits, or marginal model

logit
(
P (Y k = 1|X)

)
= αk + βkX for all k = 1, 2, ..., K (Equation 2)

for binary traits. For the k-th trait, βk is the genetic effect and our null hypothesis is

H0,k : βk = 0. The Wald test statistic for H0,k is Zk = β̂k/ se(β̂k), where β̂k is the maxi-

mum likelihood estimate (MLE) of βk and se(β̂k) is its standard error. Under H0,k, Zk has

an asymptotic N(0, 1) distribution. However, for k-th and l-th traits, Zk and Zl are not
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independently distributed if the trait correlation is non-zero. In fact, one can show that

corr(Zk, Zl) ≈ corr(Yk, Yl) when the variability in the estimators of βk and βl are ignored

(Zhu et al., 2015; Kim et al., 2015).

To test the global null hypothesis of no association with any trait H0 : β1 = ... = βK = 0,

one can use the summary statistics Z = (Z1, ..., ZK)′. Under H0, Z has an asymptotic

multivariate normal distribution with mean 0 and covariance matrix R, where R is the

K ×K correlation matrix of the original traits. Details on estimating R are provided in a

later subsection.

Existing Methods

Here we describe how summary statistics of the K traits for a given SNP can be used to

test H0. Later, we describe how these methods can be used to conduct meta-analysis using

summary statistics from multiple GWAS.

minP. The minimum p-value (minP) approach selects the most significant result among

the K single trait association tests using the test statistic

TminP = max
16k6K

|Zk| (Equation 3)

Its asymptotic p-value accounting for correlated Z statistics (Conneely and Boehnke, 2007)

is given by

pminP = 1− P
(

max{|Z1|, ..., |ZK |} < tminP

)
= 1−

∫ tminP

−tminP

. . .

∫ tminP

−tminP

fZ(.) dz1...dzK

where fZ(.) is the multivariate NK(0, R̂) density of Z, R̂ is the estimate of R and tminP is

the observed minP statistic. Computation of pminP requires numerical integration, which can

be implemented in R using pmvnorm() in the mvtnorm package (Genz et al., 2016).
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metaMANOVA. An alternative is to carry out a joint analysis of all the Z statistics using

a test similar to the multivariate score:

TmetaMANOVA = Z ′R̂
−1
Z

a∼
H0

χ2
K (Equation 4)

We will call this test metaMANOVA because of its similarity to MANOVA statistic in the

context of testing multiple trait association with a SNP using individual-level data (Ray

et al., 2016). Although multiple authors (Bolormaa et al., 2014; Pausch et al., 2016; He

et al., 2016) employed this approach, metaMANOVA’s type I error and power have not been

explored previously for stringent significance levels.

SHom and SHet. Zhu et al. (2015) proposed a meta-analysis test SHom (similar to O’Brien

(1984)’s test for individual-level data):

SHom =
(
1′(R̂W )−1Z

)′ (
1′(WR̂W )−11

)−1 (
1′(R̂W )−1Z

)
a∼
H0

χ2
1 (Equation 5)

where W is a diagonal matrix of weights for the Z-statistics. Zhu et al. (2015) took sample

sizes for the weights. SHom achieves maximum power when the genetic effects for all traits

are equal and in the same direction. Zhu et al. proposed a second statistic Sτ , which

seeks to include only Z statistics corresponding to traits with non-zero genetic effects:

Sτ =
(
1′τ (R̂τW τ )

−1Zτ

)′ (
1′τ (W τR̂τW τ )

−11τ
)−1 (

1′τ (R̂τW τ )
−1Zτ

)
, where, for a given

τ > 0, Zτ is the sub-vector of Z satisfying |Zk| > τ and the sub-matrices W τ , R̂τ , 1τ are

defined similarly. For large enough τ , it is possible to have all |Zk| < τ . In this scenario, set

Sτ = 0. Zhu et al. define the test statistic

SHet = max
τ>0

Sτ (Equation 6)

The null distribution for SHet can be approximated by a gamma distribution and p-value

estimated using simulations in Zhu et al.’s R program CPASSOC.

aSPU and SSU. Kim et al. (2015) defined the Sum of Powered Score (SPU) test as SPU(γ) =

∑K
k=1 Z

γ
k , where γ is a positive integer. They constructed multiple SPU(γ) tests, with γ
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values 1, 2, ..., 8 or ∞, that put more weight on traits with larger Z statistics as γ increases.

Kim et al. showed that SPU(1) = SHom. SPU(2), also known as the Sum of Squared

Score (SSU) statistic, is approximately distributed as aχ2
d + b under H0, where a, b, d can be

estimated from R̂ (Pan, 2009). The aSPU test adaptively selects the SPU test with minimum

p-value. The SPU(γ) statistics for γ > 2, and hence the aSPU statistic, do not have closed

form null distributions and require Monte Carlo simulations to estimate p-values.

Proposed Method: metaUSAT

In the presence of individual-level data, Ray et al. (2016) proposed a unified score-based

association test (USAT) to analyze association of multiple traits with a single SNP. USAT

seeks to maximize power by adaptively combining SSU (well suited to scenarios when most

or all traits have non-zero genetic affects) and MANOVA (well-suited to most scenarios

unless most or all traits are associated). Here, we propose metaUSAT, a meta-analysis

version of USAT, that can be calculated using univariate summary statistics. We consider

the weighted statistic Tω = ωTmetaMANOVA + (1 − ω)TSSU, ω ∈ [0, 1], where TSSU = Z ′Z is

the SSU test statistic. Since TmetaMANOVA and TSSU have asymptotic chi-square distributions

under H0, for a given weight ω, Tω is approximately distributed as a linear combination of

(potentially dependent) chi-squared variables. The p-value pω of Tω can be calculated using

many algorithms (e.g., Davies, 1980; Liu et al., 2009). We define metaUSAT as the weighted

combination with the most significant p-value:

TmetaUSAT = min
ω∈[0,1]

pω (Equation 7)

We consider a grid of 11 equi-spaced values of ω from 0 to 1, and approximate the corre-

sponding p-value using a fast one-dimensional numerical integral (see Supplementary S1).
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Estimation of R and its Effect on metaUSAT

To estimate the trait correlation matrix R, we use the Z-statistics of the SNPs which are

not associated with any of the K traits (i.e., SNPs with p-values greater than a pre-defined

significance threshold, say 10−5, for any trait). Zhu et al. (2015) showed that under the null

hypothesis of no association, the correlation matrix of the univariate summary statistics

(obtained by calculating the sample correlation matrix R̂ of the Z’s over a large number of

null SNPs) is the same as the trait correlation matrix. This result holds even in the presence

of covariates in Equation 1 or Equation 2 (Liu and Lin, 2017).

It is noteworthy that the performance of metaUSAT and the other afore-mentioned sum-

mary statistic based tests depends on the estimation ofR. In a GWAS, we expect most SNPs

to be not associated with any trait, and these null SNPs can be conveniently used to estimate

R. However, as pointed out by one reviewer, recent evidence from heavily studied complex

traits such as height and schizophrenia seems to suggest that these traits are highly polygenic.

Consequently, a large portion of the genome in linkage disequilibrium (LD) with the causal

variants is also associated with the traits. For the joint analysis of such highly polygenic

complex traits using summary statistics, the relation corr(Zk, Zl) ≈ corr(Yk, Yl) may not be

valid and the estimate of R will be affected. The extent to which this misspecified R affects

the validity of the tests depends on the strength of association (of the non-null SNPs used to

estimate R) as well as on the structure of the test statistic. Our simulation experiments (see

Supplementary S4) show that if non-null SNPs with low to moderate strengths of association

are used to estimate R, the type I error estimates for metaUSAT and minP are largely

unaffected while SHom, SHet and metaMANOVA may be heavily affected. It seems to us

that test statistics that directly incorporate R (e.g., metaMANOVA) are heavily affected

by its misspecification while test statistics incorporating R indirectly only through its null

distribution (e.g., minP) are mostly unaffected. The validity of metaUSAT (a data-adaptive
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minimum p-value approach) is largely unaffected by misspecified estimate of R arising due

to polygenicity of traits. It is important to mention that our conclusion is based on a limited

simulation experiment. It is beyond the scope of this paper to explore this aspect in more

detail.

Extension to Meta-analysis of Multiple GWAS

Consider summary statistics Zjk for association with a given SNP for trait k (k = 1, 2, ..., K)

from study j (j = 1, 2, ..., J). Some or all J studies may or may not have overlapping samples.

Let Zj be the vector of K summary statistics for study j, Z be the JK×1 vector of summary

statistics from all traits across all studies, and β be the corresponding JK×1 vector of effect

sizes. We wish to test H0 : β = 0 against the two-sided alternative that at least one of the

traits has non-zero genetic effect in at least one of the studies.

For k-th and l-th traits from two studies j and j′, Lin and Sullivan (2009) showed that

corr(Zjk, Zj′l) ≈ njj′,kl√
njknj′l

corr(Yjk, Yj′l), where njj′,kl is the number of overlapping samples,

and njk & nj′l are the sample sizes in the two studies. When the studies are independent

(njj′,kl = 0), summary statistics from the two studies are uncorrelated.

For the perfect overlap scenario (njj′,kl = njk = nj′l), the correlation of summary statistics

is approximately same as the correlation of the traits (same as that of a single study with

multiple traits). We estimate the JK × JK correlation matrix R from the JK Z-statistics

for the SNPs that do not exceed a pre-defined significance threshold (say, p-value = 10−5)

for any trait. The formulation of the Z statistic and the estimation of its correlation in this

fashion addresses cryptic relatedness arising from overlapping samples in the studies (Zhu

et al., 2015; Kim et al., 2015). Once Z and R are defined, we can use any of the existing

methods and metaUSAT.

When meta-analyzing across studies, different studies may have varying sample sizes. Since

sample sizes may vary widely across traits and/or studies, we suggest weighting the univariate
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summary statistics by the corresponding sample sizes. If njk is the sample size for trait k in

study j, we use weighted statistics
√
njkZjk to put more weights on statistics coming from

larger studies. Note that this weighting scheme is incorporated in SHom (Equation 5) and

SHet (Equation 6) statistics.

Simulation Experiments

We conduct simulation experiments to assess type I error and compare power of metaUSAT

and the existing methods. For type I error simulations, we consider significance levels α =

10−2, 10−3, . . . , 10−6, 5× 10−7. For power simulations, we report empirical powers, based on

corrected critical values, at level α = 10−4. All analyses used the estimated R based on

summary statistics across null replicates.

Simulation 1: A single study

We generated single study of n = 1, 000 unrelated individuals, each measured for K = 5 or

10 traits and a bi-allelic SNP X with MAF 0.1 at Hardy-Weinberg equilibrium. For each

individual, we simulate K phenotypes using a multivariate normal linear model: Y K×1 =

β01K×1 +XβK×1 + εK×1 where β0 = 1 and the error ε is simulated from NK(0, σ2R(ρ)). We

tookR(ρ) as an exchangeable correlation matrix with pair-wise correlation ρ ∈ {0.2, 0.4, 0.6}.

For type I error simulations, the genetic effects β are 0 for all K traits. For power simulations,

we choose the genetic effect βk for an associated trait so that the SNP explains 0.5% of the

trait variance (k = 1, 2, ..., K). This, alongwith the MAF of the SNP, determines the genetic

effect sizes (see Basu et al., 2013, ‘Simulations’). We took positive direction of the effect size

for all associated traits. The total variance of an associated trait is fixed at 10, which ensures

that the variance due to SNP is 0.05 while the residual variance is σ2 = 9.95. We wish to

test H0 : β = 0.

Based on 108 null datasets, we estimate type I error of SHom, SHet, minP, metaMANOVA

and metaUSAT as the proportion of null datasets that give p-value 6 α. Our literature
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search did not yield any article where type I errors of all these summary-statistic-based

multivariate methods are studied at a level as low as 5× 10−7. We do not consider aSPU for

type I error analysis because it requires Monte Carlo simulations, making calculations for

108 datasets computationally undesirable. For comparing statistical powers of all methods

(including aSPU), we simulate 104 non-null datasets assuming 20% to 100% of the traits are

positively associated with the SNP. To avoid clutter, we are not including SSU (a special

case of aSPU) in any of these comparisons.

Simulation 2: Two independent studies

We consider two independent studies of 1, 000 independent individuals, each with measure-

ments on a single SNP with MAF 0.1 and 4 traits inspired by the METSIM lipids data on

total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL) and

triglycerides (TG). We use the trait correlation matrixRmetsim (Figure S1(a)) to simulate the

4 traits using the model described in Simulation 1. We consider 5 association scenarios: (i)

only TC is associated, (ii) TC and LDL are associated, (iii) TC, LDL and TG are associated,

(iv) all 4 traits are associated, and (v) none of the traits is associated. As before, the SNP

explains 0.5% of the trait variance when associated. We assume TC, LDL and TG have

negative genetic effects while HDL has positive effect when associated. We simulate two study

types: “homogeneous” and “heterogeneous”. For “homogeneous” studies, the association

pattern of the traits is same across both studies. For “heterogeneous” studies, we assume

association scenarios (i)-(iv) in the first study while the traits are not associated (scenario

(v)) in the second study. Figure S1(c) shows the estimated correlation matrix. For type I

error analysis, we assume scenario (v) for both studies and simulate 107 null datasets.

Simulation 3: Two studies with overlapping samples

We keep everything the same as in Simulation 2 except that the two studies now have 200

overlapping individuals. For “homogeneous” studies, we assume the association pattern is
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same across the two studies. For “heterogeneous” studies, excluding the overlap, we assume

the association scenarios (i)-(iv) in one study while the traits are not associated (scenario (v))

in the other study. For individuals common to both studies, we assume scenario (v). Figure

S1(d) shows the estimated correlation matrix, which is similar to the correlation structure

of lipid traits from the METSIM and T2D-GENES studies (Figure S1(b)).

Application to Lipids Data

METSIM Study

The METSIM Study is a single-site, longitudinal study of 10, 197 men (aged 45− 73 years)

randomly selected from the population of Kuopio, Finland (Stanc̆áková et al., 2009). Partic-

ipants were genotyped with the Illumina OmniExpress GWAS chip and the Illumina exome

chip. Here we focus on the association statistics of four lipid traits from the first visit:

TC, HDL, LDL, TG. Before obtaining the summary statistics, individuals on lipid-lowering

medication are removed and TG is log-transformed. The traits are, then, regressed on age

and age2, and residuals are inverse-normalized. We focus on 622, 950 autosomal SNPs with

MAF> 1%. We used kinship matrix in the mixed model framework of EMMAX (Kang et al.,

2010) to account for within-ancestry population structure and relatedness.

T2D-GENES Study

The T2D-GENES consortium carried out exome sequencing on 6, 504 T2D cases and 6, 436

controls from five ancestry groups (Fuchsberger et al., 2016). Here, we consider the 4, 541

individuals of European origin, 983 of which are part of the METSIM study sample. As

before, we focus on the four lipid traits. Exclusions, transformations and analysis parallel

those for the METSIM lipid traits. Here, we also adjusted sex as a covariate.
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Results

Simulation 1: A single study

The type I error estimates of metaUSAT and other methods are presented in Table 1.

Regardless of the number of traits and the strength of trait correlations, all methods control

type I error for moderate levels (α > 10−4). For more stringent levels, we observe slightly

inflated type I errors for all methods except SHom. The inflation seems to increase with

increase in number of traits. We note that type I error of metaUSAT is worst at α = 5×10−7;

in what follows we correct for this by computing power using empirical threshold. The

empirical threshold is based on 105 null replicates.

Figure 1 summarizes the empirical powers (based on corrected critical values) of all meth-

ods. We observe that as correlation becomes stronger and the number of associated traits

increase, SHom, minP and aSPU lose power in most association scenarios. SHet is domi-

nated by metaMANOVA, which is usually most powerful. However, metaMANOVA loses

power considerably as the proportion of associated traits increases. This phenomenon of

metaMANOVA’s power loss is the same as what Ray et al. (2016) observed for MANOVA

(for analyzing individual-level data) and provided an explanation for. When most or all of

the traits are associated, aSPU and SHom are quite powerful. Irrespective of the number of

associated traits and the strength of correlation, metaUSAT, being data-adaptive, has near

optimal power to detect association at all scenarios. Results for marker with MAF 0.5 (not

shown) are qualitatively similar. Apart from exchangeable correlation, we also consider an

AR1(ρ) correlation structure (auto-regressive correlation matrix of order 1 with parameter ρ)

and, as before, we find metaUSAT’s power to be robust across association scenarios (Figure

S2).
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Simulation 2: Two independent studies

The estimated correlation matrix, based on 5, 000 null summary statistics, is given in Figure

S1(c). Figures S1(a) and S1(c) show that trait correlations can be approximated by the corre-

lations of summary statistics. Type I error estimates (Table S1) indicate all methods control

type I error for low error levels. Table 2 suggests SHet, metaMANOVA, and metaUSAT are

usually most powerful. metaMANOVA and metaUSAT have similar powers. SHom and minP

are least powerful in most cases. aSPU is least powerful when a small proportion of traits

is associated. Results for MAF 0.5 (not shown) are qualitatively similar. We also conducted

this power comparison for binary traits and found metaUSAT to be robust across association

scenarios (Table S4).

Simulation 3: Two studies with overlapping samples

Type I error estimates (Table S2) are as expected from the earlier type I error analyses.

Empirical powers (Table 3) of the methods in the presence of overlapping samples are similar

to the simulation without shared individuals (Table 2). We observed similar conclusions when

this power comparison is conducted for binary traits (Table S5).

METSIM Study: Joint analysis of lipid traits

Single-trait analysis identified 118 associated variants at the 4-trait Bonferroni corrected

threshold of 1.25×10−8 (Figure 2(a)). metaMANOVA and metaUSAT respectively identified

159 and 158 associated variants at threshold 5 × 10−8. To identify independent association

signals, we grouped significant variants (with pairwise distance < 500 kb) into loci using

LD r2 > 0.1. Both metaMANOVA and metaUSAT identified 28 such independent loci, 27 of

which (except rs3093032, a 3’-UTR variant in ICAM1 gene) are known to be associated with

lipids from published literature (Table S6). Additionally, we jointly analyzed individual-level
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data on these lipid traits using USAT. Figure 2(b) shows concordance of p-values based on

individual-level data and p-values based on summary statistics.

METSIM + T2D-GENES Studies: Meta-analysis of a single trait from studies

with overlapping samples

We tested genetic associations of TC with 31, 897 variants (MAF > 1%) using summary

statistics from METSIM and T2D-GENES studies. metaUSAT, metaMANOVA and single-

trait analyses respectively found 12, 12 and 9 SNPs as significant (Figure 3(a)). Published

literature indicate that signals identified by metaUSAT (or metaMANOVA) are known to be

associated with cholesterol levels (Table S7). Figure 4(a) plots the metaUSAT p-values when

overlap is present against metaUSAT p-values when the overlapping individuals are excluded

from the METSIM sample. Concordance of the p-values suggest metaUSAT appropriately

accounted for overlapping samples.

METSIM + T2D-GENES Studies: Joint meta-analysis of lipid traits from

studies with overlapping samples

metaUSAT, metaMANOVA and single-trait analysis respectively found 26, 22 and 19 SNPs

as significant (Figure 3(b)). metaMANOVA and metaUSAT detected more signals by bor-

rowing information from correlated traits across studies. All of the signals found by both

metaMANOVA and metaUSAT are known to be associated with lipid levels in humans from

previous studies (Table S8). All the SNPs detected by metaMANOVA and by independent

analysis of each trait were identified by metaUSAT. Further, metaUSAT exclusively reports

4 significant SNPs (of which 3 are independent) that metaMANOVA fails to find (Table

4). For these SNPs, we also report the empirical p-values (calculated using 8.5× 109 Monte

Carlo simulations) to ensure these are not false associations detected as a result of slightly

inflated type I error of metaUSAT at stringent error levels. Details of this empirical p-value
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calculation of metaUSAT are provided in Supplementary S2. Finally, in Figure 4(b), we again

observe concordance of metaUSAT p-values with and without shared individuals.

Discussion

Most GWAS have focused on testing genetic association to single traits. Several recent articles

have advocated the joint analysis of multiple traits for improving statistical power to detect

associated genetic variants. In this article, we propose a new method for multivariate meta-

analysis, metaUSAT, an extension of our multivariate association test USAT (Ray et al.,

2016). For a given genetic variant, metaUSAT tests the association of multiple traits from

a single/multiple studies using univariate summary statistics. Importantly, it bypasses the

need for individual-level data, which is often unavailable or difficult to obtain.

Our simulation experiments and real data analyses establish that metaUSAT is often more

powerful than any of the existing tests for multivariate meta-analysis. It can be especially

advantageous in detecting highly pleiotropic variants that simultaneously influence multiple

traits. Apart from proposing new method metaUSAT, we also study power and type I error

performances of metaMANOVA and other summary-statistic-based multi-trait methods at

stringent error levels. metaUSAT and metaMANOVA can accurately control type I error

for moderate α levels, but produce slightly inflated type I error rates at very small α levels

(like the other methods). We found that metaMANOVA has a serious drawback: it may fail

to detect association when most or all traits are associated (this behavior explored by Ray

et al. (2016) in detail). The joint analysis of all lipid traits using METSIM and T2D-GENES

studies further confirmed this. The power of metaMANOVA (and other multivariate tests)

depends on a complex interplay of the number of truly associated traits, their correlation

structure and the directions of the signals. The underlying association scenario changes

from one variant to another, and is not known a priori for any real dataset. There is no



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

16

uniformly most powerful multivariate test, and a particular choice of association test may

not be powerful enough to detect true signals. metaUSAT, being data-adaptive in nature,

is less affected by the true (unknown) association scenario, and proves to be a robust yet

computationally efficient choice for investigators.

The assumption of equal genetic effects across traits and across studies is hardly tenable,

making SHom unlikely to be powerful, especially when there is a moderate to large number of

traits. aSPU relies on compute intensive p-value calculation approach, which is not feasible

when analyzing large GWAS data. SHet is usually dominated by metaMANOVA. On the other

hand, metaUSAT is at least as powerful as metaMANOVA and a fast p-value calculation

approach makes it suitable for testing genetic associations across multiple traits from multiple

large-scale genome wide studies. Power of metaUSAT is robust to the proportion of associated

traits. To alleviate any concern of inflated association signals of metaUSAT at stringent

levels, we can calculate empirical metaUSAT p-values (as described in Supplementary S2).

This need not be done for all variants; instead we can focus only on the handful of variants

that have metaUSAT p-values just crossing the chosen threshold.

metaUSAT can be used in a few different ways. We can test association of one or more traits

from a single or multiple studies, which may or may not be independent. metaUSAT does

not assume homogeneity of trait effects across studies. If the studies are nearly independent

and the trait effects are believed to be homogeneous across studies, we can use meta-

analyzed summary statistics for each trait (e.g., Z-statistic output from METAL (Willer

et al., 2010)) to perform joint meta-analysis of multiple traits. metaUSAT, also, does not

require the independence of samples. When samples are related (e.g., in family-based GWAS),

metaUSAT can use summary statistics from EMMAX (or other univariate mixed model

framework) to appropriately test for genetic associations.

A potentially important contribution of metaUSAT can be in the emerging field of phenome-
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wide association studies (PheWAS) based on epidemiological cohorts. PheWAS systemati-

cally analyzes the impact of a genetic variant on a wide variety of human traits. Restrictions

on data sharing necessitate use of meta-analysis for PheWAS (Bush et al., 2016). In this

age of using publicly available data for increasing power and decreasing sequencing costs,

overlapping samples may be a concern when it comes to meta-analysis. Furthermore, current

single-trait meta-analysis approach for PheWAS is burdened by multiple comparison testing

both at the variant level and at the trait level (Hebbring, 2014). We recommend using

metaUSAT to overcome these challenges.

Supplemental Data

Supplemental Data include additional figures and tables, and can be found with this article

online.
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Web Resources

We implemented metaUSAT in R. The software can be found in GitHub (https://github.
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Figure 1. Simulation 1: Empirical power curves (based on corrected critical values) of
SHom, SHet, metaMANOVA, metaUSAT, minP and aSPU at significance level α = 10−4.
Power estimates are based on 104 datasets with 1, 000 unrelated samples. Each sample has
K = 5 or 10 traits with pairwise trait correlations ρ = 0.2, 0.4 or 0.6.
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(a)

(b)

Figure 2. METSIM Study: (a) Venn Diagram of the number of SNPs (and not independent
loci) found significant by each of metaUSAT, metaMANOVA and single-trait analyses. A
total of 622, 950 SNPs (MAF > 1%) are tested. For the single-trait analysis, a variant is
declared as significant if its p-value for at least one trait is < 1.25× 10−8 (4-trait Bonferroni
corrected GWAS threshold). It should be noted that most of these significant SNPs are in
LD. (b) metaUSAT p-values (joint analysis based on summary data) plotted against USAT
p-values (joint analysis based on individual-level data).
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(a) Meta-analysis of TC (b) Meta-analysis of all lipid traits

Figure 3. METSIM+T2D-GENES Studies: Venn Diagram of the number of SNPs (and
not independent loci) found significant by each of metaUSAT, metaMANOVA and single-
trait analyses. A total of 31, 897 SNPs (MAF > 1%) are tested. For the single-trait analysis,
a variant is declared as significant if its p-value for at least one trait is < 1.25× 10−8 (4-trait
Bonferroni corrected GWAS threshold). It should be noted that most of these significant
SNPs are in LD.

(a) Meta-analysis of TC (b) Meta-analysis of all lipid traits

Figure 4. METSIM+T2D-GENES Studies: metaUSAT p-values, with the overlapping
individuals in the two studies, are plotted on the x-axis, while metaUSAT p-values after
removing the overlap from METSIM are plotted on the y-axis.
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Table 2

Simulation 2: Comparison of empirical powers (based on corrected critical values) for two
independent studies at level α = 10−4. Power is estimated based on 104 non-null datasets.

For a given association scenario, the method with highest power is bold-faced and the
method with lowest power is italicized.

Study No. of traits Meta-analysis method
type associated SHom SHet minP aSPU metaMANOVA metaUSAT

1 0.999 0.923 0.034 0.009 1.000 1.000
Homogeneous 2 0.000 0.111 0.046 0.082 0.151 0.133

3 0.306 0.254 0.078 0.364 0.250 0.285
4 0.009 0.725 0.100 0.387 0.665 0.632

1 0.357 0.661 0.019 0.004 0.995 0.992
Heterogeneous 2 0.000 0.016 0.024 0.019 0.023 0.020

3 0.017 0.036 0.035 0.044 0.038 0.045
4 0.001 0.194 0.050 0.068 0.159 0.141

Table 3

Simulation 3: Comparison of empirical powers (based on corrected critical values) for two
studies with overlapping samples at level α = 10−4. Power is estimated based on 104

non-null datasets. For a given association scenario, the method with highest power is
bold-faced and the method with lowest power is italicized.

Study No. of traits Meta-analysis method
type associated SHom SHet minP aSPU metaMANOVA metaUSAT

1 0.984 0.852 0.034 0.018 1.000 1.000
Homogeneous 2 0.000 0.048 0.051 0.099 0.083 0.093

3 0.244 0.127 0.077 0.300 0.146 0.216
4 0.005 0.485 0.103 0.435 0.456 0.472

1 0.101 0.495 0.006 0.001 0.865 0.807
Heterogeneous 2 0.000 0.004 0.009 0.006 0.007 0.006

3 0.007 0.009 0.011 0.012 0.012 0.012
4 0.001 0.038 0.018 0.026 0.041 0.034
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