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Abstract 

 

We develop two complementary pipelines, “Zhang-Server” and “QUARK”, based on I-

TASSER and QUARK pipelines for template-based modeling (TBM) and free modeling 

(FM), and test them in the CASP12 experiment. The combination of I-TASSER and 

QUARK successfully folds three medium-size FM targets that have more than 150 

residues, even though the interplay between the two pipelines still awaits further 

optimization. Newly developed sequence-based contact prediction by NeBcon plays a 

critical role to enhance the quality of models, particularly for FM targets, by the new 

pipelines. The inclusion of NeBcon predicted contacts as restraints in the QUARK 

simulations results in an average TM-score of 0.41 for the best in top five predicted 

models, which is 37% higher than that by the QUARK simulations without contacts. In 

particular, there are seven targets that are converted from non-foldable to foldable (TM-

score >0.5) due to the use of contact restraints in the simulations. Another additional 

feature in the current pipelines is the local structure quality prediction by ResQ, which 

provides a robust residue-level modeling error estimation. Despite the success, significant 

challenges still remain in ab initio modeling of multi-domain proteins and folding of β-

proteins with complicated topologies bound by long-range strand-strand interactions. 

Improvements on domain boundary and long-range contact prediction, as well as optimal 

use of the predicted contacts and multiple threading alignments, are critical to address 

these issues seen in the CASP12 experiment. 

 

Key Words: Protein structure prediction, CASP12, contact prediction, ab initio folding, 

threading, residue quality estimation. 
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INTRODUCTION 

In every two years, the community-wide CASP experiment provides an objective 

platform to critically assess the progress and challenges in the field of protein structure 

prediction. The methods for protein structure prediction are generally categorized into 

template-based modeling (TBM) and free-modeling (FM), depending on whether 

homologous templates could be detected from the PDB library. Considerable progress 

has been witnessed in recent CASP experiments in TBM for modeling distant-

homologous proteins and for refining templates closer to the native structure,1-3 which 

have been mainly driven by the use of multiple threading templates.4 While the progress 

in FM seems more difficult and slower, excitements have been recently brought about by 

the success in the co-evolution based contact predictions and their utilization for guiding 

the folding of small- to medium-size protein targets.5-8 

Although the TBM and FM methods have been primarily developed for modeling 

different categories of protein targets, based on templates or ab initio folding, a recent 

trend shows that the integration of their complementarity can be useful in improving the 

structure modeling accuracy for both categories of protein targets. In CASP10 and 

CASP11, for instance, the interplay between the template-based I-TASSER9,10 method 

and the ab initio folding QUARK11,12 method has demonstrated enhancements of 

accuracy of the final models for FM targets.13,14 In this approach, the structures of 

QUARK based models are compared with those of the templates identified by LOMETS, 

and the templates are re-ranked based on their similarity to the QUARK models. These 

templates are then used in the I-TASSER structure-assembly simulations to predict the 

final models. Meanwhile, the integration of the QUARK models into the I-TASSER 
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structure assembly also showed the improvement of local structure accuracy for the TBM 

targets15. However, constructing ab initio folds for larger proteins with complicated 

topologies, in particular for β-proteins that have long-range β-strand contacts, is still a 

challenge.5,13,14,16,17  

One of the primary reasons for the difficulty of ab initio modeling in predicting large 

proteins with complicated topologies is the lack of precise long-range contact interaction 

information in the force field during protein structure assembly simulation. Recently, 

sequence-based contact prediction has attracted considerable interest to capture long-

range contact interactions. In particular, sequence-based contact predictions based on co-

evolution18-20 and machine learning21,22 have demonstrated the usefulness of contact-

maps in assisting folding of larger-size proteins.7,8,23 The major advantage for contact 

based folding simulation methods is that long-range contacts provide a constraint to 

reduce conformational space to be sampled, and help in folding the proteins with a more 

complicated topology.23 The success is however contingent upon precise contact map 

prediction that in turn depends on high volume of sequence homologs, particularly in co-

evolution based contact prediction methods. In order to enhance the robustness of the 

contact map prediction, we recently developed NeBcon24, a contact prediction pipeline 

which combines multiple sources of contact maps from both co-evolution and machine 

learning through a novel naïve Bayes classifier model. The posterior probabilities of the 

classifiers are then trained with intrinsic structural features using neural network to 

generate the final contact map. 

While continuous progress is on-going in protein structure prediction, a reliable 

estimation of the quality of the predicted structure models is critical to guide the biologist 
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users to better use the model predictions in their experimental research.25 In this regard, it 

is of particular importance to identify the trustable regions of the predicted models by 

estimating the residue-level quality. ResQ26 is a recently developed algorithm that has 

been designed to assess the residue-level quality of the predicted structure models by 

combining the structural variations in the assembly simulation with the local features of 

secondary structure prediction and sequence conservation search. 

In CASP12 experiment, we combined NeBcon predicted contacts with I-TASSER 

and QUARK to fold proteins that are distantly- or non-homologous to the experimentally 

solved structures. Additionally, we used ResQ to assess the residue-level quality of the 

predicted protein models based on I-TASSER and QUARK. The focus of this manuscript 

is mainly on the analysis of the results generated by the automated servers, “Zhang-

Server” and “QUARK”. The models in the “QUARK” group are constructed by 

QUARK-based ab initio folding programs guided by NeBcon predicted contacts, while 

those in “Zhang-Server” are generated based on the I-TASSER pipeline, where NeBcon 

and QUARK are incorporated to enhance the accuracy of the models. 

 

METHODS 

The pipelines of I-TASSER9,10 and QUARK11 have been described previously. Here, 

we briefly outline the two pipelines that are used in CASP12, followed by some detailed 

discussion about the recently developed components added to the pipelines for protein 

structure prediction. 

 

Outline of the QUARK pipeline 
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The “QUARK” server group in CASP12 is based on a modified version of QUARK 

ab initio protein structure prediction pipeline shown in Figure 1A. At first, if the target 

protein is detected as a multi-domain protein by ThreaDom27, the full length sequence is 

split into individual domains. The sequence of the domains (or the target for single 

domain proteins) is threaded through a non-redundant set of 6,023 high-resolution PDB 

structures by gapless threading to generate position-specific fragment structures with 

continuous lengths ranging from 1 to 20 residues. The scoring function for the gapless 

threading comprises profile-profile, secondary structure, solvent accessibility, and torsion 

angle matches between the target and the templates.12 A histogram of distances dij for 

each residue pair (i and j) of the target is derived from the top 200 fragments at ith and jth 

positions if the fragments are from the same PDB structure. The histogram that has a 

peak at the position of dij< 9	Å is converted to a distance profile for the residue pair. In 

addition to obtaining distance profiles for the residue pairs, we predict contacts between 

the residues that are within 8 Å using NeBcon, a sequence-based contact predictor24. The 

distance profile restraint, sequence-based contact restraint, the inherent knowledge-based 

and physical potential terms are used to guide the assembly of the fragments into full 

structural models by replica-exchange Monte Carlo (REMC) simulations; the NeBCon-

based contact restraints are applied again at a later stage for decoy filtering. 

It is noted that if the target is identified as “trivial” or “easy”, based on the significance 

and consensus of LOMETS28 threading alignments (as described in Eq. 1 of our CASP10 

report13), the initial structures and distance restraints are obtained from the LOMETS 

templates, which are also used for guiding the QUARK-based REMC simulations.  
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Next, “Decoy” conformations from the QUARK simulation trajectories are clustered 

by SPICKER29 to identify cluster centroids, which correspond to low free-energy states. 

Before clustering, the decoys that do not satisfy a large portion of the NeBcon predicted 

contacts are filtered out for the “hard” and “very hard” targets. The cluster centroids from 

the five largest clusters are refined by ModRefiner30 or fragment-guided molecular 

dynamics (FG-MD)31 to obtain five final models. Here, the sequence-based contact 

restraints are not used, where the only external restraints in the ModRefiner and FG-MD 

simulations are those derived from the initial input models to the programs. The models 

from the corresponding clusters are ranked in descending order of the size of the 

SPICKER clusters. For multi-domain proteins, the final structures of the individual 

domains are assembled together with appropriate orientations by a rigid-body Metropolis 

Monte Carlo simulation (see Eq. 6 below). Finally, the residue-level quality is predicted 

by ResQ.26 

 

Outline of the I-TASSER pipeline 

The “Zhang-Server” in CASP12 is based on the classical I-TASSER structure 

prediction pipeline as shown in the dashed box of Figure 1B. Similar to the QUARK 

pipeline, multi-domain proteins are first partitioned into individual domains by 

ThreaDom27. The sequence of the individual domain or the target is threaded through a 

representative template library of the PDB using LOMETS28. If the target is classified as 

“hard” or “very-hard” based on the significance and consensus of the templates identified 

by LOMETS, the templates are re-ordered by their structural similarity to the QUARK 

models of the target. Fragments are extracted from the continuously aligned regions of 
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the template structures and assembled into full-length structural models by a modified 

REMC simulation procedure32. A composite force field,10,33,34 which combines the 

distance restraints calculated from the templates and the NeBcon derived contact maps 

with the inherent knowledge-based energy terms, is used to guide the structural assembly 

simulations. The decoys from the trajectories of the simulations are clustered by 

SPICKER.29  

Next, the cluster centroids are aligned against the structures in the PDB library using 

TM-align.35 The spatial restraints extracted from the TM-align templates are used for the 

second round of REMC simulations. The re-assembled structure models are reconstructed 

into full atomic models by REMO36 and further refined by FG-MD31 to generate the final 

structure models. For each of these models, we obtain different rankings from five Model 

Quality Assurance Programs (MQAPs)14: C-score37, structural consensus (the average 

TM-score of the target model to all other models), and three statistical energy functions 

(RWplus38, GOAP39, and  DOPE40). The final ranking of the models is determined by 

ascending order of overall MQAP score, calculated as ∑ ��,�	�
�  with ��,�  being the 

ranking of the mth model by the pth program. The models of the multi-domain proteins 

are assembled together to form the full-length structure of the proteins. The residue-level 

quality of these models is finally estimated by ResQ.26 

The “Zhang” human group in CASP12 adopts the same pipeline as “Zhang-Server” 

group, except that structure models from other CASP12 servers are used as an additional 

set of templates together with the LOMETS detected templates in the simulations. 

 

New components in recent developments of QUARK and I-TASSER pipelines 
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Template re-ordering based on QUARK models. Structural assembly simulations in 

the classical I-TASSER pipeline oftentimes cannot accurately fold distantly- or non-

homologous proteins due to the lack of accurate long-range interaction information. 

Therefore, if a target is categorized as “hard” or “very-hard”, we use ab initio models 

built by QUARK to re-rank the LOMETS templates in two steps, with the purpose of 

identifying the low-scoring templates that have correct folds. First, for each of the 

identified LOMETS templates, we compute its structural similarity to the top-five 

QUARK models by: 

��������������� = max�
�,�,…,	 �������! 
where ������� is the TM-score41 between the LOMETS template and mth QUARK 

model. ��������������� for each of the templates that indicates the structural similarity 

between the QUARK models and the templates is used to sort all the identified LOMETS 

templates in descending order. Second, the QUARK models are inserted at the [(m-

1)M+1]-th position of the sorted template list, where M is the total number of threading 

programs in the LOMETS meta-threading program. Since higher ranked templates have 

stronger weights in template-structure-derived distance restraint collection, such ordering 

helps to balance the impact of threading the templates and QUARK models to the I-

TASSER structure assembly simulations. 

Integration of sequence-based contact prediction by NeBcon in structure assembly. 

In an effort to capture the long-range interaction information based on contacts between 

residues, sequence-based residue contact prediction is performed by NeBcon24. An initial 

set of contact maps are predicted by eight state-of-the-art contact prediction programs: 

PSICOV19, BETACON21, SVMcon42, SVMSEQ43, CCMpred44, mfDCA45, 
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STRUCTCH46 and MetaPSICOV47. The confidence scores of the predicted contacts from 

these predictors are then combined by naïve Bayes classifiers (NBC) to obtain posterior 

probabilities of the contacts. The contact map derived from the NBC model is further 

refined by neural network training, where the NBC posterior probabilities are coupled 

with a variety of sequence-based features, including amino acid composition, Shannon 

entropy, residue separation, predicted solvent accessibility and secondary structure.24  

In order to reduce the number of the falsely predicted contacts that may lead to 

inaccurate folding of the protein, we discard the contacts between residue pairs (i and j) 

that have a raw confidence score of NeBcon, "������#, lower than a confidence score 

cut-off, which is set as 0.5, 0.4 and 0.3 for short (|% − '| ≤ 11), medium (12 ≤ |% − '| ≤
24) and long (|% − '| > 24) range contacts, respectively. We further remove the contacts 

with low confidence scores until the number of contacts in each range is equal to an 

estimated number of contacts, as predicted for each range by a separate neural network 

predictor that is trained based on the length and secondary structure composition of the 

query sequence. The remaining contacts are used in the following sequence-based contact 

restraints, together with other energy terms in QUARK and I-TASSER based REMC 

simulations for structural assembly: 

-./���.�01�#2 =
34
5
46−7�#8 , 																																									1�# < 8Å− �� 7�#8 ;1 − �%< =>?@AB� CDE , 8Å ≤ 1�# < 10Å

�� 7�#∗ ;1 + �%< =>?@AI	JK CDE ,			10Å ≤ 1�# < 80Å7�#∗ ,																																												1�# ≥ 80Å
  (1) 

Here, 1�#  is the distance between the Cα atoms of ith and jth residues during the 

simulations. The upper and lower bounds of the contact potentials 7�#∗  and 7�#8 , 

respectively, are defined as 
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7�#∗ = MN�O< =PQQ?@K.J D, 7�#8 = MN�O< =PQQ?@K.�� D    (2) 

where MN is the Boltzmann constant and T is the temperature of the replicas in the REMC 

simulations. S""�# is the posterior probability of residue i and j being in contact given the 

raw NeBcon confidence score "������# , i.e., S""�# = T0%'	%<	��<UV�U|"������#2, with 

P(x) calculated based on a training set of 517 proteins. This training set was also used to 

optimize the above-mentioned confidence score cut-offs and the contact potential in the 

recent benchmark studies (Mortuza et al, in preparation). 

Decoy filtering based on contact prediction by NeBcon. In QUARK, the NeBcon 

contact maps are further used after the structural assembly simulations to filter out decoy 

conformations that strongly violate the NeBcon derived contact predictions. For each of 

the decoy structures obtained from the simulations, a Gaussian-like score is calculated by 

W./���.� = ∑ X�# �√�Z[0Q\./��?@2 �]^ _− �� `>?@Aa0Q\./��?@2[0Q\./��?@2 b�cQ\./��?@dQ\./��?@efg  (3) 

which is obtained by summing over contact of every residue pair (i and j) that has a raw 

confidence score, "������#, greater than a confidence score cut-off, "������#.h�: 

"������#.h� = i0.6,												|% − '| ≤ 110.4, 12 ≤ |% − '| ≤ 240.7,												|% − '| > 24    (4) 

Here, X�# is the weight for the contact pair (i, j) in the decoy structure that varies with the 

sequence separation as  

X�# = i0.2,											|% − '| ≤ 110.3, 12 ≤ |% − '| ≤ 240.5,											|% − '| > 24     (5) 
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Additionally, 1�# is the Cα distance between residue i and j in the decoy structure, and 

n0"������#2 and o0"������#2 are the mean and standard deviation, respectively, of the 

residue-residue Cα distance given the confidence score "������# ; both of which are 

trained based on the training set mentioned before (Mortuza et al, in preparation).  

W./���.�  in Eq. (3) is calculated for each decoy structure generated by QUARK 

simulation, which is used to sort the decoy set. Only the top 20% of the decoy structures 

are retained for the subsequent SPICKER clustering. 

Domain assembly for multi-domain proteins. For both “Zhang-Server” and “QUARK” 

groups, a full length multi-domain protein sequence is split into single domain sequences 

using ThreaDom.27 The structure of individual domains is then predicted by I-TASSER 

or QUARK pipeline. In order to assemble these domains to form the structure of the full 

protein, at first, a rough whole-chain structure is modeled by I-TASSER that provides a 

reference template to identify the orientation of the domains. The domain structures are 

then docked together with appropriate orientations by a quick Metropolis Monte Carlo 

simulation run, which is guided by a simple energy function: 

-�\\��N�� = pWq + ∑ �>?@>?@r>efg    (6) 

Here, RMSD is the root-mean-square deviation between an individual domain and the 

rough whole-chain structure, and 1�#  is the Cs distance between residue i of the first 

domain and residue j of the second domain. In the simulation, we consider those 

distances 1�#	that are smaller than 1.h� = 3.7	Å. Finally, FG-MD simulation31 is applied 

to remove steric clashes (mainly between side-chains) between the domains in the 

assembled full-length structure. 
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Residue-level structural error estimation by ResQ. In order to assess residue-specific 

quality of the structure models, we use a recently developed algorithm, ResQ.26 Briefly, 

the algorithm first extracts the following residue-level features for a target protein: i) 

coverage and structural variations of the LOMETS templates, ii) consistency between the 

solvent accessibility of the model residues and that predicted from the sequence by the 

SOLVE program from the I-TASSER suite,10 iii) difference between the predicted 

secondary structure by PSSpred48 from the sequence and the secondary structure of the 

model, iv) structural variations among the decoys obtained from the REMC simulations, 

and v) the deviations of the final model structures from the templates resulted from TM-

align structural alignment search of the model through the PDB database. These features 

are trained by Support Vector regression to predict the deviation of each residue position 

in the models from the native residue position. 

 

RESULTS AND DISCUSSION 

96 domains from 71 protein chains are assessed in CASP12. Based on the modeling 

difficulty, the CASP12 assessors classified the 96 domains into 39 FM targets, 38 TBM 

targets, and 19 FM/TBM (or TBM-hard) targets. Since the “Zhang” human group uses 

essentially the same pipeline as our server groups, the following discussion mainly 

focuses on the results obtained by the “Zhang-Server” and “QUARK” server pipelines, 

with the comparison of the server and human predictions briefly summarized at the end 

of the section. 

 

Prediction of FM targets remains challenging 
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We present a summary of the results based on the “Zhang-Server” models for the 39 

FM targets in Figure 2A, where it is shown that 11 targets are successfully modeled with 

a TM-score >0.5 by the “Zhang-Server” pipeline. Additionally, there are seven targets, 

which are reasonably folded with a TM-score in [0.40, 0.5]. While the majority of the 

successfully modeled targets are small-size proteins (<150 residues), there are three 

correctly predicted medium-size FM targets, T0915-D1, T0905-D1 and T0899-D1, which 

have more than 150 residues (marked by the arrows in Figure 2A). 

T0915-D1, which is an α-protein of 161 residues with an eight-helix bundle topology 

(Figure 2B), is of special interest to discuss. Before the incorporation of QUARK based 

models in “Zhang-Server”, the first LOMETS template (4l8tA domain 2) for this target 

has a low TM-score of 0.30 (GDT_TS=24) to the native due to significant structural 

differences of the last four helices between the template and the native structure, as 

shown in Figure 2B. As a result, the target is considered as a “hard” target, and QUARK 

models, which have the correct topology of eight-helix bundle with adjacent helices anti-

parallel to each other as in native, are used to re-order the LOMETS identified templates 

in the “Zhang-Server” pipeline. Re-ordering the templates based on the QUARK models 

significantly improves the quality of the top LOMETS template (3woyA, TM-score=0.43 

and GDT_TS=36), which was ranked as 21st in the template list before the re-ordering. 

As discussed in Methods, the first QUARK model (TM-score=0.49 and GDT_TS=42) is 

placed above the first template in the re-ordered list for the I-TASSER. Due to the unique 

advantage of combining and refining multiple templates, the final “Zhang-Server” model 

has a TM-score =0.53 (GDT_TS=45) that is higher than the best of the QUARK models 
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and LOMETS templates. This particular target highlights the efficacy of incorporation of 

QUARK based ab initio modeling in “Zhang-Server” to fold FM targets. 

T0905-D1 (Figure 2C) and T0899-D1 (Figure 2D) are two other medium-size α/β FM 

targets with 242 and 259 residues, respectively, which are correctly folded by the 

“Zhang-Server” pipeline into typical Rossman folds with a TM-score=0.59 in both cases 

(GDT_TS= 39 and GDT_TS= 36, respectively). The successful models of these targets 

are attributed to the templates 4wk0B (TM-score=0.55 and GDT_TS=37) and 3t3pB 

(TM-score=0.51 and GDT_TS=31), which are identified by LOMETS for T0905-D1 and 

T0899-D1, respectively. It is noted that due to the use of LOMETS templates in QUARK 

based simulations, “QUARK” group was also able to correctly fold these targets. 

While approximately fifty percent of the FM targets are modeled either correctly or 

reasonably by “Zhang-Server”, the pipelines still face difficulties in modeling of several 

small-size FM targets. For instance, the TM-score of the target T0886-D1, a β-protein 

with a length of 69 residues, is 0.37 (GDT_TS=48). This is due to its complicated 

topology with multiple pairs of long-range β-strand pairings, which is difficult to fold 

using our current pipelines.  

Another significant unsolved issue to us (as well as to the protein structure prediction 

community49) is the ranking and selection of the best predicted models. For the FM 

targets, for instance, the average TM-score of the first models is 0.34 (average 

GDT_TS=31), while it is 0.40 (average GDT_TS=36) for the best models by Zhang-

Server. The failure can be essentially attributed to the inaccuracy of the QUARK and I-

TASSER force fields which fail to rank the best models as the lowest free-energy clusters 
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in the structural assembly simulations, where the models for the FM domains are mainly 

ranked by the size of the SPICKER clusters.  

The failure in model selection was also observed for the TBM targets, which occurs 

most frequently for the cases when the best templates are detected only by a minority of 

the LOMETS programs. Since the model selection for the TBM domain is dominated by 

the consensus score of the models, the automated model selection process tends to select 

the consensus but less accurate models for these targets, an issue which has been 

extensively discussed in the previous CASP studies13,15,50. Here these data highlight again 

the remarkable gap that the current model ranking process remains to fill up. 

 

LOMETS template sorting by QUARK models is not always beneficial 

Given the templates with correct topologies (TM-score>0.5) for a target, I-TASSER is 

usually able to utilize multiple template information to construct the structure model that 

is often closer to the target. As shown in Figure 3A, out of 53 the target domains, for 

which at least one correct or roughly correct (TM-score>0.4) LOMETS templates are 

available in top 20 hits, the first “Zhang-Server” models for 41 targets have a greater TM-

score than that of the best templates. The TM-score difference between the first “Zhang-

Server” models and the best in top 20 LOMETS templates is no more than 0.03 for the 

rest of the 11 targets, except in two cases, T0890 and T0868. For these two targets, the 

qualities of the predicted first models are significantly worse than that of the best 

LOMETS templates, which have a reasonably correct topology. 

Here, we note that we lack the prior knowledge of CASP assessors’ domain boundary 

definition during CASP12. Therefore, the template identification and the construction of 
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QUARK models for re-ordering the templates in the “Zhang-Server” pipeline have been 

made based on the domains predicted by ThreaDom. To make a fair assessment the effect 

of the internal QUARK sorting process, Figure 3 has used the same domain definition 

utilized by our servers in the following discussion. Nevertheless, we also provide the 

corresponding data based on the domain defined by the CASP assessors in Table S1 in 

the Supplementary Material, to facilitate comparisons with the models by other groups 

when needed. 

T0890 is a two-domain protein, where the domains are partitioned as T0890-D1 and 

T0890-D2 by the CASP assessors. However, ThreaDom incorrectly predicted it as a 

single-domain protein as shown in Figure 4A. As a result, the first LOMETS template 

from the second domain of 3td7A, which covers only the second domain of the target 

structure with a TM-score of 0.74 (GDT_TS=70), has TM-score =0.46 (GDT_TS=41) for 

the full-length sequence as shown in the figure. Due to the incorrect domain prediction, 

the first QUARK model also has a low TM-score of 0.32 (GDT_TS=27) with respect to 

the full-length native structure, where only the first domain of the target was correctly 

modeled (TM-score=0.56, GDT_TS=62). Therefore, re-ordering the LOMETS templates 

based on the QUARK models leads to the selection of those templates to be used in the I-

TASSER simulations that have as low as TM-score of 0.32 (GDT_TS=27), which in turn 

drives the construction of the first “Zhang-Server” model with incorrect topology (TM-

score=0.32, GDT_TS=28). This indicates that the incorporation of QUARK based ab 

initio models in “Zhang-Server” pipeline may have less usefulness in modeling multi-

domain proteins, if the domains are not correctly predicted. 
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T0868, shown in Figure 4B, is an example of target mis-categorization based on the 

significance and consensus of LOMETS templates, where LOMETS identified the first 

template, 4g6vA, with a correct topology (TM-score=0.51, GDT_TS=47) while the target 

was categorized as “hard”. As a result, the target is initially modeled by QUARK, and 

these models are further used in re-ordering the LOMETS templates. Unfortunately, the 

QUARK based ab initio modeling constructs models with incorrect topologies (TM-

score=0.36 and GDT_TS=37 for the first model, and TM-score=0.47 and GDT_TS=49 

for the best model in top five), partly due to the prediction of limited types of secondary 

structure by PSSpred and inappropriate usage of contacts that will be discussed in detail 

later. The poor quality of the QUARK models, particularly of the first model, leads to the 

incorrect LOMETS templates being ranked at the top of the list, where the top 15 

templates are far away from the native structure (TM-score<0.40). On the other hand, the 

rank of the correct template, 4g6vA, is dropped from first to 56th place in the template list. 

As a result, the I-TASSER based simulations in the “Zhang-Server” pipeline fail to 

correctly construct the first model (TM-score=0.48, GDT_TS=50), since its simulation is 

mostly driven by the top ranked templates. However, it should be noted that although re-

ranking the template list has adverse effects on the quality of the first model by “Zhang-

Server”, the TM-score of the best model among the top five models for this target is 0.63 

(GDT_TS=59), as indicated by an arrow in Figure 3B. One reason for successful 

prediction of the best model is the constant utilization of the composite force field to 

draw the structure closer to the native state during REMC simulations instead of simply 

satisfying all geometry restraints imposed by the templates. Therefore, while template 
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quality has strong influence on the I-TASSER simulations, the prediction result is not 

completely biased by the low quality of the templates. 

Comparison of templates before and after QUARK-based sorting. Incorrect 

prediction of the first models for T0890 and T0868 prompts us to further examine the 

regular LOMETS templates before and after re-ordering them based on QUARK models, 

as presented in Figure 5. Based on the data shown in Figure 5A, the average TM-score of 

the first LOMETS templates is 0.28 (average GDT_TS=29) in the original templates list, 

while it is 0.33 (average GDT_TS=33) after re-ordering the templates, where QUARK 

models are not included in the list.  

However, the TM-scores of the best LOMETS templates among the top 20 hits for 

several targets do not increase significantly after the re-ranking of the templates (Figure 

5B); in fact, the re-ordering slightly decreases the average TM-score of the best 

LOMETS templates from 0.38 to 0.37 (average GDT_TS decreases from 38 to 37). This 

is understandable because the template structures in the original LOMETS ordering are 

more diverse than those after QUARK-based re-ordering that are normally converged 

into the five QUARK models. Therefore, there is a higher possibility for the best in the 

top 20 templates having a higher TM-score in the original LOMETS ordering. 

Nevertheless, since the top templates have a higher weight in the restraint collections and 

therefore are usually more important for the I-TASSER simulations, the QUARK based 

sorting still turns out to be beneficial to the final I-TASSER modeling results. 

The decrease of the TM-scores of the best templates is prominent for several targets, 

including T0868, T0890 and T0896-D1, which have incorrect QUARK models (TM-

score < 0.4). The low TM-scores of the best templates for these targets indicate that the 
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template re-ordering process may occasionally pose a negative effect on the construction 

of final models due to the lowering of the rank of the good templates when the QUARK 

models have incorrect topologies, despite its overall benefit to the I-TASSER modeling. 

We also compared the TM-score of the first QUARK models and that of the first 

LOMETS templates before the re-ranking, as shown in Figure 5C. The average TM-score 

of the first QUARK models is 0.38 (average GDT_TS=37), which is significantly higher 

than that of the first LOMETS templates (average TM-score=0.28, average GDT_TS=29). 

This indicates the usefulness of integration of QUARK models into the initial template 

pool that improve the quality of the top templates and thus guide the I-TASSER 

simulations to correctly construct the models for the “hard” and “very-hard” targets in 

“Zhang-Server”. The inclusion of QUARK models in the re-ordered list also leads to the 

improvement of the TM-score of the best in top 20 templates from 0.37 to 0.40 (GDT_TS 

improvement from 38 to 39) as shown in Figure 5D. Overall, the data presented in Figure 

5 suggests that the insertion of QUARK models into the template list and re-ranking the 

templates based on the models are often beneficial to further improve the quality of the 

templates and hence the final models of the I-TASSER simulations, especially for the 

“hard” and “very-hard” protein targets. 

 

Why does not high-accuracy contact prediction result in correct ab initio structure? 

One of the distinct features in our CASP12 pipelines compared to that in the previous 

CASP experiments is the incorporation of the sequence-based contact prediction by 

NeBcon24. Here, we examine the contribution of NeBcon predicted contacts to model the 

structure of “hard” and “very-hard” target domains. For this purpose, in Figure 6A, we 
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show the comparison of final models constructed by QUARK pipeline with NeBcon 

predicted contacts, i.e. by “QUARK” server, and that by the original QUARK pipeline 

without NeBcon, which is performed as a post-CASP experiment on the 47 “hard” and 

“very-hard” targets. Here, since the contact map and the final QUARK models are both 

created using the internal ThreaDom domains, for the sake of consistency and to better 

calibrate the difference of the two modeling pipelines we presented the data using again 

the same domain definition as the contacts and models were predicted. Nevertheless, we 

also present the corresponding data based on CASP assessor’s definition in the Table S2 

in Supplementary Material for the purpose of providing more information. 

As shown in Figure 6A, the TM-scores for almost all the targets have been increased 

with the addition of the NeBcon contacts as restraints in the QUARK simulations. For 

example, the TM-score for the first model of T0897-D2 by the original QUARK without 

contact is 0.24 (GDT_TS=25), while it was increased to 0.67 (GDT_TS=52) in the 

CASP12 “QUARK” server. The significant improvement of the model quality by the 

“QUARK” server is due to the correct prediction of contacts (Figure 6B dashed lines) 

that capture the information of β-sheet formation and interaction between β-strand and α-

helix (Figure 6C rectangles and circle). Overall, the average TM-score of the first models 

is 0.27 (average GDT_TS=26) by original QUARK for all the Hard and Very-hard targets, 

while the addition of contact restraints in the QUARK pipeline increases the average TM-

score to 0.36 (average GDT_TS=34). Similarly, the average TM-score of the best model 

among the five submitted QUARK models is increased from 0.30 to 0.41 (average 

GDT_TS increases from 29 to 37) due to the inclusion of NeBcon contacts in the 

QUARK pipeline. The significant increase of TM-scores demonstrates the effectiveness 
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of contacts in improving the quality of models based on QUARK ab initio folding. 

However, correct folds (TM-score < 0.5) are not obtained for most of the “hard” and 

“very-hard” targets, which are probably due to the lack of prediction or inappropriate 

usage of the predicted contacts.  

Figure 7A shows the precision of the predicted contacts versus the TM-score of the 

best QUARK models for the same set of targets. It is shown that the precision of the top 

L/5 all-range ( |% − '| ≥ 6 ) contacts, where L is the length of the target, is weakly 

correlated to the TM-score of the best QUARK models with a Pearson correlation 

coefficient =0.59. While the data is not shown here, the correlation between the precision 

of top L/5 long-range (|% − '| ≥ 24) predicted contacts and the TM-score of the best 

QUARK models is also not remarkable (Pearson correlation coefficient =0.49), indicating 

that the high precision of predicted contacts does not guarantee to generate correct 

models. In order to further investigate the reason for obtaining less accurate models based 

on the QUARK simulations with highly accurate top L/5 contacts, we consider T0918-D4 

as an example as it has a high contact precision (0.76) but low TM-score (0.34) and low 

GDT_TS (21), highlighted with the arrow in Figure 7A. 

T0918-D4 is a two-domain target as shown in Figure 7B, while ThreaDom incorrectly 

predicted it as a single domain target. Each domain in the target is a β-fold with both 

parallel and anti-parallel β-strand pairings. The precisions of top L all- and long-range 

predicted contacts are 0.63 and 0.57, respectively, and those of top L/5 all- and long-

range contacts are both as high as 0.76. However, NeBcon fails to predict the inter-

domain contacts as highlighted with the arrows in Figure 7C, where the black dots in the 

upper triangle represent the contacts in the native structure of the target and grey dots in 
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the lower triangle represent the NeBcon predicted contacts. As a result, orientation 

between the domains was not correctly modeled during QUARK simulations. 

Additionally, NeBcon cannot predict contacts for three long-range parallel β-strand 

pairings in the second domain as marked with rectangles in Figure 7C. The lack of 

prediction for these β-strand pairings leads to incorrect modeling of β-pairing in the 

second domain, as evidenced by low TM-score (0.4) and low GDT_TS (34) of that 

domain. Therefore, the overall TM-score of the final model is 0.34 (GDT_TS=21), 

although the first domain is correctly predicted (TM-score = 0.51, GDT_TS=45). The 

incorrect modeling of this target due to the lack of prediction of long-range contacts 

emphasizes the importance of accurate prediction of long-range contacts to correctly fold 

hard targets, especially those with multiple domains. In other words, the long-range 

contact predictions, although with a high accuracy, are not sufficiently divergent to cover 

the entire range of the sequence (in particular for the regions critical to determining the 

overall topology and domain orientations). 

We have also investigated how the model quality of T0868, shown in Figure 4B, is 

affected by the NeBcon predicted contacts that are used as restraints in the QUARK 

simulations. It is observed that the precisions for top L/5 and top L long-range contacts 

are 0.65 and 0.35, respectively, while the TM-scores of all the models are low for this 

target, as mentioned before. A closer check finds out that the QUARK simulations of this 

target severely lack long-range contact restraints; only three predicted long-range 

contacts are used in the simulations, since the majority of the predicted long-range 

contacts are ignored due to low confidence scores. This illustrates the significance of use 
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of optimized number of long-range contacts in ab initio modeling to correctly fold 

proteins. 

Overall, there are multiple reasons that have resulted in the weak correlation between 

the contact prediction accuracy and the quality of the final models, in particular the 

observation that high-accuracy contact predictions failed to lead to high-quality model 

predictions. The major one is probably the lack of correct long-range contacts despite of 

the accurate short- and medium-range contacts, which are less determinative for the 

global topology. In some cases, such as T0918-D4, which have even high-accuracy long-

range contacts, these contact predictions are not sufficient divergent to cover the entire 

sequence, especially for the regions that are critical to the global topology and domain 

orientations. The second important reason is that the integration of the contact restraints 

with the inherent force fields in I-TASSER and QUARK is not yet optimized. The 

combination of contact restraints is particularly subtle for an automated pipeline when the 

target type and the accuracy of contact predictions are unknown, where the weight of 

contact-map retraints could not be too strong (which could dominate and destroy the 

correct restraints from the threading templates for the Easy targets) or too weak (which 

could not be sufficient to guide the folding simulations for the Hard targets that do not 

have homologous templates). 

 

Current contact predictions cannot improve model quality of Easy targets 

While contact plays important roles in ab initio modeling to predict structure of Hard 

targets, its impact on template-based modeling of Easy targets may not be as strong. To 

examine this issue, we perform a post-CASP experiment on 38 “Trivial” and “Easy” 
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targets using a modified I-TASSER protocol that is identical to “Zhang-Server” in 

CASP12, except it does not use NeBcon-derived contacts in the simulations. As shown in 

Figure 8, TM-scores of the first models from the “Zhang-Server” and the modified I-

TASSER without contact do not significantly differ (average TM-scores of 0.70 in both 

pipelines). This is mainly due to the fact that the quality of the template structures 

detected by LOMETS for the TBM targets is on average better than that from the ab 

initio contact predictions. Therefore, the inclusion of the contact predictions in the 

structural assembly simulations does not result in significant improvement for the easy 

targets, which is consistent with the observation made previously43. 

 

Prediction of specific type of secondary structure is important 

The importance of secondary structure prediction has been discussed in our CASP11 

reports14,15. Here, we further examine the importance of specific type of secondary 

structure prediction to the correct 3D structure prediction. Since the TM-scores of 

QUARK models for T0868 are low, we have checked the secondary structure of residues 

96-123 (highlighted with black color in Figure 4B) in the native structure, the first 

QUARK model, and the templates. While the secondary structure for this range of 

residues is predicted to be a helix by PSSpred, shown in Figure 4C, we find that the 

residues 96-105 and 110-123 are α-helices, and the residues 106-109 correspond to a 

short 3/10 helix in the native structure as assigned by STRIDE. This subtle difference in 

helix type induces a helix kink in the native structure as highlighted with the arrow in 

Figure 4B. It is not possible to capture such a specific type of secondary structure by 

PSSpred that only predicts three states (helix, strand and coil) secondary structure. As a 
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result, QUARK simulations incorrectly construct an α-helical conformation for the whole 

residue 96-123 segment in the first QUARK model. Such a limitation of PSSpred 

necessitates the use of programs that can predict more specific and detailed types of 

secondary structures,51,52 which are essential to the modeling of the global fold of FM 

targets such as T0868. 

 

Comparison between server and human predictions 

The Zhang-Sever and Zhang human groups used the same pipeline in the CASP12 

experiment, where the only difference is that the Zhang-Sever started from the in-house 

LOMETS templates while the Zhang human group included the models from other CASP 

servers in the pool of the input templates and models. To examine the impact of the 

additional templates to the final model prediction, we present in Figure 9A a comparison 

of the TM-score of the first models by the two groups for all 96 domains as defined by 

the CASP assessors. Although the overall model quality of the two groups is largely 

comparable, there are two domains (T0901-D2 and T0905-D2) for which the TM-score 

of the Zhang models (0.54 and 0.45, respectively) is significantly higher than that of the 

Zhang-Server models (0.19 and 0.54, respectively). The GDT-TS scores are 24 and 23 

versus 59 and 53 for the two targets by Zhang-Sever and Zhang respectively. 

Interestingly, T0901 and T0905 are a pair of homologous proteins with a pair-wise 

sequence identity 36.9% and have a similar structure (TM-score=0.70 returned by TM-

align35). Both targets are two-domain proteins with the second domain having a 

discontinuous domain structure, i.e., T0901-D2: 34-41,265-326 and T0905:42-47,290-

349. However, ThreaDom failed to detect the discontinuous domain structure and the 
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Zhang-Server thus tried to fold the protein as a single domain which resulted in the 

completely incorrect structure for these domains because of the lack of correct templates 

from LOMETS. In the Zhang human group, however, the initial template set includes a 

correct template from 5dll_A detected by one of the CASP server groups which had 

probably the correct domain split, where the TM-score for the template of 5dll_A is 0.428 

and 0.430 for T0901-D2 and T0905-D2, respectively. After the I-TASSER refinement, 

the TM-score of the submitted model1 by the Zhang human group was increased to 0.54 

and 0.45, respectively (see Figure 9B and 9C), which is apparently attributed to the 

inclusion of the 5dll_A template. Here, we like to mention that for T0905-D2, the Zhang-

Server created a correct model (model3) with a TM-score=0.56 probably due to the 

integration of the QUARK models in the initial modeling pool, where the TM-score of 

the first QUARK model is 0.49. But this best model was not ranked as the model1 by the 

MQAP selection. Overall, these two examples further highlighted the issues of the 

automatic pipeline in domain split and assembly (especially for the targets of complex 

continuous domain structures), as well as in the MQAP-based model selection process. 

The data also indicate that the inclusion of additional complementary threading programs 

in LOMETS will increase the coverage of the initial template pool, which can further 

improve the quality of the final model of the I-TASSER pipeline. 

 

ResQ robustly estimates residue-level quality of model structures 

In CASP12, we use ResQ to evaluate the quality of the structure of the models at 

residue-level by estimating distance of the residues of the models from the corresponding 

residues of the native structures. The estimated residue-level quality is recorded in the 
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“temperature-factor” field of the PDB files that are generated for the output models by 

the pipelines. Following the protocol of CASP12 assessors 

(http://www.predictioncenter.org/casp12/doc/help.html#ASE), we calculate the accuracy 

of ResQ prediction based on Accuracy Self Estimate (ASE) score: 

ASE = 	100.0 × `1 − 1xy z 11 + {U|� 1K⁄ ~� − 11 + {1� 1K⁄ ~�z�
�
� b												{7~ 

where L is the number of residues in a target protein, U|� is the predicted distance error by 

ResQ for residue i, and 1K = 5	Å is a scaling constant. Additionally, 1� is the distance 

between residue i in the model structure and that in the native structure after the model is 

superposed onto the native. The superimposition of the model and the corresponding 

native is performed by the TM-score program41. The value of ASE ranges between 0 and 

100, where the value of 100 indicates the perfect prediction by ResQ. 

Figure 10A shows a scattering plot of the ASE score of the “Zhang-Server” first 

models for the CASP12 targets versus the TM-score of the models. As it is seen from the 

figure, the ASE scores for 90 out of 96 targets are greater than 60 (marked with a dashed 

line in Figure 10A), indicating the robustness of the ResQ prediction. In particular, ResQ 

showed remarkable performance in terms of accuracy of the prediction for the TBM and 

FM/TBM targets, where the average ASE scores are 86.67 and 74.83, respectively, for 

the targets modeled by “Zhang-Server”. We should emphasize that while the CASP12 

assessors evaluate the ResQ prediction for the TBM and FM/TBM targets only, ResQ is 

also notably accurate for the FM targets. The average ASE score for the FM targets 

modeled by “Zhang-Server” is 69.24, where 33 out of the 39 FM targets have an 

ASE >60. Due to the robustness of the ResQ prediction, it can be potentially useful in 
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atomic-level refinement of the models. To further illustrate this point, we discuss about a 

particular target, T0866-D1 (highlighted with an arrow in Figure 10A), for which the 

ResQ prediction is reliable as evidenced with the ASE score of 81.5. 

T0866-D1 is an FM target with a β-barrel topology as shown in Figure 10B, where the 

C-terminal tail (residues 119-141) of the native structure is represented with black color 

and the rest of the residues are shown with grey color. The superimposed “Zhang-Server” 

predicted model, which is represented with the spectrum color scheme according to the 

ResQ prediction with blue to red indicating increased distance error, onto the native 

structure shows that the C-terminal tail (highlighted with dashed circle in Figure 10B) in 

the model is far from the native. The ResQ prediction also shows that the residue distance 

error is high for this region, as highlighted with dashed rectangle in Figure 10C, 

indicating the region with the worse residue quality. This example shows the usefulness 

of ResQ in identifying low-quality regions, which may require extra attention during 

refinement process to enhance the structural quality of the predicted models. 

 

CONCLUSION 

We have tested two updated 3D structure prediction pipelines, I-TASSER and 

QUARK, as “Zhang-Server” and “QUARK” in the CASP12 experiment. One of the most 

noticeable additions to the pipelines, which have found significant impact to the 

modeling results, is the incorporation of the sequence-based contact prediction from 

NeBcon.24 The predicted contact maps were used as soft restraints in the QUARK and I-

TASSER simulations that help improve the structural quality of the predicted models. 

There are seven “hard” targets that were essentially converted from non-foldable to 
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foldable due to the contact restraints used in QUARK simulations. Target T0897-D2 is 

one of such examples in which contact restraints play important roles to fold a 

challenging target (discussed in Fig 6). 

Nevertheless, the limitation of our contact predictor to correctly predict long-range 

and divergent contacts and the non-optimum usage of the predicted contacts may reduce 

the potential usefulness of the contact information to structure modeling. For instance, 

due to low confidence scores of the majority of predicted contacts for the hard targets, 

several long-range contacts are ignored that could have been useful in the simulations to 

correctly fold the targets, as discussed for T0868 (Fig. 4). Therefore, continuous efforts 

should be given to improve the accuracy of contact map prediction and the optimum 

integration of the predicted contacts to the QUARK and I-TASSER simulations. One 

possible solution to incorporate the ignored correct contacts with low confidence scores 

in the simulations can be the use of ranking, instead of confidence score, as a parameter 

in the contact potential. Most recently, efforts to integrate contacts into LOMETS 

threading process have showed promise for non-homologous template selection (Zheng et 

al, 2017, submitted). 

The second noticeable component feature, newly introduced to the CASP12 structure 

modeling pipelines, is the application of the residue-level quality estimation method, 

ResQ,26 which shows efficiency and robustness in predicting the quality of local structure 

of the predicted models. The successful prediction of residue-level quality can be used to 

identify regions with poor quality that can potentially be improved in the structure 

refinement stage, as discussed for the case of T0866-D1 (Fig. 10). 
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While our CASP10 report13 describes the effectiveness of interlay of QUARK and I-

TASSER for protein structure prediction, here we further examined its importance, 

particularly in ab initio structure prediction. For instance, while the quality of the first 

LOMETS template is considerably bad (TM-score=0.30 and GDT_TS=24) for the FM 

target, T0915, re-ordering the templates list based on its QUARK models and addition of 

the models in the list significantly improve the quality of the top-ranked templates. In 

particular, the TM-scores of the first LOMETS template after re-ranking and the first 

QUARK model are 0.43 (GDT_TS=35) and 0.49 (GDT_TS=42), respectively, which 

play vital roles to guide the simulations for correctly folding the target (TM-score=0.53 

and GDT_TS=45). However, the use of re-ordered LOMETS templates and QUARK 

models are occasionally detrimental to the construction of the first model for the cases 

like T0868, T0890 and T0896-D1 that have completely incorrect QUARK models. One 

possible way to address this issue may be to determine the template orders based on a 

combination of original ranking of the templates, estimated quality of the QUARK 

models, and their structural similarities to the templates. 

Predicting structure of multi-domain proteins based on our pipelines remains a 

significant challenge, specifically for the hard targets, as illustrated for several cases, 

such as T0890 and T0918-D4. Several limitations are currently prevailing in the pipelines 

that restrict the correct prediction of structure of multi-domain proteins. First, threading 

based domain boundary prediction is not always reliable for “hard” targets due to the lack 

of structural templates with significant alignments. The development of sequence-based 

domain boundary prediction program can be a possible solution to overcome this issue. 

Second, although NeBcon predicts contacts with reasonable precision within a domain, it 
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often fails to detect inter-domain contacts, which are helpful to correctly model multi-

domain proteins. Therefore, an on-going effort is to expand the capability of NeBcon to 

correctly predict inter-domain contacts. Third, our current domain assembly protocol, 

which depends on whole-chain reference structures constructed by I-TASSER simulation, 

often cannot embed correct domain orientation information. Hence, the development of a 

specific force field based on domain-domain interactions is needed for ab intio domain 

assembly. 

Finally, folding hard β-proteins with complicated β-strand pairing patterns continues 

to be a hard, unsolved problem, especially when contact prediction fails to detect long-

range β-pairings. In the absence of appropriate contact restraints, the current ab initio 

QUARK structure assembly process has difficulty in sampling such complicated 

topologies within the given simulation time. In the future, this deficiency may be 

addressed by enumerating all possible β-folds as initial conformations for ab initio 

folding, and by implementing swapping movements between two β-strands in the 

structure assembly simulations. Studies along this line are in progress. 
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Figure Legend 

 

Figure 1. Automated protein structure prediction pipelines in CASP12. (A) Flowchart of 

“QUARK” server extended from original QUARK program with added contact 

prediction by NeBcon and threading templates from LOMETS. (B) The “Zhang-Server” 

pipeline is based on the classical I-TASSER pipeline (dashed box) with newly introduced 

components, including ThreaDom, NeBcon, FG-MD and ResQ. 

 

Figure 2. (A) TM-score of the best “Zhang-Server” model for the FM domains versus the 

length of each domain. The vertical dashed line represents the length cutoff of 150 

residues. The horizontal dashed lines represent the TM-score cutoff of 0.4 and 0.5, 

respectively. Global structure folds of three medium size FM targets with length > 150, 

T0915, T0905-D1 and T0899-D1, are correctly predicted (TM-score > 0.5) by “Zhang-

Server” as highlighted by the arrows. (B) Native structure and server models for T0915. 

All structures are colored in spectrum, with blue to red indicating N- to C- terminal. (C, 

D) “Zhang-Server” models (red) superposed onto the corresponding native structures 

(green) of T0905-D1 and T0899-D1, respectively. 

 

Figure 3. TM-score of the “Zhang-Server” models versus that of the best in top 20 

LOMETS templates. (A) the first “Zhang-Server” model, (B) the best “Zhang-Server” 

model submitted. The vertical dashed line represents the TM-score cutoff of 0.4 for the 

best in top 20 LOMETS templates. For T0868 and T0890, the quality of the predicted 
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first models is significantly worse than that of the best threading templates as highlighted 

by the arrows. 

 

Figure 4. (A) The native structure, best LOMETS template, and the QUARK and Zhang-

Server models for T0890, which is a two-domain protein. The domains are distinguished 

as per the domain assignment by CASP12 assessors, where the first domain is colored in 

black while the second domain is shown with grey. (B) The native structure, the template 

structure (before and after sorting) and the first QUARK model for T0868. Residues 96 

to 123 are colored in black. (C) Secondary structure of residues 96 to 123 of T0868 

assigned by STRIDE using native structure and that predicted by PSSpred. “H” stands 

for ɑ-helix in STRIDE and any helix type in PSSpred. “G” stands for 3/10 helix in 

STRIDE. 

 

Figure 5. Effect of QUARK-based sorting on the LOMETS templates for the “hard” and 

“very hard” targets defined by LOMETS. (A) TM-score of the first template after sorting 

versus that without sorting. (B) TM-score of best out of the top 20 templates after sorting 

versus that without sorting. (C) TM-score of the first QUARK model versus that of the 

first LOMETS templates without sorting. (D) TM-score of the best out of the top 20 

templates, which include sorted templates and QUARK models and are used by I-

TASSER in CASP12, versus that without sorting and are used in the classic I-TASSER 

pipeline. Three targets (T0868, T0918-D2 and T0896-D1), for which the sorting process 

significantly reduces the quality of the templates, are marked with arrows. 

 

Page 38 of 51

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
 39 

 

Figure 6. (A) Comparison between TM-score of the first model for “hard” and “very 

hard” targets generated by QUARK with NeBcon predicted contacts (“QUARK” server 

group in CASP12) and that by original QUARK without contacts (post-CASP 

experiment). (B) Native structure of T0897-D2 with the NeBcon predicted contacts 

shown by black dashed lines and the first QUARK model constructed during CASP12. (C) 

Native contact map for T0897-D2 (upper-left triangle) and NeBcon predicted contact 

map (lower-right triangle), which was used in structure assembly simulations. Each cross 

point represents a native or predicted contact. The NeBcon predicted contacts for parallel 

β-strand pairings and for interaction between β-strand and α-helix are highlighted by 

rectangles and circles, respectively. 

 

Figure 7. (A) TM-score of the best in top five QUARK models versus the precision of 

top L/5 contacts predicted by NeBcon for “hard” and “very-hard” targets. The target, 

T0918-D4, which has a high contact accuracy (0.76) but with a low TM-score (0.34) and 

GDT_TS (21) is highlighted with an arrow. (B) The native structure and the best 

QUARK model of T0918-D4. The first domain is colored in black while the second 

domain is colored in grey as assigned by CASP12 assessors. (C) Native contact map 

(upper-left triangle), and NeBcon predicted contact map (lower-right triangle) used in 

structure assembly simulations, for T0918-D4. Each cross point represents a native or 

predicted contact. The dashed line marks the domain boundary assigned by CASP12 

assessors. The parallel β-strand pairings, which are not detected by NeBcon, are 

highlighted by rectangles. Inter-domain contacts in the native structure are highlighted by 

arrows. 
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Figure 8. TM-scores of the first models from Zhang-Server with contacts versus those 

from I-TASSER without contacts for the 38 targets that have significant templates 

identified. Both of these pipelines use the same pool of templates identified during 

CASP12. 

 

Figure 9. Comparison of the first model obtained by “Zhang-Server” and “Zhang” 

human group. (A) All-to-all TM-score comparison, with two FM targets (T0901-D2 and 

T0905-D2) whose qualities of the models by “Zhang-Server” are significantly lower than 

that by “Zhang”, marked by arrows. (B,C) The native structures, “Zhang-Server” and 

“Zhang” models for T0901-D2 and T0905-D2. 

 

Figure 10. (A) The accuracy of ResQ predicted residue-level quality (ASE score) versus 

TM-score for the first “Zhang-Server” model. The horizontal dashed line corresponds to 

ASE score of 60. The FM target T0866-D1 is indicated by an arrow. (B) Superposition of 

the native structure and the first “Zhang-Server” model of T0866-D1 (TM-score=0.51, 

GDT_TS=48, ASE=81.51). The native structure is colored in grey, except for the C-

terminal tail (residues 119-141) that is colored in black. The same C-terminal tail in the 

“Zhang-Server” model is highlighted by a dashed circle. The “Zhang-Server” model is 

colored in spectrum color scheme according to predicted residue quality by ResQ, where 

blue to red color indicates increasing distance error. (C) Overlay of the distance error 

predicted by ResQ and the actual distance error (y-axis, higher values indicate worse 
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residue qualities) for T0866-D1. The region of 119-141 with a high distance error is 

highlighted with a dashed rectangle. 
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Figure 1. Automated protein structure prediction pipelines in CASP12. (A) Flowchart of “QUARK” server 
extended from original QUARK program with added contact prediction by NeBcon and threading templates 
from LOMETS. (B) The “Zhang-Server” pipeline is based on the classical I-TASSER pipeline (dashed box) 

with newly introduced components, including ThreaDom, NeBcon, FG-MD and ResQ.  
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Figure 2. (A) TM-score of the best “Zhang-Server” model for the FM domains versus the length of each 
domain. The vertical dashed line represents the length cutoff of 150 residues. The horizontal dashed lines 
represent the TM-score cutoff of 0.4 and 0.5, respectively. Global structure folds of three medium size FM 
targets with length > 150, T0915, T0905-D1 and T0899-D1, are correctly predicted (TM-score > 0.5) by 

“Zhang-Server” as highlighted by the arrows. (B) Native structure and server models for T0915. All 
structures are colored in spectrum, with blue to red indicating N- to C- terminal. (C, D) “Zhang-Server” 
models (red) superposed onto the corresponding native structures (green) of T0905-D1 and T0899-D1, 

respectively.  
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Figure 3. TM-score of the “Zhang-Server” models versus that of the best in top 20 LOMETS templates. (A) 
the first “Zhang-Server” model, (B) the best “Zhang-Server” model submitted. The vertical dashed line 

represents the TM-score cutoff of 0.4 for the best in top 20 LOMETS templates. For T0868 and T0890, the 

quality of the predicted first models is significantly worse than that of the best threading templates as 
highlighted by the arrows.  
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Figure 4. (A) The native structure, best LOMETS template, and the QUARK and Zhang-Server models for 
T0890, which is a two-domain protein. The domains are distinguished as per the domain assignment by 
CASP12 assessors, where the first domain is colored in black while the second domain is shown with grey. 

(B) The native structure, the template structure (before and after sorting) and the first QUARK model for 
T0868. Residues 96 to 123 are colored in black. (C) Secondary structure of residues 96 to 123 of T0868 

assigned by STRIDE using native structure and that predicted by PSSpred. “H” stands for ɑ-helix in STRIDE 

and any helix type in PSSpred. “G” stands for 3/10 helix in STRIDE.  
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Figure 5. Effect of QUARK-based sorting on the LOMETS templates for the “hard” and “very hard” targets 
defined by LOMETS. (A) TM-score of the first template after sorting versus that without sorting. (B) TM-
score of best out of the top 20 templates after sorting versus that without sorting. (C) TM-score of the first 
QUARK model versus that of the first LOMETS templates without sorting. (D) TM-score of the best out of the 
top 20 templates, which include sorted templates and QUARK models and are used by I-TASSER in CASP12, 
versus that without sorting and are used in the classic I-TASSER pipeline. Three targets (T0868, T0918-D2 
and T0896-D1), for which the sorting process significantly reduces the quality of the templates, are marked 

with arrows.  
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Figure 6. (A) Comparison between TM-score of the first model for “hard” and “very hard” targets generated 
by QUARK with NeBcon predicted contacts (“QUARK” server group in CASP12) and that by original QUARK 

without contacts (post-CASP experiment). (B) Native structure of T0897-D2 with the NeBcon predicted 
contacts shown by black dashed lines and the first QUARK model constructed during CASP12. (C) Native 
contact map for T0897-D2 (upper-left triangle) and NeBcon predicted contact map (lower-right triangle), 

which was used in structure assembly simulations. Each cross point represents a native or predicted contact. 
The NeBcon predicted contacts for parallel β-strand pairings and for interaction between β-strand and α-

helix are highlighted by rectangles and circles, respectively.  
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Figure 7. (A) TM-score of the best in top five QUARK models versus the precision of top L/5 contacts 
predicted by NeBcon for “hard” and “very-hard” targets. The target, T0918-D4, which has a high contact 
accuracy (0.76) but with a low TM-score (0.34) and GDT_TS (21) is highlighted with an arrow. (B) The 
native structure and the best QUARK model of T0918-D4. The first domain is colored in black while the 
second domain is colored in grey as assigned by CASP12 assessors. (C) Native contact map (upper-left 

triangle), and NeBcon predicted contact map (lower-right triangle) used in structure assembly simulations, 
for T0918-D4. Each cross point represents a native or predicted contact. The dashed line marks the domain 
boundary assigned by CASP12 assessors. The parallel β-strand pairings, which are not detected by NeBcon, 

are highlighted by rectangles. Inter-domain contacts in the native structure are highlighted by arrows.  
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Figure 8. TM-scores of the first models from Zhang-Server with contacts versus those from I-TASSER 
without contacts for the 38 targets that have significant templates identified. Both of these pipelines use the 

same pool of templates identified during CASP12.  
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Figure 9. Comparison of the first model obtained by “Zhang-Server” and “Zhang” human group. (A) All-to-all 
TM-score comparison, with two FM targets (T0901-D2 and T0905-D2) whose qualities of the models by 

“Zhang-Server” are significantly lower than that by “Zhang”, marked by arrows. (B,C) The native structures, 
“Zhang-Server” and “Zhang” models for T0901-D2 and T0905-D2.  
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Figure 10. (A) The accuracy of ResQ predicted residue-level quality (ASE score) versus TM-score for the first 
“Zhang-Server” model. The horizontal dashed line corresponds to ASE score of 60. The FM target T0866-D1 
is indicated by an arrow. (B) Superposition of the native structure and the first “Zhang-Server” model of 

T0866-D1 (TM-score=0.51, GDT_TS=48, ASE=81.51). The native structure is colored in grey, except for the 
C-terminal tail (residues 119-141) that is colored in black. The same C-terminal tail in the “Zhang-Server” 
model is highlighted by a dashed circle. The “Zhang-Server” model is colored in spectrum color scheme 

according to predicted residue quality by ResQ, where blue to red color indicates increasing distance error. 
(C) Overlay of the distance error predicted by ResQ and the actual distance error (y-axis, higher values 

indicate worse residue qualities) for T0866-D1. The region of 119-141 with a high distance error is 
highlighted with a dashed rectangle.  
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