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Summary

A new seismic design manner, namely building mass damper (BMD), which is

inspired from a combination ofmid‐story isolation and tunedmass damper design

concepts, recently attracts immense attention. It is mainly because that the use of

partial structural mass of the building as an energy absorber in the BMD design

can overcome the drawback of limited response reduction due to insufficient

added tuned mass in the conventional tuned mass damper design. In this study,

an optimum BMD (OBMD) design approach, namely optimum dynamic

characteristic control approach, based on a simplified 3‐lumped‐mass structure

model is proposed to seismically protect both the superstructure (or tuned mass)

and the substructure (or primary structure), respectively, above and below the

control layer. A series of sensitivity analyses and experimental studies on different

parameters, including mass, frequency, and damping ratios, of a building model

designed with a BMD system were conducted. The test results verify the practical

feasibility of the BMD concept as well as the effectiveness of the proposed OBMD

design. Furthermore, by comparing with the numerical results of a mid‐story

isolated counterpart, it is demonstrated that the proposed OBMD design can have

a comparable and even better control performance.
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1 | INTRODUCTION

The excellent performance of seismically isolated buildings during past earthquakes has encouraged the adoption of seismic
isolation technology for structural and non‐structural protection.1-3 Among the increasing practical applications, themid‐story
isolation design, in which the isolation system is usually installed on the top of the first story of a building, is recently gaining
popularity owing to its advantages in terms of construction efficiency, space use, andmaintenance over the conventional base
isolation design.4,5 The seismic performance of mid‐story isolated buildings has been thoroughly investigated.4-8 It was
indicated that the mid‐story isolation design is effective in reducing the seismic demand of the superstructure (SUP) above
the isolation system if the coupling of higher modes is precluded. However, due to the flexibility of the substructure (SUB)
and the contribution of higher modes, the seismic response of the SUB below the isolation system may be enlarged.

On the other hand, the use of tuned mass dampers (TMDs) as a means to control the dynamic response of the attached
structure was first proposed by Frahm.9 It has been recognized as an effective passive energy absorbing device to reduce
the undesirable oscillation of the attached vibrating system (or primary system) subjected to harmonic excitation.10-12

A typical TMD system is essentially consisting of a tuned absorber mass, a spring, and a dashpot. Based on a simplified
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2‐lumped‐mass structure model, various approaches for selecting the optimum design parameters of a TMD system have
been developed by means of generating a phase lag attributed to resonance between the primary and TMD systems. For
instance, to minimize the steady‐state response of the primary system, Den Hartog10 derived the closed‐form solutions for
the optimum tuning frequency and damping ratio of a TMD system attached to an undamped system under harmonic
excitation. Afterward, Warburton13 studied the optimum TMD design parameters for an undamped system subjected to
harmonic external force and white‐noise random excitation. However, all systems contain some damping in reality. Tsai
and Lin14 studied the optimum TMD design parameters for a damped system by numerical iteration and curve‐fitting
procedures. Villaverde15 derived and numerically demonstrated that a TMD system can perform effectively subjected to
seismic loading when the 2 complex modes of vibration have approximately the samemodal damping ratios as the average
of the damping ratios of the primary and TMD systems. However, Sadek16 found that it is valid only for mass ratios smaller
than 0.005 and the difference is more significant when the mass ratio becomes larger. Accordingly, Sadek's proposed
criterion16 for seismic application was to select, for a given mass ratio, the tuning frequency and damping ratio that would
result in equally large modal damping in the 2 complex modes of vibration.

The TMD design concept was first adopted to mitigate the wind‐induced vibration or enhance the serviceability of
high‐rise buildings,17,18 and was subsequently adopted to enhance the seismic capability of building structures.19-22 Until
now, the effectiveness of the TMD design in reducing structural responses subjected to seismic loading is still arguable,
especially when the tuned mass is much lighter than the primary structure. To overcome the concern of limited response
reduction due to insufficient tuned mass in the conventional TMD design, a new design concept, namely building mass
damper (BMD) or self mass damper, was proposed and numerically studied.23-25 In the BMD system, as implied in the
name, a part of structural mass, instead of additional mass, is intended to be an energy absorber. Ziyzeifar and Noguchi23

utilized an isolation layer composed of elastic bearings and viscous dampers to isolate a part of the structure in a tall
building for versatile design goals. One of the goals was to reduce the seismic response of the SUB below the isolation
layer by means of significant and out‐of‐phase movement of the isolated SUP as a vibration absorber together with
additional damping contributed by viscous dampers. In addition, based on the numerical results of a 13‐story building
subjected to various seismic excitation, Villaverde24 indicated that the insertion of flexible laminated rubber bearings
and viscous dampers between the roof and the rest of the building, namely roof isolation system, can effectively reduce
the seismic response of the building. That is, the roof isolation system was designed to be a vibration absorber. These
studies also disclosed that the isolated SUP or the roof isolation system as a vibration absorber is practically feasible
for both new construction and retrofit purposes.

The BMD concept has been applied to a few new construction and retrofitted buildings; for instance, the Swatch
Group Japan Headquarter26 and Mita Bellju Building in Tokyo as well as the Theme Building at the Los Angeles
International Airport.27 However, among these applications, the control target was still mainly focused on the SUB (or
primary structure) performance rather than on either the SUP (or tuned mass) performance or both. If the SUP in the
BMD design is intended to be used for occupancy as the SUB, excessive dynamic responses are not acceptable definitely.
Under this circumstance, the seismic performance of both the SUB and SUP should be paid attention.

In this study, to combine the advantages of seismic isolation and TMD designs, an optimum design method for a
BMD system is investigated. A building structure designed with a BMD system is rationally assumed to be represented
by a simplified 3‐lumped‐mass structure model, composed of the SUP, control layer (CL), and SUB. Referring to Sadek's
research,16 the objective function is refined as that 3 modal damping ratios obtained from the simplified structure model
in the direction of interest are equally important and taken as an approximately equal value. Accordingly, the optimum
BMD (OBMD) design parameters can be rationally determined based on the proposed optimum dynamic characteristic
control approach. First, the influences of varied mass ratios and inherent damping ratios on the OBMD design
parameters are quantitatively discussed. Then, a series of shaking table tests were performed to verify the feasibility of
the BMD concept as well as the effectiveness of the proposed OBMD design on seismic protection of the building models.
Finally, the test results of the OBMD design are compared with the numerical results of a mid‐story isolated counterpart
to further demonstrate the potential advantage of the proposed OBMD design over the mid‐story isolation design.
2 | ANALYTICAL STUDY

2.1 | Simplified 3‐lumped‐mass structure model

In this study, the BMD system is intended to be installed upon a multi‐story SUB (or primary structure). The system is
essentially composed of a multi‐story SUP (or tuned mass) as well as spring and dashpot elements for connecting the
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SUP to the SUB. The stiffness and damping designed for the BMD system, of course, are provided by the spring and dashpot
elements, respectively. A simplified 3‐lumped‐mass structure model, in which the 3 lumpedmass are, respectively, assigned
at the SUP, CL, and SUB, is rationally assumed to represent a building structure designed with a BMD system, as shown in
Figure 1, to comprehensively account for the dynamic characteristics of both the SUB and SUP. To be precise, the SUP and
CL are not assumed to vibrate as a rigid body in this simplified structure model. For doing so, an excessive (or unreasonable)
damping demand for the OBMD design owing to a significant SUP‐to‐SUB mass ratio and neglect of flexibility of the SUP
can be precluded, which will be further discussed in Section 2.3.

The equation of motion for the simplified structure model in the horizontal direction can be written as
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where M = the generalized seismic reactive mass matrix; m1,m2, and m3= the generalized seismic reactive masses for
the fundamental mode of vibration computed for a unit modal participation factor of the SUB, CL, and SUP, respectively;
K and C = the horizontal generalized stiffness and damping coefficient matrices, respectively; k1(c1), k2 (c2), and k3(c3)
= the horizontal stiffness (viscous damping coefficients) for the fundamental mode of vibration of the SUB, CL, and SUP,
respectively; u = the horizontal displacement vector relative to ground; u1, u2, and u3= the horizontal displacements of
the SUB, CL, and SUP relative to ground, respectively; €ug = the horizontal ground acceleration; and R = the earthquake
influence vector.

The equation of motion given in Equation 1 can also be expressed in terms of the nominal frequency ω1, frequency
(or tuning) ratio fi (i = 2, 3), mass ratio μi (i = 2, 3), and component damping ratio ξi (i = 1 to 3), as defined in the
following

f i ¼
ωi

ω1
; i ¼ 2; 3 (2)

μi ¼
mi

m1
; i ¼ 2; 3 (3)

ξ i ¼
ci

2∑
3

j¼i
mjωi

; i ¼ 1 to 3 (4)
FIGURE 1 Simplified 3‐lumped‐mass structure model for BMD design
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where i and j = 1, 2, and 3 denote the SUB, CL, and SUP, respectively; and the nominal frequencies ω1, ω2, and ω3 are

defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2= m2 þm3ð Þp

; and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3=m3

p
, respectively.
2.2 | Optimum design method based on modal characteristic control concept

By means of the state space method under coupling approximation, the system matrix A for Equation 1 can be obtained
as follows

A ¼ 0 I

−M−1K −M−1C

� �
¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
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(5)

where 0 is the zero matrix; I is the identity matrix; a41= −ω1
2[1+ f2

2(μ2+μ3)]; a42=ω1
2f2

2(μ2+μ3); a44=
− 2ω1[(ξ1+ f2ξ2)(μ2+μ3)+ ξ1]; a45= 2ω1f2ξ2(μ2+μ3); a51=ω1

2f2
2(μ2+μ3)/μ2; a52= −ω1

2[f2
2(μ2+μ3)+ f3

2μ3]/μ2;
a53=ω1

2f3
2μ3/μ2; a54=2ω1f2ξ2(μ2+μ3)/μ2; a55= − 2ω1[f2ξ2(μ2+μ3)+ f3ξ3μ3]/μ2; a56= 2ω1f3ξ3μ3/μ2; a62=ω1

2f3
2; a63=

−ω1
2f3

2; a65=2ω1f3ξ3; and a66= − 2ω1f3ξ3.
The complex eigenvalues of Equation 5 can be calculated in a form of conjugate pairs as follows

λ'2n−1;2n ¼ ω'
nξ

'
n±iω

'
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ξ 'n2

q
;n ¼ 1; 2; 3 (6)

where λ'2n−1 is the n
th modal eigenvalue of the system; λ'2n is the conjugate of λ

'
2n−1; ω'

n and ξ 'n are the n
th modal natural

frequency and the nth modal damping ratio of the system, respectively; and i is the unit imaginary number (ie, i ¼ ffiffiffiffiffiffi
−1

p
).

The proposed objective function to determine the OBMD design parameters in this study is modified from Sadek's
research.16 That is, the modal damping ratios in the 3 complex modes of vibration are equally important and are taken

as an approximately equal value, ie, ξ '1≅ξ
'
2≅ξ

'
3. Scientifically and reasonably, this control principle intends to simulta-

neously mitigate the dynamic responses of the SUB, CL, and SUP in the direction of interest. Meanwhile, it would also
result in approximately equal modal natural frequencies in the 3 complex modes of vibration.16 This objective function,
conceptually, is similar to the pole placement control,28 which can be easily achieved by applying additional active con-
trol force. However, this study aims at a passive control approach. It is impossible to have 3 perfectly equal modal natural
frequencies by only applying passive control force. Three approximately equal modal damping ratios in this study are
determined based on the minimum sum of differences of each 2 complex eigenvalues (or modal damping ratios, or
modal natural frequencies), as shown in Figure 2. By means of the proposed objective function with given ω1, μ2, μ3,
ξ1, and ξ3, the optimum design parameters for f2, f3, and ξ2, ie, f

opt
2 , f opt3 , and ξopt2 , respectively, can be determined.
FIGURE 2 Illustration of minimum

sum of differences of each 2 complex

eigenvalues (or modal damping ratios, or

modal natural frequencies)

Complex Eigenvalue 

1 3 3 5 5 1Min.

Imaginary

Real

1

3

5

1 3
3 5

5 1

Modal Damping Ratio
(or Modal Natural Frequency)

Mode1st 2nd 3rd

1 1(or )

2 2(or )
(or )

1 2 2 3 3 1

1 2 2 3

    Min.

or Min.



876 WANG ET AL.
2.3 | Sensitivity analysis considering varied mass and damping ratios

Assume that the mass ratios μ2 and μ3 vary within a reasonable range, respectively, from 0.1 (ie, basically representing a
high‐rise SUB) to 0.5 (ie, basically representing a low‐rise SUB) and 0.1 (ie, basically representing a low‐rise SUP) to 2
(ie, the story number of the SUP is twice as many as that of the SUB), as illustrated in Figure 3. Besides, assume that both
ξ1 and ξ3 are set to be 2% and 10% to correspondingly represent a bare structure and a structure with additional damping

devices. Therefore, on the basis of the proposed objective function, the optimum damping ratio ξopt2 and the optimum

frequency (or tuning) ratios f opt2 and f opt3 for the OBMD design varying with different μ2, μ3, ξ1, and ξ3 are calculated and

shown in Figure 4. It can be seen from the figure that the optimum design parameters ξopt2 , f opt2 , and f opt3 , in general, are
proportional to μ2 and are inversely proportional to μ3. This trend is less significant when μ2 and μ3 become larger
gradually. It is implied that a decrease of μ2 and an increase of μ3 may reduce the OBMD design demands, including the

damping and frequency (or tuning) ratios. In addition, the optimum damping ratio ξopt2 will increase when ξ1 is increased
and will decrease when ξ3 is increased. For the optimum frequency ratios, increasing ξ3 will lead to an increased demand of

f opt2 while will reduce the demand of f opt3 . On the other hand, the variation of the optimum frequency ratios with different ξ1
FIGURE 3 Variation ranges of μ2 and μ3 for sensitivity analysis

FIGURE 4 ξopt2 , f opt2 , and f opt3 varying with respect to μ2, μ3, ξ1, and ξ3 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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is very sensitive to the mass ratios. When ξ1 is increased, the demand of f opt2 will generally decrease except for the nearly

same trend at μ2 equal to 0.1, and the demand of f opt3 will decrease if μ2 is small and will increase slightly with larger μ2.
In Sadek's research16 and many past studies relevant to the TMD design, a simplified 2‐lumped‐mass structure model

was usually utilized to study the optimum TMD design parameters. Under this circumstance, only 1 mass ratio, ie, a total
of μ2 and μ3, was required to be defined. By comparing the results shown in Figure 5 to those obtained from Sadek's

study, obviously, the sensitivities of f opt2 and ξopt2 , respectively, varying with different μ2 and μ3 based on the simplified
3‐lumped‐mass structure model have very different tendencies from those of the optimum design results varying with
different mass and damping ratios based on the simplified 2‐lumped‐mass structure model.

It was rarely concerned whether the damping demand is reasonable and practicable if the mass ratio of the TMD
design becomes larger. The following is a simple quantitative comparison between the optimum damping ratios obtained
by using the simplified 2‐lumped‐mass and 3‐lumped‐mass structure models based on a scientific background. As shown
in Figure 5, the dotted line represents the trend of the optimum damping ratio varying with respect to the mass ratio
when using the simplified 2‐lumped‐mass structure model and Sadek's proposed criterion (the inherent damping ratio
is assumed to be 2%). It is found that the optimum damping ratio is proportional to the mass ratio, ie, the larger the mass
ratio, the higher the damping demand required. For instance, when the mass ratio reaches to 1, the damping
demand is up to 72%, which might not be very reasonable and practicable. As also shown in Figure 5, the solid lines
represent the variation of the optimum damping ratio with different combinations of μ2 and μ3 when using the sim-
plified 3‐lumped‐mass structure model and the proposed optimum dynamic characteristic control approach
(ξ1= ξ3= 2%). Apparently, an opposite tendency that the optimum damping ratio, in general, is inversely proportional
to the total of μ2 and μ3 but proportional to μ2 is observed. More importantly, a more reasonable and applicable
damping demand can be obtained especially when μ2 becomes smaller. For instance, when the mass ratio reaches
to 1 and μ2=0.1, the damping demand is approximately 22%.
3 | SEISMIC SIMULATION TESTS

3.1 | Test structure models

The bare specimen was designed to be a 1/4 scaled 8‐story steel structure model with single‐bay widths of 1.5 and 1.1 m,
respectively, in the X and Y directions, as shown in Figure 6A. Each floor was 1.1 m high, and each slab was 20 mm
thick. The columns and beams were wide flange with a sectional dimension of 100 × 100 × 6 × 8 (mm) and channel with
a sectional dimension of 100 × 50 × 5 × 5 (mm), respectively. Additional live load of 0.5 kN‐s2/m simulated by mass
blocks with a regular plane arrangement was assigned at each floor.

Apart from the bare specimen, the BMD specimens were designed with a CL at the fourth floor, as shown in Figure 6
B. In other words, the SUB (or primary structure) and SUP (or tuned mass) were 3‐story and 4‐story structure models,
respectively. In this study, for simplicity and practical feasibility, elastomeric bearings (RBs) with a diameter of
180 mm and linear fluid viscous dampers (FVDs) were rationally adopted to play the roles of spring and dashpot
FIGURE 5 Optimum damping ratios obtained by using simplified 2‐lumped‐mass and 3‐lumped‐mass structure models [Colour figure can

be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


(A) Bare specimen (B) BMD specimen (C) OBMD specimen (D) MSI model 

FIGURE 6 Experimental and numerical structure models [Colour figure can be viewed at wileyonlinelibrary.com]
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elements at the CL, respectively. A series of BMD specimens, ie, BMD‐1 to BMD‐7 as given in Table 1, were designed to
further discuss the influence of varying design parameters on their seismic performance. BMD‐2, BMD‐1, and BMD‐3,
the first‐group specimens, were intended to only have different f2 values in ascending order, but the other design param-
eters remained the same. To this end, RBs and linear FVDs with different properties as detailed in Table 1 were designed
for these 3 specimens. BMD‐4, BMD‐1, and BMD‐5, the second‐group specimens, were intended to only have different f3
values in ascending order. To this end, angle‐section steel braces with different sectional dimensions were installed at the
SUB, and accordingly RBs and linear FVDs with different properties were designed for these 3 specimens, as detailed in
Table 1. BMD‐6, BMD‐1, and BMD‐7, the third‐group specimens, were intended to only have different ξ2 values in
ascending order by changing the damping coefficients of linear FVDs, as detailed in Table 1.

The modal characteristics of the 8‐story bare specimen, 3‐story SUB, and 4‐story SUP were experimentally identified
under white noise excitation, as summarized in Table 2. After obtaining the realistic characteristics, the optimum design

parameters f opt2 , f opt3 , and ξopt2 for the OBMD specimen as shown in Figure 6C can be designed according to the proposed
objective function with known ω1, μ2, μ3, ξ1, and ξ3, as detailed in Table 1.
3.2 | Earthquake inputs

Four recorded ground motions with various peak ground acceleration (PGA) levels were selected for the earthquake
inputs of the uniaxial shaking table tests (ie, along the X direction of the specimens), as summarized in Table 3. They
TABLE 1 Design parameters for all test and numerical structure models

Specimen
(Model) ξ2 f2 f3

Total Stiffness at CL
or Mid‐Story Isolation
Layer (4 Sets of RBs)

Total Rubber
Thickness of
each RB

Total Damping Coefficient
at CL or Mid‐Story Isolation
Layer (2 Sets of FVDs)

Sectional
Dimension of Added
Braces at SUB

(%) (kN/m) (mm) (kN‐s/m) (mm)

BMD‐1 22 0.28 0.25 3810.28 27 51.12 L70 × 70 × 6 (SUB)

BMD‐2 22 0.19 0.25 1740.52 19 34.56 L70 × 70 × 6 (SUB)

BMD‐3 22 0.35 0.25 5880.00 19 63.76 L70 × 70 × 6 (SUB)

BMD‐4 22 0.28 0.22 4905.20 20 58.00 L90 × 90 × 9 (SUB)

BMD‐5 22 0.28 0.28 3247.72 30 47.20 L60 × 60 × 5 (SUB)

BMD‐6 9 0.28 0.25 3810.28 27 20.92 L70 × 70 × 6 (SUB)

BMD‐7 35 0.28 0.25 3810.28 27 81.34 L70 × 70 × 6 (SUB)

OBMD 25 0.30 0.28 1844.80 19 34.6 L60 × 60 × 5 (SUB)

MSI 25 0.12 0.28 710.6 ‐ 28.6 L60 × 60 × 5 (SUB)

http://wileyonlinelibrary.com


TABLE 2 Identified modal characteristics of test specimens

Bare Specimen

Modal Characteristics First Mode Second Mode Third Mode

Natural period 0.61 sec 0.18 s 0.09 s

Participation mass ratio 76% 12% 5%

Three‐Story Substructure

Modal Characteristics First Mode Second Mode Third Mode

Natural period 0.21 s 0.06 s 0.03 s

Participation mass ratio 84% 9% 3%

Four‐Story Superstructure

Modal Characteristics First Mode Second Mode Third Mode

Natural period 0.27 s 0.08 s 0.04 s

Participation mass ratio 81% 11% 4%

TABLE 3 Earthquake input program

Test
Name Ground Motion

Original
PGA

Test PGA Bare
Specimen BMD OBMDOriginal PGA

El Centro El Centro/I‐ELC270 0.35 g 80% V V V
Imperial Valley, USA 160% V V
1940/05/19 240% V V

Kobe KJMA/KJM000 40% V V V
Kobe, Japan 1995/01/16 0.83 g 60% V V

80% V V

TCU047 Chi‐Chi/TCU047 0.40 g 80% V V V
Chi‐Chi, Taiwan 160% V V
1999/09/21 240% V V

THU Tohoku/THU 0.33 g 50% V V V
Tohoku, Japan 100% V V
2011/03/11 150% V V

WANG ET AL. 879
were recorded at I‐ELC270, KJM000, TCU047, and THU stations, respectively, during the 1940 El Centro earthquake, the
1995 Kobe earthquake, the 1999 Taiwan Chi‐Chi earthquake, and the 2011 Tohoku earthquake (respectively, denoted as
El Centro, Kobe, TCU047, and THU thereafter). Among the 4 ground motion records, El Centro and TCU047 are typical
far‐field ground motions, while Kobe and THU have more long period contents. Besides, THU is a long‐duration ground

motion. Because the specimens were assumed as a 1/4 scaled structure model, a time scale of 1=
ffiffiffi
4

p
was considered for

the earthquake inputs to meet the similitude law. Note that the maximum test PGA level was determined on the premise
of the specimens remaining essentially elastic. The 5% damped acceleration and displacement response spectra of all the
time‐scaled ground motions normalized to a PGA value of 1 g are illustrated in Figure 7. To measure the concerning dynamic
responses, accelerometers and displacement transducers were installed on each slab of the specimens. In addition, load cells
were installed underneath the base of the specimens as well as between the SUP and SUB of the BMD and OBMD specimens.
3.3 | Test results

3.3.1 | Influence of varying design parameters on seismic performance

To make a visual and comprehensive comparison, vertical distributions of maximum X‐directional acceleration and
inter‐story displacement responses of all the BMD specimens under the 4 ground motion records with a PGA level are



FIGURE 7 5% damped acceleration and displacement response spectra of time‐scaled ground motions with PGA of 1 g [Colour figure can

be viewed at wileyonlinelibrary.com]

FIGURE 8 Vertical distributions of maximum X‐directional acceleration responses of BMD‐1, BMD‐2, BMD‐3, BMD‐4, BMD‐5, BMD‐6,

and BMD‐7 [Colour figure can be viewed at wileyonlinelibrary.com]
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presented in Figures 8 and 9, respectively. The maximum‐acceleration ratios (AR1) and maximum‐inter‐story‐displace-
ment ratios (IDR1) of BMD‐2 to BMD‐1 and BMD‐3 to BMD‐1, as calculated, respectively, in Equations 7 and 8, at dif-
ferent floors excluding the CL (or 4F) under all the earthquake inputs as listed in Table 3 are shown in Figure 10.
Similarly, the maximum‐acceleration ratios (AR1) and maximum‐inter‐story‐displacement ratios (IDR1) of BMD‐4 to
BMD‐1 and BMD‐5 to BMD‐1 as well as BMD‐6 to BMD‐1 and BMD‐7 to BMD‐1, as calculated, respectively, in

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 9 Vertical distributions of maximum X‐directional inter‐story displacement responses of BMD‐1, BMD‐2, BMD‐3, BMD‐4, BMD‐

5, BMD‐6, and BMD‐7 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Maximum‐acceleration

and maximum‐inter‐story‐displacement

ratios of BMD‐2 and BMD‐3 to BMD‐1 at

different stories [Colour figure can be

viewed at wileyonlinelibrary.com]

WANG ET AL. 881
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Equations 7 and 8, are shown in Figures 11 and 12. To statistically and overall discuss the influence of varying f2, f3, and
ξ2 on the seismic performance of the BMD specimens, the information of mean (μ) and standard deviation (σ) is also pro-
vided in Figures 10--12. For better comparison and realization, the average maximum‐acceleration ratios and average
maximum‐inter‐story‐displacement ratios of BMD‐2 to BMD‐1, BMD‐3 to BMD‐1, BMD‐4 to BMD‐1, BMD‐5 to BMD‐
1, BMD‐6 to BMD‐1, and BMD‐7 to BMD‐1 at the 3‐story SUB and 4‐story SUP under all the earthquake inputs and dif-
ferent ground motion records as listed in Table 3 are shown in Figure 13.

AR1 ¼ Max AccBMD−i; j=Max AccBMD−1; j (7)

IDR1 ¼ Max IDBMD−i; j=Max IDBMD−1; j (8)

where the subscript i=2 to 7 correspondingly represent BMD‐2, BMD‐3, BMD‐4, BMD‐5, BMD‐6, and BMD‐7; the
subscript j represents the jth floor ( j=1 to 8); Max AccBMD− i, j and Max IDBMD− i, j represent the maximum X‐directional
acceleration and inter‐story displacement responses at the jth floor of BMD‐i (i=2 to 7), respectively; Max AccBMD− 1, j

and Max IDBMD− 1, j represent the maximum X‐directional acceleration and inter‐story displacement responses at the jth

floor of BMD‐1, respectively.
FIGURE 11 Maximum‐acceleration

and maximum‐inter‐story‐displacement

ratios of BMD‐4 and BMD‐5 to BMD‐1 at

different stories [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 12 Maximum‐acceleration

and maximum‐inter‐story‐displacement

ratios of BMD‐6 and BMD‐7 to BMD‐1 at

different stories [Colour figure can be

viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 13 Average maximum‐acceleration and maximum‐inter‐story‐displacement ratios of all BMD specimens at substructure and

superstructure [Colour figure can be viewed at wileyonlinelibrary.com]
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As observed from Figures 8, 10, and 13, in general, decreasing f2 may cause enlarged acceleration responses at the
SUB, which is particularly evident when subjected to Kobe and THU, ie, long‐period and long‐duration ground motions.
Besides, increasing f2 may result in enlarged ones at both the SUB and SUP. It is particularly evident when subjected to
El Centro and TCU047, ie, far‐field ground motions. As observed from Figures 8, 11, and 13, in general, increasing f3 may
enlarge the acceleration responses of the SUB. It is particularly true while subjected to TCU047 and THU, ie, far‐field
and long‐duration ground motions. As observed from Figures 8, 12, and 13, it is of no surprise that the acceleration
responses at both the SUB and SUP of BMD‐6 are larger than those of BMD‐1 because of its smaller ξ2. However, when
ξ2 becomes very large, eg, ξ2=35% in BMD‐7, it may not be very helpful and even slightly harmful to the acceleration
control performance compared with BMD‐1 (ξ2= 22%).

As observed from Figures 9, 10, and 13, in general, decreasing f2 may cause enlarged inter‐story‐displacement
responses at the SUP, which is particularly evident while subjected to Kobe, ie, long‐period ground motions. Besides,
increasing f2 may result in enlarged ones at the SUB. As observed from Figures 9, 11, and 13, neither decreasing nor
increasing f3 causes significantly enlarged inter‐story‐displacement responses at the SUB and SUP. As observed from
Figures 9, 12, and 13, the influence of varying ξ2 on the inter‐story‐displacement control at the SUB may be more signif-
icant than that at the SUP. Among BMD‐1 to BMD‐7 under all the earthquake inputs as listed in Table 3, the maximum
inter‐story displacement response at the CL is 20.5 mm, which is corresponding to a shear strain of 75.93% for RBs.
3.3.2 | Comparison of seismic responses between bare, building mass damper, and
optimum building mass damper specimens

To make a visual and comprehensive comparison, vertical distributions of maximum X‐directional acceleration and
inter‐story displacement responses of the bare and OBMD specimens under the 4 ground motion records with the
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minimum PGA level are presented in Figures 14 and 15, respectively. To statistically and overall demonstrate that the
OBMD specimen designed based on the proposed objective function can have a superior seismic performance to the bare
and BMD specimens, the average maximum‐acceleration ratios (AR2) and average maximum‐inter‐story‐displacement
ratios (IDR2) of the bare and BMD specimens to the OBMD specimen, as calculated, respectively, in Equations 9 and
10, at the 3‐story SUB and 4‐story SUP under all the earthquake inputs and different ground motion records as listed in
Table 3 are shown in Figure 16.

AR2 ¼ Max AccBMD−i; j or Max AccBare; j
� �

=Max AccOBMD; j (9)

IDR2 ¼ Max IDBMD−i; j or Max IDBare; j
� �

=Max IDOBMD; j (10)

where the subscript i=1 to 7 correspondingly represent BMD‐1, BMD‐2, BMD‐3, BMD‐4, BMD‐5, BMD‐6, and BMD‐7;
Max AccBMD− i, j, Max AccBare, j, and Max AccOBMD, j represent the maximum X‐directional acceleration responses at the jth

floor of BMD‐i (i=1 to 7), the bare specimen, and the OBMD specimen, respectively; Max IDBMD− i, j, Max IDBare, j, and
Max IDOBMD, j represent the maximum X‐directional inter‐story displacement responses at the jth floor of BMD‐i (i=1 to 7),
the bare specimen, and the OBMD specimen, respectively. Note that when the ratio is larger than unity and becomes higher,
a better control performance of the OBMD specimen can be achieved.

As observed from Figures 14--16, undoubtedly, the seismic performance of the OBMD specimen is much better than
that of the bare specimen. In addition, the OBMD specimen in general has a superior potential in reducing seismic
responses to the BMD specimens. It is particularly true for the acceleration control performance at the SUP as well as
the inter‐story displacement control performance at both the SUB and SUP. It is experimentally demonstrated that
the proposed optimum dynamic characteristic control approach for the OBMD design is effective and necessary. Under
all the earthquake inputs as listed in Table 3, the maximum inter‐story displacement response at the CL of the OBMD
specimen is only 12.2 mm, which is corresponding to a shear strain of 64.2% for RBs.
FIGURE 14 Vertical distributions of maximum X‐directional acceleration responses of bare and OBMD specimens as well as MSI [Colour

figure can be viewed at wileyonlinelibrary.com]
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FIGURE 15 Vertical distributions of maximum X‐directional inter‐story displacement responses of bare and OBMD specimens as well as

MSI [Colour figure can be viewed at wileyonlinelibrary.com]
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4 | COMPARISON WITH MID ‐STORY ISOLATION DESIGN

The seismic performance of the proposed OBMD design is further compared with that of a typical mid‐story isolation
design in which the seismic isolation system is incorporated into the mid‐story rather than the base of the building.
As shown in Figure 6D, the same steel structure as the OBMD specimen but designed with a mid‐story isolation system
composed of different RBs and linear FVDs is numerically built and analyzed. The numerical model designed with a
mid‐story isolation system is denoted as MSI thereafter. To have a convincing comparison, for MSI, the isolation layer
is inserted into the same level as the CL in the OBMD specimen. The force‐displacement relationship of a combination
of RBs and linear FVDs can be ideally represented by a viscoelastic model. Therefore, considering the same time scale as

the test study, ie, 1=
ffiffiffi
4

p
, the isolation period of the SUP as a single degree‐of‐freedom system is designed to be 1 second.

For reasonable comparison, the damping ratio provided by linear FVDs of the mid‐story isolation system is designed to

be identical to the optimum damping ratio of the OBMD specimen, ie, ξopt2 ¼ 25%. The design parameters of the RBs and
linear FVDs of the mid‐story isolation system are detailed in Table 1.

To make a visual and comprehensive comparison, vertical distributions of maximum X‐directional acceleration and
inter‐story displacement responses of MSI under the 4 ground motion records with the minimum PGA level are also pre-
sented in Figures 14 and 15, respectively. To statistically and overall compare the seismic performance between the
OBMD specimen and MSI, the average maximum‐acceleration ratios (AR3) and average maximum‐inter‐story‐displace-
ment ratios (IDR3) of MSI to the OBMD specimen, as calculated respectively in Equations 11 and 12, at the 3‐story SUB
and 4‐story SUP under all the earthquake inputs and different ground motion records as listed in Table 3 are also shown
in Figure 16

AR3 ¼ Max AccMSI; j=Max AccOBMD; j (11)

IDR3 ¼ Max IDMSI; j=Max IDOBMD; j (12)
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FIGURE 16 Average maximum‐acceleration and maximum‐inter‐story‐displacement ratios of bare and BMD specimens as well as MSI to

OBMD specimen at substructure and superstructure [Colour figure can be viewed at wileyonlinelibrary.com]
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where Max AccMSI, j and Max IDMSI, j represent the maximum X‐directional acceleration and inter‐story displace-
ment responses at the jth floor of MSI, respectively; Max AccOBMD, j and Max IDOBMD, j represent the maximum
X‐directional acceleration and inter‐story displacement responses at the jth floor of the OBMD specimen, respec-
tively. Note that when the ratio is larger than unity and becomes higher, a better control performance of the
OBMD specimen can be achieved.

As observed from Figures 14--16, both the OBMD specimen and MSI can have an excellent seismic perfor-
mance. As for the SUP, basically, the OBMD specimen has a comparable control performance to MSI, especially
for the inter‐story displacement control performance. An insight into the comparison is that the OBMD specimen
has a more uniform vertical distribution of maximum acceleration responses at both the SUP and SUB than MSI,
while MSI is more uniform for the inter‐story displacement control. Even if the acceleration control performance
at the SUP of the OBMD specimen may not be as good as that of MSI, it is still very satisfactory compared with
the bare specimen. As for the SUB, obviously, the OBMD specimen has a better control performance than MSI. It
is particularly evident for acceleration responses while subjected to Kobe, ie, long‐period ground motions, and for
inter‐story displacement responses while subjected to TCU047, ie, far‐field ground motions. It is because that the
OBMD specimen is designed based on a more comprehensive objective function, while MSI is designed only con-
sidering the seismic performance of the isolated SUP. Therefore, in the future study, the proposed optimum
dynamic characteristic control approach might also be applied to the mid‐story isolation design to effectively solve
its response amplification problem at the SUB.4-6 The maximum inter‐story displacement at the isolation layer of
MSI under all the earthquake inputs as listed in Table 3 is 44.7 mm. In general, the inter‐story displacement
response at the CL of the OBMD specimen is much smaller than that at the isolation layer of MSI. It is indicated
that for the proposed OBMD design, some instability concerns due to excessive displacement at the CL can be
precluded.
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5 | CONCLUSIONS

In this study, an OBMD design approach was proposed, and a series of sensitivity analyses and verification tests were
conducted. Some conclusions are made as follows.

1. The BMD design, conceptually, is similar to the TMD design but possesses a larger mass ratio and more advantages.
The objective function to determine the OBMD design parameters in this study is modified from Sadek's research16

and derived based on a simplified 3‐lumped‐mass structure model. The sensitivity analysis results show a different
trend for the optimum damping ratio varying with respect to the mass ratio from Sadek's research and many other
past studies, ie, the larger the mass ratio, the lower the damping demand required. Therefore, by means of the pro-
posed optimum dynamic characteristic control approach based on the 3‐lumped‐mass structure model to design a
building with a BMD system, a reasonable and applicable damping demand can be obtained.

2. Shaking table test results indicate that varying design parameters will cause entirely different seismic performances
of a building with a BMD system. On the whole, moderately smaller f2 and f3 as well as larger ξ2 can have a better
control performance. Undeniably, however, the seismic performance of the BMD design, like the conventional TMD
design, is strongly related to the frequency content of seismic excitation.

3. Shaking table test results show that the proposed OBMD design has a superior potential in reducing the seismic
responses of both the SUB (or primary structure) and SUP (or tuned mass) to the BMD design, which demonstrates
the effectiveness and significance of the proposed optimum dynamic characteristic control approach. Undoubtedly,
the seismic performance of the proposed OBMD design is much better than a counterpart without any structural
control technology.

4. By comparing with the numerical results of a mid‐story isolated counterpart, it is disclosed that the proposed OBMD
design can have a comparable and even better control performance. More importantly, in the future study, the pro-
posed optimum dynamic characteristic control approach might also be applied to the mid‐story isolation design to
effectively solve its response amplification problem at the SUB.

In the future research, another OBMD design approach based on the optimum dynamic response control concept will
be investigated. In addition, to further verify the practicability and efficacy of the proposed OBMD design, a practical and
realistic building structure will be numerically studied.
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