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A TWO-STEP SEMIPARAMETRIC METHOD TO ACCOMMODATE SAMPLING 

WEIGHTS IN MULTIPLE IMPUTATION 

Hanzhi Zhou1*, Michael R. Elliott2,3**, Trviellore E. Raghunathan2,3*** 
 

Summary: Multiple imputation (MI) is a well-established method to handle item-nonresponse in 

sample surveys. Survey data obtained from complex sampling designs often involve features that 

include unequal probability of selection. MI requires imputation to be congenial, that is, for the 

imputations to come from a Bayesian predictive distribution and for the observed and complete 

data estimator to equal the posterior mean given the observed or complete data, and similarly for 

the observed and complete variance estimator to equal the posterior variance given the observed 

or complete data; more colloquially, the analyst and imputer make similar modeling assumptions.  

Yet multiply-imputed datasets from complex sample designs with unequal sampling weights are 

typically imputed under simple random sampling assumptions and then analyzed using methods 

that account for the sampling weights.  This is a setting in which the analyst assumes more than 

the imputer, which can led to biased estimates and anti-conservative inference.   Less commonly-

used alternatives such as including case weights as predictors in the imputation model typically 

require interaction terms for more complex estimators such as regression coefficients, and can be 

vulnerable to model misspecification and difficult to implement. We develop a simple two-step 

MI framework that accounts for sampling weights using a weighted finite population Bayesian 

bootstrap method to validly impute the whole population (including item non-response) from the 

observed data. In the second step, having generated posterior predictive distributions of the entire 
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population, we use standard IID imputation to handle the item non-response.  Simulation results 

show that the proposed method has good frequentist properties and is robust to model 

misspecification compared to alternative approaches.  We apply the proposed method to 

accommodate missing data in the Behavioral Risk Factor Surveillance System when estimating 

means and parameters of regression models. 

KEY WORDS: Polya posterior, Bayesian bootstrap, missing data, sampling design,  Behavioral 

Risk Factor Surveillance System (BRFSS).  
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1. Introduction 

Both item nonresponse and sampling weights are typical features of survey data obtained 

from complex sample designs. Item nonresponse occurs when some respondents do not answer 

all the items in a survey questionnaire, e.g. both “don’t know” and refusal answers are 

considered as item nonresponse. Sampling weights arise as a correction factor to compensate for 

over- or under-representation of units in the target population due to unequal selection 

probabilities. The Behavior Risk Factor Surveillance System (BRFSS) has both a substantial 

proportion of missing data on income measures as well as survey weights that adjust for different 

sampling rates among states and oversampling of adults in smaller sized households, as well as 

for non-response bias by poststratifying and raking to known control totals for basic 

demographics.  

When the proportion of item-level missing values is nontrivial and the data are not 

missing completely at random (MCAR), typical solutions for missing data like complete case 

analysis often lead to increased bias and reduced statistical power. Multiple imputation (MI) 

(Rubin, 1987) is a principled method for addressing item-level missing data.  MI has a Bayesian 

conceptualization. The basic idea is to fill in missing data with M sets of plausible values. These 

are obtained as repeated draws from the posterior predictive distribution of the missing 

components of the sample misY  given its observed components obsY , i.e. ( | )mis obsp Y Y . The 

production of multiple “completed” datasets { }(1) ( )( , ),..., ( , )M
obs mis obs misY Y Y Y  is typically done by an 

“imputer” who has access to the data to develop reasonable models for generating the predictive 

distribution of misY , allowing the “analyst” to then analyze each of the M imputed datasets and 

combine the point and variance estimates using the combining rules developed by Rubin (1987). 
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Examples of this approach include imputation for blood alcohol concentration in the Fatal 

Accident Reporting System (FARS) (Heitjan & Little, 1991) and income imputation in the 

National Health Interview Survey (NHIS) (Schenker et al., 2006). 

 While the imputer/analyst distinction is convenient, Meng (1994) pointed out that this 

can lead to problems with inference when the imputer and analyst assume different data models 

(“uncongeniality”). Meng shows that, when the imputer assumes a richer model than the analyst, 

the resulting MI analysis would typically be mildly conservative, whereas if the analyst assumed 

a richer model than the imputer, the resulting MI analysis could be either conservative or anti-

conservative. In settings where the observed data are obtained using an unequal probability 

sampling design, data are typically imputed using models in which variables are assumed to be 

independent and identically distributed (IID), and then analyzed using a weighted design-based 

approach that accounts for the unequal selection probability. This presents an example of the 

latter form of uncongeniality that can lead to biased point estimation and below-nominal 

confidence interval coverage. It is therefore important to incorporate unequal probabilities of 

selection/sampling weights in the imputation procedure.  

A simple and seemingly straightforward way to incorporate sampling weights in MI is to 

let the imputer’s model condition on a few key design variables that determine probabilities of 

inclusion, such as measure of size and stratification variables. However, not all design 

information is typically available in public use data due to disclosure risk concerns. Another 

option is to summarize the design information by using weights as a covariate in the imputation, 

perhaps after log transformation or categorization in “weight strata” and modeling them as 

dummy indicators. However, the modeling task may be complicated by attempting to include all 
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interactions of weights (or weight-related design variables) with other covariates in the model 

(Meng 1994; Kim et al. 2006). Moreover, this approach typically requires the functional form of 

the interaction to be modeled correctly, using a spline or other non-parametric form to be robust 

against model misspecification (Elliott and Little 2000; Zheng and Little 2005; Breidt, 

Claeskens. and Opsomer, 2005).  In addition, Kim et al. and Seaman et al. (2011) show that, in 

the case of a target complete data estimator of a weighted total, the standard Rubin MI variance 

formula is no longer an unbiased even if the imputation model is correctly specified without the 

weights, since the weights induce a covariance between the MI point estimator and the (latent) 

complete data estimator, a quantity that is not accounted for in the Rubin MI variance formula; 

typically this covariance is negative, so that the standard MI variance estimators and associated 

confidence intervals are conservative, but complex adjustment must be made to regain nominal 

p-values and coverage. 

This manuscript develops a modified MI framework to account for sampling weights 

from single-stage designs. We propose a two-step MI procedure. In the first step, we develop and 

use a weighted finite population Bayesian bootstrap (weighted FPBB) to validly impute the 

whole population (including item non-response) from the observed data. In the second step, 

having generated posterior predictive distributions of the entire population, we use standard IID 

imputation to handle the item non-response. Our suggested procedure allows the parametric 

imputation model to no longer need to model interactions between weights and covariates in the 

imputation regression model to account for model misspecification.  In addition, since we are 

imputing to a synthetic population, all weights are constant and equal to 1, so no covariance 

between the MI point estimator and the  complete data estimator is induced. 
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   The rest of this manuscript is organized as follows.  Section 2 provides a detailed 

overview of the proposed two-step semiparametric multiple imputation procedure to 

accommodate weighted data. (We term it “semiparametric” because the design features, in 

particular the weights, are accommodated non-parametrically, whereas the actual imputation is 

conducted under a standard parametric model.) We focus on the setting where the selection 

probabilities are obtained from a probability proportional to size (PPS) sample design, although 

the methods we develop can be used with any selection weights. Section 2 then discusses point 

estimation and inference using the MI datasets from the proposed procedure.  Section 3 provides 

a simulation study in the context of a single-stage probability-proportional-to-size sample design 

to estimate population means and regression coefficients under a variety of settings where 

sampling weights are associated to differing degrees with both the outcome and the probability 

of nonresponse, and where failure to account for design in the imputation procedure has differing 

degrees of impact. We compare the performances of the proposed two-step MI and the fully 

parametric MI in terms of robustness to different degrees of model misspecification. Section 4 

applies the proposed procedure to estimate means, linear, and loglinear regression models, 

describing marginal and joint distributions of income and health insurance accessibility, using 

data from the 2009 Behavioral Risk Factor Surveillance System (BRFSS). Section 5 concludes 

with a brief discussion of possible extensions. 

2. A Two-Step Semiparametric MI Procedure 

Bayesian finite population inference (Ericson 1969) has been proposed as a means to 

harmonize design and model-based approaches for sample survey inference (Little 2004, 2011). 

Under this approach, we focus on the posterior predictive distribution of our finite population 
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quantity of interest (e.g., population mean, population regression parameter) obtained from the 

posterior predictive distribution for the non-sampled elements of the population. To make 

matters more concrete, consider the setting in the absence of missing data where we have a scalar 

outcome Y, sampling weight w based on a single stage PPS design, and no missing data.  Our 

complete data consists of the vector of sampling indicators I for the population, sampled sY for 

which 1I =  , the non-sampled nsY  for which 0I =  , and similarly sw   and nsw .  Given the 

sampling weights, the sampling mechanism generating I is assumed to be independent of Y 

( ( | , ) ( | )p I Y w p I w= ), and thus ignorable in the modeling. Assuming a model for the outcome 

given the sampling weights ( | , )p Y wθ  parameterized by θ with prior ( )p θ , the posterior 

predictive distribution for the non-sampled elements of the population nsY  is given by 

( | , ) ( | , , ) ( | , ) ( | )ns s s ns s s ns s nsp Y Y w p Y Y w p Y w p w w d dwθ θ θ∝ ∫   (1) 

Previous work has tackled estimation of this predictive distribution in a variety of ways.  

Zheng and Little (2004, 2005) and Chen, Little and Elliott (2010) assumed that the sampling 

weights were known for all subjects, so that   sw w=  , reducing (1) to 

( | , ) ( | , , ) ( | , )ns s ns s sp Y Y w p Y Y w p Y w dθ θ θ∝ ∫ ; these authors then obtained draws from the posterior 

predictive distribution under fairly weak modeling assumptions (parametric regression model for 

( | , )p Y wθ  based on penalized splines).  Little and Zheng (2007) and  Zangeneh, Keener, and 

Little (2011) considered the situation in which weights are observed only for the sample (as in a 

public use data setting), and obtained predictive draws for ( | )ns sp w w under a Dirichlet model 

with a non-informative (Haldane) prior; the resulting predictive draw of the population of 

weights was then used as in Zheng and Little to obtain posterior predictive draws of nsY .  Dong, 
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Elliott, and Raghunathan (2014) consider a different factorization of (1): 

( | , ) ( , | , ) ( , )ns s s ns ns s s s s nsp Y Y w p Y w Y w p Y w dw∝ ∫ .  (2) 

The parameter θ  is dropped because the draws of ,s sY w  are made directly from the posterior of 

the empirical CDF of ,s sY w using a Bayesian bootstrap (BB) procedure (Rubin 1981).  Draws 

from , | ,ns ns s sY w Y w  are then made using a weighted finite population Bayesian boostrap (FPBB) 

procedure described in Cohen (1997). 

 Here we extend the approach of Dong, Elliott, and Raghunathan to accommodate missing 

data due to item-level non-response.  We assume that, had we taken a census of the entire 

population, we could have observed a vector of response indicators ( , )s nsR R R= , where sR

corresponds to the response indicators observed in the sample, and nsR to the response indicators 

associated with the non-sampled elements.  We then divide the sampled , ,( , )s s obs s misY Y Y=   into the 

fully-observed and missing elements, corresponding to the sampled Y values associated with 

1sR =  and 0sR =  respectively, and similarly the non-sampled , ,( , )ns ns obs ns misY Y Y=  into those that 

would have be observed had they been sampled ( 1nsR = ), and those that would have had missing 

values ( 0nsR = ). We also assume a fully-observable covariate ( , )s nsX X X=  consisting of the 

sampled and non-sampled elements respectively. Note that we can combine the observed from 

the sampled and nonsampled parts of the population to obtain the potentially “observable” 

, ,( , )obs s obs ns obsY Y Y= , and similarly those missing , ,( , )mis s mis ns misY Y Y= .  We assume ignorable 

missingness, so that ( | , ) ( | , )obsp R Y w p R Y w= , allowing R to be ignored in the model along with I.  

Extending (1) under to incorporate item-level missingness then yields 

, , , ,( , | , , ) ( , , | , , )ns obs ns s obs s s ns obs ns mis s obs s s misp Y X Y X w p Y X Y Y X w dY= ∫  
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We can generate from , ,( , , | , , )ns obs ns mis s obs s sp Y X Y Y X w by simply allowing the missing values in Y 

to be generated along with the observed values for Y and X using the weights FPBB procedure.  

We then integrate out with respect to misY  by assuming a parametric model for |Y X  : 

, ,

, , , ,

, , , , ,

( , , | , , )

( | , , , , ) ( , | , , )

( | , , , , , ) ( , | , , , ) ( | , , )

(

ns obs ns mis s obs s s mis

mis ns obs ns s obs s s ns obs ns s obs s s mis

mis ns obs ns s obs s s ns obs ns s obs s s s obs s s mis

mis

p Y X Y Y X w dY

p Y Y X Y X w p Y X Y X w dY

p Y Y X Y X w p Y X Y X w p Y X w d dY

p Y

θ θ θ θ

=

∝

∫
∫
∫ ∫

, , , , ,| , , , , , ) ( , | , , , ) ( , , | ) ( )ns obs ns s obs s s ns obs ns s obs s s s obs s s misY X Y X w p Y X Y X w p Y X w p d dYθ θ θ θ θ∫ ∫
(3) 

We can implement the integration in (3) by use of a standard Gibbs sampler for multiple 

imputation that iterates between draws of  

, ,( | , , , , , ) ( | , , ) ( | , )ns obs ns s obs s s mis sp Y X Y X w Y p Y X w p Y Xθ θ θ= =   (4) 

and 

, ,( | , , , , , )mis ns obs ns s obs s sp Y Y X Y X w θ    (5) 

Note that (4) follows from the fact that, conditional on the entire population, the observed 

weights are superfluous for the draws of θ , so that it is sufficient to develop a parametric model 

for Y that does not involve the weights together with a prior for θ (possibly conditional on X) :

( | , , ) ( | , ) ( | , ) ( | )sp Y X w p Y X p Y X p Xθ θ θ θ= ∝ . The presence sw  in (5) indicates that the observed 

weights may still be important in the imputation of the missing elements of Y if missingness 

itself is a function of the probability of selection, as we note below.  

2.1 Step 1: Undo Sampling Weights through Nonparametric Synthetic Data Generation 

Here we briefly review the work of Dong, Elliott, and Raghunathan (2014) to obtain 

draws from a posterior predictive distribution of the population that is free of the effects of 
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unequal probability of selection.  This work builds on the work of Ghosh and Meeden (1983), Lo 

(1988) and Cohen (1997), where details of the derivations of the results can be found.   

2.1.1 The Weighted Pólya Posterior. The purpose of developing the weighted Polya posterior is 

to be able to draw from a posterior predictive distribution of a finite population based on an 

unequal probability-of-selection sampling design without making any parametric assumptions 

about the probability mechanism that generated the data.  We begin by describing the Polya 

posterior developed by Ghosh and Meeden (1983) in the simple random sampling setting.   

Assume that a simple random sample of size n is drawn from a finite population of size N, 

denoted by 1{ ,..., }s ny y y= . Let ( )Γ   denote the gamma function, 1 2{ , ,..., }Kd d d  denote the set 

of K distinct values in the sample and 1 2{ , ,..., }Kλ λ λ λ=  denote the vector of probabilities that 

Pr( | ) ,i k ky d λ λ= =  for 
1

1, 2,..., ,  with 1K
jj

i n λ
=

= =∑ . Let jn  and ju  be the number of units 

taking value jd  in the sample and in the nonsampled part of the population, respectively, for 

1, 2,..., ,j K=  and 
1 1

, .K K
j jj j

n n u N n
= =

= = −∑ ∑   Assuming a noninformative Haldane prior of 

λ , ~ (0,...,0)Dirλ , together with a multinomial distribution for the counts of sample data,

1,.., | ~ ( ; )Kn n Mult nλ λ , Ghosh and Meeden show that  predictive distribution of counts in the 

nonsampled datais given by: 

1
1 1

( ) / ( )
( ,..., | ,..., ) .

( ) / ( )

K
j j jj

K K

n u n
p u u n n

N n
=
Γ + Γ

=
Γ Γ

∏

      (6) 

 Cohen (1997) generalized (6) to the case where  the sample is selected with unequal 

probabilities.. We now assume that we have a sample of size n consisting of  
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( , , , ) {( , , , ), 1,..., .}s s s s i i i iY X w R Y X w R i n= = , where R is a response indicator for Y , so that

,i i obsY Y=   if 1iR =   and ,i i misY Y= if 0iR = , X consists of fully observed covariates, and iw  

denotes the sampling weight for the ith unit in the sample, which is normalized to sum up to 

N, i.e. 
1

n

i
i

w N
=

=∑ . Let 1 2{ , ,..., }Kd d d    denote the set of K distinct vectors of ( , , , )i i i iY X w R  in 

the sample and 1 2{ , ,..., }Kς ς ς ς=  denote the vector of probabilities that 

( )Pr ( , , , ) | ,i i i i k kY X w R d ς ς= =  for 
1

1, 2,..., , 1,..., , and 1K
ij

i n k K ς
=

= = =∑ . Let jn  and ju  be 

the number of units taking vector jd  in the sample and in the nonsampled part of the 

population, respectively, for 1, 2,..., ,j K=  and 
1 1

, .K K
j jj j

n n u N n
= =

= = −∑ ∑  
Again 

assuming a noninformative Haldane prior of ς : ~ (0,...,0)Dirς  together with 

multinomially distributed weighted counts in the data 1
1

( ,..., | ) j
K

w
K j

j

p w w ς ς
=

∝∏  Cohen 

(1997) posits and Dong, Elliott, and Raghunathan (2014) prove that the posterior predictive 

distribution of counts in the nonsampled data is given by: 

1
1 1

( ) / ( )
( ,..., | ,..., ) .

(2 ) / ( )

K
j j jj

K K

w u w
p u u w w

N n N
=
Γ + Γ

=
Γ − Γ

∏

       (7) 

2.1.2 The Adapted-weighted FPBB method. The adapted-weighted FPBB (Dong, Elliott, and  

Raghunathan 2014) consists of two stages. The first stage resamples the original sample using 

the standard Bayesian bootstrap assuming IID, and the second stage reverses/undoes the 

sampling weights using the weighted FPBB. This two-stage algorithm is analogous to the fully 

parametric Bayesian method, where the first stage is equivalent to drawing values of the 
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parameter (ς ) from its posterior distribution given the counts in sampled data ( 1,..., Kn n ) and the 

second stage draws the predicted counts in the nonsampled data ( 1,..., Ku u ) given the drawn 

parameter. The method is described as follows: 

 Resampling Using the Standard Bayesian Bootstrap (BB) 

The standard Bayesian Bootstrap of Rubin (1981) assuming IID is used to generate L 

replicate BB samples each of size n, i.e. { }( ) ( ) ( ) ( )( , , , ), 1,..., .l l l l
s s s sY X w R l L= . This essentially 

generates the posterior joint distribution (denoted by f ) of all the variables in the population 

given their realized values in the sample data set. Or equivalently, the posterior distribution of 

the parameter vector ς  is drawn given the sample, i.e. 

( ) ( )
( )

( ) ( )
1

( ) ( ) ( )
1

, , , | ( , , , ) | , , , ~ ( ,..., ),

for 1,..., ., where ,..., .

l l
s s s s s s s s K

l l l
K

f Y X w R Y X w R Y X w R Dir n n

l L

ς

ς ς ς

⇔

= =
            (8) 

This stage captures the sampling variability. The uncertainty in the posterior draws of the 

parameter ( )lς  is reflected in the varying counts of distinct units in the original sample being 

selected in different replicate BB samples. Let ( )lt i  denote the number of times unit i is selected 

in the thl  replicate BB sample, for 1,..., .l L=  We incorporate this source of uncertainty in 

computing “the lth bootstrap weight for unit i”, i.e. ( )* ( )l
i i lw w t i= ⋅ , where iw  denotes the original 

sampling weight for unit i.  The bootstrap weights are carried forward as input weights to the 

next stage.  

 Undo Sampling Weight using the weighted Polya posterior/ weighted FPBB 

To capture the variability due to “imputing” the nonsampled units, the weighted Polya 

posterior in equation (7) is used to create S synthetic populations for each of the L BB sample 
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obtained from the previous stage, i.e. { }( ) ( ) ( ) ( ) ( ) ( )( , , ), ( , , ) ,l l l ls ls ls
s s s ns ns nsY X R Y X R  for 

1,..., , 1,..., .s S l L= =   

The distribution in Equation (7) does not lend itself to direct calculation; however, draws from 

(7) can be obtained using Monte Carlo simulation. Specifically, we apply a procedure suggested 

by Cohen (1997), who extended the algorithm developed by Lo (1998) in the simple random 

sampling setting to a weighted sampling setting 

i) Take a Pólya sample of size ,N n−  denoted by ( ) ( ) ( )( , , )ls ls ls
s s sY X R  from the urn 

( ) ( ) ( )( , , )l l l
s s sY X R  by selecting each element in the urn with probability 

( )*
, 11 ( )

, 1, 2,..., 1.
( 1) ( )

l
i i k

N nw l
n k N nN nN n k
n

−
−

− + ×
= − +

−
− + − ×

                            (9) 

where ( )*l
iw  is the bootstrap weight for the thi  unit in the thl  replicate BB sample, and 

, 1i kl −  is the number of selections of unit i up to (k-1)th selection, setting ,0 0.il =  

ii) Form the weighted FPBB synthetic population { }( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( , , ), ( , , )l l l l ls ls ls
s s s s ns ns nsY X R Y X RR =  

so that it has exact size N. 

This results in the “unweighted” synthetic populations

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( , , ) ( , ), 1,..., , 1, 2,...,l ls ls ls l ls
s s obs misP Y X R P Y s S l L= = = = , where L and S are the numbers of 

datasets generated from first- and second-stage, respectively, and 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) , ,(( , , ), ( , , ))l l l l ls ls ls
s obs s obs s s ns obs ns nsP Y X R Y X R= and ( ) ( ) ( )

, ,( , )ls l ls
mis s mis ns misY Y Y=  consist of the observed and 

unobserved data in the lsth FPBB synthetic population dataset respectively. 
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2.2 Step 2: Multiply Impute Missing Data through Parametric Models 

Now that we have effectively “undone” the sampling design, we are ready to perform 

conventional MI under an IID assumption.  Following the standard MI procedure or 

approximations such as SRMI (Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001), 

we obtain draws from the posterior predictive distribution ( ) ( )
( )( | )ls l

mis s obsp Y R . Without the need to 

include weights in the imputation model due to a self-weighting FPBB population generated 

from previous step, our task can now be concentrated on correctly modeling the covariate 

variables. Note that the elimination of the weights from the self-weighting FPBB population does 

not obviate the need to account for the weights in the imputation process, if the probability of 

selection ( I ) and non-response ( R ) are associated with each other (i.e., 

( | , ) ( | )obs obsp R Y w p R Y≠ ). This step results in M imputed synthetic datasets for each of the L S×   

FPBB synthetic populations generated from the first step, 

( ) ( ) ( )
( )1 ( )2 ( )( , ,..., ),  s 1, 2,..., , 1, 2,..., .l l l l

sM s s s MP P P P for S l L= = =  

2.3 Point and Variance Estimates for the Two-Step MI Procedure.  

 Conditional on (1) (1) (1) (1) (L)
(11) (1M) (S1) (SM) (SM){ ,..., ,..., ,..., ,..., }impP P P P P P= , the posterior predictive 

distribution of a scalar population statistic ( )Q Y Q≡ is given by 

1
1| ~ ( ,(1 ) )imp

L L LQ P t Q L V−
− +



                  (10) 

where ( )1 l
L

l
Q Q

L
= ∑   and ( ) 21 ( )

1
l

L L
l

V Q Q
L

= −
− ∑  , where ( ) ( )1liml lsm

S s mM

Q q
SM→∞

→∞

= ∑∑ , where ( )lsmq  is 

an estimate of Q obtained from the thm imputation of the ths  synthetic population within the thl  

Bayesian Bootstrap sample; in practice we estimate ( )lQ  by ( ) ( )1ˆ l lsm

s m
Q q

SM
= ∑∑ . The result 
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follows immediately from Section 4.1 of Raghunathan, Reiter, and Rubin (2003), and is based on 

the standard Rubin (1987) multiple imputation combining rules, where ( , , )ns ns nsY X R  and ,s misY are 

missing data and ,( , , )s obs s sY X R  is observed. The average “within” imputation variance is zero, 

since the entire population is being synthesized; hence the posterior variance of Q  is entirely a 

function of the between-imputation variance, and the degrees of freedom is simply given by the 

number of BB samples. This result requires ( )( )lsmE q Q= , which implies that our imputation 

model for misY  is correctly specified, as well as the standard sufficiently large sample size for the 

t approximation to be reasonable.  In addition, since we are imputing under the synthesized 

population, all weights are constant and equal to 1, so no covariance between the MI point 

estimator and the complete data estimator is induced (Kim et al. 2006; Seamen et al. 2012). 

 These results assume S →∞   and M →∞ ; in practice we have found that relatively 

modest values of S and M are needed for the imputation approximations to hold.  In particular, 

we show below that S=20 and M=5 yield reasonable results in simulation studies, results that are 

also consistent with in Dong et al. (2014).  In addition, in settings where N is very large, 

generating a synthetic population large enough to have a relatively trivial sampling fraction (e.g., 

* 10N n= ) will generally be sufficient.  

3. Simulation Study 

A simulation study was designed to investigate the inferential properties of the proposed 

method. In particular, we are interested to see how the two-step MI procedure performs in 

comparison with the existing fully parametric methods under four simulation designs defined by 

crossing the following two factors:  

           (1) Associations of the probabilities of selection with the mechanism generating the data. 
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We call the design ‘outcome relevant’ if the probabilities of selection are correlated with the 

outcome variable Y, otherwise we term it an ‘outcome irrelevant’ design.  

           (2) Associations of the probabilities of selection with the mechanism generating the 

missing values. We use ‘MAR_X’ (weight independent missingness) and ‘MAR_X,W (weight 

dependent missingness) respectively to denote respective situations where the missing data 

mechanism is dependent on fully-observed covariates only and where it depends on probabilities 

of selection as well as other fully-observed covariates.  

We first generate a population of three variables: the outcome variable Y, a covariate X 

and a variable Z based on which probability proportionate to size without replacement 

(PPSWOR) sampling is conducted. The joint distribution of Z, X, and Y is given by: 

1

2

2

2
1

2
2

log ~ (2,1)
| ~ (0.1* log , )

| , ~ (0.1* 0.5* log 0.6* *log , )

| , ~ (0.2* , )

x

y

y

Z N
X Z N Z

Y X Z N X Z X Z

Y X Z N X

σ

σ

σ

+ +
 

Thus 1( , , )Y X Z constitutes the “relevant design” population and 2( , , )Y X Z  constitutes the 

“irrelevant design” population. Both populations have size N=4,000. For each population, we 

drew 500 independent samples of size n=200 without replacement, with inclusion probability for 

the ith unit
1

/
N

i i j
j

nZ Zπ
=

= ∑ . We call the 500 PPSWOR samples “before deletion (BD) samples”.   

Next, probit models were used as deletion functions to create missing data in the outcome 

variable Y for each of the 100 simulations. Both X and Z are assumed to be completely observed.  

We generate 1 0.635 0.4T X e= − + +  and 2 0.55 0.4 0.5log 0.4 * logT X Z X Z e= − + − + + , where 

~ (0,1)
iid

e N , corresponding to the MAR _X condition and MAR _X,W condition respectively. The 
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outcome is then missing if 0jT >  (i.e., ( 1| ) ( ( )), 1,2.j jP M T E T j= = Φ = , where ( )xΦ  corresponds 

to the standard normal CDF). This yields a missingness fraction of approximately 30% in all four 

scenarios.  

For each of the four simulation designs, we analyze the data using five imputation 

models. Model 1 ignores weights altogether in the imputation process, a procedure typically 

adopted. Model 2 includes log(Z) in the imputation model (Schenker et al., 2006). Model 3 

includes both the log(Z)  and its interactions with other covariates in the imputation model. 

Model 4 and Model 5 are equivalent to Model 2 and Model 3, except that log(Z) is replaced with 

1/Z corresponding to the weight, as suggested in Kim et al. 2006 and Seaman et al. 2011.  All 

five imputation models will be tested with both the fully parametric MI method and the proposed 

two-step synthetic MI procedure. The only difference is that we perform design-based analyses 

on the imputed data from the former, while with the new method we perform simple unweighted 

analyses instead.  We implement the MI using the MICE package (R Core Team, 2013).  

Finally, we focus on estimating the population mean of Y (i.e.Y ) and the population 

regression coefficients of Y on X : 0 1Y Xβ β= + .  We used five quantities to evaluate the 

performance of the various methods under comparison: bias, empirical root mean square error 

(RMSE), empirical interval coverage, empirical variance, and the mean of the estimated variance 

(to compare with the empirical variance). For the standard parametric analysis, we use Rubin’s 

combining rules (Rubin 1987), using weighted point estimates and Taylor Series approximations 

(Binder 1983) to account for the weights in the variance estimation of the filled-in datasets.  

Population means and regression parameters are used to compute bias and mean square error. 
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3.1 Simulation Results 

In deciding how many synthetic populations S are needed, we conducted a preliminary 

study based on the before deletion (BD) data. (We let L=100.) Simulation results are shown in 

Table 1. We observe that as we increase S, the variance estimate decreases, and stabilizes close to 

the actual sample variance when 20S ≥ . This is consistent with a similar result in Dong et al. 

(2014), which found that 20 synthetic populations were sufficient to yield appropriate coverage 

intervals in a complete data setting. Therefore, we use S=20 along with L=100 and M=5 in the 

after deletion (AD) simulation. 

Table 2 and Table 3 present the results from our simulation study. Each table is divided 

into two parts, containing the results from MAR _X scenario and MAR _X,W scenario 

respectively. Within each scenario, we compare our new method with the fully parametric 

method, with the columns indicated by ‘X’, ’X,log(Z)’, ‘X*log(Z)’, ‘X,W’ and ‘X*W’ each 

corresponding to the estimates under the five imputation models described above.  

 When the design is relevant to the outcome variable Y yet uncorrelated with missingness 

(Table 2: MAR _X scenario), obvious advantages can be observed for the synthetic methods over 

the fully parametric method. For the fully parametric method to work properly under this 

condition, the imputation model has to be correctly specified, otherwise all inferences based on 

this method are invalid -- not only there is substantial bias attached to all three parameter 

estimates, but a corresponding disruption in coverage rates as well, which is particularly poor 

when the design is completely ignored in the model. In contrast, our proposed method results in 

nearly unbiased estimates and actual coverage that is closer to the nominal level under all five 

models, regardless of the misspecification. Substantial gains in terms of RMSE over the model-
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based method were also consistently observed in all scenarios considered. This indicates that the 

‘unweighting’ procedure has actually played dual roles in the process: its effect is not limited to 

untying the unequal probability selection and saving the effort of design-based analyses 

afterwards, but it also captures much of the interactions between the design and the survey 

variable of interest so that ignoring the design in the imputation model does little harm. 

Incorporating the probability of selection in the imputation model unnecessarily has a modest 

impact, with some greater increase in variability and MSE when weights versus log MOS are 

included, since the weights are more variable. 

With a relevant design that is also a correlate of missingness (Table 2: MAR _X,W 

scenario), the imputation models require use of the design variable (here the weight) to maintain 

an ignorable missing data mechanism. The model-based method behaves similarly to the case 

where the design is associated only with Y: failure to include the weight in the imputation model 

substantially biases all of the estimators considered, while including the weight as a covariate 

corrects for bias in the mean and intercept estimator but not in the slope. The synthetic model 

partially corrects for these biases by providing a correct estimate of the population distribution in 

the presence of missing data; however, unless the imputation model is correctly specified, some 

biases remain. Nevertheless, the synthetic model still has substantially reduced RMSE relative to 

the fully parametric approach for the mean and intercept estimator when the weight is ignored in 

the imputation model, and reduced RMSE when estimating the slope when the weight is 

included as a covariate but the interaction between the slope and the probability of selection is 

ignored. The synthetic model also has nearly exact to slightly conservative coverage properties, 

in contrast to the anti-conservative coverage of the fully parametric estimator when the model is 
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misspecified for the estimator of interest.  Misspecifying the functional form of the probability of 

selection in the imputation model (using weights instead of the log MOS) generally increases 

bias and MSE for both the fully parametric and semi-parametric approach, although the 

increased bias is not sufficient to reduce nominal coverage over the correctly specified functional 

form. 

With an outcome irrelevant design (Table 3), there are very slight effects on the estimates 

when compared across methods and models. Including the irrelevant design variable in the 

imputation model results in negligible biases and introduces some modest inefficiencies, 

consistent with the findings in Reiter et al. (2006). The only impact of using weights rather than 

log MOS in the imputation is to modestly increase MSE. 

It is also worth noting that the MI variance/standard errors under the new method are 

consistently lower than the fully parametric method, in addition to their better coverage 

properties. This is observed for all 12 scenarios considered. 

4. Application to the Behavioral Risk Factor Surveillance System (BRFSS)  

We next examine the effect of incorporating the survey weight in MI using data from one 

design stratum (n=388) of the 2009 Michigan BRFSS. This design stratum contains sampled 

households that belong to the medium-density (unlisted) telephone numbers group. The BRFSS 

is a telephone survey conducted with a random sample of adults living in telephone-equipped 

households in the US.  An independent sample of telephone numbers are used as the sampling 

frame; thus case weights are constructed to account for the fact that the probability of selection is 

proportional to the number of telephone lines and inversely proportional to the number of adults 

in a household; in addition, poststratification weights are used to adjust age-sex-race/ethnic 
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distributions to Census totals. A mix of categorical and continuous variables is selected for 

analysis. These include health insurance coverage (yes/no), body-mass index (BMI) in kg/m2, 

high blood pressure (yes/no), and 5 demographic variables (age (in years), race (White vs. 

Nonwhite), annual household income (low= <$25,000, medium=$25,000 - $75,000, 

high>$75,000), and gender and employment status (yes/no/other)). All survey variables except 

gender have certain degrees of missing data: income has the highest missing rate (16.5%), while 

others are missing 0-6%. 

4.1 Imputation Method 

We compare results from the conventional fully parametric MI method with the proposed 

two-step semi-parametric MI method, with two imputation modeling strategies applied with each 

method: 1) assuming SRS, and 2) including the log of weights as a predictor in the model. We 

also include the weighted complete case analysis. Both imputation models used all available 

substantive covariates (health insurance, BMI, high blood pressure status, age, race, income, 

gender, and employment status). For the standard parametric analysis, as in the simulation study, 

we use Rubin’s combining rules (Rubin 1987) with weighted point estimates and Taylor Series 

approximations to account for the weights in the variance estimation. For the new method, we 

generated L=100 Bayesian bootstrap (BB) samples and created S=30 FPBB populations within 

each BB sample, with M=5 multiple imputations performed for each FPBB population. Since we 

do not know the population size in advance and the individual final weights sum up to nearly 

200,000 cases which is unrealistic to generate, we assume that N=4500 is large enough to be 

treated as a synthetic population (corresponding to a sampling fraction of less than 10%). Since 

the degrees of freedom is L-1=99, a normal distribution was used for inference.  
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4.2  Analyses 

We consider three different analyses: 1) the marginal distribution of income and health insurance 

accessibility (Table 4); 2) a linear regression model of BMI on key demographic variables (Table 

4); and 3) a loglinear model of a four-way contingency table defined by four categorical 

variables with no second-or-higher-order interactions (Table 5). We consider an analysis using 

the full dataset, as well as a stratified analysis restricted to subjects identifying as white (“white 

domain”). Multivariate imputation by chained equations (MICE) in R was used to impute the 

missing data under both MI methods.  

4.3  Results 

Since the poststratification adjustment factor constitutes an important component of the 

final weight in BRFSS dataset, we presume that including the variables used to construct 

poststratification cells (age, race and gender in this case) in the imputation model should help in 

predicting the missing Y variable. A linear regression of final weights on age, sex, and race 

shows that these covariates explain 40% of the variance of the weights, suggesting that there are 

other design variables that contribute to the survey weights unknown to us. Thus we conclude 

that imputation approaches that condition only on the available design variables will be 

insufficient to account for the sampling weights. 

Table 4 shows that under the fully parametric MI method, including survey weights in the 

imputation model has a large impact on the estimated proportions of income levels and the 

regression coefficients of BMI on income and gender. In fact, these differences are particularly 

significant for the whites-only analysis. Under the new method, however, all estimates are 

similar to those from the model-based method with weights accounted for. Moreover, there is 
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essentially no difference whether or not we incorporate weights into the imputation model once 

the sample data are synthesized, indicating that, as we expect, the new method can adjust for the 

weight effects at the synthesizing step without the need to model survey weights at the 

imputation step. Similar results are obtained in Table 5 with respect to the log-linear model.  

5. Discussion 

We propose using weighted finite population Bayesian Bootstrap to account for one-stage 

sampling weights in MI for item missing data in the Behavioral Risk Factor Surveillance Survey. 

We also evaluate the performance of this method in a simulation setting: our findings in suggest 

that it can bring significant reductions in bias relative to the existing model-based methods with 

little loss in efficiency. Meanwhile, the weighted FPBB method potentially protects against 

model misspecification, for example, wrongly including or excluding interactions between 

design variables and other covariates in the imputation model, while also maintaining 

population-level multivariate relationships. A further advantage lies in that, unlike the fully 

parametric methods which include designs in the imputation model and still require complex 

survey packages to analyze the imputed datasets, the new method fully accounts for the unequal 

selection probabilities by unweighting them and restoring a population in a separate step; 

therefore, only simple, unweighted complete-data analysis techniques are needed for inferences 

with the combining rules. This potentially allows a much wider variety of models to be 

considered using existing software, which, despite recent improvements, often does not have 

straightforward methods for accounting for complex sample designs.  

A limitation of the proposed method is the need for the weights to be included in the 

imputation model if the probability of item response is a function of selection probability. 
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However, by separating the modeling of the weights in the complete data by use of a relatively 

easy-to-implement nonparametric algorithm from the modeling of the weights in the missingness 

mechanism, it a) reduces the impact of misspecified missingness mechanisms (as noted in Table 

2, where the RMSEs and coverage of the misspecified models are greatly improved over the 

standard parametric approaches), and b) allows more careful inspection and modeling of the 

missingess mechanism as a function of the weights.  In particular, this suggests that the 

imputation model be developed using the weighted FPBB datasets, to include appropriate 

functions of and interactions with the design weights.  

The proposed two-stage semi-parametric multiple imputation approach has a number of 

possible extensions. First, while we have imputed the missing data in our second step using a 

model-based approach, a fully non-parametric approach using a Bayesian bootstrap (Rubin and 

Schenker 1986) can be used instead. Second, while our approach has focused on sampling 

weights, extensions that incorporate unit non-response into the synthetic population generation 

and multiple imputation to propagate uncertainty in unit-nonresponse weighting adjustments are 

possible.  (However, when only final weights incorporating non-response adjustments are 

provided, treating the final weight as a sampling weight as we did in the BRFSS application may 

be the only practical alternative.) Third, while we made a missing at random assumption with a 

single missing outcome in our simulation study and application, it is certainly possible at the 

imputation stage to accommodate missingness in multiple covariates via sequential regression 

multiple imputation (Raghunathan et al. 2001), or even to consider not missing at random 

mechanisms (Little 2008). Fourth, we could extend the method to incorporate unit nonresponse 

by generating Bayesian bootstraps of the entire sample including the unit non-responders,  
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applying standard unit nonresponse adjustments to the base weights to obtain the nonresponse-

adjusted weights, and then applying the weighted Polya posterior with the non-response-adjusted 

weights as the input weight in the algorithm to create synthetic populations.  Finally, our method 

developed here is for a one-stage design; extensions to account for multi-stage designs with 

clustering and stratification as part of the finite population Bayesian bootstrap are required as 

well, and are the focus of current research efforts. 
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Table 1. Before deletion study of the effects of the number of generated FPBB populations (S) on variance 
estimate 

Parameters 
Of Interest 

Performance 
Criteria 

Weighted FPBB Method with S Synthetic Populations Created Actual 
Sample S=1 S=5 S=10 S=15 S=20 S=25 S=30 S=40 

Mean 
  
  
  
  

Pt. est. 1.460 1.459 1.458 1.460 1.458 1.460 1.460 1.460 1.450 
Emp.Est.Var 0.048 0.036 0.034 0.034 0.033 0.033 0.033 0.033 0.033 
Emp.Var 0.031 0.031 0.032 0.031 0.032 0.031 0.031 0.031 0.032 
RMSE 0.176 0.178 0.177 0.177 0.178 0.175 0.177 0.177 0.178 
95% CI cov. 99% 97% 96% 97% 96% 96% 95% 96% 96% 

Intercept 
  
  
  
  

Pt. est. 1.251 1.250 1.249 1.250 1.249 1.250 1.250 1.250 1.241 
Emp.Est.Var 0.028 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021 
Emp.Var 0.021 0.021 0.021 0.011 0.021 0.021 0.021 0.021 0.022 
RMSE 0.145 0.145 0.146 0.145 0.145 0.144 0.144 0.146 0.150 
95% CI cov. 96% 94% 94% 94% 94% 95% 94% 94% 94% 

Slope 
  
  
  
  

Pt. est. 1.280 1.281 1.280 1.281 1.280 1.281 1.280 1.280 1.264 
Emp.Est.Var 0.036 0.029 0.028 0.027 0.027 0.027 0.027 0.027 0.027 
Emp.Var 0.030 0.029 0.029 0.029 0.029 0.029 0.030 0.030 0.033 
RMSE 0.172 0.171 0.172 0.171 0.171 0.171 0.173 0.173 0.181 
95% CI cov. 95% 92% 91% 91% 91% 90% 91% 90% 89% 
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Table 2. Performance of the proposed method in contrast to the fully parametric method under the relevant design condition (true model italicized). 
 

Actual  
Parameters 

Performance 
Criteria 

MAR_X MAR_X,W 

Standard Parametric MI 
Semi-Parametric MI 

Standard Parametric MI 
Semi-Parametric MI 

X X, logZ X*logZ X,W X*W X X, logZ X*logZ X,W X*W X X, logZ X*logZ X,W X*W X X, logZ X*logZ X,W X*W 

Mean=1.450 

Bias 0.248 0.084 0.003 0.063 -0.078 0.019 0.012 0.005 -.011 -.056 0.211 0.032 0.000 0.001 -0.098 0.061 0.022 0.006 -.001 -.048 

MeanEst.Var 0.057 0.050 0.041 0.080 0.133 0.047 0.043 0.040 .059 .089 0.062 0.065 0.049 0.080 0.123 0.040 0.039 0.037 .057 .078 

Emp.Var 0.047 0.042 0.035 0.065 0.125 0.044 0.039 0.036 .051 .067 0.062 0.066 0.045 0.074 0.125 0.036 0.034 0.032 .048 .065 

RMSE 0.329 0.222 0.188 0.262 0.362 0.211 0.196 0.190 .224 .265 0.327 0.258 0.211 0.273 0.367 0.199 0.186 0.179 .219 .259 

95%Cov 84% 95% 96% 95% 98% 95% 95% 95% 96% 97% 84% 92% 96% 96% 97% 95% 95% 96% 97% 98% 

Intercept=1.241 

Bias 0.208 0.056 0.004 0.035 -0.064 0.019 0.010 0.007 -.013 -.043 0.181 0.003 -0.001 -0.019 -0.081 0.051 0.015 0.007 -.009 -.038 

MeanEst.Var 0.032 0.030 0.028 0.058 0.090 0.029 0.028 0.027 .045 .062 0.032 0.033 0.032 0.058 0.087 0.023 0.024 0.024 .043 .053 

Emp.Var 0.027 0.030 0.026 0.065 0.092 0.029 0.027 0.026 .043 .051 0.027 0.031 0.026 0.067 0.097 0.022 0.023 0.022 .039 .048 

RMSE 0.266 0.183 0.162 0.257 0.309 0.171 0.165 0.160 .205 .227 0.243 0.174 0.160 0.258 0.321 0.155 0.151 0.147 .195 .220 

95% Cov 76% 92% 94% 90% 95% 93% 93% 94% 95% 95.% 76% 92% 96% 94% 96% 92% 94% 95% 94% 95% 

Slope=1.264 

Bias 0.208 0.144 -0.009 0.156 -0.064 0.003 0.013 0.008 .019 -.041 0.155 0.165 -0.003 0.117 -0.083 0.060 0.047 0.015 .053 -.026 

MeanEst.Var 0.035 0.031 0.034 0.046 0.128 0.035 0.032 0.034 .039 .085 0.038 0.036 0.039 0.049 0.117 0.028 0.027 0.030 .038 .073 

Emp.Var 0.034 0.032 0.037 0.048 0.155 0.037 0.033 0.035 .036 .072 0.054 0.046 0.037 0.052 0.138 0.030 0.029 0.031 .037 .066 

RMSE 0.277 0.229 0.192 0.268 0.398 0.191 0.181 0.186 .191 .269 0.278 0.269 0.191 0.257 0.381 0.182 0.176 0.177 .198 .256 

95% Cov 75% 82% 94% 82% 94% 93% 93% 93% 94% 95% 78% 82% 97% 85% 93% 88% 89% 91% 90% 92% 
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Table 3. Performance of the proposed method in contrast to the fully parametric method under the irrelevant design condition (true model 
italicized). 

Actual  
Parameters 

Performance 
Criteria 

MAR_X MAR_X,W 

Standard Parametric MI 
Semi-Parametric MI 

Standard Parametric MI 
Semi-Parametric MI 

X X, logZ X*logZ X,W X*W X X, logZ X*logZ X,W X*W X X, logZ X*logZ X,W X*W X X, logZ X*logZ X,W X*W 

Mean=-0.0191 

Bias -0.025 -0.034 -0.037 0.004 -0.006 -0.000 -0.000 0.002 .001 -.006 -0.006 -0.025 -0.026 0.007 -0.001 0.007 0.006 0.004 .009 .003 

MeanEst.Var 0.020 0.020 0.021 0.025 0.032 0.018 0.019 0.020 .025 .034 0.024 0.029 0.029 0.021 0.027 0.015 0.016 0.016 .023 .030 

Emp.Var 0.014 0.019 0.018 0.023 0.026 0.018 0.018 0.019 .021 .024 0.013 0.021 0.022 0.019 0.022 0.015 0.016 0.016 .019 .022 

RMSE 0.122 0.141 0.140 0.154 0.168 0.133 0.134 0.136 .146 .155 0.114 0.147 0.151 0.143 0.154 0.121 0.127 0.128 .137 .148 

95%Cov 97% 94% 93% 96% 94% 94% 95% 96% 94% 95% 97% 94% 95% 95% 94% 95% 95% 95% 95% 95% 

Intercept=-0.0569 

Bias -0.102 -0.109 -0.113 0.003 -0.003 -0.003 -0.003 -0.004 .001 -.002 -0.001 -0.021 -0.023 0.006 0.001 0.007 0.005 0.004 .008 .003 

MeanEst.Var 0.019 0.019 0.020 0.023 0.026 0.017 0.018 0.019 .023 .028 0.022 0.027 0.025 0.020 0.023 0.015 0.016 0.016 .022 .026 

Emp.Var 0.014 0.018 0.018 0.022 0.024 0.018 0.018 0.018 .020 .021 0.012 0.023 0.024 0.020 0.021 0.015 0.016 0.016 .019 .021 

RMSE 0.157 0.174 0.174 0.185 0.193 0.132 0.132 0.133 .140 .145 0.110 0.152 0.157 0.176 0.185 0.121 0.126 0.127 .136 .143 

95% Cov 88% 85% 86% 86% 85% 95% 95% 95% 94% 95% 98% 95% 97% 93% 94% 94% 95% 94% 95% 96% 

Slope=0.222 

Bias 0.006 0.003 0.003 0.005 -0.012 0.008 0.008 0.006 .001 -.008 -0.023 -0.022 -0.008 0.004 -0.014 0.000 -0.000 -0.003 .002 -.010 

MeanEst.Var 0.017 0.017 0.019 0.019 0.030 0.017 0.017 0.019 .019 .033 0.023 0.020 0.025 0.016 0.026 0.013 0.013 0.015 .015 .028 

Emp.Var 0.014 0.014 0.017 0.014 0.027 0.018 0.017 0.019 .017 .024 0.011 0.014 0.025 0.013 0.025 0.013 0.013 0.015 .014 .021 

RMSE 0.118 0.119 0.132 0.119 0.164 0.133 0.131 0.136 .128 .154 0.108 0.120 0.158 0.113 0.157 0.115 0.115 0.121 .116 .143 

95% Cov 95% 95% 94% 97% 95% 94% 95% 95% 94% 95% 98% 98% 92% 96% 95% 93% 94% 94% 94% 95% 

 



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

32 
 
 
 
 

Table 4. Estimation of marginal distributions for income and health insurance, and linear regression coefficients for the regression of BMI 
(dependent variable) on income, age and gender (independent variables).  (Complete case analysis presented is weighted.) 
   Methods 
   

Sample Estimation Variable 
Complete Case 

Parametric MI (M=5) Synthetic MI (L=100, S=30, M=5) 

Exclude weights Include log(weights) Exclude weights Include log(weights) 

Pt.est. SE Pt.est. SE Pt.est. SE Pt.est. SE Pt.est. SE 

Full Sample 

Marginal 

Low Income 0.50 0.04 0.50 0.04 0.52 0.05 0.52 0.04 0.51 0.04 

Medium Income 0.38 0.04 0.36 0.04 0.36 0.04 0.36 0.04 0.36 0.04 

High Income 0.12 0.03 0.14 0.03 0.12 0.03 0.13 0.03 0.13 0.03 

No insurance 0.22 0.04 0.24 0.04 0.24 0.04 0.24 0.04 0.24 0.04 

Regression 

Intercept 27.0 2.75 26.1 2.02 25.8 2.05 26.3 2.29 26.2 2.30 

Medium income 0.47 1.40 0.35 1.21 0.39 1.19 0.37 0.94 0.37 0.95 

High income 0.27 1.43 -0.47 1.32 -0.33 1.37 -0.36 1.40 -0.31 1.40 

Age 0.02 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 

Female 2.29 1.30 2.72 1.06 2.56 1.07 2.57 1.06 2.55 1.05 

Whites 
Domain 

Marginal 

Low Income 0.30 0.07 0.36 0.07 0.35 0.06 0.34 0.06 0.34 0.06 

Medium Income 0.53 0.08 0.48 0.07 0.50 0.07 0.49 0.06 0.49 0.06 

High Income 0.17 0.06 0.16 0.06 0.15 0.05 0.17 0.06 0.17 0.06 

No insurance 0.24 0.07 0.21 0.06 0.21 0.06 0.19 0.06 0.19 0.06 

Regression 

Intercept 31.1 3.9 32.4 4.7 31.0 4.1 31.0 4.2 31.0 4.1 

Medium income -1.6 3.25 -2.8 2.83 -2.1 2.72 -1.8 2.96 -1.7 2.97 

High income -3.1 3.60 -3.5 3.42 -3.2 3.18 -3.1 3.65 -3.0 3.62 

Age 0.02 0.06 -0.01 0.06 0.02 0.06 0.02 0.06 0.02 0.05 
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Female -1.7 2.39 -0.13 2.13 -0.68 2.11 -0.80 2.17 -0.75 2.17 
 

 
Table 5. Estimation of log-linear model for four categorical variables (collapse categories for medium and high income): 2009 Michigan BRFSS. 
  Methods 

 Estimation Variable Level 
Complete Case  Parametric MI 

Exclude weights 
Parametric MI 
Include log(weights) 

Synthetic MI 
Exclude weights 

Synthetic MI 
Include log(weights) 

Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE 

Main effects 

Low income -0.01 0.12 0.08 0.13 0.04 0.12 0.04 0.13 0.02 0.13 

Has insurance 0.61 0.12 0.64 0.12 0.62 0.11 0.69 0.12 0.68 0.12 

White -0.94 0.11 -1.0 0.10 -1.0 0.11 -1.1 0.12 -1.1 0.12 

Male -0.11 0.12 -0.09 0.10 -0.07 0.10 -0.07 0.11 -0.07 0.11 

Two-way 
Interactions 

Low income x Has 
insurance -0.36 0.12 -0.37 0.12 -0.33 0.13 -0.31 0.11 -0.30 0.11 

Low income x White -0.28 0.10 -0.20 0.09 -0.20 0.09 -0.22 0.09 -0.22 0.09 

Low income x Male -0.03 0.09 -0.03 0.09 -0.07 0.09 -0.05 0.08 -0.05 0.08 

Has insurance x White -0.13 0.12 -0.02 0.12 -0.02 0.12 0.02 0.13  0.03 0.13 

Has insurance x Male -0.01 0.13 -0.12 0.10 -0.14 0.10 -0.15 0.10 -0.15 0.10 

White x Male -0.08 0.09 -0.11 0.08 -0.11 0.09 -0.11 0.08 -0.10 0.08 
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