

Supplemental Table 1. Frequency of full repeat C9orf72 expansions in SCA patients and normal American population.

	Normal American population	SCA1	SCA2	SCA3	SCA6
C9orf72 expansions \geq 31, \mathbf{n}	1659	48	56	108	58
C9orf72 expansions \leq 30, \mathbf{n}	0	3	2	1	1
Total, \mathbf{n}	1659	51	58	109	59
\boldsymbol{p} value $^{\mathrm{a}}$	-	0.000	0.001^{a}	0.062^{a}	0.034^{a}

American normal controls are from the reference 5.
${ }^{a}$ Fisher exact test

Supplemental Table 2. Baseline features of SCA participants with normal (≤ 7) and intermediate (8-30) C9orf72 repeat expansions

	$\begin{aligned} & \text { SCA } 1 \\ & n=48 \end{aligned}$		p-value ${ }^{\text {d }}$	$\begin{aligned} & \text { SCA } 2 \\ & \mathrm{n}=56 \end{aligned}$		p-value ${ }^{\text {d }}$	$\begin{aligned} & \text { SCA } 3 \\ & n=108 \end{aligned}$		p-value ${ }^{\text {d }}$	$\begin{aligned} & \text { SCA } 6 \\ & \mathrm{n}=58 \\ & \hline \end{aligned}$		p-value ${ }^{\text {d }}$
	Normal	Intermediate										
Sample size, n (\%)	28 (58.3)	20(41.7)		35 (62.5)	21 (37.5)		68 (63.0)	40 (37.0)		31 (53.4)	27 (46.6)	
$\begin{aligned} & 0 \text { Age at first } \\ & 1 \text { visit, } y \end{aligned}$	49.8 ± 14.4	50.3 ± 11.5	$0.888^{\text {b }}$	51.0 ± 14.0	47.3 ± 12.5	$0.329^{\text {b }}$	53.0 ± 12.1	48.6 ± 12.3	$0.075^{\text {b }}$	68.2 ± 10.0	62.1 ± 12.2	$0.038^{\text {b }}$
$\begin{aligned} & 3 \\ & 4 \\ & 5: \text { Gender, M } \end{aligned}$	17: 11	10:10	$0.461{ }^{\text {a }}$	17:18	13:8	$0.333^{\text {a }}$	30:38	21:19	$0.399^{\text {a }}$	16:15	14:13	$0.986^{\text {a }}$
6 Age of 7 onset, y 8 9 0	39.9 ± 12.9	39.7 ± 9.5	$0.943^{\text {b }}$	36.6 ± 13.5	35.0 ± 10.9	$0.646^{\text {b }}$	$\begin{gathered} 39.9 \pm 12.5 \\ \text { Median }= \\ 40.0 \end{gathered}$	$\begin{gathered} 37.2 \pm 11.6 \\ \text { Median }= \\ 38.5 \end{gathered}$	$0.339^{\text {c }}$	52.7 ± 10.3	49.7 ± 11.0	$0.290^{\text {b }}$
$\begin{aligned} & 1 \text { Disease } \\ & 2 \text { duration, } y \\ & 3 \\ & 4 \end{aligned}$	9.9 ± 8.3 Median $=$ 8.0	$\begin{gathered} 10.6 \pm 6.3 \\ \text { Median }=7.5 \end{gathered}$	$0.508^{\text {c }}$	15.0 ± 9.1	12.3 ± 6.0	$0.245^{\text {b }}$	$\begin{gathered} 13.4 \pm 8.0 \\ \text { Median }= \\ 12.0 \end{gathered}$	$\begin{gathered} 11.6 \pm 7.9 \\ \text { Median = } 11.0 \end{gathered}$	$0.204^{\text {c }}$	$\begin{gathered} 15.5 \pm 11.8 \\ \text { Median }= \\ 12.0 \end{gathered}$	$\begin{gathered} 12.3 \pm 9.7 \\ \text { Median }=9.0 \end{gathered}$	$0.285^{\text {c }}$
$\begin{aligned} & 5 \text { Expanded } \\ & 6 \text { CAG } \\ & 7 \text { repeats } \\ & 9 \end{aligned}$	46.4 ± 4.1 Median = 47.0	$\begin{gathered} 46.6 \pm 5.0 \\ \text { Median }= \\ 46.5 \end{gathered}$	$0.966^{\text {c }}$	$\begin{gathered} 40.1 \pm 3.1 \\ \text { Median }= \\ 39.0 \end{gathered}$	$\begin{gathered} 40.9 \pm 3.7 \\ \text { Median }= \\ 40.0 \end{gathered}$	$0.298{ }^{\text {c }}$	$\begin{gathered} 70.4 \pm 3.9 \\ \text { Median }= \\ 71.0 \end{gathered}$	$\begin{gathered} 72.0 \pm 4.3 \\ \text { Median }= \\ 72.0 \end{gathered}$	$0.111^{\text {c }}$	$\begin{gathered} 22.4 \pm 1.1 \\ \text { Median }= \\ 22.0 \end{gathered}$	$\begin{gathered} 22.3 \pm 0.7 \\ \text { Median }= \\ 22.0 \end{gathered}$	$0.656{ }^{\text {c }}$
$\begin{aligned} & 0 \\ & 1 \text { SARA } \\ & 2 \text { scores } \end{aligned}$	$\begin{gathered} 12.6 \pm 8.4 \\ \text { Median }= \\ 12.25 \end{gathered}$	$\begin{gathered} 15.9 \pm 7.7 \\ \text { Median }= \\ 14.25 \end{gathered}$	$0.177^{\text {c }}$	17.5 ± 6.9	17.7 ± 7.3	$0.939^{\text {b }}$	$\begin{gathered} 15.3 \pm 8.2 \\ \text { Median }= \\ 14.5 \end{gathered}$	$\begin{gathered} 15.4 \pm 10.1 \\ \text { Median }= \\ 13.25 \end{gathered}$	$0.929^{\text {c }}$	16.1 ± 7.1	14.3 ± 7.8	$0.343^{\text {b }}$
$\begin{aligned} & 4 \\ & 5 \text { PHQ-9 } \\ & 6 \text { scores } \\ & 7 \end{aligned}$	$\begin{gathered} 5.5 \pm 6.3 \\ \text { Median }= \\ 3.0 \end{gathered}$	$\begin{gathered} 8.0 \pm 7.1 \\ \text { Median }=7.5 \end{gathered}$	$0.178{ }^{\text {c }}$	$\begin{gathered} 5.2 \pm 5.0 \\ \text { Median }=4.0 \end{gathered}$	$\begin{gathered} 5.4 \pm 5.7 \\ \text { Median }=3.0 \end{gathered}$	$0.931{ }^{\text {c }}$	$\begin{gathered} 8.0 \pm 6.1 \\ \text { Median }= \\ 6.0 \end{gathered}$	$\begin{gathered} 5.7 \pm 4.1 \\ \text { Median }=5.5 \end{gathered}$	$0.101^{\text {c }}$	$\begin{gathered} 6.7 \pm 6.0 \\ \text { Median }= \\ 6.0 \end{gathered}$	$\begin{gathered} 7.7 \pm 6.4 \\ \text { Median }=6.0 \end{gathered}$	$0.594^{\text {c }}$

[^0]${ }^{\text {c }} 2$ independent samples Mann-Whitney U test
${ }^{d}$ A Bonferroni correction was made to adjust for multiple comparisons, $\mathrm{p}<0.007$ were considered significant (7 tests in each subtypes)

Supplemental Table 3. Longitudinal SARA and PHQ-9 scores of normal and intermediate C9orf72 repeat expansion in GEE models

	Regression coefficients of SARA score						
		Age of first visit (yrs)	Sex	Expanded CAG repeats	Allele type of C9orf72	Visit time	Allele type of C9orf72 \times Visit time
	SCA1	0.62****	4.71**	1.42****	2.66	0.95*	-0.04
\cdots	SCA2	$0.42^{* * * *}$	-1.40	1.87****	0.64	0.40	-0.84
	SCA3	0.67 ****	-0.82	$1.88{ }^{* * * *}$	0.14	0.37*	-0.02
	SCA6	0.11	-1.68	0.71	2.12	0.23	0.96
	Regression coefficients of PHQ-9 score						
		Age of first visit (yrs)	Sex	Expanded CAG repeats	Allele type of C9orf72	Visit time	Allele type of C9orf72 \times Visit time
	SCA1	0.08	-0.37	0.25	2.16	0.32	-1.90***
	SCA2	0.01	-1.35	-0.12	1.54	1.00***	-0.63
	SCA3	0.26***	2.41	0.66*	-5.49****	-0.38	3.48****
	SCA6	-0.12*	-2.65	-1.23*	-1.01	0.30	-1.72*

Abbreviations: GEE = generalized estimating equation, PHQ-9 = The 9-item Patient Health Questionnaire, SARA = Scale for Assessment and Rating of Ataxia, SCA = Spinocerebellar Ataxia.
*p <0.05, **p < 0.01, ***p $<0.005,{ }^{* * * *} p<0.001$
Sex: women $=0$, men $=1$
Allele type of C9orf72: normal allele $=0$, intermediate allele $=1$
Visit time: time order every 6 month during the two-year follow up

C9orf72 Repeat Expansions as Genetic Modifiers for Depression in Spinocerebellar Ataxias

Karla P Figueroa, MS, ${ }^{*}$ Shi-Rui Gan, MD, PhD, ${ }^{* 2,3}$ Susan Perlman, MD, ${ }^{4}$ George Wilmot, MD, PhD, ${ }^{5}$ Christopher M Gomez, MD, PhD, ${ }^{6}$ Jeremy Schmahmann, MD, ${ }^{7}$ Henry Paulson, MD, PhD, ${ }^{8}$ Vikram G Shakkottai, MD, PhD, ${ }^{8}$ Sarah H Ying, MD, ${ }^{9}$ Theresa Zesiewicz, MD, ${ }^{10}$ Khalaf Bushara, MD, ${ }^{11}$ Michael Geschwind, MD, PhD, ${ }^{12}$ Guangbin Xia, MD, ${ }^{13}$ SH Subramony, MD, ${ }^{13}$ Tetsuo Ashizawa, MD, ${ }^{14}$ Stefan M Pulst, MD, ${ }^{1}$ Sheng-Han Kuo, MD ${ }^{3}$

Author affiliations:

${ }^{1}$ Department of Neurology, University of Utah, Salt Lake City, Utah, USA.
${ }^{2}$ Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
${ }^{3}$ Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
${ }^{4}$ Department of Neurology, University of California Los Angeles, California, USA.
${ }^{5}$ Department of Neurology, Emory University, Atlanta, Georgia, USA.
${ }^{6}$ Department of Neurology, University of Chicago, Chicago, Illinois, USA.
${ }^{7}$ Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
${ }^{8}$ Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.
${ }^{9}$ Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA.
${ }^{10}$ Department of Neurology, University of South Florida, Tampa, Florida, USA.
${ }^{11}$ Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA.
${ }^{12}$ Department of Neurology, University of California San Francisco, California, USA.
${ }^{13}$ Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, USA.
${ }^{14}$ Houston Methodist Research Institute, Houston, Texas, USA.
*These authors contributed equally to the work.

Correspondence:

Dr. Stefan M Pulst, 175 North Medical Drive East, Salt Lake City, UT 84132, USA, Tel:
(801)585-7575, Email: stefan.pulst@hsc.utah.edu

Dr. Sheng-Han Kuo, 650 West $168^{\text {th }}$ Street, Room 305, New York, NY 10032, USA.
Tel: (212) 342-3753, Fax: (212) 305-1304, Email: sk3295@columbia.edu

Word count: title characters: 78, text: 492

Funding: The CRC-SCA natural history study is supported by the Rare Disease Clinical Research Network (RDCRN) (RC1NS068897), and the National Ataxia Foundation. Dr. Stefan Pulst is supported by NIH/NINDS RC4NS073009, R01NS033123, R37NS033123. Dr. Kuo is supported by the NINDS K08 NS083738, Louis V. Gerstner Jr. Scholarship, American Brain Research Training Fellowship,

Parkinson Disease Foundation, American Parkinson's Disease Association, Rare Disease Clinical Research Network (RDCRN) (RC1NS068897), International Essential Tremor Foundation, and NIEHS pilot grant ES009089, the Smart

Foundation. Dr. Gan is supported by the National Natural Science Foundation of China (U1505222).

The genetic interactions between pathological repeat expansions have been of major interests in neurodegenerative disorders. Recently, pathogenic C9orf72 repeat expansions, a main genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia and pathogenic ATXN2 repeat expansions, the causative gene for spinocerebellar ataxia (SCA) type 2 , are reported to coexist in a single family with ataxia. ${ }^{1}$ Therefore, this observation raises an interesting possibility that C9orf72 repeat/expansions could be genetic modifiers in CAG-repeat SCAs and might influence the disease progression.

Therefore, we studied 277 patients with SCA1, 2, 3 and 6 from the Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA) cohort, ${ }^{2}$ and we determined the C9orf72 repeat length as previously described. ${ }^{3}$ The Scale for Assessment and Rating of Ataxia (SARA) and the 9-item Patient Health Questionnaire (PHQ-9) were used to measure the severity of ataxia and depression, respectively. We studied the rate of ataxia and depression progression using generalized estimating equation to test whether the intermediate repeats of C9orf72 were associated with ataxia or depression progression in SCAs. As described previously, full repeat expansions of C9orf72 were defined as ≥ 31 hexanucleotide repeats whereas intermediate repeat expansions were 8-30. ${ }^{3-5}$

We identified seven patients (3 out of 51 SCA1; 2 out of 58 SCA2; 1 out 109 SCA3; 1 out of 59 SCA6) with pathogenic C9orf72 repeat expansions. None of the 7
cases had motor neuron disease, but they had various degrees of motor neuron signs
(Table 1). Compared to cognitively normal control (The original paper cites 1039 Europeans and 620 African American) population, ${ }^{5}$ the frequencies of expanded C9orf72 repeats in our cohort were significantly higher in SCA1, 2 , and 6 but not in SCA3 (Supplemental table 1). Forty percent of SCA patients carry intermediate C9orf72 repeat expansions, and the demographic and clinical features of SCA subjects with normal and intermediate alleles of C9orf72 are shown in Supplemental table 2. Intermediate C9orf72 repeat expansions did not influence the rate of ataxia progression but were associated with different rates of depressive symptom progression in SCA1, 3, and 6 (SCA1: $\beta=-1.90, p<0.005$; SCA3: $\beta=3.48$, $p<0.001$; SCA6: $\beta=-1.72, p<0.05$; Supplemental table 3).

In the present study, we identified patients of SCA1, 2, 3, and 6 who also carry pathogenic C9orf72 repeat expansions. Intermediate C9orf72 repeat expansions might influence the non-motor symptom (i.e. depression) progression in SCAs. Our study highlights the genetic interactions between repeat expansions.

The presence of CAG repeat expansions could interfere with the DNA repair process, ${ }^{6}$ which may destabilize C9orf72 repeat expansions and explain the co-existence of C9orf72 repeat expansions and expanded CAG repeats. Since cerebellar pathology could be found in C9orf72-linked ALS, the presence of C9orf72 repeat expansions might affect polyglutamine aggregates preferentially in the cerebellum or brainstem structures implicated in depression.

In conclusion, our study provides supporting evidence that repeat expansions of

C9orf72 may be genetic modifiers in SCAs, and perhaps ataxia patients in general. ${ }^{7}$ Therefore, the interplay of repeat expansions in two different loci may lead to diverse clinical phenotypes in degenerative cerebellar ataxia.

Author contributions

Ms. Figueroa: study concept and design, statistical analysis and interpretation, writing the manuscript, critical revision of the manuscript for important intellectual content.

Dr. Gan: study concept and design, statistical analysis and interpretation, critical revision of the manuscript for important intellectual content.

Dr. Perlman: acquisition of data.
Dr. Wilmot: acquisition of data.

Dr. Gomez: acquisition of data.
Dr. Schmahmann: acquisition of data.
Dr. Paulson: acquisition of data.

Dr. Shakkottai: acquisition of data.

Dr. Ying: acquisition of data.
Dr. Zesiewicz: acquisition of data.
Dr. Bushara: acquisition of data.

Dr. Geschwind: acquisition of data.
Dr. Xia: acquisition of data.
Dr. Subramony: study concept and design, acquisition of data, study supervision.

Dr. Ashizawa: study concept and design, acquisition of data, critical revision of the
manuscript for important intellectual content, study supervision.
Dr. Pulst: study concept and design, acquisition of data, critical revision of the manuscript for important intellectual content, study supervision.

Dr. Kuo: study concept and design, acquisition of data, analysis and interpretation, critical revision of the manuscript for important intellectual content.

Disclosure: Dr. Zesiewicz has served as a clinical advisor for Steminent Biotherapeutics, and she has received travel reimbursement from the department of neurology at University of Southern Florida; has received travel reimbursement for a Biohaven Pharmaceuticals meeting. Dr. Zesiewicz has served on the editorial board for Neurodegenerative Disease Management and Tremor and other Hyperkinetic Movements, and has received research support for her division for approximately 20 clinical trials for Parkinson's disease, Friedreich's ataxia, and spinocerebellar ataxias. Dr. Zesiewicz's division is a site in a multi-site trial of Parkinson's disease patients with the LRRK2 mutation and is sponsored by the National Institutes of Health but funded by Emory University. The rest of authors report no conflicts of interest.

References

1. Zhang M, Xi Z, Misquitta K, et al. C9orf72 and ATXN2 repeat expansions coexist in a family with ataxia, dementia, and parkinsonism. Mov Disord 2017;32(1):158-162.
2. Ashizawa T, Figueroa KP, Perlman SL, et al. Clinical characteristics of patients with spinocerebellar ataxias $1,2,3$ and 6 in the US; a prospective observational study.

Orphanet J Rare Dis 2013;8:177.
3. Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C90RF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011;72(2):257-268.
4. Wang C, Chen Z, Yang F, et al. Analysis of the GGGGCC Repeat Expansions of the C9orf72 Gene in SCA3/MJD Patients from China. PLoS One 2015;10(6):e0130336.
5. Kohli MA, John-Williams K, Rajbhandary R, et al. Repeat expansions in the C90RF72 gene contribute to Alzheimer's disease in Caucasians. Neurobiol Aging 2013;34(5):1519 e1515-1512.
6. Gao R, Liu Y, Silva-Fernandes A, et al. Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3. PLoS Genet 2015;11(1):e1004834.
7. Goldman JS, Quinzii C, Dunning-Broadbent J, et al. Multiple system atrophy and amyotrophic lateral sclerosis in a family with hexanucleotide repeat expansions in C9orf72. JAMA Neurol 2014;71(6):771-774.

John Wiley \& Sons
This article is protected by copyright. All rights reserved.

Table 1. Demographic and clinical features of 7 SCA patients with full C9orf72 repeat expansions

		CAG Repeats	C9orf72	Gender	Age of	SARA	Mental Status	Motor neuron deficits				
${ }_{7}^{6}$ umber 8	Type	Number (Small/Large)	Repeats		Onset			Fasciculation	Weakness	Reflexes of Extremities	Plantar Reflex	Spasticity
$\begin{aligned} & 9 \\ & 10 \end{aligned}$	1	$30 / 44$	5/>30	Woman	38	10.5	MoCA 25/30	Present	None	Hyperreflexia in biceps, patellar and Achilles	Extensor	Mild in lower and upper limbs
$\begin{aligned} & 11 \\ & 12 \\ & 13 \end{aligned}$	1	30/42	10/>30	Woman	45	0.5	MoCA 30/30	Present	None	Hyperreflexia in biceps, patellar and Achilles	Flexor	Not evaluated
34 15	1	30/42	10/>30	Woman	52	8.5	MoCA 25/30	Present	None	Hyperreflexia in biceps, patellar and Achilles	Flexor	Mild in lower limbs
$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 19 \end{aligned}$	2	$22 / 39$	6/>30	Man	35	24	Not evaluated	None	None	Areflexia in biceps, patellar and Achilles	Extensor	Moderate in lower limbs, mild in upper limbs
20 21 22 23	2	22/39	2/>30	Woman	40	24.5	Poor in serial 7s	Mild in tongue/ face and four limbs	Mild in four limbs	Areflexia in biceps, patellar and Achilles	Flexor	None
28 25 26 27	3	28/70	2/>30	Woman	48	30.5	Not evaluated	Moderate in tongue and face	Mild in four limbs	Areflexia in biceps, hyperreflexia in patellar and Achilles	Extensor	Moderate in four limbs
$\underline{8}$	6	11/23	8/>30	Man	59	12.5	Not evaluated	None	None	None	None	None

29 Abbreviations: SCA: spinocerebellar ataxias, SARA: scale for ataxia rating and assessment, MoCA: Montreal Cognitive Assessment, Serial 7s: serial sevens subtraction test,

Supplemental Table 1. Frequency of full repeat C9orf72 expansions in SCA patients and normal American po							
	Normal American population	SCA1	SCA2	SCA3	SCA6		
C9orf72 expansions $\geq \mathbf{3 1 , ~} \mathbf{n}$	1659	48	56	108	58		
C9orf72 expansions $\leq \mathbf{3 0}, \mathrm{n}$	0	3	2	1	1		
Total, \mathbf{n}	1659	51	58	109	59		
\boldsymbol{p} value ${ }^{\mathrm{a}}$	-	0.000	0.001^{a}	0.062^{a}	0.034^{a}		

American normal controls are from the reference 5.
${ }^{\text {a }}$ Fisher exact test

Abbreviations: PHQ-9= The 9-item Patient Health Questionnaire, SARA = Scale for Assessment and Rating of Ataxia, SCA = Spinocerebellar Ataxia.

Values represent mean \pm standard deviation or number, and for variables with non-normal distribution, the median is reported as well.
${ }^{\text {a }}$ Chi-square test
${ }^{\mathrm{b}} 2$ independent samples t-test
${ }^{\text {c }} 2$ independent samples Mann-Whitney U test
${ }^{d}$ A Bonferroni correction was made to adjust for multiple comparisons, $\mathrm{p}<0.007$ were considered significant (7 tests in each subtypes)

Supplemental Table 3. Longitudinal SARA and PHQ-9 scores of normal and intermediate C9orf72 repeat expansion in GEE models

Regression coefficients of SARA score						
	Age of first visit (yrs)	Sex	Expanded CAG repeats	Allele type of C9orf72	Visit time	Allele type of C9orf72 \times Visit time
SCA1	0.62****	4.71**	1.42****	2.66	0.95*	-0.04
SCA2	$0.42^{* * * *}$	-1.40	1.87****	0.64	0.40	-0.84
SCA3	$0.67 * * * *$	-0.82	1.88****	0.14	0.37*	-0.02
SCA6	0.11	-1.68	0.71	2.12	0.23	0.96
Regression coefficients of PHQ-9 score						
	Age of first visit (yrs)	Sex	Expanded CAG repeats	Allele type of C9orf72	Visit time	Allele type of C9orf72 \times Visit time
SCA1	0.08	-0.37	0.25	2.16	0.32	-1.90***
SCA2	0.01	-1.35	-0.12	1.54	1.00***	-0.63
SCA3	0.26***	2.41	0.66*	-5.49****	-0.38	$3.48^{* * * *}$
SCA6	-0.12*	-2.65	-1.23*	-1.01	0.30	-1.72*

Abbreviations: GEE = generalized estimating equation, PHQ-9 = The 9-item Patient Health Questionnaire, SARA = Scale for Assessment and Rating of Ataxia SCA = Spinocerebellar Ataxia.
*p <0.05, **p < 0.01, ***p < 0.005, ****p <0.001
Sex: women $=0$, men $=1$
Allele type of C9orf72: normal allele $=0$, intermediate allele $=1$
Visit time: time order every 6 month during the two-year follow up

[^0]: Abbreviations: PHQ-9= The 9-item Patient Health Questionnaire, SARA = Scale for Assessment and Rating of Ataxia, SCA = Spinocerebellar Ataxia.
 Values represent mean \pm standard deviation or number, and for variables with non-normal distribution, the median is reported as well.
 ${ }^{\text {a }}$ Chi-square test
 ${ }^{\mathrm{b}} 2$ independent samples t-test

