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Key points: 

• Multiscale current structure formed during dipolarization growth  

• Intense current structures are transiently (≤ 2s) observed at the leading and trailing 

edges of BZ pulses during dipolarization growth  

• Spatial scales of the intense current structures are ~100-200 km ~2.5-5.0 λe 

Abstract 

We use data from the 2013-2014 Cluster Inner Magnetosphere Campaign, with its 

uniquely small spacecraft separations (≤ electron inertia length, λe), to study multiscale 

magnetic structures in 14 substorm-related prolonged dipolarizations in the near-Earth 

magnetotail. Three time scales of dipolarization are identified: i) a prolonged growth of 

the BZ component with duration ≤ 20 min; ii) BZ pulses with durations ≤ 1 min during the 

BZ growth; iii) strong magnetic field gradients with durations ≤ 2s during the 

dipolarization growth. The values of these gradients observed at electron scales are 

several dozen times larger than the corresponding values of magnetic gradients 

simultaneously detected at ion scales. These nonlinear features in magnetic field 

gradients denote the formation of intense and localized (~a few λe) current structures 

during the dipolarization and substorm current wedge formation. These observations 

highlight the importance of electron-scale processes in the formation of a 3D substorm 

current system.  
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1 Introduction 

The dipolarization of the Earth’s magnetotail magnetic field, observed as an 

increase in the positive BZ component, is an essential element of substorm onset [e.g. 

Baumjohann et al., 1999; Sergeev et al., 2012 and references therein]. The source(s) of 

these perturbations is still debated. According to one widely discussed scenario, the 

development of plasma instabilities triggers current disruption in the near-Earth Plasma 

Sheet (PS) [Lui et al., 1991; Roux et al., 1991; Lui, 2004]. Another scenario considers 

magnetic reconnection-induced Bursty Bulk Flows (BBFs), which transport magnetic 

flux and energy to the inner magnetosphere and destabilize the near-Earth PS [e.g. 

Hayakawa et al., 1982; Baumjohann et al., 1990; Angelopoulos et al., 1992; 1994; Baker 

et al., 1996]. BBFs are accompanied by BZ enhancements – i.e., dipolarization fronts 

(DFs) which are spatial structures traveling with the flow. DFs are often associated with 

impulsive electric fields, wave bursts and enhancements of energetic particle fluxes [e.g. 

Ohtani et al., 2004; Runov et al., 2009; 2011; Zhou et al., 2009; Deng et al., 2010; 

Khotyaintsev et al., 2011; Ergun et al., 2014].  

DFs have been studied extensively in the last decades. It was shown that they 

represent kinetic structures with vertical thin (~thermal ion gyroradius) Current Sheets 

(CSs) embedded within the BBF [e.g. Runov et al., 2009; Sergeev et al., 2009, 

Khotyaintsev et al., 2011; Fu et al., 2012]. Later studies showed that at smaller sub-ion 
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gyroscales, DFs are made of complex and structured CSs that may contain small-scale 

dissipative layers [e.g. Angelopoulos et al., 2013; Balikhin et al., 2014].    

In the transition region (the so-called flow braking region), where the stretched 

magnetotail-like magnetic configuration transforms to a more dipole-like shape (at X~ -

10RE), BBFs are decelerated and oscillate [e.g. Shiokawa et al., 1997; Baumjohann et al., 

2002; Panov et al., 2010; 2015]. This results in the formation of a magnetic flux pile-up 

region, perturbations of the near-Earth Plasma Sheet (PS) and a cross-tail current through 

the development of various plasma instabilities [e.g. Roux et al., 1991; Lui, 2004; 

Grigorenko et al., 2014 and references therein]. The perturbations of the CS are 

manifested in the development of long-lasting dipolarizations (tens of minutes), which 

can be preceded and/or comprised of multiple positive pulses in the BZ field.  

The origin of these pulses has been debated to be either the passage of spatial 

magnetic structures - DFs/dipolarizing flux bundles (DFBs) [e.g. Runov et al., 2011; 

Nakamura et al., 2013; Liu et al., 2013; 2014; Gabrielse et al., 2014; 2017], which then 

pile-up in the near-Earth PS and cause a prolonged dipolarization - or signatures of a 

near-Earth instability that leads to a global dipolarization [e.g. Lui, 2004].  

The reduction and/or diversion of the cross-tail electric current at macro-scale is 

manifested in a gradual growth of the BZ field [e.g. Lui, 2011]. The arrival and 

subsequent pile-up of multiple DFs with their own current systems [e.g. Liu et al., 2015] 

result in the formation of a multiscale 3D current pattern that contributes to the formation 
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of a substorm current system. Knowledge of the electric current structure in this region 

and its evolution during the dipolarization is crucial for the understanding of the 

processes responsible for the formation of the substorm current wedge (SCW).     

In the present paper, we use data from the Cluster Inner Magnetosphere 

Campaign, with its uniquely small spacecraft separations (down to a few km), to study 

the magnetic structure of prolonged dipolarizations in the near-Earth PS (at -15RE ≤ X ≤ -

7RE) associated with the arrival and braking of multiple BBFs and DFs. The very small 

separation between Cluster-3 and Cluster-4 permits, for the first time, the observation of 

strong magnetic gradients at electron scales, suggesting that intense and localized current 

structures form during prolonged dipolarization growths. These observations denote the 

importance of the processes occurring at electron scales in the formation of a 3D 

substorm current system.  

  

2 Observations  

In this study we used the Cluster magnetic field data collected by the fluxgate 

magnetometer (FGM) [Balogh et al., 2001] in both spin (4s) and high time resolution 

mode (22.4Hz); electric field data (spin resolution mode) collected by the Electric Field 

and Wave (EFW) instrument [Gustafsson et al., 2001]; ion moments from the 

Composition and Distribution Function Analyser (CODIF) [Rème et al., 2001] and 

electron moments collected by the Plasma Electron and Current Experiment (PEACE) 
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[Johnstone et al., 1997]. The GSM coordinate system is used for orbit, magnetic field and 

ion data. 

 

2.1. Overview of dipolarization in the near-Earth PS 

In this section we present an overview of the PS dynamics during a dipolarization 

event observed by the Cluster spacecraft in the postmidnight sector at X~ - 9RE on 20 

July 2013. This event is representative of 14 similar dipolarization events analyzed in 

section 3. Figure 1 shows an overview of this event. The location of Cluster is shown in 

the (XY) and (YZ) planes in the right part of the Figure. During the interval of interest, 

Cluster-3 (C3) and Cluster-4 (C4) had very close locations: ΔXC3-C4~6.5 km; ΔYC3-C4~65 

km; ΔZC3-C4~6.5 km. The position of C4 relative to C3 is shown in two bottom panels in 

the right part of Figure 1. 

The growth of the dipolarization was observed between 01:37 and 01:50 UT 

along with a decrease in the AL index (see Figure 1a,c). After reaching a dipolarized 

state, the BZ value remained large. During the entire interval, Cluster-1 (C1), C3 and C4 

were located in the northern PS in the region with |BX| ≤ 10nT (see Figure 1d). C2 was 

initially located in the outer part of the southern PS (at BX ~ -20nT) and it was gradually 

approaching the equatorial plane as the dipolarization progressed.  

The onset of dipolarization is manifested in a sharp increase of the positive BZ 

field (DF) observed at ~ 01:37:20 UT by C1 (marked by a vertical black dashed line), 
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then by the pair C3-C4 at ~ 01:37:35 UT (marked by a vertical magenta dashed line). At 

the location of C2, the gradual growth of the BZ field started after 01:37:40 UT (marked 

by a red vertical line) without a pronounced DF. This is possibly because C2 was located 

in the outer PS at the beginning of the event. 

This event displays typical features reported in many earlier studies [e.g. 

Apatenkov et al., 2007; Ge et al., 2011; Baumjohann et al., 1999; Birn et al., 2011; 

Kronberg et al., 2017]. The onset of dipolarization coincides with the beginning of the 

decrease of AL, indicating the formation of the SCW (see Figure 1a). At the location of 

Cluster, the onset-related DF was observed along with a tailward flow (see Figure 1e). At 

this time, the THEMIS P3 probe was also located in the northern PS at X ~ -8.5RE but 

~3RE duskward of Cluster (not shown). The P3 probe observed the onset-related DF 

along with the arrival of earthward moving BBF ~1min earlier than at C1. This indicates 

that Cluster was located near the dawn side of the BBF channel and close to the flow 

braking region, thus detecting a reflected/diverted or vortical flow feature [e.g. Keika et 

al., 2009; Keilling et al., 2009; Panov et al., 2010; Birn et al., 2011]. 

The dawnward diversion of the onset-related DF is evident from the time 

sequence of its observations by the THEMIS P3 probe and different Cluster satellites. It 

is also confirmed by the normal directions (N) deduced from the minimum variance 

analysis (MVA) [Sönnerup and Scheible, 1998] applied to this DF observed by P3, C1, 

C3 and C4: NP3=[0.9,-0.2,-0.35], NC1=[-0.6,-0.6,0.5], NC3,C4=[-0.2,-0.8,0.5]. The 
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azimuthal deflection of the DF also confirms that Cluster was located near the flow 

braking region [e.g. Ge et al., 2011].  

After the dipolarization onset, two enhancements of positive VX were observed 

between 01:38 UT and 01:42 UT, indicating the arrival of BBFs at Cluster’s location (see 

Figure 1e). Later, after 01:42 UT, the VX experienced negative and positive variations 

indicating oscillations of the flux tubes [e.g. Panov et al., 2015 and references therein].   

During the gradual growth of the BZ field at 01:37-01:50 UT, short positive pulses 

of BZ with durations ~tens of seconds were detected by Cluster (see Figure 1c). The 

strongest BZ pulse with an amplitude of ΔBZ  ~10nT was detected by all Cluster satellites 

except C2 around 01:40 UT. The pulse propagated dawnward with VY ~ -400km/s as 

estimated by a timing analysis of the high-resolution magnetic field observations. Just 

after the pulse, there is a strong increase of positive VX up to ~600km/s, indicating the 

arrival of the fast earthward flow at Cluster’s location (see Figure 1e). Simultaneously 

with the flow burst at 01:39:45 UT, a pulse of the dawn-to-dusk electric field (EY) with an 

amplitude of ~35 mV/m and a drop in the electron density were detected (see Figure 

1f,g). This interval is shaded in pink in Figure 1.  

Figure 1h displays the time profiles of ΔBX/ΔY[C3-C4] calculated between the 

closely spaced C3 and C4 by using high-resolution magnetic field data. As will be shown 

below, the normals (N) to the magnetic structures, which are associated with strong 

gradients, are directed mostly along the Y axis while the direction of maximum magnetic 
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field variation (L) is almost along the X axis (that is, ΔBX/ΔY[C3-C4] ~ΔBL/ΔN[C3-C4]). The 

gray profile shows ΔBX/ΔY[C3-C4] including the background level, while the black profile 

shows only ΔBX/ΔY[C3-C4] values which exceed the background amplitude. |ΔBX/ΔY[C3-C4]| 

values below the background cutoff value are set to zero. The background cutoff value 

was estimated by averaging |ΔBX/ΔY[C3-C4]| for two minutes before the dipolarization 

onset (at 01:35–01:37 UT).  

The ΔBX/ΔY[C3-C4] values which contribute to the electric current density JZ 

experience the strongest bipolar variations during the pink shaded interval (see Figure 1). 

For comparison, in Figure 1i we present ΔBX/ΔY[C1-C4] calculated between C1 and C4. 

The amplitude of ΔBX/ΔY[C1-C4] variations is up to 100 times smaller than the amplitude 

of ΔBX/ΔY[C3-C4] variations. This indicates the transient generation of a strong magnetic 

field gradient between C3 and C4 (i.e. at the spatial scale ~ 65km). Below we present a 

detailed analysis of the associated current structures as observed by C3 and C4.  

 

2.2. Analysis of current structures associated with strong magnetic gradients 

In the left part of Figure 2, we show a zoom of the pink shaded interval shown in 

Figure 1 (01:39-01:40:20 UT). In this interval, a pulse in BZ is observed along with an 

increase in the ion VX, a decrease in the electron density and a positive pulse in the EY 

field. The strongest ΔBX/ΔYC3-C4 variations (with amplitudes >20 nT/1000km, see gray 

shaded intervals in Figure 2) are detected at the leading and trailing edges of the BZ pulse.   
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The first strong bipolar variation in ΔBX/ΔYC3-C4 was observed in the 2s interval 

01:39:37-01:39:39 UT (interval “I”), at the leading edge of the BZ pulse and the high-

speed plasma flow, just before a positive pulse in the dawn-dusk electric field EY (see 

Figure 2a,d,e). Unfortunately, for electric field and plasma moments we only have 4s 

time resolution data. Thus, we cannot perform an exact timing analysis of the relationship 

between the bursty appearance of strong magnetic gradients and the dynamics of electric 

field and plasma characteristics.  

The amplitude of the positive ΔBX/ΔYC3-C4 pulse reached 57 nT/1000 km. During 

this 2s interval, the strongest difference between the magnetic field components measured 

by C3 and C4 was observed for the BX field. The difference between the other 

components was significantly smaller: ΔBY[C3-C4]<<ΔBX[C3-C4] and ΔBZ[C3-C4]~0 nT. Since 

the electric current density JZ is proportional to ΔBX/ΔY: JZ ~μ0
-1·ΔBX/ΔY, we surmise that 

the transient enhancement in ΔBX/ΔY denotes the crossing of a current structure (possibly 

a current filament) with an intense JZ. The negative part of the bipolar ΔBX/ΔYC3-C4 

variation has much smaller amplitude.  

The second enhancement in the |ΔBX/ΔYC3-C4| (interval “II”) was observed at 

01:39:50–01:39:55 UT. During this interval, only positive variations of ΔBX/ΔYC3-C4 with 

amplitudes of up to ~53 nT/1000 km were observed. By the end of this interval, the value 

of the positive ΔBX/ΔYC3-C4 decreased to zero.  
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The third strong bipolar variation of ΔBX/ΔYC3-C4 (interval “III”) was observed 

immediately after the second one at 01:39:55–01:39:59 UT. Both “II” and “III” 

enhancements in ΔBX/ΔYC3-C4 took place at the trailing edge of the high-speed plasma 

flow and the BZ pulse and after the pulse in EY.  

To estimate, at least partially, the spatial scales of the electric current structures 

associated with the ΔBX/ΔYC3-C4 bursts we applied the MVA analysis to high resolution 

magnetic field data observed during the intervals “I”–“III”. In all three intervals, C3 and 

C4 observed similar variations in BX, suggesting that a spatial structure crossed the 

positions of C3 and C4.   

For interval I (01:39:37.300–01:38:00.100 UT), the directions of N at the position 

of C3 and C4 are very similar: NC3=[-0.4,0.86,0.3]; NC4=[-0.5,0.8,0.3]. The eigenvalue 

ratios are λ2/λ1~12 and λ3/λ2~9. We estimated the propagation velocity (Vprop) of the 

current structure along N using time delays in the BX variations observed by C3 and C4. 

The estimate is Vprop~ 400 km/s and the direction is mainly dawnward.    

For interval II (01:39:49.600–01:39:53.900 UT), we obtained NC3=[-0.5,0.84,0.2], 

NC4=[-0.5,0.86,0.2], and λ2/λ1~9, λ3/λ2~6. In this interval, Vprop decreased to 300 km/s and 

changed its direction to duskward.  

For interval III (01:39:55.400–01:39:59.400 UT), we defined NC3=[-0.4,0.8,0.5], 

NC4=[-0.4,0.75,0.5] and λ2/λ1~8.5, λ3/λ2~7. For this interval, Vprop~180 km/s and the 

direction is dawnward.  
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Thus, for all three intervals of strong magnetic gradients, the N has similar 

directions at C3 and C4 and it is mainly directed along Y. The changes in the direction of 

Vprop are more or less consistent with the changes in the sign of the proton velocity VY as 

observed by the CODIF instrument onboard C4 (see Figure 2d). Some delay between the 

VY and Vprop reversals may be due to the difference in time resolutions between magnetic 

field and ion data. These changes in magnitude and direction of Vprop indicate the 

oscillation and braking of the magnetic flux tubes.   

 In the right part of Figure 2, we present spatial profiles of the electric current 

JZ
*~μ0

-1·ΔBX/ΔYC3-C4 versus the coordinate l, which was calculated for each time ti within 

intervals I-III as l=Vprop·ti, and then shifted so that the zero l-value corresponds to the 

maximum of JZ
* observed in the given time interval.  

During interval “I”, the bipolar variation of ΔBX/ΔYC3-C4 provides the 

corresponding bipolar structure in the JZ
* current. The half-thickness of the positive 

current JZ1
* is LJ1~100 km or ~3λe (here λe~37 km is the electron inertia length at the time 

of the positive ΔBX/ΔYC3-C4 burst). The half-thickness of the negative current structure is 

LJ2~150km ~3λe (λe~47 km).  The absolute values of the JZ
* current density are 46 nA/m2 

and 25 nA/m2, respectively. The total 3D current density may be even larger. 

For interval “II”, we obtain a more complicated shape of the JZ
* profile, consisting 

of four bursts (or filaments) of JZ*. The spatial scales L of these filaments are LJ1~200km 
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(~4.5λe); LJ2~150km (~3λe); LJ3~170km (~3.5λe) and LJ4~100km (~2λe). The current 

density JZ
* ranges from ~24 nA/m2 to ~43 nA/m2. 

During interval “III”, the bipolar current structure is observed again. The spatial 

scale of the negative JZ
* current is LJ1 ~200km ~5λe (λe~40 km). Therein, a thinner current 

with L~100km ~2.5λe is embedded.  The peak current density in this structure is ~65 

nA/m2. The spatial scale of the positive JZ
* current is LJ2~120 km ~ 3λe and the density is 

JZ
*~30 nA/m2. It is worth noting that the sign change in Vprop is observed just at the 

beginning of interval III. The reversal motion of the flux tube along with the change in 

JZ* may be interpreted as a temporal variation in the electric current. However, since we 

cannot estimate the total 3D current density and its direction, we cannot determine if this 

variation is really caused by a fast (≤1s) reconfiguration of the electric current structures 

at the trailing edge of the BZ pulse.   

  
 
3. Statistical study of strong magnetic field gradients during dipolarizations 

During the entire magnetotail season of the 2013-2014 Cluster Inner 

Magnetosphere Campaign, we found 13 additional dipolarization events similar to the 

one discussed in section 2. During all these events, Cluster was located in the PS at -15RE 

≤ X ≤ -7RE and had similar satellite configurations: the separation of C3 and C4 was of 

the order of the electron inertial length or less (|ΔXC3-C4|median~30 km; |ΔYC3-C4|median~40 

km; |ΔZC3-C4|median~7 km), while the separation between C1 and C4 was ~1-2 ion inertia 

lengths. 
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The dates of the events are listed in the in the Supplementary materials, along 

with the maximum values of the AL index (|AL|max) and the maximum values of the BZ 

component (BZmax) measured during each dipolarization event. 

 All dipolarizations in our data base, except for the one on 10/09/2013, were 

associated with geomagnetic perturbations and a significant decrease in the AL index. 

The magnetic structure of the dipolarizations exhibited features similar to those discussed 

in the previous section. The duration of the prolonged BZ growth for the events ranges 

from a few minutes to ~20 min. Multiple short duration (≤1min) BZ pulses were observed 

during the BZ growth for all events in our list.  

To determine the statistical properties of these magnetic field gradients, we first 

applied the analysis described in section 2 to each event and identified the short intervals 

during which ΔBX/ΔY[C3-C4] exceeded a background value. We then applied MVA 

analysis to these intervals in order to calculate ΔBL/ΔN[C3-C4]. For further analysis of each 

(typically short, as discussed next) magnetic field gradient interval, the following 

conditions had to be satisfied: 1) MVA vectors calculated at C3 and C4 within 200 from 

each other, 2) eigenvalue ratios λ2/λ1 and λ3/λ2 ≥6.0, and 3) a normal (N) along the 

direction of the largest C3-C4 separation (Y or X for our events). All intervals of strong 

magnetic gradients that did not fulfill these conditions were excluded from the statistical 

analysis described next. 
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In all events, the strongest values of ΔBL/ΔN[C3-C4] were observed during the 

dipolarization growth near the leading and trailing edges of the BZ pulses. The normals to 

these pulses were oriented mainly in the (XY) plane and condition (3) was almost always 

fulfilled.  

To determine the phase of dipolarization during which the strong magnetic 

gradients are generated, we performed a superposed epoch analysis. The analysis was 

applied to the following parameters: BZ*, ΔBL/ΔN[C3-C4], ΔBL/ΔN[C1-C4] calculated 

simultaneously with ΔBL/ΔN[C3-C4], and the AL* index. Here, BZ* and AL* are the values 

of the BZ field and the AL index observed in each event and normalized to the maximum 

values BZmax and |AL|max, respectively (see the list of events presented above). As the 

epoch time (t=0), we use the dipolarization onset for each event. To determine the onset 

we used the method described in Grigorenko et al. [2016].  

Figure 3a-d shows the resulting superposed epoch profiles. Lower and upper 

quartiles are displayed in light green. The decrease in AL index to its minimum value 

starts almost simultaneously with the dipolarization onset (at t=0) and ends ~ 17 min after 

the onset (this period is shaded pink in Figure 3a-d). During this period, the magnetic 

gradients |ΔBL/ΔN[C3-C4]| and the corresponding electric current density |JM
*|, as estimated 

between C3 and C4 at small electron-type scales, transiently increased up to a few 

hundred nA/m2 (see Figure 3b). The absolute values of electric current density |JM
*|, 

calculated as |JM
*|~μ0

-1·|ΔBL/ΔNC3-C4,| are scaled according to the right vertical axis of 
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Figure 3b. By contrast, at ion scales (as estimated between C1 and C4 according to their 

larger separation), the values of ΔBL/ΔN[C1-C4] and the corresponding values of |JM
*| are 

much smaller (see Figure 3c).  

Figure 3e shows a histogram of the occurrence frequency of strong |ΔBL/ΔNC3-C4| 

gradients (≥25 nT/1000 km, that corresponds to |JM
*|≥ 20 nA/m2) with a given duration. 

The occurrence frequency was calculated as the ratio of the number of strong gradients 

having durations within a given bin to the total number of strong gradients observed for 

all events. The majority of strong enhancements in |ΔBL/ΔNC3-C4| are very short, with 

durations ~0.1s.  

Figure 3f displays a histogram of the probability distribution of magnetic 

gradients |ΔBL/ΔNC3-C4| and the corresponding electric current density |JM
*|. Values of 

|ΔBL/ΔNC3-C4| are binned according to the bottom horizontal axis, and the corresponding 

values of |JM
*| are given in the upper horizontal axis. The probability was calculated as 

the ratio of the total duration of |ΔBL/ΔNC3-C4| (and |JM
*|) within a given range of values to 

the total duration of all dipolarizations. The observation probability is very small and 

decreases rapidly as ΔBL/ΔNC3-C4 and |JM
*| increase. 

 

4. Discussion and Conclusions 

The small separation between the C3 and C4 spacecraft, which was achieved in 

the near-Earth PS during the Cluster Inner Magnetosphere Campaign in 2013-2014, 
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permitted the observation of strong, transient magnetic gradients generated at electron 

scales at the leading and trailing edges of the BZ pulses during the prolonged 

dipolarization growth. This finding is obtained from the analysis of 14 such 

dipolarization events associated with the arrival of multiple BBFs with DFs.  

Three time scales in the dipolarization evolution are identified: i) a prolonged 

growth of the BZ component with duration ≤ 20min; ii) BZ pulses with durations ≤ 1min 

observed during the BZ growth; iii) strong and fast variations of ΔBL/ΔN (≤ 2s) at the 

leading and trailing edges of the BZ pulses. These strong enhancements in ΔBL/ΔN show 

that the formation of intense and localized current structures, with current densities up to 

a hundred nA/m2, are frequent and typical during dipolarization growth.  

The majority of strong magnetic gradients with amplitude ΔBL/ΔNC3-C4 ≥ 25 

nT/1000 km are very short, with durations less than 1s. For typical values of the 

structures propagation velocities obtained from our analysis (~100–400 km/s), these 

durations imply spatial scales for the current structures lower than a few hundred km, i.e.  

~ a few λe.  

Multiple, transient BZ pulses during gradual dipolarization growth in the near-

Earth PS were reported in many previous studies [e.g. Nakamura et al., 2009; Liu et al., 

2013, 2014; Grigorenko et al., 2016; Gabrilese et al., 2017]. The associated current 

system was shown to contribute to the formation of the 3D substorm current system [e.g. 

Sergeev et al., 2012; Liu et al., 2013]. Our superposed epoch analysis further 
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demonstrates a good agreement between the decrease in the AL index, the prolonged 

growth of the BZ field and the transient appearance of strong and short magnetic gradients 

denoting the generation of intense electric currents at electron scales.  

From such two-spacecraft data analysis we cannot determine the total current 

density and the direction of the electric current in these structures. However, our analysis 

(assuming a 1D current structure) showed that the observed ΔBL/ΔN typically mainly 

contributes to the JZ current density. Also, since after the dipolarization onset |B|~BZ, the 

JZ current is almost field-aligned.  

This finding complements recent MMS observations of strictly localized (~ a few 

tens of km) and short-lived field-aligned currents observed in the Plasma Sheet Boundary 

Layer (PSBL) during a substorm [Nakamura et al., 2016]. These PSBL currents may 

represent the high-latitude extensions of the intense, transient current structures generated 

at electron scale in the deep PS, as reported in the present study. 

Since field-aligned currents generated in the near-Earth PS in the course of 

dipolarization can contribute to the 3D substorm current system, the origin of these 

currents is an important question. Do they represent “short-lived” structures, which 

dissipate within seconds, or do they represent propagating spatial structures which are 

observed only for a short time because of their highly localized nature?  

The results of our analysis rather support a highly localized nature. The spatial 

scales of the strong magnetic gradients and associated electric current structures are much 
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smaller than the spatial scales of magnetic fluctuations expected from the development 

of, e.g., cross-field current instability or the shear flow ballooning instability in the near-

Earth PS [e.g. Kalmoni et al., 2015; Lui, 2016]. The close similarity between the 

magnetic fluctuations observed at each Cluster spacecraft, as well as the similar 

propagation velocities of the fluctuations (Vprop) and corresponding component of plasma 

bulk velocity, all point to a spatial nature. This is consistent with the resemblance 

reported between Vprop values and the propagation velocities of DFs in previous works 

[e.g. Runov et al., 2009; Nakamura et al. 2009]. All these arguments support the 

hypothesis that these intense electric currents are part of a multiscale electric current 

system associated with DFs. 

In conclusion, our observations show the importance of processes occurring at 

electron scales during the prolonged dipolarization growth in formation of the 3D 

substorm current system. This phenomenon requires further detailed studies using 

multipoint magnetic field observations at sub-ion spatial scales with high time resolution. 
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Figure captions 

Figure 1. An overview of dipolarization observed on 20 July 2013. From top to bottom 

are shown: AL index; the |B|; BZ and BX from four Cluster (a-d); three components of 

proton bulk velocity from C4 (e); the dawn-dusk component of electric field, EY, from 

four Cluster (f); electron density, Ne, from C3 (g); the ΔBX/ΔYC3-C4 (h) and the ΔBX/ΔYC1-

C4 (i). The grey profiles display the ΔBX/ΔY including the background level, while the 

black profiles show only the ΔBX/ΔY values which exceed the background level. 

 

Figure 2. In the left: a zoom of the pink shaded interval shown in Figure 1. From top to 

bottom are shown: the BZ field (a) and electron density, Ne, from C3 (b); the ΔBX/ΔYC3-C4 

(c); three components of proton bulk velocity (d) and the dawn-dusk electric field, EY, 

from C4 (e). Three intervals (I-III) of strong ΔBX/ΔYC3-C4 variations are shaded in gray. In 

the right part of the Figure the spatial profiles of the electric current density JZ
* estimated 

for intervals I – III are shown. 

 

Figure 3. (a-d): The results of epoch superposition analysis applied to 14 dipolarization 

events. The absolute values of electric current density |JM
*| are scaled according to the 

right vertical axis of Figure 3b,c. (e): A histogram of the occurrence frequency of strong 

|ΔBL/ΔNC3-C4| gradients with a given duration. (d): A histogram of the probability 

distribution of |ΔBL/ΔNC3-C4| and the corresponding |JM
*|. Values of |ΔBL/ΔNC3-C4| are 
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binned according to the bottom horizontal axis, and the |JM
*| are given in the upper 

horizontal axis. 
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