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Optimum Dynamic Characteristic Control Approach for Building Mass Damper Design 
 
ABSTRACT 
A new seismic design manner, namely building mass damper (BMD), which is inspired from a combination of 
mid-story isolation and tuned mass damper (TMD) design concepts, recently attracts immense attention. It is 
mainly because that the use of partial structural mass of the building as an energy absorber in the BMD design 
can overcome the drawback of limited response reduction due to insufficient added tuned mass in the 
conventional TMD design. In this study, an optimum building mass damper (OBMD) design approach, namely 
optimum dynamic characteristic control approach, based on a simplified three-lumped-mass structure model is 
proposed to seismically protect both the superstructure (or tuned mass) and the substructure (or primary structure) 
respectively above and below the control layer. A series of sensitivity analyses and experimental studies on 
different parameters, including mass, frequency, and damping ratios, of a building model designed with a BMD 
system were conducted. The test results verify the practical feasibility of the BMD concept as well as the 
effectiveness of the proposed OBMD design. Furthermore, by comparing with the numerical results of a 
mid-story isolated counterpart, it is demonstrated that the proposed OBMD design can have a comparable and 
even better control performance. 
 
1. INTRODUCTION 
The excellent performance of seismically isolated buildings during past earthquakes has encouraged the adoption 
of seismic isolation technology for structural and non-structural protection [1-3]. Among the increasing practical 
applications, the mid-story isolation design, in which the isolation system is usually installed on the top of the 
first story of a building, is recently gaining popularity owing to its advantages in terms of construction efficiency, 
space use, and maintenance over the conventional base isolation design [4, 5]. The seismic performance of 
mid-story isolated buildings has been thoroughly investigated [4-8]. It was indicated that the mid-story isolation 
design is effective in reducing the seismic demand of the superstructure above the isolation system if the 
coupling of higher modes is precluded. However, due to the flexibility of the substructure and the contribution of 
higher modes, the seismic response of the substructure below the isolation system may be enlarged.  
On the other hand, the use of tuned mass dampers (TMDs) as a means to control the dynamic response of the 
attached structure was first proposed by Frahm [9]. It has been recognized as an effective passive energy 
absorbing device to reduce the undesirable oscillation of the attached vibrating system (or primary system) 
subjected to harmonic excitation [10-12]. A typical TMD system is essentially consisting of a tuned absorber 
mass, a spring, and a dashpot. Based on a simplified two-lumped-mass structure model, various approaches for 
selecting the optimum design parameters of a TMD system have been developed by means of generating a phase 
lag attributed to resonance between the primary and TMD systems. For instance, to minimize the steady-state 
response of the primary system, Den Hartog [10] derived the close-form solutions for the optimum tuning 
frequency and damping ratio of a TMD system attached to an undamped system under harmonic excitation. 
Afterward, Warburton [13] studied the optimum TMD design parameters for an undamped system subjected to 
harmonic external force and white-noise random excitation. However, all systems contain some damping in 
reality. Tsai and Lin [14] studied the optimum TMD design parameters for a damped system by numerical 
iteration and curve-fitting procedures. Villaverde [15] derived and numerically demonstrated that a TMD system 
can perform effective subjected to seismic loading when the two complex modes of vibration have 
approximately the same modal damping ratios as the average of the damping ratios of the primary and TMD 
systems. However, Sadek [16] found that it is valid only for mass ratios smaller than 0.005 and the difference is 
more significant when the mass ratio becomes larger. Accordingly, Sadek’s proposed criterion [16] for seismic 
application was to select, for a given mass ratio, the tuning frequency and damping ratio that would result in 
equally large modal damping in the two complex modes of vibration.  
The TMD design concept was first adopted to mitigate the wind-induced vibration or enhance the serviceability 
of high-rise buildings [17, 18], and was subsequently adopted to enhance the seismic capability of building 
structures [19-22]. Until now, the effectiveness of the TMD design in reducing structural responses subjected to 
seismic loading is still arguable, especially when the tuned mass is much lighter than the primary structure. To 
overcome the concern of limited response reduction due to insufficient tuned mass in the conventional TMD 
design, a new design concept, namely building mass damper (BMD) or self mass damper (SMD), was proposed 
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and numerically studied [23-25]. In the BMD system, as implied in the name, a part of structural mass, instead of 
additional mass, is intended to be an energy absorber. Ziyzeifar and Noguchi [23] utilized an isolation layer 
composed of elastic bearings and viscous dampers to isolate a part of the structure in a tall building for versatile 
design goals. One of the goals was to reduce the seismic response of the substructure below the isolation layer by 
means of significant and out-of-phase movement of the isolated superstructure as a vibration absorber together 
with additional damping contributed by viscous dampers. In addition, based on the numerical results of a 
13-story building subjected to various seismic excitation, Villaverde [24] indicated that the insertion of flexible 
laminated rubber bearings and viscous dampers between the roof and the rest of the building, namely roof 
isolation system, can effectively reduce the seismic response of the building. That is, the roof isolation system 
was designed to be a vibration absorber. These studies also disclosed that the isolated superstructure or the roof 
isolation system as a vibration absorber is practically feasible for both new construction and retrofit purposes. 
The BMD concept has been applied to a few new construction and retrofitted buildings; for instance, the Swatch 
Group Japan Headquarter [26] and Mita Bellju Building in Tokyo as well as the Theme Building at the Los 
Angeles International Airport [27]. However, among these applications, the control target was still mainly 
focused on the substructure (or primary structure) performance rather than on either the superstructure (or tuned 
mass) performance or both. If the superstructure in the BMD design is intended to be used for occupancy as the 
substructure, excessive dynamic responses are not acceptable definitely. Under this circumstance, the seismic 
performance of both the substructure and superstructure should be paid attention. 
In this study, to combine the advantages of seismic isolation and TMD designs, an optimum design method for a 
BMD system is investigated. A building structure designed with a BMD system is rationally assumed to be 
represented by a simplified three-lumped-mass structure model, composed of the superstructure, control layer, 
and substructure. Referring to Sadek’s research [16], the objective function is refined as that three modal 
damping ratios obtained from the simplified structure model in the direction of interest are equally important and 
taken as an approximately equal value. Accordingly, the optimum building mass damper (OBMD) design 
parameters can be rationally determined based on the proposed optimum dynamic characteristic control approach. 
First, the influences of varied mass ratios and inherent damping ratios on the OBMD design parameters are 
quantitatively discussed. Then, a series of shaking table tests were performed to verify the feasibility of the BMD 
concept as well as the effectiveness of the proposed OBMD design on seismic protection of the building models. 
Finally, the test results of the OBMD design are compared with the numerical results of a mid-story isolated 
counterpart to further demonstrate the potential advantage of the proposed OBMD design over the mid-story 
isolation design.         

 
2. ANALYTICAL STUDY 
2.1 Simplified three-lumped-mass structure model 
In this study, the BMD system is intended to be installed upon a multi-story substructure (or primary structure). 
The system is essentially composed of a multi-story superstructure (or tuned mass) as well as spring and dashpot 
elements for connecting the superstructure to the substructure. The stiffness and damping designed for the BMD 
system, of course, are provided by the spring and dashpot elements, respectively. A simplified 
three-lumped-mass structure model, in which the three lumped mass are respectively assigned at the 
superstructure (SUP), control layer (CL), and substructure (SUB), is rationally assumed to represent a building 
structure designed with a BMD system, as shown in Figure 1, to comprehensively account for the dynamic 
characteristics of both the substructure and superstructure. To be precise, the superstructure and control layer are 
not assumed to vibrate as a rigid body in this simplified structure model. For doing so, an excessive (or 
unreasonable) damping demand for the OBMD design owing to a significant superstructure-to-substructure mass 
ratio and neglect of flexibility of the superstructure can be precluded, which will be further discussed in Section 
2.3. 
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Figure 1: Simplified three-lumped-mass structure model for BMD design 

 
The equation of motion for the simplified structure model in the horizontal direction can be written as 
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where M = the generalized seismic reactive mass matrix; 1m , 2m , and 3m  = the generalized seismic reactive 
masses for the fundamental mode of vibration computed for a unit modal participation factor of the substructure, 
control layer, and superstructure, respectively ; K and C = the horizontal generalized stiffness and damping 
coefficient matrices, respectively; 1k  ( 1c ), 2k  ( 2c ), and 3k  ( 3c ) = the horizontal stiffness (viscous damping 
coefficients) for the fundamental mode of vibration of the substructure, control layer, and superstructure, 
respectively; u = the horizontal displacement vector relative to ground; 1u , 2u , and 3u  = the horizontal 
displacements of the substructure, control layer, and superstructure relative to ground, respectively; gu  = the 
horizontal ground acceleration; and R = the earthquake influence vector. 
The equation of motion given in Equation (1) can also be expressed in terms of the nominal frequency 1ω , 
frequency (or tuning) ratio if  (i = 2, 3), mass ratio iµ  (i = 2, 3), and component damping ratio iξ  (i = 1~3), 
as defined in the following 
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where i and j = 1, 2, and 3 denote the substructure, control layer, and superstructure, respectively; and the 
nominal frequencies 1ω , 2ω , and 3ω  are defined as 1 1/k m , 2 2 3/ ( )k m m+ , and 3 3/k m , respectively.  
 
2.2 Optimum design method based on modal characteristic control concept 
By means of the state space method under coupling approximation, the system matrix A for Equation (1) can be 
obtained as follows 
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where 0 is the zero matrix; I is the identity matrix; 2 2
41 1 2 2 31 ( )a fω µ µ = − + +  ; 2 2

42 1 2 2 3( )a fω µ µ= + ; 

[ ]44 1 1 2 2 2 3 12 ( )( )a fω ξ ξ µ µ ξ= − + + + ; 45 1 2 2 2 32 ( )a fω ξ µ µ= + ; 2 2
51 1 2 2 3 2( ) /a fω µ µ µ= + ; 

2 2 2
52 1 2 2 3 3 3 2( ) /a f fω µ µ µ µ = − + +  ; 2 2

53 1 3 3 2/a fω µ µ= ; 54 1 2 2 2 3 22 ( ) /a fω ξ µ µ µ= + ; 

[ ]55 1 2 2 2 3 3 3 3 22 ( ) /a f fω ξ µ µ ξ µ µ= − + + ; 56 1 3 3 3 22 /a fω ξ µ µ= ; 2 2
62 1 3a fω= ; 2 2

63 1 3a fω= − ; 

65 1 3 32a fω ξ= ; and 66 1 3 32a fω ξ= − . 
The complex eigenvalues of Equation (5) can be calculated in a form of conjugate pairs as follows 

2
2 1 2 1 1 2  3' ' ' ' '

n , n n n n nλ ω ξ iω ξ , n , ,− = ± − =                                                (6) 

where 2 1
'

nλ −  is the thn  modal eigenvalue of the system; 2
'

nλ  is the conjugate of 2 1
'

nλ − ; '
nω  and '

nξ  are the 
thn  modal natural frequency and the thn  modal damping ratio of the system, respectively; and i is the unit 

imaginary number (i.e. 1i = − ).  
The proposed objective function to determine the OBMD design parameters in this study is modified from 
Sadek’s research [16]. That is, the modal damping ratios in the three complex modes of vibration are equally 
important and are taken as an approximately equal value, i.e. 1 2 3

' ' 'ξ ξ ξ≅ ≅ . Scientifically and reasonably, this 
control principle intends to simultaneously mitigate the dynamic responses of the substructure, control layer, and 
superstructure in the direction of interest. Meanwhile, it would also result in approximately equal modal natural 
frequencies in the three complex modes of vibration [16]. This objective function, conceptually, is similar to the 
pole placement control [28], which can be easily achieved by applying additional active control force. However, 
this study aims at a passive control approach. It is impossible to have three perfectly equal modal natural 
frequencies by only applying passive control force. Three approximately equal modal damping ratios in this 
study are determined based on the minimum sum of differences of each two complex eigenvalues (or modal 
damping ratios, or modal natural frequencies), as shown in Figure 2. By means of the proposed objective 
function with given 1ω , 2µ , 3µ , 1ξ , and 3ξ , the optimum design parameters for 2f , 3f , and 2ξ , i.e. 2

optf , 

3
optf , and 2

optξ , respectively, can be determined. 

 
Figure 2: Illustration of minimum sum of differences of each two complex eigenvalues (or modal damping ratios, 

or modal natural frequencies) 
 
2.3 Sensitivity analysis considering varied mass and damping ratios 
Assume that the mass ratios 2µ  and 3µ  vary within a reasonable range respectively from 0.1 (i.e. basically 
representing a high-rise substructure) to 0.5 (i.e. basically representing a low-rise substructure) and 0.1 (i.e. 
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basically representing a low-rise superstructure) to 2 (i.e. the story number of the superstructure is twice as many 
as that of the substructure), as illustrated in Figure 3. Besides, assume that both 1ξ  and 3ξ  are set to be 2% and 
10% to correspondingly represent a bare structure and a structure with additional damping devices. Therefore, on 
the basis of the proposed objective function, the optimum damping ratio 2

optξ  and the optimum frequency (or 
tuning) ratios 2

optf  and 3
optf  for the OBMD design varying with different 2µ , 3µ , 1ξ , and 3ξ  are 

calculated and shown in Figure 4. It can be seen from the figure that the optimum design parameters 2
optξ , 2

optf , 
and 3

optf , in general, are proportional to 2µ  and are inversely proportional to 3µ . This trend is less significant 
when 2µ  and 3µ  become larger gradually. It is implied that a decrease of 2µ  and an increase of 3µ  may 
reduce the OBMD design demands, including the damping and frequency (or tuning) ratios. In addition, the 
optimum damping ratio 2

optξ  will increase when 1ξ  is increased and will decrease when 3ξ  is increased. For 
the optimum frequency ratios, increasing 3ξ  will lead to an increased demand of 2

optf  while will reduce the 
demand of 3

optf . On the other hand, the variation of the optimum frequency ratios with different 1ξ  is very 
sensitive to the mass ratios. When 1ξ  is increased, the demand of 2

optf  will generally decrease except for the 
nearly same trend at 2µ  equal to 0.1, and the demand of 3

optf  will decrease if 2µ  is small and will increase 
slightly with larger 2µ . 

 
Figure 3: Variation ranges of 2µ  and 3µ  for sensitivity analysis 

 

 
Figure 4: 2

optξ , 2
optf , and 3

optf  varying with respect to 2µ , 3µ , 1ξ , and 3ξ  
 
In Sadek’s research [16] and many past studies relevant to the TMD design, a simplified two-lumped-mass 
structure model was usually utilized to study the optimum TMD design parameters. Under this circumstance, 
only one mass ratio, i.e. a total of 2µ  and 3µ , was required to be defined. By comparing the results shown in 
Figure 5 to those obtained from Sadek’s study, obviously, the sensitivities of 2

optf  and 2
optξ  respectively 

varying with different 2µ  and 3µ  based on the simplified three-lumped-mass structure model have very 
different tendencies from those of the optimum design results varying with different mass and damping ratios 
based on the simplified two-lumped-mass structure model. 
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Figure 5: Optimum damping ratios obtained by using simplified two-lumped-mass and three-lumped-mass 

structure models  
 
It was rarely concerned whether the damping demand is reasonable and practicable if the mass ratio of the TMD 
design becomes larger. The following is a simple quantitative comparison between the optimum damping ratios 
obtained by using the simplified two-lumped-mass and three-lumped-mass structure models based on a scientific 
background. As shown in Figure 5, the dotted line represents the trend of the optimum damping ratio varying 
with respect to the mass ratio when using the simplified two-lumped-mass structure model and Sadek’s proposed 
criterion (the inherent damping ratio is assumed to be 2%). It is found that the optimum damping ratio is 
proportional to the mass ratio, i.e. the larger the mass ratio, the higher the damping demand required. For 
instance, when the mass ratio reaches to 1, the damping demand is up to 72%, which might not be very 
reasonable and practicable. As also shown in Figure 5, the solid lines represent the variation of the optimum 
damping ratio with different combinations of 2µ  and 3µ  when using the simplified three-lumped-mass 
structure model and the proposed optimum dynamic characteristic control approach ( 1ξ = 3ξ =2%). Apparently, an 
opposite tendency that the optimum damping ratio, in general, is inversely proportional to the total of 2µ  and 

3µ  but proportional to 2µ  is observed. More importantly, a more reasonable and applicable damping demand 
can be obtained especially when 2µ  becomes smaller. For instance, when the mass ratio reaches to 1 and 

2 0.1µ = , the damping demand is about 22%.  
    

3. SEISMIC SIMULATION TESTS 
3.1 Test structure models 
The bare specimen was designed to be a 1/4 scaled eight-story steel structure model with single-bay widths of 
1.5m and 1.1m respectively in the X and Y directions, as shown in Figure 6(a). Each floor was 1.1m high and 
each slab was 20mm thick. The columns and beams were wide flange with a sectional dimension of 
100×100×6×8 (mm) and channel with a sectional dimension of 100×50×5×5 (mm), respectively. Additional live 
load of 0.5kN-sec2/m simulated by mass blocks with a regular plane arrangement was assigned at each floor.  

 

        
(a) Bare specimen (b) BMD specimen (c) OBMD specimen (d) MSI model 

Figure 6: Experimental and numerical structure models 
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Apart from the bare specimen, the BMD specimens were designed with a control layer (CL) at the fourth floor, 
as shown in Figure 6(b). In other words, the substructure (or primary structure) and superstructure (or tuned mass) 
were three- and four-story structure models, respectively. In this study, for simplicity and practical feasibility, 
elastomeric bearings (RBs) with a diameter of 180mm and linear fluid viscous dampers (FVDs) were rationally 
adopted to play the roles of spring and dashpot elements at the control layer, respectively. A series of BMD 
specimens, i.e. BMD-1 to BMD-7 as given in Table 1, were designed to further discuss the influence of varying 
design parameters on their seismic performance. BMD-2, BMD-1, and BMD-3, the first-group specimens, were 
intended to only have different 2f  values in ascending order but the other design parameters remained the same. 
To this end, RBs and linear FVDs with different properties as detailed in Table 1 were designed for these three 
specimens. BMD-4, BMD-1, and BMD-5, the second-group specimens, were intended to only have different 3f  
values in ascending order. To this end, angle-section steel braces with different sectional dimensions were 
installed at the substructure, and accordingly RBs and linear FVDs with different properties were designed for 
these three specimens, as detailed in Table 1. BMD-6, BMD-1, and BMD-7, the third-group specimens, were 
intended to only have different 2ξ  values in ascending order by changing the damping coefficients of linear 
FVDs, as detailed in Table 1.  

Table 1: Design parameters for all test and numerical structure models 

Specimen 
(Model) 2ξ  2f  3f  

Total stiffness at 
CL or mid-story 
isolation layer 
(4 sets of RBs) 

Total 
rubber 

thickness 
of each RB 

Total damping 
coefficient at CL 

or mid-story 
isolation layer  

(2 sets of FVDs) 

Sectional dimension 
of added braces at 

substructure (SUB) 

 (%)   (kN/m) (mm)  (kN-sec/m) (mm) 
BMD-1 22 0.28 0.25 3810.28 27 51.12 L70×70×6 (SUB) 
BMD-2 22 0.19 0.25 1740.52 19 34.56 L70×70×6 (SUB) 
BMD-3 22 0.35 0.25 5880.00 19 63.76 L70×70×6 (SUB) 
BMD-4 22 0.28 0.22 4905.20 20 58.00 L90×90×9 (SUB) 
BMD-5 22 0.28 0.28 3247.72 30 47.20 L60×60×5 (SUB) 
BMD-6 9 0.28 0.25 3810.28 27 20.92 L70×70×6 (SUB) 
BMD-7 35 0.28 0.25 3810.28 27 81.34 L70×70×6 (SUB) 
OBMD 25 0.30 0.28 1844.80 19 34.6 L60×60×5 (SUB) 

MSI 25 0.12 0.28 710.6 - 28.6 L60×60×5 (SUB) 
 

The modal characteristics of the eight-story bare specimen, three-story substructure, and four-story 
superstructure were experimentally identified under white noise excitation, as summarized in Table 2. After 
obtaining the realistic characteristics, the optimum design parameters 2

optf , 3
optf , and 2

optξ  for the OBMD 
specimen as shown in Figure 6(c) can be designed according to the proposed objective function with known 1ω , 

2µ , 3µ , 1ξ , and 3ξ , as detailed in Table 1. 
Table 2: Identified modal characteristics of test specimens 

Bare specimen 
Modal characteristics 1st mode 2nd mode 3rd mode 

Natural period  0.61sec 0.18sec 0.09sec 
Participation mass ratio 76% 12% 5% 

Three-story substructure 
Modal characteristics 1st mode 2nd mode 3rd mode 

Natural period  0.21sec 0.06sec 0.03sec 
Participation mass ratio 84% 9% 3% 

Four-story superstructure 
Modal characteristics 1st mode 2nd mode 3rd mode 

Natural period  0.27sec 0.08sec 0.04sec 
Participation mass ratio 81% 11% 4% 
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3.2 Earthquake Inputs 
Four recorded ground motions with various peak ground acceleration (PGA) levels were selected for the 
earthquake inputs of the uniaxial shaking table tests (i.e. along the X direction of the specimens), as summarized 
in Table 3. They were recorded at I-ELC270, KJM000, TCU047, and THU stations respectively during the 1940 
El Centro earthquake, the 1995 Kobe earthquake, the 1999 Taiwan Chi-Chi earthquake, and the 2011 Tohoku 
earthquake (respectively denoted as El Centro, Kobe, TCU047, and THU thereafter). Among the four ground 
motion records, El Centro and TCU047 are typical far-field ground motions, while Kobe and THU have more 
long period contents. Besides, THU is a long-duration ground motion. Since the specimens were assumed as a 
1/4 scaled structure model, a time scale of 1/ 4  was considered for the earthquake inputs to meet the 
similitude law. Note that the maximum test PGA level was determined on the premise of the specimens 
remaining essentially elastic. The 5% damped acceleration and displacement response spectra of all the 
time-scaled ground motions normalized to a PGA value of 1g are illustrated in Figure 7. To measure the 
concerning dynamic responses, accelerometers and displacement transducers were installed on each slab of the 
specimens. In addition, load cells were installed underneath the base of the specimens as well as between the 
superstructure and substructure of the BMD and OBMD specimens.  

Table 3: Earthquake input program 
Test 
name 

Ground 
motion 

Original  
PGA  

Test PGA Bare 
specimen BMD OBMD 

Original PGA 

El Centro 
El Centro/I-ELC270 

Imperial Valley, USA 
1940/05/19 

0.35g 
80% 

160% 
240% 

V 
 

V 
V 
V 

V 
V 
V 

Kobe 
KJMA/KJM000 

Kobe, Japan 
1995/01/16 

0.83g 
40% 
60% 
80% 

V V 
V 
V 

V 
V 
V 

TCU047 
Chi-Chi/TCU047 
Chi-Chi, Taiwan 

1999/09/21 
0.40g 

80% 
160% 
240% 

V V 
V 
V 

V 
V 
V 

THU 
Tohoku/THU 
Tohoku, Japan 

2011/03/11 
0.33g 

50% 
100% 
150% 

V V 
V 
V 

V 
V 
V 

 

 

 
Figure 7: 5% damped acceleration and displacement response spectra of time-scaled ground motions with PGA 

of 1g 
 

3.3 Test results  
3.3.1 Influence of varying design parameters on seismic performance 
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To make a visual and comprehensive comparison, vertical distributions of maximum X-directional acceleration 
and inter-story displacement responses of all the BMD specimens under the four ground motion records with a 
PGA level are presented in Figures 8 and 9, respectively. The maximum-acceleration ratios ( 1AR ) and 
maximum-inter-story-displacement ratios ( 1IDR ) of BMD-2 to BMD-1 and BMD-3 to BMD-1, as calculated 
respectively in Equations (7) and (8), at different floors excluding the control layer (or 4F) under all the 
earthquake inputs as listed in Table 3 are shown in Figure 10. Similarly, the maximum-acceleration ratios ( 1AR ) 
and maximum-inter-story-displacement ratios ( 1IDR ) of BMD-4 to BMD-1 and BMD-5 to BMD-1 as well as 
BMD-6 to BMD-1 and BMD-7 to BMD-1, as calculated respectively in Equations (7) and (8), are shown in 
Figures 11 and 12. To statistically and overall discuss the influence of varying 2f , 3f , and 2ξ  on the seismic 
performance of the BMD specimens, the information of mean ( µ ) and standard deviation (σ ) is also provided 
in Figures 10 to 12. For better comparison and realization, the average maximum-acceleration ratios and average 
maximum-inter-story-displacement ratios of BMD-2 to BMD-1, BMD-3 to BMD-1, BMD-4 to BMD-1, BMD-5 
to BMD-1, BMD-6 to BMD-1, and BMD-7 to BMD-1 at the three-story substructure and four-story 
superstructure under all the earthquake inputs and different ground motion records as listed in Table 3 are shown 
in Figure 13.  

1 , 1,   BMD i j BMD jAR Max Acc Max Acc− −=                                                 (7) 

jBMDjiBMD IDMaxIDMaxIDR  ,1 ,1   −−=                                                  (8) 
where the subscript 7~2=i  correspondingly represent BMD-2, BMD-3, BMD-4, BMD-5, BMD-6, and 
BMD-7; the subscript j represents the thj  floor ( 8~1 =j ); jiBMDAccMax  , −

 and jiBMDIDMax  , −
 represent 

the maximum X-directional acceleration and inter-story displacement responses at the thj  floor of BMD-i 
( 7~2=i ), respectively; jBMDAccMax  ,1 −

 and jBMDIDMax  ,1 −
 represent the maximum X-directional 

acceleration and inter-story displacement responses at the thj  floor of BMD-1, respectively.  

 
Figure 8: Vertical distributions of maximum X-directional acceleration responses of BMD-1, BMD-2, BMD-3, 

BMD-4, BMD-5, BMD-6, and BMD-7 
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 Figure 9: Vertical distributions of maximum X-directional inter-story displacement responses of BMD-1, 

BMD-2, BMD-3, BMD-4, BMD-5, BMD-6, and BMD-7 

 
Figure 10: Maximum-acceleration and maximum-inter-story-displacement ratios of BMD-2 and BMD-3 to 

BMD-1 at different stories 
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Figure 11: Maximum-acceleration and maximum-inter-story-displacement ratios of BMD-4 and BMD-5 to 

BMD-1 at different stories 
 

 
Figure 12: Maximum-acceleration and maximum-inter-story-displacement ratios of BMD-6 and BMD-7 to 

BMD-1 at different stories 
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Figure 13: Average maximum-acceleration and maximum-inter-story-displacement ratios of all BMD specimens 

at substructure and superstructure 
 
As observed from Figures 8, 10, and 13, in general, decreasing 2f  may cause enlarged acceleration responses at 
the substructure, which is particularly evident when subjected to Kobe and THU, i.e. long-period and 
long-duration ground motions. Besides, increasing 2f  may result in enlarged ones at both the substructure and 
superstructure. It is particularly evident when subjected to El Centro and TCU047, i.e. far-field ground motions. 
As observed from Figures 8, 11, and 13, in general, increasing 3f  may enlarge the acceleration responses of the 
substructure. It is particularly true while subjected to TCU047 and THU, i.e. far-field and long-duration ground 
motions. As observed from Figures 8, 12, and 13, it is of no surprise that the acceleration responses at both the 
substructure and superstructure of BMD-6 are larger than those of BMD-1 because of its smaller 2ξ . However, 
when 2ξ  becomes very large, e.g. 2ξ =35% in BMD-7, it may not be very helpful and even slightly harmful to 
the acceleration control performance compared to BMD-1 ( 2ξ =22%).  
As observed from Figures 9, 10, and 13, in general, decreasing 2f  may cause enlarged inter-story-displacement 
responses at the superstructure, which is particularly evident while subjected to Kobe, i.e. long-period ground 
motions. Besides, increasing 2f  may result in enlarged ones at the substructure. As observed from Figures 9, 11, 
and 13, neither decreasing nor increasing 3f  causes significantly enlarged inter-story-displacement responses at 
the substructure and superstructure. As observed from Figures 9, 12, and 13, the influence of varying 2ξ  on the 
inter-story-displacement control at the substructure may be more significant than that at the superstructure. 
Among BMD-1 to BMD-7 under all the earthquake inputs as listed in Table 3, the maximum inter-story 
displacement response at the control layer is 20.5mm, which is corresponding to a shear strain of 75.93% for 
RBs. 

 
3.3.2 Comparison of seismic responses between bare, BMD, and OBMD specimens 
To make a visual and comprehensive comparison, vertical distributions of maximum X-directional acceleration 
and inter-story displacement responses of the bare and OBMD specimens under the four ground motion records 
with the minimum PGA level are presented in Figures 14 and 15, respectively. To statistically and overall 
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demonstrate that the OBMD specimen designed based on the proposed objective function can have a superior 
seismic performance to the bare and BMD specimens, the average maximum-acceleration ratios ( 2AR ) and 
average maximum-inter-story-displacement ratios ( 2IDR ) of the bare and BMD specimens to the OBMD 
specimen, as calculated respectively in Equations (9) and (10), at the three-story substructure and four-story 
superstructure under all the earthquake inputs and different ground motion records as listed in Table 3 are shown 
in Figure 16.  

2 , , ,  (or  )  BMD i j Bare j OBMD jAR Max Acc Max Acc Max Acc−=                                  (9) 

jOBMDjBarejiBMD IDMaxIDMaxIDMaxIDR  , , ,2  ) or (  −=                                   (10) 
where the subscript 7~1=i  correspondingly represent BMD-1, BMD-2, BMD-3, BMD-4, BMD-5, BMD-6, 
and BMD-7; jiBMDAccMax  , − , jBareAccMax  , , and jOBMDAccMax  ,  represent the maximum X-directional 

acceleration responses at the thj  floor of BMD-i ( 7~1=i ), the bare specimen, and the OBMD specimen, 
respectively; jiBMDIDMax  , −

, jBareIDMax  , , and jOBMDIDMax  ,  represent the maximum X-directional inter-story 

displacement responses at the thj  floor of BMD-i ( 7~1=i ), the bare specimen, and the OBMD specimen, 
respectively. Note that when the ratio is larger than unity and becomes higher, a better control performance of the 
OBMD specimen can be achieved. 
 

 
Figure 14: Vertical distributions of maximum X-directional acceleration responses of bare and OBMD specimens 

as well as MSI  
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Figure 15: Vertical distributions of maximum X-directional inter-story displacement responses of bare and 

OBMD specimens as well as MSI  
 

 
Figure 16: Average maximum-acceleration and maximum-inter-story-displacement ratios of bare and BMD 
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specimens as well as MSI to OBMD specimen at substructure and superstructure 
 
As observed from Figures 14 to 16, undoubtedly, the seismic performance of the OBMD specimen is much 
better than that of the bare specimen. In addition, the OBMD specimen in general has a superior potential in 
reducing seismic responses to the BMD specimens. It is particularly true for the acceleration control 
performance at the superstructure as well as the inter-story displacement control performance at both the 
substructure and superstructure. It is experimentally demonstrated that the proposed optimum dynamic 
characteristic control approach for the OBMD design is effective and necessary. Under all the earthquake inputs 
as listed in Table 3, the maximum inter-story displacement response at the control layer of the OBMD specimen 
is only 12.2mm, which is corresponding to a shear strain of 64.2% for RBs. 

 
4. COMPARISON WITH MID-STORY ISOLATION DESIGN 
The seismic performance of the proposed OBMD design is further compared with that of a typical mid-story 
isolation design in which the seismic isolation system is incorporated into the mid-story rather than the base of 
the building. As shown in Figure 6(d), the same steel structure as the OBMD specimen but designed with a 
mid-story isolation system composed of different RBs and linear FVDs is numerically built and analyzed. The 
numerical model designed with a mid-story isolation system is denoted as MSI thereafter. To have a convincing 
comparison, for MSI, the isolation layer is inserted into the same level as the control layer in the OBMD 
specimen. The force-displacement relationship of a combination of RBs and linear FVDs can be ideally 
represented by a viscoelastic model. Therefore, considering the same time scale as the test study, i.e. 1/ 4 , the 
isolation period of the superstructure as a single degree-of-freedom system is designed to be 1 second. For 
reasonable comparison, the damping ratio provided by linear FVDs of the mid-story isolation system is designed 
to be identical to the optimum damping ratio of the OBMD specimen, i.e. 2

optξ =25%. The design parameters of 
the RBs and linear FVDs of the mid-story isolation system are detailed in Table 1.  
To make a visual and comprehensive comparison, vertical distributions of maximum X-directional acceleration 
and inter-story displacement responses of MSI under the four ground motion records with the minimum PGA 
level are also presented in Figures 14 and 15, respectively. To statistically and overall compare the seismic 
performance between the OBMD specimen and MSI, the average maximum-acceleration ratios ( 3AR ) and 
average maximum-inter-story-displacement ratios ( 3IDR ) of MSI to the OBMD specimen, as calculated 
respectively in Equations (11) and (12), at the three-story substructure and four-story superstructure under all the 
earthquake inputs and different ground motion records as listed in Table 3 are also shown in Figure 16  

jOBMDjMSI AccMaxAccMaxAR  , ,3   =                                                 (11) 

jOBMDjMSI IDMaxIDMaxIDR  , ,3   =                                                  (12) 
where ,  MSI jMax Acc  and jMSIIDMax  ,  represent the maximum X-directional acceleration and inter-story 

displacement responses at the thj  floor of MSI, respectively; ,  OBMD jMax Acc  and jOBMDIDMax  ,  represent 

the maximum X-directional acceleration and inter-story displacement responses at the thj  floor of the OBMD 
specimen, respectively. Note that when the ratio is larger than unity and becomes higher, a better control 
performance of the OBMD specimen can be achieved. 
As observed from Figures 14 to 16, both the OBMD specimen and MSI can have an excellent seismic 
performance. As for the superstructure, basically, the OBMD specimen has a comparable control performance to 
MSI, especially for the inter-story displacement control performance. An insight into the comparison is that the 
OBMD specimen has a more uniform vertical distribution of maximum acceleration responses at both the 
superstructure and substructure than MSI, while MSI is more uniform for the inter-story displacement control. 
Even if the acceleration control performance at the superstructure of the OBMD specimen may not be as good as 
that of MSI, it is still very satisfactory compared to the bare specimen. As for the substructure, obviously, the 
OBMD specimen has a better control performance than MSI. It is particular evident for acceleration responses 
while subjected to Kobe, i.e. long-period ground motions, and for inter-story displacement responses while 
subjected to TCU047, i.e. far-field ground motions. It is because that the OBMD specimen is designed based on 
a more comprehensive objective function, while MSI is designed only considering the seismic performance of 
the isolated superstructure. Therefore, in the future study, the proposed optimum dynamic characteristic control 
approach might also be applied to the mid-story isolation design to effectively solve its response amplification 
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problem at the substructure [4-6]. The maximum inter-story displacement at the isolation layer of MSI under all 
the earthquake inputs as listed in Table 3 is 44.7 mm. In general, the inter-story displacement response at the 
control layer of the OBMD specimen is much smaller than that at the isolation layer of MSI. It is indicated that 
for the proposed OBMD design, some instability concerns due to excessive displacement at the control layer can 
be precluded.   
 
5. CONCLUSIONS 
In this study, an OBMD design approach was proposed, and a series of sensitivity analyses and verification tests 
were conducted. Some conclusions are made as follows. 
1. The BMD design, conceptually, is similar to the TMD design but possess a larger mass ratio and more 

advantages. The objective function to determine the OBMD design parameters in this study is modified 
from Sadek’s research [16] and derived based on a simplified three-lumped-mass structure model. The 
sensitivity analysis results show a different trend for the optimum damping ratio varying with respect to 
the mass ratio from Sadek’s research and many other past studies, i.e. the larger the mass ratio, the lower 
the damping demand required. Therefore, by means of the proposed optimum dynamic characteristic 
control approach based on the three-lumped-mass structure model to design a building with a BMD system, 
a reasonable and applicable damping demand can be obtained.  

2. Shaking table test results indicate that varying design parameters will cause entirely different seismic 
performances of a building with a BMD system. On the whole, moderately smaller 2f  and 3f  as well as 
larger 2ξ  can have a better control performance. Undeniably, however, the seismic performance of the 
BMD design, like the conventional TMD design, is strongly related to the frequency content of seismic 
excitation. 

3. Shaking table test results show that the proposed OBMD design has a superior potential in reducing the 
seismic responses of both the substructure (or primary structure) and superstructure (or tuned mass) to the 
BMD design, which demonstrates the effectiveness and significance of the proposed optimum dynamic 
characteristic control approach. Undoubtedly, the seismic performance of the proposed OBMD design is 
much better than a counterpart without any structural control technology.  

4. By comparing with the numerical results of a mid-story isolated counterpart, it is disclosed that the 
proposed OBMD design can have a comparable and even better control performance. More importantly, in 
the future study, the proposed optimum dynamic characteristic control approach might also be applied to 
the mid-story isolation design to effectively solve its response amplification problem at the substructure. 

In the future research, another OBMD design approach based on the optimum dynamic response control concept 
will be investigated. In addition, to further verify the practicability and efficacy of the proposed OBMD design, a 
practical and realistic building structure will be numerically studied.  
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