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Summary. Multiple imputation (MI) is a well-established method to handle item-nonresponse in sample surveys. Survey
data obtained from complex sampling designs often involve features that include unequal probability of selection. MI requires
imputation to be congenial, that is, for the imputations to come from a Bayesian predictive distribution and for the observed
and complete data estimator to equal the posterior mean given the observed or complete data, and similarly for the observed
and complete variance estimator to equal the posterior variance given the observed or complete data; more colloquially, the
analyst and imputer make similar modeling assumptions. Yet multiply imputed data sets from complex sample designs with
unequal sampling weights are typically imputed under simple random sampling assumptions and then analyzed using methods
that account for the sampling weights. This is a setting in which the analyst assumes more than the imputer, which can led to
biased estimates and anti-conservative inference. Less commonly used alternatives such as including case weights as predictors
in the imputation model typically require interaction terms for more complex estimators such as regression coefficients, and
can be vulnerable to model misspecification and difficult to implement. We develop a simple two-step MI framework that
accounts for sampling weights using a weighted finite population Bayesian bootstrap method to validly impute the whole
population (including item nonresponse) from the observed data. In the second step, having generated posterior predictive
distributions of the entire population, we use standard IID imputation to handle the item nonresponse. Simulation results show
that the proposed method has good frequentist properties and is robust to model misspecification compared to alternative
approaches. We apply the proposed method to accommodate missing data in the Behavioral Risk Factor Surveillance System
when estimating means and parameters of regression models.

Key words: Bayesian bootstrap; Behavioral Risk Factor Surveillance System (BRFSS); Missing data; Polya posterior;
Sampling design.

1. Introduction

Both item nonresponse and sampling weights are typical fea-
tures of survey data obtained from complex sample designs.
Item nonresponse occurs when some respondents do not an-
swer all the items in a survey questionnaire, e.g., both “don’t
know” and refusal answers are considered as item nonre-
sponse. Sampling weights arise as a correction factor to com-
pensate for over- or under-representation of units in the target
population due to unequal selection probabilities. The Be-
havior Risk Factor Surveillance System (BRFSS) has both a
substantial proportion of missing data on income measures
as well as survey weights that adjust for different sampling
rates among states and oversampling of adults in smaller sized
households, as well as for nonresponse bias by poststratifying
and raking to known control totals for basic demographics.

When the proportion of item-level missing values is non-
trivial and the data are not missing completely at random
(MCAR), typical solutions for missing data like complete case
analysis often lead to increased bias and reduced statistical
power. Multiple imputation (MI) (Rubin, 1987) is a princi-
pled method for addressing item-level missing data. MI has a

Bayesian conceptualization. The basic idea is to fill in missing
data with M sets of plausible values. These are obtained as
repeated draws from the posterior predictive distribution of
the missing components of the sample Ymis given its observed
components Yobs, i.e., p(Ymis|Yobs). The production of mul-

tiple “completed” data sets
{
(Yobs, Y

(1)
mis), . . . , (Yobs, Y

(M)
mis )

}
is

typically done by an “imputer” who has access to the data
to develop reasonable models for generating the predictive
distribution of Ymis, allowing the “analyst” to then analyze
each of the M imputed data sets and combine the point and
variance estimates using the combining rules developed by
Rubin (1987). Examples of this approach include imputation
for blood alcohol concentration in the Fatal Accident Report-
ing System (FARS) (Heitjan and Little, 1991) and income
imputation in the National Health Interview Survey (NHIS)
(Schenker et al., 2006).

While the imputer/analyst distinction is convenient, Meng
(1994) pointed out that this can lead to problems with in-
ference when the imputer and analyst assume different data
models (“uncongeniality”). Meng shows that, when the im-
puter assumes a richer model than the analyst, the resulting
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MI analysis would typically be mildly conservative, whereas
if the analyst assumed a richer model than the imputer, the
resulting MI analysis could be either conservative or anti-
conservative. In settings where the observed data are obtained
using an unequal probability sampling design, data are typi-
cally imputed using models in which variables are assumed to
be independent and identically distributed (IID), and then
analyzed using a weighted design-based approach that ac-
counts for the unequal selection probability. This presents an
example of the latter form of uncongeniality that can lead to
biased point estimation and below-nominal confidence inter-
val coverage. It is therefore important to incorporate unequal
probabilities of selection/sampling weights in the imputation
procedure.

A simple and seemingly straightforward way to incorpo-
rate sampling weights in MI is to let the imputer’s model
condition on a few key design variables that determine prob-
abilities of inclusion, such as measure of size and stratifica-
tion variables. However, not all design information is typically
available in public use data due to disclosure risk concerns.
Another option is to summarize the design information by
using weights as a covariate in the imputation, perhaps after
log transformation or categorization in “weight strata” and
modeling them as dummy indicators. However, the model-
ing task may be complicated by attempting to include all
interactions of weights (or weight-related design variables)
with other covariates in the model (Meng, 1994; Kim et al.,
2006). Moreover, this approach typically requires the func-
tional form of the interaction to be modeled correctly, using
a spline or other nonparametric form to be robust against
model misspecification (Elliott and Little, 2000; Zheng and
Little, 2005; Breidt, Claeskens, and Opsomer, 2005). In addi-
tion, Kim et al. and Seaman et al. (2011) show that, in the
case of a target complete data estimator of a weighted to-
tal, the standard Rubin MI variance formula is no longer an
unbiased even if the imputation model is correctly specified
without the weights, since the weights induce a covariance
between the MI point estimator and the (latent) complete
data estimator, a quantity that is not accounted for in the
Rubin MI variance formula; typically this covariance is neg-
ative, so that the standard MI variance estimators and as-
sociated confidence intervals are conservative, but complex
adjustment must be made to regain nominal p-values and
coverage.

This article develops a modified MI framework to account
for sampling weights from single-stage designs. We propose a
two-step MI procedure. In the first step, we develop and use
a weighted finite population Bayesian bootstrap (weighted
FPBB) to validly impute the whole population (including
item nonresponse) from the observed data. In the second step,
having generated posterior predictive distributions of the en-
tire population, we use standard IID imputation to handle
the item nonresponse. Our suggested procedure allows the
parametric imputation model to no longer need to model in-
teractions between weights and covariates in the imputation
regression model to account for model misspecification. In ad-
dition, since we are imputing to a synthetic population, all
weights are constant and equal to 1, so no covariance between
the MI point estimator and the complete data estimator is
induced.

The rest of this article is organized as follows. Section 2
provides a detailed overview of the proposed two-step semi-
parametric multiple imputation procedure to accommodate
weighted data. (We term it “semiparametric” because the de-
sign features, in particular the weights, are accommodated
nonparametrically, whereas the actual imputation is con-
ducted under a standard parametric model.) We focus on the
setting where the selection probabilities are obtained from
a probability proportional to size (PPS) sample design, al-
though the methods we develop can be used with any selec-
tion weights. Section 2 then discusses point estimation and
inference using the MI data sets from the proposed proce-
dure. Section 3 provides a simulation study in the context
of a single-stage probability-proportional-to-size sample de-
sign to estimate population means and regression coefficients
under a variety of settings where sampling weights are as-
sociated to differing degrees with both the outcome and the
probability of nonresponse, and where failure to account for
design in the imputation procedure has differing degrees of
impact. We compare the performances of the proposed two-
step MI and the fully parametric MI in terms of robustness to
different degrees of model misspecification. Section 4 applies
the proposed procedure to estimate means, linear, and log-
linear regression models, describing marginal and joint dis-
tributions of income and health insurance accessibility, using
data from the 2009 Behavioral Risk Factor Surveillance Sys-
tem (BRFSS). Section 5 concludes with a brief discussion of
possible extensions.

2. A Two-Step Semiparametric MI Procedure

Bayesian finite population inference (Ericson, 1969) has been
proposed as a means to harmonize design and model-based
approaches for sample survey inference (Little, 2004, 2011).
Under this approach, we focus on the posterior predictive dis-
tribution of our finite population quantity of interest (e.g.,
population mean, population regression parameter) obtained
from the posterior predictive distribution for the nonsampled
elements of the population. To make matters more concrete,
consider the setting in the absence of missing data where we
have a scalar outcome Y, sampling weight w based on a sin-
gle stage PPS design, and no missing data. Our complete data
consists of the vector of sampling indicators I for the popu-
lation, sampled Ys for which I = 1 , the nonsampled Yns for
which I = 0, and similarly ws and wns. Given the sampling
weights, the sampling mechanism generating I is assumed to
be independent of Y (p(I|Y, w) = p(I|w)), and thus ignorable
in the modeling. Assuming a model for the outcome given
the sampling weights p(Y |θ, w) parameterized by θ with prior
p(θ), the posterior predictive distribution for the nonsampled
elements of the population Yns is given by

p(Yns|Ys, ws)∝
∫

p(Yns|Ys, θ, w)p(θ|Ys, w)p(wns|ws)dθ dwns

(1)

Previous work has tackled estimation of this predictive dis-
tribution in a variety of ways. Zheng and Little (2004, 2005)
and Chen, Little, and Elliott (2010) assumed that the sam-
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pling weights were known for all subjects, so that ws = w, re-
ducing (1) to p(Yns|Ys, w)∝ ∫

p(Yns|Ys, θ, w)p(θ|Ys, w)dθ ; these
authors then obtained draws from the posterior predictive dis-
tribution under fairly weak modeling assumptions (paramet-
ric regression model for p(Y |θ, w) based on penalized splines).
Little and Zheng (2007) and Zangeneh, Keener, and Little
(2011) considered the situation in which weights are observed
only for the sample (as in a public use data setting), and ob-
tained predictive draws for p(wns|ws) under a Dirichlet model
with a noninformative (Haldane) prior; the resulting predic-
tive draw of the population of weights was then used as in
Zheng and Little to obtain posterior predictive draws of Yns.
Dong, Elliott, and Raghunathan (2014) consider a different
factorization of (1):

p(Yns|Ys, ws) ∝
∫

p(Yns, wns|Ys, ws)p(Ys, ws)dwns, (2)

The parameter θ is dropped because the draws of Ys, ws

are made directly from the posterior of the empirical CDF
of Ys, ws using a Bayesian bootstrap (BB) procedure (Rubin,
1981). Draws from Yns, wns|Ys, ws are then made using a
weighted finite population Bayesian boostrap (FPBB) pro-
cedure described in Cohen (1997).

Here, we extend the approach of Dong, Elliott, and Raghu-
nathan to accommodate missing data due to item-level non-
response. We assume that, had we taken a census of the entire
population, we could have observed a vector of response in-
dicators R = (Rs, Rns), where Rs corresponds to the response
indicators observed in the sample, and Rns to the response
indicators associated with the nonsampled elements. We then
divide the sampled Ys = (Ys,obs, Ys,mis) into the fully observed
and missing elements, corresponding to the sampled Y values
associated with Rs = 1 and Rs = 0, respectively, and similarly
the nonsampled Yns = (Yns,obs, Yns,mis) into those that would
have been observed had they been sampled (Rns = 1), and
those that would have had missing values (Rns = 0). We also
assume a fully observable covariate X = (Xs, Xns) consisting
of the sampled and nonsampled elements, respectively. Note
that we can combine the observed from the sampled and non-
sampled parts of the population to obtain the potentially “ob-
servable” Yobs = (Ys,obs, Yns,obs), and similarly those missing
Ymis = (Ys,mis, Yns,mis). We assume ignorable missingness, so
that p(R|Y, w) = p(R|Yobs, w), allowing R to be ignored in the
model along with I. Extending (1) to incorporate item-level
missingness then yields

p(Yns,obs, Xns|Ys,obs, Xs, ws)

=
∫

p(Yns,obs, Xns, Ymis|Ys,obs, Xs, ws)dYmis

We can generate from p(Yns,obs, Xns, Ymis|Ys,obs, Xs, ws) by
simply allowing the missing values in Y to be generated along
with the observed values for Y and X using the weighted
FPBB procedure. We then integrate out with respect to Ymis

by assuming a parametric model for Y |X:

∫
p(Yns,obs, Xns, Ymis|Ys,obs, Xs, ws)dYmis =

∫
p(Ymis|Yns,obs, Xns, Ys,obs, Xs, ws)p(Yns,obs, Xns|Ys,obs,Xs,ws)

×dYmis =
∫ ∫

p(Ymis|Yns,obs, Xns, Ys,obs, Xs, ws, θ)

×p(Yns,obs, Xns|Ys,obs, Xs, ws, θ)p(θ|Ys,obs, Xs, ws)dθdYmis∝∫ ∫
p(Ymis|Yns,obs, Xns, Ys,obs, Xs, ws, θ)

×p(Yns,obs, Xns|Ys,obs, Xs,ws,θ)p(Ys,obs, Xs,ws|θ)p(θ)dθdYmis

(3)

We can implement the integration in (3) by use of a stan-
dard Gibbs sampler for multiple imputation that iterates be-
tween draws of

p(θ|Yns,obs, Xns, Ys,obs, Xs, ws, Ymis) = p(θ|Y, X, ws) = p(θ|Y, X)

(4)

and

p(Ymis|Yns,obs, Xns, Ys,obs, Xs, ws, θ) (5)

Note that (4) follows from the fact that, conditional on the
entire population, the observed weights are superfluous for
the draws of θ, so that it is sufficient to develop a paramet-
ric model for Y that does not involve the weights together
with a prior for θ (possibly conditional on X):p(θ|Y, X, ws) =
p(θ|Y, X)∝p(Y |θ, X)p(θ|X). The presence ws in (5) indicates
that the observed weights may still be important in the im-
putation of the missing elements of Y if missingness itself is a
function of the probability of selection, as we note below.

2.1. Step 1: Undo Sampling Weights through
Nonparametric Synthetic Data Generation

Here, we briefly review the work of Dong, Elliott, and Raghu-
nathan (2014) to obtain draws from a posterior predictive
distribution of the population that is free of the effects of un-
equal probability of selection. This work builds on the work
of Ghosh and Meeden (1983), Lo (1988), and Cohen (1997),
where details of the derivations of the results can be found.

2.1.1. The weighted Pólya posterior. The purpose of
developing the weighted Polya posterior is to be able to draw
from a posterior predictive distribution of a finite population
based on an unequal probability-of-selection sampling design
without making any parametric assumptions about the
probability mechanism that generated the data. We begin
by describing the Polya posterior developed by Ghosh and
Meeden (1983) in the simple random sampling setting.
Assume that a simple random sample of size n is drawn from
a finite population of size N, denoted by ys = {y1, ..., yn}. Let
�(•) denote the gamma function, {d1, d2, . . . , dK} denote the
set of K distinct values in the sample and λ = {λ1, λ2, ..., λK}



A Two-Step Semiparametric Method to Accommodate Sampling Weights in Multiple Imputation 245

denote the vector of probabilities that Pr(yi = dk|λ) = λk,

for i = 1, 2, . . . , n, with
∑K

j=1
λj = 1. Let nj and uj be the

number of units taking value dj in the sample and in
the nonsampled part of the population, respectively, for
j = 1, 2, ..., K, and

∑K

j=1
nj = n,

∑K

j=1
uj = N − n. Assuming

a noninformative Haldane prior of λ, λ ∼ Dir(0, . . ., 0),
together with a multinomial distribution for the counts of
sample data, n1, .., nK|λ ∼ Mult(n; λ), Ghosh and Meeden
show that predictive distribution of counts in the nonsampled
data is given by the following:

p(u1, . . . , uK|n1, . . . , nK) =
∏K

j=1
�(nj + uj)/�(nj)

�(N)/�(n)
. (6)

Cohen (1997) generalized (6) to the case where the sam-
ple is selected with unequal probabilities. We now assume
that we have a sample of size n consisting of (Ys, Xs, ws, Rs) =
{(Yi, Xi, wi, Ri), i = 1, ..., n.}, where R is a response indica-
tor for Y , so that Yi = Yi,obs if Ri = 1 and Yi = Yi,mis if
Ri = 0, X consists of fully observed covariates, and wi de-
notes the sampling weight for the ith unit in the sam-

ple, which is normalized to sum up to N, i.e.,
n∑

i=1

wi = N.

Let {d̃1, d̃2, . . . , d̃K} denote the set of K distinct vectors of
(Yi, Xi, wi, Ri) in the sample and ς = {ς1, ς2, . . . , ςK} denote
the vector of probabilities that Pr

(
(Yi, Xi, wi, Ri) = d̃k|ς

) =
ςk, for i = 1, 2, . . . , n, k = 1, . . . , K, and

∑K

j=1
ςi = 1. Let nj

and uj be the number of units taking vector d̃j in the sample
and in the nonsampled part of the population, respectively, for
j = 1, 2, . . . , K, and

∑K

j=1
nj = n,

∑K

j=1
uj = N − n. Again as-

suming a noninformative Haldane prior of ς: ς ∼ Dir(0, . . . , 0)
together with multinomially distributed weighted counts in

the data p(w1, . . . , wK|ς)∝
K∏

j=1

ς
wj

j , Cohen (1997) posits and

Dong, Elliott, and Raghunathan (2014) prove that the poste-
rior predictive distribution of counts in the nonsampled data
is given by the following:

p(u1, . . . , uK|w1, . . . , wK) =
∏K

j=1
�(wj + uj)/�(wj)

�(2N − n)/�(N)
. (7)

2.1.2. The adapted-weighted FPBB method. The
adapted-weighted FPBB (Dong, Elliott, and Raghunathan,
2014) consists of two stages. The first stage resamples the
original sample using the standard Bayesian bootstrap
assuming IID, and the second stage reverses/undoes the
sampling weights using the weighted FPBB. This two-stage
algorithm is analogous to the fully parametric Bayesian
method, where the first stage is equivalent to drawing values
of the parameter (ς) from its posterior distribution given
the counts in sampled data (n1, . . . , nK) and the second
stage draws the predicted counts in the nonsampled data
(u1, . . . , uK) given the drawn parameter. The method is
described as follows:

• Resampling Using the Standard Bayesian Bootstrap (BB)
The standard Bayesian Bootstrap of Rubin (1981) assum-

ing IID is used to generate L replicate BB samples each of

size n, i.e.,
{

(Y
(l)
s , X

(l)
s , w

(l)
s , R

(l)
s ), l = 1, . . . , L.

}
. This essen-

tially generates the posterior joint distribution (denoted by
f ) of all the variables in the population given their realized
values in the sample data set. Or equivalently, the posterior
distribution of the parameter vector ς is drawn given the sam-
ple, i.e.,

f (l)(Y, X, w, R)|(Ys, Xs, ws, Rs) ⇔ (
ς(l)|Ys, Xs, ws, Rs

)
∼ Dir(n1, . . . , nK), for l = 1, . . . , L.,

where ς(l) =
(
ς

(l)
1 , . . . , ς

(l)
K

)
.

(8)

This stage captures the sampling variability. The uncer-
tainty in the posterior draws of the parameter ς(l) is reflected
in the varying counts of distinct units in the original sample
being selected in different replicate BB samples. Let tl(i) de-
note the number of times unit i is selected in the lth replicate
BB sample, for l = 1, . . . , L. We incorporate this source of un-
certainty in computing “the lth bootstrap weight for unit i”,

i.e., w
(l)∗
i = wi · tl(i), where wi denotes the original sampling

weight for unit i. The bootstrap weights are carried forward
as input weights to the next stage.

• Undo Sampling Weight Using the Weighted Polya Poste-
rior/Weighted FPBB

To capture the variability due to “imputing” the non-
sampled units, the weighted Polya posterior in equation
(7) is used to create S synthetic populations for each
of the L BB sample obtained from the previous stage,

i.e.,
{

(Y
(l)
s , X

(l)
s , R

(l)
s ), (Y

(ls)
ns , X

(ls)
ns , R

(ls)
ns )

}
, for s = 1, . . . , S, l =

1, . . . , L. The distribution in equation (7) does not lend itself
to direct calculation; however, draws from (7) can be obtained
using Monte Carlo simulation. Specifically, we apply a proce-
dure suggested by Cohen (1997), who extended the algorithm
developed by Lo (1998) in the simple random sampling setting
to a weighted sampling setting

(i) Take a Pólya sample of size N − n, denoted by

(Y
(ls)
s , X

(ls)
s , R

(ls)
s ) from the urn (Y

(l)
s , X

(l)
s , R

(l)
s ) by select-

ing each element in the urn with probability

w
(l)∗
i − 1 + li,k−1 × (N−n

n
)

N − n + (k − 1) × (N−n

n
)
, k = 1, 2, . . . , N − n + 1.

(9)

where w
(l)∗
i is the bootstrap weight for the ith unit in

the lth replicate BB sample, and li,k−1 is the number
of selections of unit i up to (k-1)th selection, setting
li,0 = 0.

(ii) Form the weighted FPBB synthetic population P
(l)

(s) ={
(Y

(l)
s , X

(l)
s , R

(l)
s ), (Y

(ls)
ns , X

(ls)
ns , R

(ls)
ns )

}
so that it has exact

size N.
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This results in the “unweighted” synthetic populations

P
(l)

(s) = (Y (ls), X(ls), R(ls)) = (P
(l)

(s)obs, Y
(ls)
mis), s = 1, . . . , S, l = 1, 2,

. . . , L, where L and S are the numbers of data sets gen-
erated from first- and second-stage, respectively, and

P
(l)

(s)obs = ((Y
(l)
s,obs, X

(l)
s , R

(l)
s ), (Y

(ls)
ns,obs, X

(ls)
ns , R

(ls)
ns )) and Y

(ls)
mis =

(Y
(l)
s,mis, Y

(ls)
ns,mis) consist of the observed and unobserved data

in the lsth FPBB synthetic population data set, respectively.

2.2. Step 2: Multiply Impute Missing Data through
Parametric Models

Now that we have effectively “undone” the sampling de-
sign, we are ready to perform conventional MI under an
IID assumption. Following the standard MI procedure or ap-
proximations such as SRMI (Raghunathan, Lepkowski, Van
Hoewyk, and Solenberger, 2001), we obtain draws from the

posterior predictive distribution p(Y
(ls)
mis|P(l)

(s)obs). Without the
need to include weights in the imputation model due to a self-
weighting FPBB population generated from previous step, our
task can now be concentrated on correctly modeling the co-
variate variables. Note that the elimination of the weights
from the self-weighting FPBB population does not obviate
the need to account for the weights in the imputation pro-
cess, if the probability of selection (I) and nonresponse (R)
is associated with each other (i.e., p(R|Yobs, w) �= p(R|Yobs)).
This step results in M imputed synthetic data sets for each
of the L × S FPBB synthetic populations generated from the

first step, Pl
sM = (P

(l)

(s)1, P
(l)

(s)2, . . . , P
(l)

(s)M), for s = 1, 2, . . . , S, l =
1, 2, . . . , L.

2.3. Point and Variance Estimates for the Two-Step MI
Procedure

Conditional on P imp = {P(1)

(11), . . . , P
(1)

(1M), . . . , P
(1)

(S1), . . . , P
(1)

(SM),

. . . , P
(L)

(SM)}, the posterior predictive distribution of a scalar

population statistic Q(Y) ≡ Q is given by

Q|P imp •∼ tL−1(Q̄L, (1 + L−1)VL) (10)

where Q̄L = 1
L

∑
l

Q̃(l) and VL = 1
L−1

∑
l

(Q̃(l) − Q̄L)2, where

Q̃(l) = lim
S→∞
M→∞

1
SM

∑
s

∑
m

q(lsm), where q(lsm) is an estimate of Q

obtained from the mth imputation of the sth synthetic popu-
lation within the lth Bayesian Bootstrap sample; in practice
we estimate Q̃(l) by Q̂(l) = 1

SM

∑
s

∑
m

q(lsm). The result follows

immediately from Section 4.1 of Raghunathan, Reiter, and
Rubin (2003), and is based on the standard Rubin (1987)
multiple imputation combining rules, where (Yns, Xns, Rns) and
Ys,mis are missing data and (Ys,obs, Xs, Rs) is observed. The av-
erage “within” imputation variance is zero, since the entire
population is being synthesized; hence the posterior variance
of Q is entirely a function of the between-imputation variance,
and the degrees of freedom is simply given by the number of
BB samples. This result requires E(q(lsm)) = Q, which implies
that our imputation model for Ymis is correctly specified, as
well as the standard sufficiently large sample size for the t

approximation to be reasonable. In addition, since we are im-
puting under the synthesized population, all weights are con-
stant and equal to 1, so no covariance between the MI point

estimator and the complete data estimator is induced (Kim
et al., 2006; Seamen et al., 2012).

These results assume S → ∞ and M → ∞; in practice, we
have found that relatively modest values of S and M are
needed for the imputation approximations to hold. In partic-
ular, we show below that S = 20 and M = 5 yield reasonable
results in simulation studies, results that are also consistent
with in Dong et al. (2014). In addition, in settings where N
is very large, generating a synthetic population large enough
to have a relatively trivial sampling fraction (e.g., N∗ = 10n)
will generally be sufficient.

3. Simulation Study

A simulation study was designed to investigate the inferen-
tial properties of the proposed method. In particular, we are
interested to see how the two-step MI procedure performs in
comparison with the existing fully parametric methods under
four simulation designs defined by crossing the following two
factors:

(1) Associations of the probabilities of selection with the
mechanism generating the data. We call the design
“outcome relevant” if the probabilities of selection are
correlated with the outcome variable Y , otherwise we
term it an “outcome irrelevant” design.

(2) Associations of the probabilities of selection with
the mechanism generating the missing values. We
use “MAR X” (weight-independent missingness) and
“MAR X,W” (weight-dependent missingness), respec-
tively to denote respective situations where the missing
data mechanism is dependent on fully observed covari-
ates only and where it depends on probabilities of se-
lection as well as other fully observed covariates.

We first generate a population of three variables: the out-
come variable Y , a covariate X, and a variable Z based on
which probability proportionate to size without replacement
(PPSWOR) sampling is conducted. The joint distribution of
Z, X, and Y is given by the following:

logZ ∼ N(2, 1)

X|Z ∼ N(0.1 ∗ logZ, σ2
x )

Y1|X, Z ∼ N(0.1 ∗ X + 0.5 ∗ logZ + 0.6 ∗ X ∗ logZ, σ2
y1

)

Y2|X, Z ∼ N(0.2 ∗ X, σ2
y2

)

Thus (Y1, X, Z) constitutes the “relevant design” pop-
ulation and (Y2, X, Z) constitutes the “irrelevant design”
population. Both populations have size N = 4000. For each
population, we drew 500 independent samples of size n = 200
without replacement, with inclusion probability for the ith

unit πi = nZi/
N∑

j=1

Zj. We call the 500 PPSWOR samples

“before deletion (BD) samples.”
Next, probit models were used as deletion functions to cre-

ate missing data in the outcome variable Y for each of the
100 simulations. Both X and Z are assumed to be completely
observed.
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Table 1
Before deletion study of the effects of the number of generated FPBB populations (S) on variance estimate

Weighted FPBB method with S synthetic populations created

Parameters Performance S = 1 S = 5 S = 10 S = 15 S = 20 S = 25 S = 30 S = 40 Actual
Of interest criteria sample

Mean Pt. est. 1.460 1.459 1.458 1.460 1.458 1.460 1.460 1.460 1.450
Emp.Est.Var 0.048 0.036 0.034 0.034 0.033 0.033 0.033 0.033 0.033
Emp.Var 0.031 0.031 0.032 0.031 0.032 0.031 0.031 0.031 0.032
RMSE 0.176 0.178 0.177 0.177 0.178 0.175 0.177 0.177 0.178
95% CI cov. 99% 97% 96% 97% 96% 96% 95% 96% 96%

Intercept Pt. est. 1.251 1.250 1.249 1.250 1.249 1.250 1.250 1.250 1.241
Emp.Est.Var 0.028 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021
Emp.Var 0.021 0.021 0.021 0.011 0.021 0.021 0.021 0.021 0.022
RMSE 0.145 0.145 0.146 0.145 0.145 0.144 0.144 0.146 0.150
95% CI cov. 96% 94% 94% 94% 94% 95% 94% 94% 94%

Slope Pt. est. 1.280 1.281 1.280 1.281 1.280 1.281 1.280 1.280 1.264
Emp.Est.Var 0.036 0.029 0.028 0.027 0.027 0.027 0.027 0.027 0.027
Emp.Var 0.030 0.029 0.029 0.029 0.029 0.029 0.030 0.030 0.033
RMSE 0.172 0.171 0.172 0.171 0.171 0.171 0.173 0.173 0.181
95% CI cov. 95% 92% 91% 91% 91% 90% 91% 90% 89%

We generate T1 = −0.635 + 0.4X + e and T2 = −0.55 +
0.4X − 0.5logZ + 0.4X ∗ logZ + e, where e

iid∼ N(0, 1), corre-
sponding to the MAR X condition and MAR X,W condi-
tion, respectively. The outcome is then missing if Tj > 0 (i.e.,
P(M = 1|Tj) = �(E(Tj)), j = 1, 2., where �(x) corresponds to
the standard normal CDF). This yields a missingness fraction
of approximately 30% in all four scenarios.

For each of the four simulation designs, we analyze the
data using five imputation models. Model 1 ignores weights
altogether in the imputation process, a procedure typically
adopted. Model 2 includes log(Z) in the imputation model
(Schenker et al., 2006). Model 3 includes both the log(Z) and
its interactions with other covariates in the imputation model.
Model 4 and Model 5 are equivalent to Model 2 and Model 3,
except that log(Z) is replaced with 1/Z corresponding to the
weight, as suggested in Kim et al. (2006)and Seaman et al.
(2011). All five imputation models will be tested with both
the fully parametric MI method and the proposed two-step
synthetic MI procedure. The only difference is that we per-
form design-based analyses on the imputed data from the
former, while with the new method we perform simple un-
weighted analyses instead. We implement the MI using the
MICE package (R Core Team, 2013).

Finally, we focus on estimating the population mean of Y

(i.e., Ȳ) and the population regression coefficients of Y on X:
Y = β0 + β1X. We used five quantities to evaluate the perfor-
mance of the various methods under comparison: bias, em-
pirical root mean square error (RMSE), empirical interval
coverage, empirical variance, and the mean of the estimated
variance (to compare with the empirical variance). For the
standard parametric analysis, we use Rubin’s combining rules
(Rubin, 1987), using weighted point estimates and Taylor Se-
ries approximations (Binder, 1983) to account for the weights
in the variance estimation of the filled-in data sets. Popula-
tion means and regression parameters are used to compute
bias and mean square error.

3.1. Simulation Results

In deciding how many synthetic populations S are needed, we
conducted a preliminary study based on the before deletion
(BD) data. (We let L = 100.) Simulation results are shown
in Table 1. We observe that as we increase S, the variance
estimate decreases, and stabilizes close to the actual sample
variance when S ≥ 20. This is consistent with a similar result
in Dong et al. (2014), which found that 20 synthetic popula-
tions were sufficient to yield appropriate coverage intervals in
a complete data setting. Therefore, we use S = 20 along with
L = 100 and M = 5 in the after deletion (AD) simulation.

Tables 2 and 3 present the results from our simulation
study. Each table is divided into two parts, containing the
results from MAR X scenario and MAR X,W scenario, re-
spectively. Within each scenario, we compare our new method
with the fully parametric method, with the columns indi-
cated by “X,” “X,log(Z),” “X*log(Z),” “X,W,” and “X*W”
each corresponding to the estimates under the five imputation
models described above.

When the design is relevant to the outcome variable Y yet
uncorrelated with missingness (Table 2: MAR X scenario),
obvious advantages can be observed for the synthetic meth-
ods over the fully parametric method. For the fully parametric
method to work properly under this condition, the imputation
model has to be correctly specified, otherwise all inferences
based on this method are invalid—not only is there substan-
tial bias attached to all three parameter estimates, but there
is a corresponding disruption in coverage rates as well, which
is particularly poor when the design is completely ignored in
the model. In contrast, our proposed method results in nearly
unbiased estimates and actual coverage that is closer to the
nominal level under all five models, regardless of the misspec-
ification. Substantial gains in terms of RMSE over the model-
based method were also consistently observed in all scenarios
considered. This indicates that the “unweighting” procedure
has actually played dual roles in the process: its effect is not
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limited to untying the unequal probability selection and sav-
ing the effort of design-based analyses afterward, but it also
captures much of the interactions between the design and the
survey variable of interest so that ignoring the design in the
imputation model does little harm. Incorporating the proba-
bility of selection in the imputation model unnecessarily has a
modest impact, with some greater increase in variability and
MSE when weights versus log MOS are included, since the
weights are more variable.

With a relevant design that is also a correlate of missing-
ness (Table 2: MAR X,W scenario), the imputation models
require use of the design variable (here the weight) to main-
tain an ignorable missing data mechanism. The model-based
method behaves similarly to the case where the design is as-
sociated only with Y : failure to include the weight in the im-
putation model substantially biases all of the estimators con-
sidered, while including the weight as a covariate corrects for
bias in the mean and intercept estimator but not in the slope.
The synthetic model partially corrects for these biases by pro-
viding a correct estimate of the population distribution in
the presence of missing data; however, unless the imputation
model is correctly specified, some biases remain. Nevertheless,
the synthetic model still has substantially reduced RMSE rel-
ative to the fully parametric approach for the mean and inter-
cept estimator when the weight is ignored in the imputation
model, and reduced RMSE when estimating the slope when
the weight is included as a covariate but the interaction be-
tween the slope and the probability of selection is ignored.
The synthetic model also has nearly exact to slightly conser-
vative coverage properties, in contrast to the anti-conservative
coverage of the fully parametric estimator when the model is
misspecified for the estimator of interest. Misspecifying the
functional form of the probability of selection in the imputa-
tion model (using weights instead of the log MOS) generally
increases bias and MSE for both the fully parametric and
semi-parametric approach, although the increased bias is not
sufficient to reduce nominal coverage over the correctly spec-
ified functional form.

With an outcome irrelevant design (Table 3), there are very
slight effects on the estimates when compared across meth-
ods and models. Including the irrelevant design variable in
the imputation model results in negligible biases and intro-
duces some modest inefficiencies, consistent with the findings
in Reiter et al. (2006). The only impact of using weights rather
than log MOS in the imputation is to modestly increase MSE.
It is also worth noting that the MI variance/standard errors
under the new method are consistently lower than the fully
parametric method, in addition to their better coverage prop-
erties. This is observed for all 12 scenarios considered.

4. Application to the Behavioral Risk Factor
Surveillance System (BRFSS)

We next examine the effect of incorporating the survey weight
in MI using data from one design stratum (n = 388) of the
2009 Michigan BRFSS. This design stratum contains sam-
pled households that belong to the medium-density (unlisted)
telephone numbers group. The BRFSS is a telephone survey
conducted with a random sample of adults living in telephone-
equipped households in the US. An independent sample of

telephone numbers are used as the sampling frame; thus case
weights are constructed to account for the fact that the prob-
ability of selection is proportional to the number of telephone
lines and inversely proportional to the number of adults in
a household; in addition, poststratification weights are used
to adjust age–sex–race/ethnic distributions to Census totals.
A mix of categorical and continuous variables is selected for
analysis. These include health insurance coverage (yes/no),
body-mass index (BMI) in kg/m2, high blood pressure
(yes/no), and five demographic variables (age (in years), race
(White versus Nonwhite), annual household income (low =
<$25, 000, medium = $25, 000–75, 000, high > $75, 000), and
gender and employment status (yes/no/other)). All survey
variables except gender have certain degrees of missing data:
income has the highest missing rate (16.5%), while others are
missing 0–6%.

4.1. Imputation Method

We compare results from the conventional fully paramet-
ric MI method with the proposed two-step semi-parametric
MI method, with two imputation modeling strategies applied
with each method: (1) assuming SRS, and (2) including the
log of weights as a predictor in the model. We also include
the weighted complete case analysis. Both imputation mod-
els used all available substantive covariates (health insurance,
BMI, high blood pressure status, age, race, income, gender,
and employment status). For the standard parametric anal-
ysis, as in the simulation study, we use Rubin’s combining
rules (Rubin, 1987) with weighted point estimates and Taylor
Series approximations to account for the weights in the vari-
ance estimation. For the new method, we generated L = 100
Bayesian bootstrap (BB) samples and created S = 30 FPBB
populations within each BB sample, with M = 5 multiple im-
putations performed for each FPBB population. Since we do
not know the population size in advance and the individual
final weights sum up to nearly 200,000 cases which is unreal-
istic to generate, we assume that N = 4500 is large enough to
be treated as a synthetic population (corresponding to a sam-
pling fraction of less than 10%). Since the degrees of freedom
is L − 1 = 99, a normal distribution was used for inference.

4.2. Analyses

We consider three different analyses: (1) the marginal distri-
bution of income and health insurance accessibility (Table 4);
(2) a linear regression model of BMI on key demographic vari-
ables (Table 4); and (3) a log-linear model of a four-way con-
tingency table defined by four categorical variables with no
second-or-higher-order interactions (Table 5). We consider an
analysis using the full data set, as well as a stratified analysis
restricted to subjects identifying as white (“white domain”).
Multivariate imputation by chained equations (MICE) in R
was used to impute the missing data under both MI methods.

4.3. Results

Since the poststratification adjustment factor constitutes an
important component of the final weight in BRFSS data set,
we presume that including the variables used to construct
poststratification cells (age, race, and gender in this case) in
the imputation model should help in predicting the missing Y
variable. A linear regression of final weights on age, sex, and
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Table 4
Estimation of marginal distributions for income and health insurance, and linear regression coefficients for the regression of

BMI (dependent variable) on income, age, and gender (independent variables). (Complete case analysis presented is
weighted.)

Methods

Parametric MI Synthetic MI
(M = 5) (L = 100, S = 30, M = 5)

Complete Exclude Include log Exclude Include log
case weights (weights) weights (weights)

Sample Estimation Variable Pt.est. SE Pt.est. SE Pt.est. SE Pt.est. SE Pt.est. SE

Low income 0.50 0.04 0.50 0.04 0.52 0.05 0.52 0.04 0.51 0.04
Medium income 0.38 0.04 0.36 0.04 0.36 0.04 0.36 0.04 0.36 0.04

Marginal
High income 0.12 0.03 0.14 0.03 0.12 0.03 0.13 0.03 0.13 0.03
No insurance 0.22 0.04 0.24 0.04 0.24 0.04 0.24 0.04 0.24 0.04

Full sample
Intercept 27.0 2.8 26.1 2.0 25.8 2.0 26.3 2.3 26.2 2.3
Medium income 0.47 1.40 0.35 1.21 0.39 1.19 0.37 0.94 0.37 0.95
High income 0.27 1.43 −0.47 1.32 −0.33 1.37 −0.36 1.40 −0.31 1.40

Regression
Age 0.02 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03
Female 2.29 1.30 2.72 1.06 2.56 1.07 2.57 1.06 2.55 1.05

Low income 0.30 0.07 0.36 0.07 0.35 0.06 0.34 0.06 0.34 0.06
Medium income 0.53 0.08 0.48 0.07 0.50 0.07 0.49 0.06 0.49 0.06

Marginal
High income 0.17 0.06 0.16 0.06 0.15 0.05 0.17 0.06 0.17 0.06

Whites domain
No insurance 0.24 0.07 0.21 0.06 0.21 0.06 0.19 0.06 0.19 0.06
Intercept 31.1 3.9 32.4 4.7 31.0 4.1 31.0 4.2 31.0 4.1
Medium income −1.6 3.25 −2.8 2.83 −2.1 2.72 −1.8 2.96 −1.7 2.97

Regression
High income −3.1 3.60 −3.5 3.42 −3.2 3.18 −3.1 3.65 −3.0 3.62
Age 0.02 0.06 −0.01 0.06 0.02 0.06 0.02 0.06 0.02 0.05
Female −1.7 2.39 −0.13 2.13 −0.68 2.11 −0.80 2.17 −0.75 2.17

race shows that these covariates explain 40% of the variance
of the weights, suggesting that there are other design variables
that contribute to the survey weights unknown to us. Thus,
we conclude that imputation approaches that condition only

on the available design variables will be insufficient to account
for the sampling weights.

Table 4 shows that under the fully parametric MI method,
including survey weights in the imputation model has a large

Table 5
Estimation of log-linear model for four categorical variables (collapse categories for medium and high income): 2009

Michigan BRFSS

Methods

Parametric Parametric Synthetic Synthetic
MI MI MI MI

Complete exclude include exclude include
case weights log(weights) weights log(weights)

Estimation Variable level Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE

Low income −0.01 0.12 0.08 0.13 0.04 0.12 0.04 0.13 0.02 0.13
Has insurance 0.61 0.12 0.64 0.12 0.62 0.11 0.69 0.12 0.68 0.12
White −0.94 0.11 −1.00 0.10 −1.00 0.11 −1.10 0.12 −1.10 0.12

Main effects
Male −0.11 0.12 −0.09 0.10 −0.07 0.10 −0.07 0.11 −0.07 0.11
Low income × has insurance −0.36 0.12 −0.37 0.12 −0.33 0.13 −0.31 0.11 −0.30 0.11

Low income × white −0.28 0.10 −0.20 0.09 −0.20 0.09 −0.22 0.09 −0.22 0.09
Low income × male −0.03 0.09 −0.03 0.09 −0.07 0.09 −0.05 0.08 −0.05 0.08

Two-way interactions
Has insurance × white −0.13 0.12 −0.02 0.12 −0.02 0.12 0.02 0.13 0.03 0.13
Has insurance × male −0.01 0.13 −0.12 0.10 −0.14 0.10 −0.15 0.10 −0.15 0.10
White × male −0.08 0.09 −0.11 0.08 −0.11 0.09 −0.11 0.08 −0.10 0.08
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impact on the estimated proportions of income levels and
the regression coefficients of BMI on income and gender.
In fact, these differences are particularly significant for the
whites-only analysis. Under the new method, however, all es-
timates are similar to those from the model-based method
with weights accounted for. Moreover, there is essentially no
difference whether or not we incorporate weights into the im-
putation model once the sample data are synthesized, indi-
cating that, as we expect, the new method can adjust for the
weight effects at the synthesizing step without the need to
model survey weights at the imputation step. Similar results
are obtained in Table 5 with respect to the log-linear model.

5. Discussion

We propose using weighted finite population Bayesian Boot-
strap to account for one-stage sampling weights in MI for
item missing data in the Behavioral Risk Factor Surveillance
Survey. We also evaluate the performance of this method in
a simulation setting: our findings suggest that it can bring
significant reductions in bias relative to the existing model-
based methods with little loss in efficiency. Meanwhile, the
weighted FPBB method potentially protects against model
misspecification, for example, wrongly including or excluding
interactions between design variables and other covariates in
the imputation model, while also maintaining population-level
multivariate relationships. A further advantage lies in that,
unlike the fully parametric methods which include designs in
the imputation model and still require complex survey pack-
ages to analyze the imputed data sets, the new method fully
accounts for the unequal selection probabilities by unweight-
ing them and restoring a population in a separate step; there-
fore, only simple, unweighted complete-data analysis tech-
niques are needed for inferences with the combining rules.
This potentially allows a much wider variety of models to be
considered using existing software, which, despite recent im-
provements, often does not have straightforward methods for
accounting for complex sample designs.

A limitation of the proposed method is the need for the
weights to be included in the imputation model if the prob-
ability of item response is a function of selection probability.
However, by separating the modeling of the weights in the
complete data by use of a relatively easy-to-implement non-
parametric algorithm from the modeling of the weights in the
missingness mechanism, it (i) reduces the impact of misspec-
ified missingness mechanisms (as noted in Table 2, where the
RMSEs and coverage of the misspecified models are greatly
improved over the standard parametric approaches), and (ii)
allows more careful inspection and modeling of the missing-
ness mechanism as a function of the weights. In particular,
this suggests that the imputation model be developed using
the weighted FPBB data sets, to include appropriate func-
tions of and interactions with the design weights.

The proposed two-stage semi-parametric multiple impu-
tation approach has a number of possible extensions. First,
while we have imputed the missing data in our second step us-
ing a model-based approach, a fully nonparametric approach
using a Bayesian bootstrap (Rubin and Schenker, 1986) can
be used instead. Second, while our approach has focused on
sampling weights, extensions that incorporate unit nonre-

sponse into the synthetic population generation and multi-
ple imputation to propagate uncertainty in unit-nonresponse
weighting adjustments are possible. (However, when only final
weights incorporating nonresponse adjustments are provided,
treating the final weight as a sampling weight as we did in
the BRFSS application may be the only practical alterna-
tive.) Third, while we made a missing at random assumption
with a single missing outcome in our simulation study and
application, it is certainly possible at the imputation stage
to accommodate missingness in multiple covariates via se-
quential regression multiple imputation (Raghunathan et al.,
2001), or even to consider not missing at random mechanisms
(Little, 2008). Fourth, we could extend the method to incor-
porate unit nonresponse by generating Bayesian bootstraps of
the entire sample including the unit nonresponders, applying
standard unit nonresponse adjustments to the base weights to
obtain the nonresponse-adjusted weights, and then applying
the weighted Polya posterior with the nonresponse-adjusted
weights as the input weight in the algorithm to create syn-
thetic populations. Finally, our method developed here is for
a one-stage design; extensions to account for multi-stage de-
signs with clustering and stratification as part of the finite
population Bayesian bootstrap are required as well, and are
the focus of current research efforts.
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