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Web Appendix 1. Bias Analysis of Burden Tests

1.1. Bias analysis of β∗ under G− E independence for linear regression

We assume the true model is:

E (Yi|Ei,Gi) = α1 + α2Ei +

p∑
j=1

Gijα3j +

p∑
j=1

GijEiβj and Var (Yi|Ei,Gi) = σ2. (1-1)

The burden test linear regression model is:

E (Yi|Ei, G∗i ) = α∗1 + α∗2Ei + α∗3G
∗
i + β∗G∗iEi and Var (Yi|Ei, G∗i ) = σ2

∗. (1-2)

Based on the true model (1-1), we can calculate the true E (Yi|Ei, G∗i ) as:

E (Yi|Ei, G∗i ) = α1 + α2Ei +

p∑
j=1

E (Gij|Ei, G∗i )α3j +

p∑
j=1

E (Gij|Ei, G∗i )Eiβj. (1-3)

If G and E are independent, we have:

E (Yi|Ei, G∗i ) = α1 + α2Ei +

p∑
j=1

E (Gij|G∗i )α3j +

p∑
j=1

E (Gij|G∗i )Eiβj

≈ α1 + α2Ei +

(
p∑
j=1

ajα3j

)
G∗i +

(
p∑
j=1

ajβj

)
G∗iEi, (1-4)

where aj =
MAFj∑p
k=1 MAFk

and Equation (1-4) is obtained by approximating the distribution of

(Gi1, · · · , Gip|G∗i ) with Multinomial (a1, · · · , ap, G∗i ), giving E (Gij|G∗i ) = ajG
∗
i . This expec-

tation E (Gij|G∗i ) = ajG
∗
i is exact when (a) Gij ∼ Binom (2,MAFj), and Gij’s are indepen-

dent for j = 1, · · · , p and (b) MAF1 = · · · = MAFp. It is also exact when (a) and (c) G∗i = 1
holds.
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1.2. Bias analysis of β∗ under G− E independence for logistic regression

Assume that a disease is rare. The true model is:

E (Yi|Ei,Gi) ≈ Var (Yi|Ei,Gi) ≈ exp

[
α1 + α2Ei +

p∑
j=1

Gijα3j +

p∑
j=1

GijEiβj

]
. (1-5)

The burden test logistic regression model is:

E (Yi|Ei, G∗i ) ≈ Var (Yi|Ei, G∗i ) ≈ exp [α∗1 + α∗2Ei + α∗3G
∗
i + β∗G∗iEi] . (1-6)

Based on the true model (1-5), we can calculate the true E (Yi|Ei, G∗i ) as:

E (Yi|Ei, G∗i ) ≈ E

[
exp

(
α1 + α2Ei +

p∑
j=1

Gijα3j +

p∑
j=1

GijEiβj

)
|Ei, G∗i

]

≈ exp (α1 + α2Ei)

[
1 + E

(
p∑
j=1

Gijα3j +

p∑
j=1

GijEiβj|Ei, G∗i

)]

≈ exp

(
α1 + α2Ei +

p∑
j=1

E (Gij|Ei, G∗i )α3j +

p∑
j=1

E (Gij|Ei, G∗i )Eiβj

)
,(1-7)

where we assume E
[(∑p

j=1Gijα3j +
∑p

j=1GijEiβj

)l
|Ei, G∗i

]
and[

E
(∑p

j=1Gijα3j +
∑p

j=1GijEiβj|Ei, G∗i
)]l

are negligible for l ≥ 2.

If G and E are independent, we have:

E (Yi|Ei, G∗i ) = exp

(
α1 + α2Ei +

p∑
j=1

E (Gij|G∗i )α3j +

p∑
j=1

E (Gij|G∗i )Eiβj

)

≈ exp

(
α1 + α2Ei +

(
p∑
j=1

ajα3j

)
G∗i +

(
p∑
j=1

ajβj

)
G∗iEi

)
,

where as discussed in the case of linear regression, the distribution of (Gi1, · · · , Gip|G∗i ) is
approximated by Multinomial (a1, · · · , ap, G∗i ), giving E (Gij|G∗i ) = ajG

∗
i .
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1.3. Bias analysis of β∗ under G− E dependence

For a continuous outcome, we assume that the true model is (1-1) and the burden test model
is (1-2); For a binary outcome (rare disease), we assume that the true model is (1-5) and
the burden test model is (1-6). In general, the bias of β∗ in (1-2) and (1-6) depends on
the underlying G − E structure. In this section, we consider the special case of G − E
dependence where E is binary such that:

(Gi1, · · · , Gip|G∗i , Ei = 0) ∼ Multinomial (b1, · · · , bp, G∗i ) approximately,

(Gi1, · · · , Gip|G∗i , Ei = 1) ∼ Multinomial (c1, · · · , cp, G∗i ) approximately,

where bj =
MAFj0∑p
k=1 MAFk0

and cj =
MAFj1∑p
k=1 MAFk1

for j = 1, · · · , p. Similar to the calculations

under G−E independence (Web Appendix 1.1. and 1.2.), we use E (Gij|G∗i , Ei = 0) = bjG
∗
i

and this expectation is exact when (a) Gij|Ei = 0 ∼ Binom (2,MAFj0), and Gij’s are in-
dependent given Ei = 0 for j = 1, · · · , p and (b) MAF10 = · · · = MAFp0. It is also exact
when (a) and (c) G∗i = 1 holds. Similar conditions are required for E (Gij|G∗i , Ei = 1) = cjG

∗
i .

If G and E are dependent, for linear regression, (1-3) becomes:

(1-3) = E (Yi|Ei, G∗i ) ≈ α1 + α2Ei +

(
p∑
j=1

bjα3j

)
G∗i +

(
p∑
j=1

cjα3j − bjα3j + cjβj

)
G∗iEi,

(1-8)

and for logistic regression with rare disease, (1-7) becomes:

(1-7) = E (Yi|Ei, G∗i ) ≈ exp

(
α1 + α2Ei +

(
p∑
j=1

bjα3j

)
G∗i +

(
p∑
j=1

cjα3j − bjα3j + cjβj

)
G∗iEi

)
.

(1-9)

Comparing (1-8) and the burden test model (1-2) for linear regression, and (1-9) and the
burden test model (1-6) for logistic regression, we can express the parameters in the mis-
specified burden test models (1-2) and (1-6) in terms of the parameters in the true mod-
els (1-1) and (1-5) as:

α∗1 = α1, α∗2 = α2, α∗3 =

p∑
j=1

bjα3j, β∗ =

p∑
j=1

cjα3j − bjα3j + ckβj.

When the null hypothesis holds (i.e. β1 = · · · = βp = 0), β∗ becomes:

β∗ =

p∑
j=1

(cj − bj)α3j.

β∗ is thus a function of the main effects {α3j}pj=1 and is generally biased since it is capturing
the main effects under the null hypothesis of no interaction effects. The bias generally
worsens with increasing main effect sizes |α3j|. To understand how the strength of G − E
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dependence can affect the bias, we note that when G and E are independent, cj − bj = 0
for all j = 1, · · · , p. In this way, {|cj − bj|}pj=1 is a measure of the G − E dependence and
we would generally expect the bias of β∗ to worsen with increasing G− E dependence. We
note that when the main effects α3j are equal, i.e. α3j = α3 for every j, the burden test will
be unbiased.
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Web Appendix 2. iSKAT

2.1. Estimation of the Null Model

The null model (Equation (7) in the main manuscript) is fitted using weighted ridge regres-
sion, since fitting the null model using regular maximum likelihood can give unstable results
and/or the model will not converge, as the genotypes G contain rare variants that have
low frequency. Define an additional weight matrix W2 = diag(w21, · · · , w2p). The weighted
penalized log-likelihood for fitting the null model is:

`P (α) = ` (α)− 1

2
λαᵀ

3W
−1
2 W−1

2 α3,

where ` (α) =
∑n

i=1 log{f(Yi|Xi, Ei,Gi)} is the log-likelihood of Yi under the null model,
and λ is a ridge tuning parameter. The ridge parameter λ controls the goodness of fit
and the complexity of the null model. When λ = 0, α̂λ=0 is the usual maximum likelihood
estimator. When λ =∞, α̂3 = 0 and is equivalent to assuming that there are no main effects
for the rare variants. For computational efficiency, we choose the ridge parameter λ using
generalized cross-validation (O’Sullivan and others , 1986), where we grid search λ within the
range [0.01,

√
n/ log(n)]. We note that when ρ = 0, weights w1j = 1 and w2j = 1/

√
var(Gj),

the test statistic Qρ (Equation (6) in the main manuscript) reduces to the GESAT test
statistic (Lin and others , 2013).
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2.2. Derivation of the Asymptotic Null Distribution of Qρ for fixed ρ

Let λ̂ be the estimated ridge parameter under the null model. Let α0 be the true value
of α, Σ = diag{Var(Yi)} and ∆0 = diag{g′

(µi)} under the null hypothesis. Define y =

X̃α0+∆0 (Y − µ (α0)) and u = Σ−
1
2 ∆−10

(
y − X̃α0

)
. Note that each entry of u has mean

zero and unit variance under the null hypothesis. Define Z = Σ
1
2 ∆0

(
I −H λ̂

)ᵀ
∆−10 SW1,

where H λ̂ = X̃
(
X̃ᵀ∆−10 X̃ + λ̂I2

)−1
X̃ᵀ∆−10 , and I2 is a (q + 1 + p) × (q + 1 + p) block

diagonal matrix with the top (q+ 1)× (q+ 1) block diagonal matrix being 0 and the bottom
p×p block diagonal matrix being W−1

2 W−1
2 . Let Z̄ =

(
Z̄1, · · · , Z̄n

)ᵀ
where Z̄i =

∑p
j=1 Zij/p

and Zij is the ith row and jth column entry of Z. Let Zj be the jth column of Z. Define
M = Z̄(Z̄ᵀZ̄)−1Z̄ᵀ.

When λ̂ = o(
√
n), we have:

1√
n
Zᵀu =

1√
n
W1S

ᵀ∆−10

I − 1

n
X̃

(
1

n
X̃ᵀ∆−10 X̃ +

λ̂

n
I2

)−1
X̃ᵀ∆−10

(y − X̃α0

)
=

1√
n
Zᵀ

0u+ op(1) (2-10)

and

1

n
Qρ =

1

n

(
y − X̃α0

)ᵀ (
I −H λ̂

)ᵀ
∆−10 SW1RρW1S

ᵀ∆−10

(
I −H λ̂

)(
y − X̃α0

)
+ op(1)

=
1

n
uᵀZRρZ

ᵀu+ op(1) =
1

n
uᵀZ0RρZ

ᵀ
0u+ op(1),

where Z0 = Σ
1
2 ∆0 (I −H0)

ᵀ ∆−10 SW1, and H0 = X̃
(
X̃ᵀ∆−10 X̃

)−1
X̃ᵀ∆−10 . Thus for

a fixed ρ, Qρ asymptotically follows a mixture of chi-squares distribution
∑
dkχ

2
1,k, where

the χ2
1,k are independent variables that follow a χ2

1 distribution and dk is the kth non-zero
eigenvalue of Z0RρZ

ᵀ
0 . For finite samples, we calculate the dk’s by replacing H0 in Z0 by

H λ̂. A p-value for Qρ is computed by inverting the characteristic function of
∑
dkχ

2
1,k using

the Davies method (Davies, 1980).
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2.3. Obtaining a p-value for QiSKAT

Calculation of the distribution of QiSKAT is challenged by the fact that the pρ are correlated
for different ρ’s. To obtain a p-value for QiSKAT, we need the joint distribution of Qρ for
different ρ’s for 0 ≤ ρ ≤ 1. In this section, we first re-express the distribution of Qρ and show
that Qρ can be decomposed into a weighted sum of two approximately independent random
variables. We then show how this decomposition can then be used to obtain a p-value for
iSKAT using the algorithm described in Lee and others (2012).

Let Z̄0 =
(
Z̄0

1 , · · · , Z̄0
n

)ᵀ
, where Z̄0

i =
∑p

j=1 Z
0
ij/p and Z0

ij is the ith row and jth column entry

of Z0. Let Z0
j be the jth column of Z0. Define M0 = Z̄0(Z̄

ᵀ
0 Z̄0)−1Z̄ᵀ

0 . Since λ̂ = o(
√
n),

1

n
ZᵀZ =

1

n
W1S

ᵀ∆−10

I − 1

n
X̃

(
1

n
X̃ᵀ∆−10 X̃ +

λ̂

n
I2

)−1
X̃ᵀ∆−10

∆0Σ
1/2

× Σ1/2∆0

I − 1

n
∆−10 X̃

(
1

n
X̃ᵀ∆−10 X̃ +

λ̂

n
I2

)−1
X̃ᵀ

∆−10 SW1

=
1

n
Zᵀ

0Z0 + op(1). (2-11)

Using (2-10) and (2-11), it can be shown that:

1√
n
ZᵀMu =

1√
n
Zᵀ

0M0u+ op(1) and (2-12)

1√
n
Zᵀ (I −M)u =

1√
n
Zᵀ

0 (I −M0)u+ op(1). (2-13)

Using (2-10), (2-12) and (2-13), it follows that:

1√
n

(
uᵀ(I −M )Z,uᵀMZ,uᵀZ̄

)ᵀ
=

1√
n

(
uᵀ(I −M0)Z0,u

ᵀM0Z0,u
ᵀZ̄0

)ᵀ
+ op(1)

=
1√
n

(
I − 1

(
Z̄ᵀ

0 Z̄0

)−1
Z̄ᵀ

0Z0,1
(
Z̄ᵀ

0 Z̄0

)−1
Z̄ᵀ

0Z0,1
)ᵀ
Zᵀ

0u+ op(1),

and 1√
n

(
uᵀ(I −M )Z,uᵀMZ,uᵀZ̄

)ᵀ
follows a multivariate normal distribution asymptoti-

cally. Since cov
(
Zᵀ(I −M )u, Z̄ᵀu

)
= 0 and cov (Zᵀ(I −M )u,ZᵀMu) = 0, Zᵀ(I−M )u

and
(
ZᵀMu, Z̄ᵀu

)
are asymptotically independent. This asymptotic independence can be

used to show that uᵀ(I −M)ZZᵀMu and uᵀ(I −M )ZZᵀ(I −M)u are asymptotically
uncorrelated, and uᵀ(I −M )ZZᵀMu and uᵀZ̄Z̄ᵀu are asymptotically uncorrelated.
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Thus,

1

n
Qρ =

1

n
(1− ρ)uᵀ(I −M )ZZᵀ(I −M)u+

1

n
2(1− ρ)uᵀ(I −M )ZZᵀMu

+
1

n

[
ρp2Z̄ᵀZ̄ +

(1− ρ)
∑p

j=1(Z̄
ᵀZj)

2

Z̄ᵀZ̄

]
uᵀZ̄Z̄ᵀu

Z̄ᵀZ̄
+ op(1)

= (1− ρ)
∑

ξkχ
2
1,k + τ(ρ)η0 + op(1), (2-14)

where τ(ρ) = ρp2Z̄ᵀ
0 Z̄0 +

(1−ρ)
∑p
j=1(Z̄

ᵀ
0Z

0
j )

2

Z̄ᵀ
0 Z̄0

, the χ2
1,k’s are independent and identically dis-

tributed χ2
1 random variables, η0 is a χ2

1 random variable, and ξk is the kth non-zero eigen-
value of (I −M0)Z0Z

ᵀ
0 (I −M0) + (I −M0)Z0Z

ᵀ
0M0 +M0Z0Z

ᵀ
0 (I −M0). Hence Qρ can

be decomposed into a weighted sum of two approximately independent random variables
(Equation (2-14)), where the first random variable,

∑
ξkχ

2
1,k, is approximately independent

of the second random variable, η0, which is a χ2
1 random variable.

Following Lee and others (2012), we obtain a p-value via one-dimensional integration:

Step 1: Set up a grid for ρ: 0 = ρ1 < ρ2 < . . . < ρL = 1. In the simulations and data
application, we used ρ1 = 0, ρ2 = 0.1, ρ3 = 0.2, · · · , ρ10 = 0.9, ρ11 = 1.

Step 2: Compute Qρ1 , . . . , QρL , Z0, and M0, where H0 is replaced with H λ̂ in calculat-
ing Z0 and we plug in the ridge estimator of µ at ∆0.

Step 3: The mixture of chi-squares
∑
ξkχ

2
1,k is approximated using

∑m
k=1 ζkχ

2
1,k with an

adjustment, where ζk is the kth non-zero eigenvalue of Zᵀ
0 (I −M0)Z0. Compute ζk for

k = 1, · · · ,m and τ(ρl) for l = 1, · · · , L and

µQ =
∑m

k=1 ζk and σψ = 2
√

trace(Zᵀ
0M0Z0Z

ᵀ
0 (I −M0)Z0) and σQ =

√
2
∑m

k=1 ζ
2
k + σ2

ψ.

Step 4: Compute QiSKAT, pρl by characteristic function inversion (Davies, 1980) and qmin(ρl)
using modified moment matching method (Liu and others , 2009), where qmin(ρl) is the
(1−QiSKAT)th quantile of the distribution of Qρl .

Step 5: Obtain a p-value for iSKAT via one-dimensional integration:

p-valueiSKAT = 1−
∫
F (δ(x)|ζ)f(x|χ2

1)dx,

where δ(x) = [min{(qmin(ρl)− τ(ρl)x)/(1− ρl)} − µQ]

√
σ2
Q−σ

2
ψ

σQ
+ µQ, f(x|χ2

1) is the density

function of a χ2
1 random variable and F (δ(x)|ζ) is the distribution function of a mixture of

chi-squares
∑m

k=1 ζkχ
2
k obtained by characteristic function inversion method (Davies, 1980).
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Web Appendix 3. Additional Simulation Studies Based on the CoLaus Dataset

3.1. Estimated Rare Variants Main Effects from iSKAT

In the top two panels of main manuscript Table 1, we report empirical Type 1 error rates for
a continuous outcome when there are rare variants main effects, for n = 1945 and n = 4000 re-
spectively. The (true) rare variants main effect sizes areα3 = (−0.218, 0, 0,−0.476, 0, 0,−0.151,
− 0.845, 0.0945, 0,−0.133)ᵀ in the simulations (main manuscript Section 5). iSKAT obtains
estimates of rare variants main effects α̂3 using weighted ridge regression (Web Appendix
2.1.). For the simulations described in Section 5 of the main manuscript and reported in
the top two panels of main manuscript Table 1, the histograms of estimated rare variants
main effects for each of the rare variants are given in Web Figures 1-2 and 3-4, for n = 1945
and n = 4000 respectively. The average of these estimated main effects are also reported in
the third and fourth columns of Web Table 1, for n = 1945 and n = 4000 respectively. The
estimated rare variants main effects α̂3 are similar to the true rare variants main effects α3.

Web Table 1: Average estimated rare variants main effects α̂3 from iSKAT, for continuous
outcome when there are rare variants main effects for n = 1945 (third column) and n = 4000
(fourth column) respectively. True rare variants main effect sizes α3 are given in the second
column. Datasets were generated by sampling the genotypes and covariates jointly with
replacement from the CoLaus dataset to preserve the association between G and E. Note
that the p-value for the association between G and E in the CoLaus dataset was 0.042,
which suggests plausible G − E dependence. Estimated rare variants main effects α̂3 are
similar to the true rare variants main effects α3.

Variant True α3j Average α̂3j when n = 1945 Average α̂3j when n = 4000
chr3:188053510 -2.18e-01 -2.18e-01 -2.18e-01
chr3:188053533 0 1.86e-04 -2.39e-04
chr3:188053663 0 -7.14e-04 -1.95e-04
chr3:188053705 -4.76e-01 -4.73e-01 -4.74e-01
chr3:188053732 0 9.22e-05 -3.81e-04
chr3:188054673 0 -3.02e-04 -3.95e-04
chr3:188054720 -1.51e-01 -1.51e-01 -1.51e-01
chr3:188054724 -8.45e-01 -8.39e-01 -8.38e-01
chr3:188054783 9.45e-02 9.45e-02 9.44e-02
chr3:188055047 0 1.17e-03 -2.79e-04
chr3:188055252 -1.33e-01 -1.33e-01 -1.33e-01
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Histogram of estimated main effect α̂31; True α31 = −0.218
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Histogram of estimated main effect α̂33; True α33 = 0

α̂33

D
en

si
ty

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

Histogram of estimated main effect α̂34; True α34 = −0.476
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Histogram of estimated main effect α̂35; True α35 = 0
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Histogram of estimated main effect α̂36; True α36 = 0
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Web Figure 1: Histograms of estimated rare variants main effects α̂3 from iSKAT, for
continuous outcome when there are rare variants main effects, for n = 1945. True rare
variants main effect sizes α3 are indicated with vertical lines. This figure gives α̂3j for
j = 1− 6 while Web Figure 2 gives α̂3j for j = 7− 11. Datasets were generated by sampling
the genotypes and covariates jointly with replacement from the CoLaus dataset to preserve
the association between G and E. Note that the p-value for the association between G and
E in the CoLaus dataset was 0.042, which suggests plausible G−E dependence. Estimated
rare variants main effects α̂3 are similar to the true rare variants main effects α3.
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Web Figure 2: Histograms of estimated rare variants main effects α̂3 from iSKAT, for
continuous outcome when there are rare variants main effects, for n = 1945. True rare
variants main effect sizes α3 are indicated with vertical lines. This figure gives α̂3j for
j = 7− 11 while Web Figure 1 gives α̂3j for j = 1− 6. Datasets were generated by sampling
the genotypes and covariates jointly with replacement from the CoLaus dataset to preserve
the association between G and E. Note that the p-value for the association between G and
E in the CoLaus dataset was 0.042, which suggests plausible G−E dependence. Estimated
rare variants main effects α̂3 are similar to the true rare variants main effects α3.
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Web Figure 3: Histograms of estimated rare variants main effects α̂3 from iSKAT, for
continuous outcome when there are rare variants main effects, for n = 4000. True rare
variants main effect sizes α3 are indicated with vertical lines. This figure gives α̂3j for
j = 1− 6 while Web Figure 4 gives α̂3j for j = 7− 11. Datasets were generated by sampling
the genotypes and covariates jointly with replacement from the CoLaus dataset to preserve
the association between G and E. Note that the p-value for the association between G and
E in the CoLaus dataset was 0.042, which suggests plausible G−E dependence. Estimated
rare variants main effects α̂3 are similar to the true rare variants main effects α3.
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Web Figure 4: Histograms of estimated rare variants main effects α̂3 from iSKAT, for
continuous outcome when there are rare variants main effects for, n = 4000. True rare
variants main effect sizes α3 are indicated with vertical lines. This figure gives α̂3j for
j = 7− 11 while Web Figure 3 gives α̂3j for j = 1− 6. Datasets were generated by sampling
the genotypes and covariates jointly with replacement from the CoLaus dataset to preserve
the association between G and E. Note that the p-value for the association between G and
E in the CoLaus dataset was 0.042, which suggests plausible G−E dependence. Estimated
rare variants main effects α̂3 are similar to the true rare variants main effects α3.
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3.2. Empirical p-values for iSKAT

In Web Appendix 2.3., we described how a p-value for iSKAT is obtained using the asym-
potic decomposition in Equation (2-14) and one-dimensional integration. To evaluate the
performance of the asymptotic p-values (Web Appendix 2.3.), in this section, we describe
how an empirical p-value for iSKAT can be obtained, before comparing the empirical and
asymptotic p-values in Web Appendix 3.3.

Step 1: Set up a grid for ρ: 0 = ρ1 < ρ2 < . . . < ρL = 1. We used ρ1 = 0, ρ2 = 0.1, ρ3 =
0.2, · · · , ρ10 = 0.9, ρ11 = 1.

Step 2: Compute Qρ1 , . . . , QρL using Equation (6) in the main manuscript.

Step 3: Compute pρl by characteristic function inversion (Davies, 1980) as described in
Web Appendix 2.2. Compute QiSKAT (Equation (8) in the main manuscript).

Step 4: To obtain the empirical null distribution of the test statistic QiSKAT, using the
notation in Section 2 of the main manuscript, let the observed data be (Y ,X,E,G).

• Fit the null model (Equation (7) of the main manuscript) to the observed data (Y ,X,E,G)
using weighted ridge regression (Web Appendix 2.1.) and obtain µ (α̂). For a contin-
uous outcome, we also obtain σ̂2, an estimate of the variance from the residuals.

• For each re-sample (b = 1, · · · , B):

1. For continuous outcome (linear regression), generate Y b
new ∼ Normal (µ (α̂) , σ̂2).

For binary outcome (logistic regression), generate Y b
new ∼ Binomial (1,µ (α̂)).

2. Compute Qb
iSKAT from

(
Y b

new,X,E,G
)

using Steps 1-3 above.

Step 5: Obtain an empirical p-value for iSKAT by comparing the observed test statistic
QiSKAT (from Step 3) with the empirical null distribution (from Step 4):

p-valueiSKAT,empirical =
1

B

B∑
b=1

I(Qb
iSKAT ≤ QiSKAT).
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3.3. Simulations to compare empirical and asymptotic p-values for iSKAT

To evaluate the performance of the asymptotic p-values (obtained using one-dimensional
integration as described in Web Appendix 2.3.), we compared the asymptotic p-values (Web
Appendix 2.3.) with the empirical p-values (obtained using the description in Web Appendix
3.2.). We consider simulations similar to those presented in Section 5 of the main text.
Empirical p-values are obtained using B = 5000 re-samples. If the empirical p-value was
less than 2.5× 10−3, we increased the number of re-samples to B = 1× 105. Datasets were
generated by sampling the genotypes and covariates (including the environmental factor)
jointly with replacement from the CoLaus dataset. We consider a sample size of n = 1945:

Yi = Xᵀ
i α1 + Eiα2 +Gᵀ

iα3 + EiG
ᵀ
iβ + εi,

where α1 = (3.6,−0.030,−1.4, 8.3,−4.1, 2.2, 0.005,−0.015,−0.0056, 0.0069, −0.033, 0.15)ᵀ,
α2 = 0.015, α3 = (−0.218, 0, 0,−0.476, 0, 0,−0.151,−0.845, 0.0945, 0,−0.133)ᵀ, β = 0 and
εi ∼ N(0, 0.27).

We compared the asymptotic and empirical p-values for 1000 simulations. The plot of
asymptotic p-values against the empirical p-values are given in Web Figure 5. Both methods
give very similar p-values. However, obtaining p-values empirically is computationally very
intensive, especially for small p-values.
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Web Figure 5: Plot of −log10(Asymptotic p-value) (vertical axis) against
−log10(Empirical p-value) (horizontal axis) from iSKAT, for continuous outcome and
there are main effects for n = 1945. Datasets were generated by sampling the genotypes
and covariates jointly with replacement from the CoLaus dataset to preserve the association
between G and E. Note that the p-value for the association between G and E in the CoLaus
dataset was 0.042, which suggests plausible G−E dependence. Empirical (horizontal axis)
and asymptotic p-values (vertical axis) are similar.
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3.4. Additional power simulations based on the CoLaus Dataset

Web Figure 6 gives the empirical power curves at n = 4000 for the CoLaus Dataset. The
simulation details are given in Section 5 of the main text. Analogous power curves at
n = 2000 are presented in Figure 1 of the main manuscript.
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Web Figure 6: Empirical power curves for n = 4000 at α = 0.0001 level of significance for
testing rare variant GE interaction effects on a continuous outcome when there are no main
effects - iSKAT (solid line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1
(long dashed line), CAST (dotted line) and Counting (short dashed line). Top panel - 2
non-zero βj’s; Middle panel - 6 non-zero βj’s; Bottom panel - 10 non-zero βj’s. Left panel
- 50% of βj’s are positive; Right panel -100% of βj’s are positive. In each plot, we set the
magnitudes of the non-zero βj’s as |βj| = c, and increased c from zero until 0.475. Datasets
were generated by sampling the genotypes and covariates jointly with replacement from the
CoLaus dataset to preserve the association between G and E. Note that the p-value for
the association between G and E in the CoLaus dataset was 0.042, which suggests plausible
G− E dependence.
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Web Appendix 4. Simulation Studies Based on Coalescent Model

In the main text and Web Appendix 3., we present simulation studies based on the CoLaus
dataset. In this section, we provide additional simulation results from more general settings.
We evaluate the performance of (1) iSKAT, (2) iSKAT with ρ = 0, (3) iSKAT with ρ = 1,
(4) CAST and (5) Counting. These five methods are also described in the main text.

Sequence genotypes are generated from a coalescent model (Schaffner and others , 2005)
by mimicking the linkage disequilibrium pattern for European ancestry. 10,000 haplotypes
over a 106 base pairs region are generated and to form genotypes, 2 haplotypes are randomly
selected. Since the average length of the exome region of a gene is around 3000 base pairs,
we randomly select regions with 3000 base pairs in length, and test for rare variants by
environment interactions in all simulation settings. We consider both continuous and binary
outcomes and two different sample sizes n = 2000, 4000. For binary outcome, case-control
sampling is used to obtain 50% cases and 50% controls. To generate the outcomes, we use:

g (µi) = α0 − 0.2X1i − 0.2X2i + 0.4Ei +Gᵀ
iα3 + EiG

ᵀ
iβ, (4-15)

where g (·) is the identity and logit functions for continuous and binary outcomes respec-
tively, and X1i ∼ N(1, 1), X2i ∼ N(1, 1). For continuous outcome, we assume α0 = 0,
Var (Yi|Xi, Ei,Gi) = 1 and Yi is normally distributed. For binary outcome, we assume
α0 = log

(
0.01
0.99

)
. We generate Ei from:

logit [P (Ei = 1|Gi)] = Gᵀ
iγ3. (4-16)

We consider two distinct scenarios when (i) G and E are independent, i.e. γ3 = 0 in
Equation (4-16) and (ii) G and E are dependent, i.e. γ3 6= 0 in Equation (4-16).
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4.1. Size Simulations

To evaluate the empirical Type 1 error rates, we set β = 0 in Equation (4-15). We consider
the two cases when there are (a) no main effects of the rare variants, i.e. α3 = 0 in Equation
(4-15) and (b) main effects of the rare variants, i.e. α3 6= 0 in Equation (4-15).

When there are (a) no main effects of the rare variants and (i) G and E are independent,
we set α3 = γ3 = 0. When there are (a) no main effects of the rare variants and (ii) G and
E are dependent, we set α3 = 0 and consider the cases when 20%, 50% or 80% of the γ3j’s
are non-zero, and set the non-zero γ3j’s as |γ3j| = c| log10 MAFj|. We consider the scenarios
when all γ3j’s are positive and when 50% of the γ3j’s are positive, while varying c. When
there are (b) main effects of the rare variants, we consider the cases when 20%, 50% or 80%
of the α3j’s are non-zero, and set the non-zero α3j’s as |α3j| = c| log10 MAFj| and look at the
scenarios when all α3j’s are positive and when 50% of the α3j’s are positive, while varying
c. When there are (b) main effects of the rare variants and (i) G and E are independent,
α3 is generated as described and we set γ3 = 0. When there are (b) main effects of the rare
variants and (ii) G and E are dependent, α3 is generated as described and we set γ3 = α3.

The empirical Type 1 error rates when there are (a) no main effects of the rare variants, are
given in Web Table 2 (G ⊥ E, n = 2000, 4000) and Web Figures 7 (G 6⊥ E, n = 2000), 8
(G 6⊥ E, n = 4000) for continuous outcome; and Web Table 3 (G ⊥ E, n = 2000, 4000)
and Web Figures 17 (G 6⊥ E, n = 2000), 18 (G 6⊥ E, n = 4000) for binary outcome. Since
there are no main effects of the rare variants, all five methods have correct Type 1 error rates.

The empirical Type 1 error rates when there are (b) main effects of the rare variants, are
given in Web Figures 9 (G ⊥ E, n = 2000), 10 (G ⊥ E, n = 4000), 11 (G 6⊥ E, n = 2000)
and 12 (G 6⊥ E, n = 4000) for continuous outcome; and in Web Figures 19 (G ⊥ E,
n = 2000), 20 (G ⊥ E, n = 4000), 21 (G 6⊥ E, n = 2000), 22 (G 6⊥ E, n = 4000) for binary
outcome. In all of these figures, with the exception of Web Figures 19 (G ⊥ E, n = 2000)
and 20 (G ⊥ E, n = 4000), the burden tests can have inflated Type 1 error rates since there
are main effects of the rare variants. In Web Figures 19 (G ⊥ E, n = 2000) and 20 (G ⊥ E,
n = 4000), the burden tests also have correct Type 1 error rates since as discussed in the
main text, this is a special case when G ⊥ E and we have a binary outcome from a logistic
model with rare disease assumption.

Web Figures 11-12, 21-22 depict the scenario when there are (b) main effects of the rare
variants and (ii) G and E are dependent. In these four figures, we have γ3 = α3 and the
magnitudes of the non-zero α3j’s and γ3j’s are such that |α3j| = |γ3j| = c| log10 MAFj|. As c
increases in these figures, both G−Y and G−E associations increase, due to the increasing
magnitudes of α3j’s and γ3j’s respectively. The bias of the burden tests increase as c increases
in these four figures, due to both increasing G−Y and G−E associations. To further study
how (1) the main effects of the rare variants on the outcome (G − Y association) and (2)
G − E dependence, individually affect the bias of the burden tests, we ran additional sim-
ulations when there are (b) main effects of the rare variants and (ii) G−E dependent, but
holding (1) magnitudes of the non-zero γ3j’s fixed or (2) magnitudes of the non-zero α3j’s

20



fixed.

To study how the (1) main effects of the rare variants on the outcome (G − Y associa-
tion) affect the bias of the burden tests, we consider when 20%, 50% or 80% of the α3j’s are
non-zero, and set the non-zero α3j’s as |α3j| = c| log10 MAFj| and look at the scenarios when
all α3j’s are positive and when 50% of the α3j’s are positive, while varying c. However, now
we set γ3j = 0.4sgn(α3j)| log10 MAFj| for j = 1, · · · , p, where sgn(·) is the sign function, i.e.
the magnitudes of the non-zero γ3j’s do not depend on c. The empirical Type 1 error rates
are given in Web Figures 13-14 for continuous outcome and Web Figures 23-24 for binary
outcome respectively. In Web Figures 13-14, 23-24, the bias of the burden tests increase with
increasing c (increasing G−Y association) when G and E are dependent, which is what we
expect from the calculation in Web Appendix 1.3.

To investigate how the bias of the burden tests is affected by (2) G − E dependence, we
consider when 20%, 50% or 80% of the γ3j’s are non-zero, and set the non-zero γ3j’s as
|γ3j| = c| log10 MAFj| and look at the scenarios when all γ3j’s are positive and when 50% of
the γ3j’s are positive, while varying c. We set α3j = 0.4sgn(γ3j)| log10 MAFj| for j = 1, · · · , p,
where sgn(·) is the sign function, i.e. the magnitudes of the non-zero α3j’s do not depend on
c. The empirical Type 1 error rates are given in Web Figures 15-16 for continuous outcome
and Web Figures 25-26 for binary outcome respectively. In Web Figures 15-16, 25-26, the
bias of the burden tests increase with increasing c (increasing G− E dependence) when G
and Y are associated, which is what we expect from the calculation in Web Appendix 1.3.

4.2. Power Simulations

To study the empirical power, we consider the case when there are (a) no main effects of
the rare variants i.e. α3 = 0 in Equation (4-15) and (i) G and E are independent i.e.
γ3 = 0 in Equation (4-16). We consider the scenarios when 20%, 50% or 80% of the βj’s in
Equation (4-15) are non-zero, and set the non-zero βj’s as |βj| = c| log10 MAFj| and look at
the scenarios when all βj’s are positive and when 50% of the βj’s are positive, while varying c.
The power curves are given in Web Figures 27 (n = 2000) and 28 (n = 4000) for continuous
outcome; and Web Figures 29 (n = 2000) and 30 (n = 4000) for binary outcome. iSKAT
generally has power at least comparable to or outperforms the burden tests. In all the plots
except when all βj’s are positive and the majority of the βj’s are non-zero, iSKAT has power
comparable to iSKAT with ρ = 0. In the plots when all βj’s are positive and the majority
of the βj’s are non-zero, iSKAT has power comparable to iSKAT with ρ = 1.

21



4.3. Simulations to compare estimation of null model with and without penalization

In Web Appendix 2.1., we describe how weighted ridge regression is used to estimate the
null model (Equation (7) of the main manuscript), and noted that α̂λ=0 corresponds to
the usual maximum likelihood estimator, where λ is the ridge parameter. In this section
we compare Type 1 error rates and power of iSKAT when (1) the null model is estimated
without penalty (λ = 0) and (2) the null model is estimated with penalty (λ selected using
generalized cross-validation as described in Web Appendix 2.1.).

We consider the scenario similar to that in Web Figure 11, when we have a continuous
outcome and there are (b) main effects of the rare variants and (ii) G and E are dependent.
Similar to before, we consider the cases when 20%, 50% or 80% of the α3j’s are non-zero,
and set the non-zero α3j’s as |α3j| = c| log10 MAFj| and look at the scenarios when all α3j’s
are positive and when 50% of the α3j’s are positive, while varying c. We set γ3 = α3. We
evaluated 20 values of c from 0.02 to 0.4 in equal intervals, and had 5000 simulations for
each value of c, giving a total of 105 simulations. We report the empirical Type 1 error rates
and power averaged over 105 simulations. To evaluate Type 1 error and power, we set β = 0
and β = α3 respectively.

iSKAT with the null model estimated without penalization (λ = 0) did not converge for
71% out of the 105 simulations due to singularity or other numerical problems. We re-
port the empirical Type 1 error rates and power for the remainder 29% of simulations that
converged in Web Tables 4 and 5 respectively. The Type 1 error rates and power of both
approaches in the remaining 29% of simulations are similar.
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Web Table 2: Empirical Type 1 error rates for continuous outcome when G and E are
independent and there are no main effects (i.e. α3 = γ3 = 0) for n = 2000 (top panel)
and n = 4000 (bottom panel) respectively. Since there are no main effects for rare variants,
all five methods have correct Type 1 error rates.

n = 2000

α-level iSKAT iSKAT (ρ = 0) iSKAT (ρ = 1) CAST Counting
1e-02 1.16e-02 1.03e-02 1.06e-02 1.07e-02 1.03e-02
1e-03 1.16e-03 9.00e-04 1.14e-03 1.16e-03 1.20e-03
1e-04 1.30e-04 8.00e-05 1.30e-04 9.00e-05 2.00e-04

n = 4000

α-level iSKAT iSKAT (ρ = 0) iSKAT (ρ = 1) CAST Counting
1e-02 1.11e-02 1.03e-02 9.89e-03 1.00e-02 1.00e-02
1e-03 1.49e-03 1.12e-03 1.14e-03 1.13e-03 1.19e-03
1e-04 1.20e-04 1.10e-04 1.00e-04 8.00e-05 1.40e-04
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Web Figure 7: Empirical Type 1 error rates at α = 0.01 nominal level for continuous
outcome when G and E are dependent and there are no main effects for n = 2000 -
iSKAT (solid line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long
dashed line), CAST (dotted line) and Counting (short dashed line). Top panel - 20% non-
zero γ3j’s; Middle panel - 50% non-zero γ3j’s; Bottom panel - 80% non-zero γ3j’s. Left panel
- 50% of γ3j’s are positive; Right panel - 100% of γ3j’s are positive. α3 = 0. γ3 controls the
association between G and E. As c increases, the G− E association increases. Since
there are no main effects for rare variants, all five methods have correct Type 1 error rates.
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Web Figure 8: Empirical Type 1 error rates at α = 0.01 nominal level for continuous
outcome when G and E are dependent and there are no main effects for n = 4000 -
iSKAT (solid line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long
dashed line), CAST (dotted line) and Counting (short dashed line). Top panel - 20% non-
zero γ3j’s; Middle panel - 50% non-zero γ3j’s; Bottom panel - 80% non-zero γ3j’s. Left panel
- 50% of γ3j’s are positive; Right panel - 100% of γ3j’s are positive. α3 = 0. γ3 controls the
association between G and E. As c increases, the G− E association increases. Since
there are no main effects for rare variants, all five methods have correct Type 1 error rates.
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Web Figure 9: Empirical Type 1 error rates at α = 0.01 nominal level for continuous
outcome when G and E are independent and there are main effects for n = 2000 - iSKAT
(solid line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed
line), CAST (dotted line) and Counting (short dashed line). Top panel - 20% non-zero α3j’s;
Middle panel - 50% non-zero α3j’s; Bottom panel - 80% non-zero α3j’s. Left panel - 50%
of α3j’s are positive; Right panel - 100% of α3j’s are positive. γ3 = 0. α3 controls the
association between G and Y . As c increases, the G− Y association increases. Since
there are main effects for rare variants, iSKAT gives a correct Type 1 error rate but burden
tests can have inflated Type 1 error rates.
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Web Figure 10: Empirical Type 1 error rates at α = 0.01 nominal level for continuous
outcome when G and E are independent and there are main effects for n = 4000 - iSKAT
(solid line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed
line), CAST (dotted line) and Counting (short dashed line). Top panel - 20% non-zero α3j’s;
Middle panel - 50% non-zero α3j’s; Bottom panel - 80% non-zero α3j’s. Left panel - 50%
of α3j’s are positive; Right panel - 100% of α3j’s are positive. γ3 = 0. α3 controls the
association between G and Y . As c increases, the G− Y association increases. Since
there are main effects for rare variants, iSKAT gives a correct Type 1 error rate but burden
tests can have inflated Type 1 error rates.

27



0.1 0.2 0.3 0.4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

20% non−zero α3's, α3 +/− = 50%/50%; γ3 = α3

c

Ty
pe

 1
 e

rr
or

 a
t 0

.0
1 

le
ve

l

iSKAT
iSKAT (ρ = 0)
iSKAT (ρ = 1)
CAST
Counting

0.1 0.2 0.3 0.4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

20% non−zero α3's, α3 +/− = 100%/0%; γ3 = α3

c

Ty
pe

 1
 e

rr
or

 a
t 0

.0
1 

le
ve

l

iSKAT
iSKAT (ρ = 0)
iSKAT (ρ = 1)
CAST
Counting

0.1 0.2 0.3 0.4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

50% non−zero α3's, α3 +/− = 50%/50%; γ3 = α3

c

Ty
pe

 1
 e

rr
or

 a
t 0

.0
1 

le
ve

l

iSKAT
iSKAT (ρ = 0)
iSKAT (ρ = 1)
CAST
Counting

0.1 0.2 0.3 0.4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

50% non−zero α3's, α3 +/− = 100%/0%; γ3 = α3

c

Ty
pe

 1
 e

rr
or

 a
t 0

.0
1 

le
ve

l

iSKAT
iSKAT (ρ = 0)
iSKAT (ρ = 1)
CAST
Counting

0.1 0.2 0.3 0.4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

80% non−zero α3's, α3 +/− = 50%/50%; γ3 = α3

c

Ty
pe

 1
 e

rr
or

 a
t 0

.0
1 

le
ve

l

iSKAT
iSKAT (ρ = 0)
iSKAT (ρ = 1)
CAST
Counting

0.1 0.2 0.3 0.4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

80% non−zero α3's, α3 +/− = 100%/0%; γ3 = α3

c

Ty
pe

 1
 e

rr
or

 a
t 0

.0
1 

le
ve

l

iSKAT
iSKAT (ρ = 0)
iSKAT (ρ = 1)
CAST
Counting

Web Figure 11: Empirical Type 1 error rates at α = 0.01 nominal level for continuous
outcome when G and E are dependent and there are main effects for n = 2000 - iSKAT
(solid line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed
line), CAST (dotted line) and Counting (short dashed line). Top panel - 20% non-zero
α3j’s; Middle panel - 50% non-zero α3j’s; Bottom panel - 80% non-zero α3j’s. Left panel -
50% of α3j’s are positive; Right panel - 100% of α3j’s are positive. γ3 = α3. α3 controls
the association between G and Y . γ3 controls the association between G and E. As c
increases, both G− Y and G− E associations increase. Since there are main effects
for rare variants, iSKAT gives a correct Type 1 error rate but burden tests can have inflated
Type 1 error rates.
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Web Figure 12: Empirical Type 1 error rates at α = 0.01 nominal level for continuous
outcome when G and E are dependent and there are main effects for n = 4000 - iSKAT
(solid line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed
line), CAST (dotted line) and Counting (short dashed line). Top panel - 20% non-zero
α3j’s; Middle panel - 50% non-zero α3j’s; Bottom panel - 80% non-zero α3j’s. Left panel -
50% of α3j’s are positive; Right panel - 100% of α3j’s are positive. γ3 = α3. α3 controls
the association between G and Y . γ3 controls the association between G and E. As c
increases, both G− Y and G− E associations increase. Since there are main effects
for rare variants, iSKAT gives a correct Type 1 error rate but burden tests can have inflated
Type 1 error rates.
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Web Figure 13: Empirical Type 1 error rates at α = 0.01 nominal level for continuous
outcome when G and E are dependent and there are main effects for n = 2000 - iSKAT
(solid line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed
line), CAST (dotted line) and Counting (short dashed line). Top panel - 20% non-zero α3j’s;
Middle panel - 50% non-zero α3j’s; Bottom panel - 80% non-zero α3j’s. Left panel - 50% of
α3j’s are positive; Right panel - 100% of α3j’s are positive. γ3j = 0.4sgn(α3j)| log10 MAFj|.
α3 controls the association between G and Y . γ3 controls the association between G and
E. As c increases, the G− Y association increases but G−E association remains
fixed. Since there are main effects for rare variants, iSKAT gives a correct Type 1 error rate
but burden tests can have inflated Type 1 error rates. Bias of burden tests increase with
increasing G− Y association when G and E are dependent.
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Web Figure 14: Empirical Type 1 error rates at α = 0.01 nominal level for continuous
outcome when G and E are dependent and there are main effects for n = 4000 - iSKAT
(solid line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed
line), CAST (dotted line) and Counting (short dashed line). Top panel - 20% non-zero α3j’s;
Middle panel - 50% non-zero α3j’s; Bottom panel - 80% non-zero α3j’s. Left panel - 50% of
α3j’s are positive; Right panel - 100% of α3j’s are positive. γ3j = 0.4sgn(α3j)| log10 MAFj|.
α3 controls the association between G and Y . γ3 controls the association between G and
E. As c increases, the G− Y association increases but G−E association remains
fixed. Since there are main effects for rare variants, iSKAT gives a correct Type 1 error rate
but burden tests can have inflated Type 1 error rates. Bias of burden tests increase with
increasing G− Y association when G and E are dependent.
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Web Figure 15: Empirical Type 1 error rates at α = 0.01 nominal level for continuous
outcome when G and E are dependent and there are main effects for n = 2000 - iSKAT
(solid line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed
line), CAST (dotted line) and Counting (short dashed line). Top panel - 20% non-zero γ3j’s;
Middle panel - 50% non-zero γ3j’s; Bottom panel - 80% non-zero γ3j’s. Left panel - 50% of
γ3j’s are positive; Right panel - 100% of γ3j’s are positive. α3j = 0.4sgn(γ3j)| log10 MAFj|.
α3 controls the association between G and Y . γ3 controls the association between G and
E. As c increases, the G−E association increases but G− Y association remains
fixed. Since there are main effects for rare variants, iSKAT gives a correct Type 1 error rate
but burden tests can have inflated Type 1 error rates. Bias of burden tests increase with
increasing G− E association when G and Y are associated.
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Web Figure 16: Empirical Type 1 error rates at α = 0.01 nominal level for continuous
outcome when G and E are dependent and there are main effects for n = 4000 - iSKAT
(solid line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed
line), CAST (dotted line) and Counting (short dashed line). Top panel - 20% non-zero γ3j’s;
Middle panel - 50% non-zero γ3j’s; Bottom panel - 80% non-zero γ3j’s. Left panel - 50% of
γ3j’s are positive; Right panel - 100% of γ3j’s are positive. α3j = 0.4sgn(γ3j)| log10 MAFj|.
α3 controls the association between G and Y . γ3 controls the association between G and
E. As c increases, the G−E association increases but G− Y association remains
fixed. Since there are main effects for rare variants, iSKAT gives a correct Type 1 error rate
but burden tests can have inflated Type 1 error rates. Bias of burden tests increase with
increasing G− E association when G and Y are associated.
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Web Table 3: Empirical Type 1 error rates for binary outcome when G and E are inde-
pendent and there are no main effects (i.e. α3 = γ3 = 0) for n = 2000 (top panel) and
n = 4000 (bottom panel) respectively. Since there are no main effects for rare variants, all
five methods have correct Type 1 error rates.

n = 2000

α-level iSKAT iSKAT (ρ = 0) iSKAT (ρ = 1) CAST Counting
1e-02 1.55e-02 1.31e-02 1.43e-02 1.03e-02 9.77e-03
1e-03 1.52e-03 1.14e-03 1.51e-03 1.03e-03 8.50e-04
1e-04 7.00e-05 6.00e-05 1.40e-04 1.10e-04 6.00e-05

n = 4000

α-level iSKAT iSKAT (ρ = 0) iSKAT (ρ = 1) CAST Counting
1e-02 1.38e-02 1.15e-02 1.30e-02 9.41e-03 9.60e-03
1e-03 1.43e-03 9.80e-04 1.46e-03 8.70e-04 8.30e-04
1e-04 7.00e-05 6.00e-05 1.10e-04 5.00e-05 3.00e-05
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Web Figure 17: Empirical Type 1 error rates at α = 0.01 nominal level for binary outcome
when G and E are dependent and there are no main effects for n = 2000 - iSKAT (solid
line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed line),
CAST (dotted line) and Counting (short dashed line). Top panel - 20% non-zero γ3j’s;
Middle panel - 50% non-zero γ3j’s; Bottom panel - 80% non-zero γ3j’s. Left panel - 50%
of γ3j’s are positive; Right panel - 100% of γ3j’s are positive. α3 = 0. γ3 controls the
association between G and E. As c increases, the G− E association increases. Since
there are no main effects for rare variants, all five methods have correct Type 1 error rates.
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Web Figure 18: Empirical Type 1 error rates at α = 0.01 nominal level for binary outcome
when G and E are dependent and there are no main effects for n = 4000 - iSKAT (solid
line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed line),
CAST (dotted line) and Counting (short dashed line). Top panel - 20% non-zero γ3j’s;
Middle panel - 50% non-zero γ3j’s; Bottom panel - 80% non-zero γ3j’s. Left panel - 50%
of γ3j’s are positive; Right panel - 100% of γ3j’s are positive. α3 = 0. γ3 controls the
association between G and E. As c increases, the G− E association increases. Since
there are no main effects for rare variants, all five methods have correct Type 1 error rates.
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Web Figure 19: Empirical Type 1 error rates at α = 0.01 nominal level for binary outcome
when G and E are independent and there are main effects for n = 2000 - iSKAT (solid
line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed line),
CAST (dotted line) and Counting (short dashed line). Top panel - 20% non-zero α3j’s;
Middle panel - 50% non-zero α3j’s; Bottom panel - 80% non-zero α3j’s. Left panel - 50%
of α3j’s are positive; Right panel - 100% of α3j’s are positive. γ3 = 0. α3 controls the
association between G and Y . As c increases, the G− Y association increases. Since
G and E are independent and outcome is binary, even though there are main effects for rare
variants, all five methods have correct Type 1 error rates.
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Web Figure 20: Empirical Type 1 error rates at α = 0.01 nominal level for binary outcome
when G and E are independent and there are main effects for n = 4000 - iSKAT (solid
line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed line),
CAST (dotted line) and Counting (short dashed line). Top panel - 20% non-zero α3j’s;
Middle panel - 50% non-zero α3j’s; Bottom panel - 80% non-zero α3j’s. Left panel - 50%
of α3j’s are positive; Right panel - 100% of α3j’s are positive. γ3 = 0. α3 controls the
association between G and Y . As c increases, the G− Y association increases. Since
G and E are independent and outcome is binary, even though there are main effects for rare
variants, all five methods have correct Type 1 error rates.
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Web Figure 21: Empirical Type 1 error rates at α = 0.01 nominal level for binary outcome
when G and E are dependent and there are main effects for n = 2000 - iSKAT (solid line),
iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed line), CAST
(dotted line) and Counting (short dashed line). Top panel - 20% non-zero α3j’s; Middle
panel - 50% non-zero α3j’s; Bottom panel - 80% non-zero α3j’s. Left panel - 50% of α3j’s
are positive; Right panel - 100% of α3j’s are positive. γ3 = α3. α3 controls the association
between G and Y . γ3 controls the association between G and E. As c increases, both
G − Y and G − E associations increase. Since there are main effects for rare variants
and G and E are dependent, iSKAT gives a correct Type 1 error rate but burden tests can
have inflated Type 1 error rates.
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Web Figure 22: Empirical Type 1 error rates at α = 0.01 nominal level for binary outcome
when G and E are dependent and there are main effects for n = 4000 - iSKAT (solid line),
iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed line), CAST
(dotted line) and Counting (short dashed line). Top panel - 20% non-zero α3j’s; Middle
panel - 50% non-zero α3j’s; Bottom panel - 80% non-zero α3j’s. Left panel - 50% of α3j’s
are positive; Right panel - 100% of α3j’s are positive. γ3 = α3. α3 controls the association
between G and Y . γ3 controls the association between G and E. As c increases, both
G − Y and G − E associations increase. Since there are main effects for rare variants
and G and E are dependent, iSKAT gives a correct Type 1 error rate but burden tests can
have inflated Type 1 error rates.
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Web Figure 23: Empirical Type 1 error rates at α = 0.01 nominal level for binary outcome
when G and E are dependent and there are main effects for n = 2000 - iSKAT (solid line),
iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed line), CAST
(dotted line) and Counting (short dashed line). Top panel - 20% non-zero α3j’s; Middle
panel - 50% non-zero α3j’s; Bottom panel - 80% non-zero α3j’s. Left panel - 50% of α3j’s
are positive; Right panel - 100% of α3j’s are positive. γ3j = 0.4sgn(α3j)| log10 MAFj|. α3

controls the association between G and Y . γ3 controls the association between G and E.
As c increases, the G − Y association increases but G − E association remains
fixed. Since there are main effects for rare variants and G and E are dependent, iSKAT
gives a correct Type 1 error rate but burden tests can have inflated Type 1 error rates. Bias
of burden tests increase with increasing G− Y association when G and E are dependent.
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Web Figure 24: Empirical Type 1 error rates at α = 0.01 nominal level for binary outcome
when G and E are dependent and there are main effects for n = 4000 - iSKAT (solid line),
iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed line), CAST
(dotted line) and Counting (short dashed line). Top panel - 20% non-zero α3j’s; Middle
panel - 50% non-zero α3j’s; Bottom panel - 80% non-zero α3j’s. Left panel - 50% of α3j’s
are positive; Right panel - 100% of α3j’s are positive. γ3j = 0.4sgn(α3j)| log10 MAFj|. α3

controls the association between G and Y . γ3 controls the association between G and E.
As c increases, the G − Y association increases but G − E association remains
fixed. Since there are main effects for rare variants and G and E are dependent, iSKAT
gives a correct Type 1 error rate but burden tests can have inflated Type 1 error rates. Bias
of burden tests increase with increasing G− Y association when G and E are dependent.
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Web Figure 25: Empirical Type 1 error rates at α = 0.01 nominal level for binary outcome
when G and E are dependent and there are main effects for n = 2000 - iSKAT (solid line),
iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed line), CAST
(dotted line) and Counting (short dashed line). Top panel - 20% non-zero γ3j’s; Middle
panel - 50% non-zero γ3j’s; Bottom panel - 80% non-zero γ3j’s. Left panel - 50% of γ3j’s
are positive; Right panel - 100% of γ3j’s are positive. α3j = 0.4sgn(γ3j)| log10 MAFj|. α3

controls the association between G and Y . γ3 controls the association between G and E.
As c increases, the G − E association increases but G − Y association remains
fixed. Since there are main effects for rare variants and G and E are dependent, iSKAT
gives a correct Type 1 error rate but burden tests can have inflated Type 1 error rates. Bias
of burden tests increase with increasing G− E association when G and Y are associated.
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Web Figure 26: Empirical Type 1 error rates at α = 0.01 nominal level for binary outcome
when G and E are dependent and there are main effects for n = 4000 - iSKAT (solid line),
iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long dashed line), CAST
(dotted line) and Counting (short dashed line). Top panel - 20% non-zero γ3j’s; Middle
panel - 50% non-zero γ3j’s; Bottom panel - 80% non-zero γ3j’s. Left panel - 50% of γ3j’s
are positive; Right panel - 100% of γ3j’s are positive. α3j = 0.4sgn(γ3j)| log10 MAFj|. α3

controls the association between G and Y . γ3 controls the association between G and E.
As c increases, the G − E association increases but G − Y association remains
fixed. Since there are main effects for rare variants and G and E are dependent, iSKAT
gives a correct Type 1 error rate but burden tests can have inflated Type 1 error rates. Bias
of burden tests increase with increasing G− E association when G and Y are associated.
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Web Figure 27: Empirical power curves at n = 2000 for α = 0.01 level of significance for
continuous outcome when G and E are independent and there are no main effects (i.e.
α3 = γ3 = 0) - iSKAT (solid line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with
ρ = 1 (long dashed line), CAST (dotted line) and Counting (short dashed line). Top panel
- 20% non-zero βj’s; Middle panel - 50% non-zero βj’s; Bottom panel - 80% non-zero βj’s.
Left panel - 50% of βj’s are positive; Right panel - 100% of βj’s are positive.
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Web Figure 28: Empirical power curves at n = 4000 for α = 0.01 level of significance for
continuous outcome when G and E are independent and there are no main effects (i.e.
α3 = γ3 = 0) - iSKAT (solid line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with
ρ = 1 (long dashed line), CAST (dotted line) and Counting (short dashed line). Top panel
- 20% non-zero βj’s; Middle panel - 50% non-zero βj’s; Bottom panel - 80% non-zero βj’s.
Left panel - 50% of βj’s are positive; Right panel - 100% of βj’s are positive.
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Web Figure 29: Empirical power curves at n = 2000 for α = 0.01 level of significance
for binary outcome when G and E are independent and there are no main effects (i.e.
α3 = γ3 = 0) - iSKAT (solid line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with
ρ = 1 (long dashed line), CAST (dotted line) and Counting (short dashed line). Top panel
- 20% non-zero βj’s; Middle panel - 50% non-zero βj’s; Bottom panel - 80% non-zero βj’s.
Left panel - 50% of βj’s are positive; Right panel - 100% of βj’s are positive.
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Web Figure 30: Empirical power curves at n = 4000 for α = 0.01 level of significance
for binary outcome when G and E are independent and there are no main effects (i.e.
α3 = γ3 = 0) - iSKAT (solid line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with
ρ = 1 (long dashed line), CAST (dotted line) and Counting (short dashed line). Top panel
- 20% non-zero βj’s; Middle panel - 50% non-zero βj’s; Bottom panel - 80% non-zero βj’s.
Left panel - 50% of βj’s are positive; Right panel - 100% of βj’s are positive.
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Web Appendix 5. Additional Data Analysis on the CoLaus Dataset

For the data analysis on the CoLaus resequencing dataset, we applied a log10 transforma-
tion to the plasma adiponectin levels and extreme values of adiponectin levels were set to
the boundary value. This was done to improve normality and lessen the impact of outliers.
Web Figure 31 shows normal quantile-quantile plots, boxplots and histograms of adiponectin
levels both before and after transformation.

The minor allele frequencies (MAF) and missing rates of each of the 11 rare variants within
the exon of the adiponectin gene in the CoLaus resequencing dataset are provided in Web
Table 6. Linkage disequilibrium (LD) measures of these 11 rare variants with chr3:188053586
(MAF=0.138) are given in Web Table 11.

The results from applying SKAT-O to assess the main effects of the 11 rare variants on
adiponectin levels are given in Web Table 7. The results from applying iSKAT to assess the
rare variants by alcohol interactions on adiponectin levels are given in Web Table 8.

The estimated rare variants main effects from ridge regression and unpenalized regression
(ridge parameter λ = 0) are given in Web Tables 9 and 10 respectively.

In main manuscript Table 2, we report association analysis results where the missing geno-
types were imputed with homozygote of the major allele. Web Table 12 gives association
analysis results when the missing genotypes were imputed with the mean. Web Table 13
gives association analysis results when the missing genotypes were imputed with homozygote
of the major allele, but the six singletons were excluded from the analysis. All three sets of
results are similar.
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Web Table 4: Empirical Type 1 error rates from iSKAT (null model estimated without
penalty i.e. ridge parameter λ = 0) and iSKAT (null model estimated with penalty i.e.
ridge parameter λ > 0) are given in second and third columns respectively, for continuous
outcome when there are main effects (α3 6= 0), G and E are dependent (γ3 6= 0), n = 2000,
under the null hypothesis (β = 0). γ3 = α3. We consider the cases when 20% (first and
second panels), 50% (third and fourth panels) or 80% (fifth and sixth panels) of the α3j’s
are non -zero; and when 50% (first, third and fifth panels) or 100% (second, fourth and
sixth panels) of α3j’s are positive. α3 controls the association between G and Y (main rare
variants effects on Y ). γ3 controls the association between G and E (main rare variants
effects on E). β reflects the rare variants by environment interactions. For 71% of the 105

simulations, iSKAT with null model estimated without penalty (λ = 0) did not converge.
Here, we only compare the two when iSKAT with null model estimated without penalty
(λ = 0) converged. Type 1 error rates from both approaches are similar for the remaining
29% of simulations.

20% non-zero α3j’s, 50% of α3j’s are positive, β = 0
α-level iSKAT (λ = 0) iSKAT (λ > 0)
1e-02 1.15e-02 1.15e-02
1e-03 1.21e-03 1.21e-03

20% non-zero α3j’s, 100% of α3j’s are positive, β = 0
α-level iSKAT (λ = 0) iSKAT (λ > 0)
1e-02 1.03e-02 1.04e-02
1e-03 1.00e-03 1.07e-03

50% non-zero α3j’s, 50% of α3j’s are positive, β = 0
α-level iSKAT (λ = 0) iSKAT (λ > 0)
1e-02 1.09e-02 1.10e-02
1e-03 1.07e-03 1.07e-03

50% non-zero α3j’s, 100% of α3j’s are positive, β = 0
α-level iSKAT (λ = 0) iSKAT (λ > 0)
1e-02 1.06e-02 1.05e-02
1e-03 9.30e-04 9.65e-04

80% non-zero α3j’s, 50% of α3j’s are positive, β = 0
α-level iSKAT (λ = 0) iSKAT (λ > 0)
1e-02 1.11e-02 1.11e-02
1e-03 1.17e-03 1.14e-03

80% non-zero α3j’s, 100% of α3j’s are positive, β = 0
α-level iSKAT (λ = 0) iSKAT (λ > 0)
1e-02 1.04e-02 1.04e-02
1e-03 1.41e-03 1.38e-03
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Web Table 5: Empirical power from iSKAT (null model estimated without penalty i.e. ridge
parameter λ = 0) and iSKAT (null model estimated with penalty i.e. ridge parameter λ > 0)
are given in second and third columns respectively, for continuous outcome when there are
main effects (α3 6= 0), G and E are dependent (γ3 6= 0), n = 2000, under the alternative
hypothesis (β 6= 0). β = γ3 = α3. We consider the cases when 20% (first and second
panels), 50% (third and fourth panels) or 80% (fifth and sixth panels) of the α3j’s are non
-zero; and when 50% (first, third and fifth panels) or 100% (second, fourth and sixth panels)
of α3j’s are positive. α3 controls the association between G and Y (main rare variants effects
on Y ). γ3 controls the association between G and E (main rare variants effects on E). β
reflects the rare variants by environment interactions. For 71% of the 105 simulations, iSKAT
with null model estimated without penalty (λ = 0) did not converge. Here, we only compare
the two when iSKAT with null model estimated without penalty (λ = 0) converged. Power
from both approaches are similar for the remaining 29% of simulations.

20% non-zero α3j’s, 50% of α3j’s are positive, β = α3

α-level iSKAT (λ = 0) iSKAT (λ > 0)
1e-02 7.02e-02 7.03e-02
1e-03 2.56e-02 2.59e-02

20% non-zero α3j’s, 100% of α3j’s are positive, β = α3

α-level iSKAT (λ = 0) iSKAT (λ > 0)
1e-02 7.96e-02 8.00e-02
1e-03 2.91e-02 2.94e-02

50% non-zero α3j’s, 50% of α3j’s are positive, β = α3

α-level iSKAT (λ = 0) iSKAT (λ > 0)
1e-02 1.84e-01 1.85e-01
1e-03 8.80e-02 8.85e-02

50% non-zero α3j’s, 100% of α3j’s are positive, β = α3

α-level iSKAT (λ = 0) iSKAT (λ > 0)
1e-02 2.62e-01 2.65e-01
1e-03 1.44e-01 1.45e-01

80% non-zero α3j’s, 50% of α3j’s are positive, β = α3

α-level iSKAT (λ = 0) iSKAT (λ > 0)
1e-02 3.03e-01 3.04e-01
1e-03 1.77e-01 1.78e-01

80% non-zero α3j’s, 100% of α3j’s are positive, β = α3

α-level iSKAT (λ = 0) iSKAT (λ > 0)
1e-02 4.71e-01 4.74e-01
1e-03 3.33e-01 3.35e-01
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Web Table 6: Minor allele frequencies (MAF) and missing rates of each of the 11 rare variants
within the adiponectin gene in the CoLaus resequencing dataset.

Variant MAF Missing Rates
chr3:188053510 2.15e-02 0.77%
chr3:188053533 2.58e-04 0.31%
chr3:188053663 2.58e-04 0.21%
chr3:188053705 5.16e-04 0.31%
chr3:188053732 2.57e-04 0.10%
chr3:188054673 2.61e-04 1.39%
chr3:188054720 5.95e-03 0.62%
chr3:188054724 2.58e-04 0.51%
chr3:188054783 2.57e-02 0.051%
chr3:188055047 2.58e-04 0.15%
chr3:188055252 3.68e-03 2.06%

Web Table 7: p-values from applying SKAT-O to the CoLaus resequencing dataset to assess
rare variants main effects of the adiponectin gene on adiponectin levels. The SKAT-O model
is a special case of the iSKAT model and corresponds to setting the ridge parameter λ =∞
(i.e. α3 = 0) and S = G in the iSKAT model (main manuscript Equation (1)). p-values pρ
(second column) correspond to each Qρ for each fixed ρ = 0, 0.1, · · · , 0.9, 1 (first column).
Each of the pρ corresponds to the p-value obtained if ρ was fixed a priori. The minimum
of these 11 p-values gives the SKAT-O test statistic. SKAT-O, which accounts for multiple
testing from using the minimum of these 11 p-values, gave a p-value of 1.8e− 14, confirming
the strong association between rare variants within the adiponectin gene and adiponectin
levels.

ρ pρ
0 1.7e-15

0.1 4.5e-15
0.2 1.8e-13
0.3 1.3e-11
0.4 4.5e-10
0.5 6.8e-09
0.6 5.3e-08
0.7 2.7e-07
0.8 9.7e-07
0.9 2.8e-06
1 6.7e-06
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Web Figure 31: Normal quantile-quantile plot (top panel), boxplot (middle panel) and his-
togram of transformed adiponectin levels (left panel) and untransformed adiponectin levels
(right panel) respectively. For the left panel, a log10 transformation was applied to the
plasma adiponectin levels and extreme values of adiponectin levels (values exceeding lower
0.1% or upper 99.9% percentile) were set to the boundary value (value at 0.1% or 99.9%),
to improve normality and lessen the impact of outliers. Plots for raw values of adiponectin
levels are shown on the right panel for comparison.
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Web Table 8: p-values from applying iSKAT to the CoLaus resequencing dataset to assess
rare variants by environment interactions. p-values pρ (second column) corresponding to
each Qρ for each fixed ρ = 0, 0.1, · · · , 0.9, 1 (first column) were obtained as described in Web
Appendix 2.2. Each of the pρ corresponds to the p-value obtained if ρ was fixed a priori. The
minimum of these 11 p-values gives the iSKAT test statistic (main manuscript Equation (8)).
iSKAT, which accounts for multiple testing from using the minimum of these 11 p-values,
gave a p-value of 0.037.

ρ pρ
0 0.23

0.1 0.14
0.2 0.085
0.3 0.056
0.4 0.042
0.5 0.034
0.6 0.029
0.7 0.026
0.8 0.024
0.9 0.023
1 0.022

Web Table 9: Estimated rare variants main effects α̂3 from weighted ridge regression (Web
Appendix 2.1.). iSKAT uses these estimates from weighted ridge regression in the testing
procedure. Estimated rare variants main effects from unpenalized regression are given in
Web Table 10. Both sets of estimates are similar.

Variant α̂3j

chr3:188053510 -2.18e-01
chr3:188053533 -3.94e-01
chr3:188053663 -2.16e-02
chr3:188053705 -4.73e-01
chr3:188053732 -2.57e-01
chr3:188054673 1.22e-01
chr3:188054720 -1.51e-01
chr3:188054724 -8.37e-01
chr3:188054783 9.44e-02
chr3:188055047 -1.31e-02
chr3:188055252 -1.33e-01
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Web Table 10: Estimated rare variants main effects α̂3, standard errors (SE) and p-values (P)
from unpenalized linear regression. Unpenalized linear regression is equivalent to setting the
ridge parameter (λ = 0) in the ridge regression framework (Web Appendix 2.1.). Estimated
rare variants main effects from ridge regression are given in Web Table 9. Both sets of
estimates are similar.

Variant α̂3j SE P
chr3:188053510 -2.18e-01 3.0e-02 8.6e-13
chr3:188053533 -3.97e-01 2.7e-01 1.4e-01
chr3:188053663 -2.18e-02 2.7e-01 9.4e-01
chr3:188053705 -4.76e-01 1.9e-01 1.4e-02
chr3:188053732 -2.59e-01 2.7e-01 3.4e-01
chr3:188054673 1.23e-01 2.7e-01 6.5e-01
chr3:188054720 -1.51e-01 5.7e-02 8.2e-03
chr3:188054724 -8.45e-01 2.7e-01 1.9e-03
chr3:188054783 9.45e-02 2.8e-02 6.1e-04
chr3:188055047 -1.32e-02 2.7e-01 9.6e-01
chr3:188055252 -1.33e-01 7.3e-02 6.7e-02

Web Table 11: Linkage disequilibrium (LD) measures (D
′

and R2) between chr3:188053586
(MAF = 0.138 > 0.05) and the remainder 11 rare variants (MAF < 0.05) in the CoLaus
resequencing dataset.

Variant D
′

R2

chr3:188053510 0.731 0.002
chr3:188053533 1 0
chr3:188053663 1 0
chr3:188053705 1 0.003
chr3:188053732 1 0
chr3:188054673 1 0
chr3:188054720 0.888 0.001
chr3:188054724 1 0.002
chr3:188054783 1 0.004
chr3:188055047 1 0
chr3:188055252 0.546 0
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Web Table 12: Summary of association analysis results of the CoLaus resequencing dataset
when missing genotypes were imputed by mean. Association analysis results when missing
genotypes were imputed by homozygote of the major allele are given in main manuscript
Table 2. Results from both sets of analysis are similar. The SKAT-O test (Lee and others ,
2012) was used to test for the main rare variant effects on adiponectin levels (first row) and
their effects on alcohol usage (second row). The iSKAT test was used to test for interaction
effects between ADIPOQ gene and alcohol use on adiponectin levels (third-fifth rows).

Analysis p-value
Main effects of rare variants of ADIPOQ gene on adiponectin levels 2.5e-14
Main effects of rare variants of ADIPOQ gene on alcohol usage 4.2e-02
Interaction effects of rare variants of ADIPOQ gene *alcohol on adiponectin levels 3.4e-02
Interaction effects of rare variants of ADIPOQ gene*alcohol on adiponectin levels, 6.1e-02
adjusting for effects of common variant chr3:188053586 and chr3:188053586*alcohol
Interaction effects of ADIPOQ gene*alcohol (chr3:188053586*alcohol and 3.0e-02
rare variants*alcohol) on adiponectin levels

Web Table 13: Summary of association analysis results of the CoLaus resequencing dataset,
excluding singletons, when missing genotypes were imputed by homozygote of the major
allele. Association analysis results without excluding singletons, when missing genotypes
were imputed by homozygote of the major allele are given in main manuscript Table 2.
Results from both sets of analysis are similar. The SKAT-O test (Lee and others , 2012)
was used to test for the main rare variant effects on adiponectin levels (first row) and their
effects on alcohol usage (second row). The iSKAT test was used to test for interaction effects
between ADIPOQ gene and alcohol use on adiponectin levels (third-fifth rows).

Analysis p-value
Main effects of rare variants of ADIPOQ gene on adiponectin levels 2.1e-14
Main effects of rare variants of ADIPOQ gene on alcohol usage 4.0e-02
Interaction effects of rare variants of ADIPOQ gene *alcohol on adiponectin levels 3.7e-02
Interaction effects of rare variants of ADIPOQ gene*alcohol on adiponectin levels, 6.4e-02
adjusting for effects of common variant chr3:188053586 and chr3:188053586*alcohol
Interaction effects of ADIPOQ gene*alcohol (chr3:188053586*alcohol and 3.1e-02
rare variants*alcohol) on adiponectin levels
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