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Abstract 
This study obtains a statistical representation of 2-15 keV heavy ions outside of the Martian 

Induced Magnetosphere and depicts their organization by the solar wind convective electric field 

(ESW). The overlap in the lifetime of Mars Global Surveyor (MGS) and Mars Express (MEX) 

provides a period of nearly three years during which magnetometer data from MGS can be used 

to estimate the direction of ESW in order to better interpret MEX ion data. In this paper we use 

MGS estimates of ESW to express MEX ion measurements in Mars-Sun-Electric field (MSE) 

coordinates. A new methodological technique used in this study is the limitation of the analysis 

to a particular instrument mode for which the overlap between proton contamination and plume 

observations is rare. This allows for confident energetic heavy ion identification outside the 

induced magnetosphere boundary. On the dayside, we observe high count rates of 2-15 keV 

heavy ions more frequently in the +ESW hemisphere (+ZMSE) than in the –ESW hemisphere, but on 

the nightside the reverse asymmetry was found. The results are consistent with planetary origin 

ions being picked up by the solar wind convective electric field. Though a field of view hole 

hinders quantification of plume fluxes and velocity space, this new energetic heavy ion 

identification technique means that Mars Express should prove useful in expanding the time 

period available to assess general plume loss variation with drivers. 

1 Introduction 
The escape of planetary ions from the atmosphere of Mars into space has been investigated using 

measurements taken by Phobos-2, Mars Express (MEX), and the Mars Atmosphere and Volatile 

Evolution (MAVEN) spacecraft. Already in the Phobos-2 data there was evidence of a 

population of energetic heavy planetary ions, known as pickup ions, that extends outside of the 

induced magnetosphere boundary (IMB) [e.g., Kallio et al., 1995; Lundin and Dubinin, 1992]. 

Energetic planetary ions beyond the IMB were later also observed in MEX data [e.g. Lundin et 
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al., 2008]. Analyses of both Phobos-2 and MEX data sets suggested that less energetic ions 

flowing within or close to the IMB dominated ion escape [e.g., Lundin and Dubinin, 2002; 

Barabash et al., 2007]. Additionally, MEX heavy ion data from the magnetosheath is often 

contaminated by strong proton fluxes, complicating the process of examining a region already 

thought to be of minor importance in terms of total escape fluxes [Nilsson et al., 2011]. As a 

consequence, MEX studies of heavy ions have tended to focus on ions located inside of the IMB 

[e.g., Lundin et al., 2004; Barabash et al., 1991; Dubinin et al., 1996, 2006; Fedorov et al., 

2006; Nilsson et al., 2011, 2012; Liemohn et al., 2014]. 

 

At the same time, multiple numerical models predicted significant fluxes of pickup ions well 

outside of the IMB with initial trajectories not downtail, but in the direction of the solar wind 

convective electric field, ESW = - vSW × BIMF, where IMF stands for interplanetary magnetic field 

[e.g., Luhmann and Schwingenschuh, 1990; Kallio and Koskinen, 1999; Boesswetter et al., 2004; 

Modolo et al., 2005; Harnett and Winglee, 2006; Kallio et al., 2006b; Fang et al., 2008; Najib et 

al., 2011]. In the –ESW hemisphere – the hemisphere where the electric field points toward Mars 

- this ion population was predicted to be accelerated into the atmosphere and lost.  In the in the 

+ESW hemisphere, however, the ions are expected to be accelerated away from the planet in a 

direction perpendicular to the bulk solar wind flow, roughly perpendicular to the Sun-Mars line. 

In some cases, this energetic plume of pickup ions was predicted to contain as much particle flux 

as the central tail loss channel [Curry et al., 2013; Liemohn et al., 2013]. The physics of ion 

pickup is not unique to Mars. What sets Mars apart is that the gyroradius of solar wind pickup 

ions at Mars can be large enough to result in planet-scale asymmetries, where 10 keV O+ (O2
+) 

ions flowing perpendicular to a ~10 nanotesla magnetic field have gyroradii of about 1.7 (2.4) 
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Mars Radii. The most natural comparison would be Venus, another inner planet with an induced 

magnetosphere, where proximity to the sun results in stronger IMF, a more radial parker spiral 

results in pickup ion velocities that are less perpendicular to the solar wind flow (reducing 𝑣 ×

𝐵), and the planet’s larger gravity results in fewer ions being born at the exospheric altitudes at 

where the requisite fast convective plasma flow is located. These three factors do not compete. 

They all work together to reduce the gyroradius, making planet-scale gyroradii the exception at 

Venus. At Mars, however, such large scale asymmetries appear to be the norm. 

 

Asymmetries in the planetary ion flow around Mars related to the effects of crustal fields have 

been observed previously [e.g., Lundin et al., 2011]. Global asymmetries in the distribution of 

ions around Mars caused specifically by ESW have also been reported, but these studies were 

either focused exclusively on ions observed within the IMB [Carlsson et al., 2008;  Dubinin et 

al., 2006] or included ions from a broad energy range, allowing the less energetic ions to 

dominate the results [Barabash et al., 2007; Fedorov et al., 2006, 2008; Dubinin et al., 2006].  

Pickup ions such as those produced in numerical models – a high energy population that can 

extend outside the IMB - have also been reported [Dubinin et al., 2011; Edberg et al., 2009; 

Liemohn et al., 2014]. These studies describe ion populations that increase in energy with 

distance from the planet, consistent with acceleration by ESW, but these were case studies 

including only a small number of observations.  A statistical survey of MEX data for energetic 

heavy ions outside of the IMB was still absent.  

 

Recently, Brain et al. [2015] reported a strong asymmetry in net ion escape based on the 

direction of ESW, and Dong et al. [2015] used three months of ion measurements from the 
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MAVEN spacecraft’s SupraThermal and Thermal Ion Composition (STATIC) instrument and 

the MAVEN magnetometer upstream of the bow shock to make a limited statistical survey of 

energetic O+ in a solar wind electric field oriented coordinate system.  

 

The present paper seeks to corroborate and expand these MAVEN results by using MEX data 

from the full two and half year stretch during which MGS could be used to estimate the direction 

of ESW. While case studies of the energetic plume beyond the IMB have been found in the MEX 

ion data [e.g., Dubinin et al., 2006, 2011; Liemohn et al., 2014], a comprehensive statistical 

survey has not been undertaken because scattering of solar wind protons within the instrument 

obscure the heavy ion signature in the data. To conduct a thorough statistical study, a new 

methodology to isolate energetic heavy ion observations from solar wind proton contamination 

was implemented, allowing for confident plume identification from the MEX ion data set beyond 

the IMB. Utilizing time intervals when such estimates of the direction of ESW were determined to 

be most reliable, we rotate the data into a coordinate system aligned with the convective electric 

field to investigate how 2-15 keV planetary ions outside the IMB are organized by ESW. 

2 Data Sets and Methodology 
To explore the role of the convective electric field in organizing heavy ions originating from the 

Martian upper atmosphere, ion data is combined with magnetic field data. The ion data were 

detected by the Ion Mass Analyzer (IMA) that is part of the Analyzer of Space Plasma and 

Energetic Atoms (ASPERA-3) instrument suite aboard MEX. Detailed descriptions of the 

ASPERA-3 instruments can be found in Barabash et al. [2004, 2006]. The direction of the 

convective electric field was estimated using magnetometer (MAG) data from MGS.  
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It takes 192 seconds for IMA to complete energy sweeps (96 energy steps in the range 10 eV - 

32 keV per charge) for sixteen different look directions (scanning from -45 to +45 degrees out of 

the aperture plane). IMA detects ion masses within the range 1-44 atomic mass unit (amu). The 

present work only considers ions that are heavy (O+, O2
+, and CO2

+, and in the 2-15 keV energy 

range.  For each 192 s data packet, the count rate and velocity of heavy ions in this energy range 

was recorded, as was the position of MEX in the Mars-centered Solar Orbital (MSO) coordinate 

system. This information was matched with an estimate of the upstream IMF direction at that 

time.  

 

Assigning an upstream IMF direction to each data packet required that we limit our search 

through MEX data to the period of overlap in the lifetime of MEX and MGS. This period 

extends from early 2004 through autumn 2006. During this time, MGS was in a 2 am - 2 pm sun 

synchronous orbit at 400 km altitude with a period of 2 hours. At 400 km altitude, the magnetic 

field configuration around Mars corresponds to a heavily draped IMF [e.g., Brain et al., 2006; 

Liemohn et al., 2007]. Using the assumption that the IMF field lines drape parallel around the 

planet (remaining in the same plane as the upstream field line), Brain et al. [2006] developed a 

2-hour cadence data set which provides estimates of the upstream clock angle, ∪IMF, using 

magnetometer data from the 400km orbit of MGS.  This set of IMF clock angle estimates has 

been widely used [e.g., Carlsson et al., 2008; Dubinin et al., 2008; Nilsson et al., 2011; Wang et 

al., 2013; Dieval et al., 2014], and we adopt it as the IMF clock angle proxy used in the present 

work. There is a large uncertainty in this estimation of ∪IMF due to draping configurations that 

are not ideal and due to time variation in ∪IMF. To minimize the uncertainty due to the time 

variation of ∪IMF, we only use ion data from periods when ∪IMF appeared to be steady. More 
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precisely, ion data was included in this survey only if its corresponding ∪IMF value was within 15 

degrees of the previous ∪IMF (the estimate from 2 hours earlier) and within 15 degrees of the 

following ∪IMF (from 2 hours later).  The ion data within ±60 minutes of the middle "steady” 

∪IMF value were included in the survey. We also exclude data from times when MEX was inside 

the IMB. The most precise way to isolate time intervals outside the IMB would be to identify 

boundary crossings for each orbit, but given the large quantity of data we chose the more 

practical method of automatically selecting times when MEX was outside of an average IMB 

location estimated empirically by Vignes et al. [2000]. A histogram of the estimated clock angle 

of ESW is shown in Fig. 2. The clustering of ESW clock angle values around 330° corresponds to 

the clustering of IMF draping angles around 240° discussed in Brain et al. [2006], and indicates 

a systematic error in this proxy, which will be brought up again in the discussion. Here, we 

simply ask readers to keep in mind as they view the figures that the site from which we 

downloaded this draping proxy warns that it is not thought to be more accurate than ~90°. For 

this reason, our analysis consists of coarse comparisons of MSE hemispheres and quadrants 

(quarter-cylinders) despite the modeled energetic plume often appearing narrowly focused in the 

direction of E. 

 

One difficulty encountered when studying MEX IMA data outside the IMB is that of cleaning 

the data to remove H+ “ghost” counts, which occur when solar wind protons cause false counts in 

heavy ion mass rings. Ghost counts are false counts which appear when a proton’s path inside of 

IMA misses the detector. Figure 1 helps illustrate where such proton contamination occurs as a 

function of energy and mass ring (an energy-mass matrix). Fig. 1 (a) shows many integrated 

solar wind measurements taken when the post acceleration setting of IMA was 2400V, whereas 
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Fig. 1 (b) shows a similar integrated energy-mass-matrix, but for a post acceleration setting of 

4200V. To minimize H+ contamination of the heavy mass rings, we restrict the study to times 

when IMA was operating with a post-acceleration voltage of 2400V, and only include ions 

striking mass rings 0-11 in the 2-15keV energy range.  This range is loosely indicated by a red 

oval in Fig. 1 (a). For this energy range and PAC setting, protons inside IMA strike the detector 

well away from the detector’s edge, resulting in an orders of magnitude reduction in ghost 

counts, making it unlikely that ghost counts have significantly impacted our findings.  

 

The resulting data set consists of about 8000 192-second-long ion data packets from times when 

MEX was outside the model IMB and IMA was switched on and using the 2400V post 

acceleration voltage and the IMF clock angle was steady.  In our results, ion locations and flight 

directions have been transformed into the Mars-Sun-Electric field (MSE) coordinate system by 

rotating around the MSO x-axis until the z axis was parallel to the direction of the convective 

electric field. 

 

A map of the data coverage around Mars in MSE coordinates is shown in Figure 3. The circle 

represents the planet, and the curves in panel (b) represent average locations of the IMB and bow 

shock as estimated by Vignes et al. [2000]. Panel (a) shows the view from the Sun, integrating 

over all X for which there was data available, with YMSE on the horizontal axis and ZMSE on the 

vertical axis. This panel highlights the fact that not all clock angles of the IMF are evenly 

sampled. MEX was most often in the –YMSE and +ZMSE hemispheres. In principle, this uneven 

sampling in MSE coordinates should not occur, as Mars is expected to spend a roughly equal 

amount of time in the toward and away sectors of the solar wind over the course of two and a 
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half years. The sampling asymmetry is explained by the distribution of the ESW proxy shown in 

Fig. 2. Due to the large clustering of ESW values, transformation into the MSE system rotates but 

partially preserves the MSO clustering of MEX’s position during this time. Panel (b) shows the 

X-ZMSE-plane, where we have integrated over YMSE from -4 to +4 Mars radii. Note that values 

appear "inside" of the projection. All measurements included in this study are outside of the 

Vignes et al. [2000] IMB location. It should be noted that most of the data taken in the –ESW 

hemisphere is on the dayside, whereas in the +ESW hemisphere, the region most heavily sampled 

is slightly downtail of the X=0 plane.  Therefore if we used only a view from the sun projected 

onto a plane, it would be difficult to determine whether differences seen between the +ESW and -

ESW hemispheres are actually due to asymmetries caused by the direction of ESW or whether such 

differences are due data from these separate hemispheres being dominated by different regions 

along the Mars-Sun line.  For this reason, some separate analyses have been performed for 

dayside and for nightside.  

 

3 Results 
Figure 4 is a map of the incidence rate (occurrence frequency) of significant counts of 2-15 keV 

heavy ions.  By "high counts" here, we mean values above 70.  As will be discussed below, a 

count rate of 70 or more is an indication that a physically meaningful presence of heavy ions was 

observed by MEX IMA, above any background level of noise count rate. The incidence rate of 

the high count observations is a value from 0 to 1, with values approaching 1 indicating that a 

significant number of heavy ions are observed on nearly every 192-s data packet. For example, 

an incidence rate of 0.6 means that for 60% of all 192-s data packets in that spatial bin, the 

integrated counts of heavy ions across all instrument look directions within the 2-15 keV energy 
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range was at least 70. For statistical significance, we have also limited the values shown in Fig. 4 

to only those spatial bins with more than 20 MEX IMA data packets.  These maps use the same 

MSE coordinate system used in Fig. 3, with (a) showing the view from the sun and (b) showing 

the X-ZMSE. –plane.  

 

Fig. 4 (a) does not seem show a clear trend of there being increased count rates of energetic 

heavy ions in the +ESW direction. It does indicate, however, that it is rare to see large numbers of 

these ions in the –ESW direction. Panel (b) reveals that if we integrate over all YMSE, it becomes 

clear that, on the dayside, the +ESW hemisphere has a far greater incidence rate of high counts 

than the –ESW hemisphere. To ease comparison between the hemispheres, Fig. 5 shows the 

difference between the incidence rate in each spatial bin in the +Esw hemisphere and the 

corresponding spatial bin in the –Esw hemisphere. Hence, positive values (red) indicate regions 

with a higher incidence rate of energetic heavy ion events in the +ESW hemisphere and negative 

values (blue) indicate regions where it was more common to observe energetic heavy ions in the 

–ESW hemisphere. Spatial bins for which at least one hemisphere had fewer than 10 

measurements appear grey. To see maps with fuller coverage of every figure for which minimum 

measurement requirements were set (Fig. 4, 5, and 7), see the supplementary figures to this work, 

which include reproductions of these maps that color every spatial bin with at least one 

measurement. Both on the dayside and in the terminator region there is a higher incidence rate in 

the +ESW hemisphere. In a few locations on the nightside there were actually more incidences of 

high counts in the –ESW hemisphere, however these –ESW hemisphere enhancements may not be 

significant, as will be seen in further analysis below.  
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We require that the integrated counts detected during 129 seconds is at least 70.  This is not an 

arbitrary cutoff. Figure 6 shows that the distribution of count rates is bimodal, with most of the 

8,000 data packets having either less than 40 counts or between ~70-130 counts. The times with 

fewer than 40 counts are times when the heavy ions measured are scattered across the IMA’s 16 

by 16 field of view. Data packets falling within the 2nd peak also exhibit this scattered signature, 

but in addition to the scattered signature, these times see a large number of entering IMA from 

the same look direction, more than from all other look directions combined. A plot of ion flight 

direction over the course of six consecutive IMA sweeps has been included as supplementary 

material (Fig S7) to provide an understanding of typical differences between the two distinct 

peaks in Fig. 6. The first peak represents the typical background level of counts, whereas the 2nd 

peak tends to correspond to times when a focused of beam with significant counts is present. 

Therefore when we talk about the incidence rate of “high” counts of 2-15 keV heavy ions, this 

may also be thought of as the occurrence frequency of heavy ion beams.  

 

A close inspection of Fig. 4 reveals that the dayside region of high incidence of > 70 counts 

(seen in yellow and orange in Fig. 4 b) may be caused primarily by a projection of measurements 

taken in the –YMSE sector (panel a) onto the plane of the plot in panel b. What would happen if 

we prevented these YMSE sector measurements from impacting results? To answer this question, 

in addition to comparing the +ESW and –ESW hemispheres, data was sorted into quadrants, with 

all measurements taken within +/- 45˚ of the direction of ESW categorized as belonging to the 

+ZMSE quadrant, and all measurements taken more than 135˚ from the direction of ESW falling 

into the –ZMSE quadrant. Fig. 7 shows the incidence rate of high counts in cylindrical 

coordinates, with panel (a) showing the –ZMSE quadrant, or quarter-cylinder, and panel (b) 

This article is protected by copyright. All rights reserved.



showing the +ZMSE quadrant. The use of a cylindrical coordinate system here makes it more 

readily apparent than in previous figures that all of the data are confined to locations beyond the 

Vignes et al. [2000] IMB location, which is shown on the plot. The results look similar to what 

was seen when comparing hemispheres. On the dayside, MEX was more likely to see high 

counts when in the +ZMSE quadrant, while on the nightside it appears that MEX was more likely 

to see a high count rate the –ZMSE quadrant.  

 

To quantify the differences between quadrants, cumulative probability distributions were created 

to show what proportion of the time the count rate exceeded any given value. Figure 8 presents 

such cumulative probability distributions, comparing the +ZMSE and –ZMSE quadrants on the 

nightside (panel a) and on the dayside (panel b). The thicker lines show the occurrence 

frequency, or incidence rate, of high-count events versus the range of possible count limits that 

might have been used to define what is meant by “high counts”. The portions of the cumulative 

probability distribution with steep slopes correspond to count rates that occur more frequently, as 

seen in the histogram (Fig 6). The flat (horizontal) portions of the probability distribution 

correspond to low points in the histogram. The thin lines in Fig. 8 represent 90% confidence 

windows. As the count rate cutoff increases, the number of data packets with counts exceeding 

this cutoff falls rapidly, greatly decreasing the degree of certainty surrounding this cutoff’s 

occurrence frequency, leading to wider confidence windows. As expected, Fig. 8 (b) 

demonstrates that, on the dayside, the +ZMSE quadrant saw more heavy energetic ions than did 

the –ZMSE quadrant. Fig. 8 (a) reveals that narrowing our focus to opposite quadrants retains the 

unexpected reverse asymmetry seen on the nightside, with the nightside seeing a slight 

preference for high count rates in –ZMSE quadrant rather than +ZMSE quadrant, but the 
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overlapping confidence windows suggest that this might be due to a limited amount of data. The 

confidence windows for the dayside panel (b) don’t overlap until reaching extremely rare high 

rates, indicating that the dayside asymmetry, more heavy ions in the direction of ESW, is much 

more certain. It should be noted that the confidence windows only represent the uncertainty due 

to counting statistics. In other words, if we were 100% certain that all estimates of the IMF 

direction were correct, and 100% certain that all oxygen actually present was detected and that 

there were no false oxygen counts, and if spatial coverage were even (no patches without data), 

then we could say with 90% confidence that the true probability distribution lies within this 

confidence window. These confidence windows allow us to see that for count rates that are 

sufficiently rare (count rates greater than about 200), the uncertainty due to the small amount of 

data becomes quite large. An alternative method of displaying most of this same information, 

non-cumulative probability distributions, appear in the supplementary materials (Fig. S3). 

An additional approach to presenting the ESW-based asymmetry seen by MEX is shown in Figure 

9, where a cylindrical coordinate system is employed in conjunction with units of particle flux. 

As in Fig. 7, the coordinate system in Fig. 9 divides the space around Mars into +ZMSE and –ZMSE 

quadrants, with data integrated along curves of constant cylindrical radius. The colorscale now 

shows particle flux (rather than counts), with arrows indicating direction and color indicating 

magnitude. Fluxes are integrated over all look directions, showing omnidirectional flux with 

units of ions per second per cm2. The direction arrows show an average of two components of 

the flow for all data packets in that spatial bin, averaging the radial component and the 

longitudinal component, while ignoring the azimuthal velocity component in this calculation. 

The method used to calculate these fluxes is the same as that used in Nilsson et al. [2011]. 

Binning by energy, spatial location, and flight angle in cylindrical coordinates is used, with 
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average flux calculated separately for each bin so that uneven sampling of flight direction does 

not influence results.  A full description of this technique can be found in Fraenz et al. [2015]. 

The arrows show a general motion away from subsolar location and an upward-outward motion 

in the +Esw nightside. Other locations have seemingly random flow directions. This is addressed 

in the discussion section. 

The color bar in Fig. 9 has been tweaked to highlight the hemispheric asymmetry, but just as was 

done in Fig. 5, a difference plot has been provided to make comparison between hemispheres 

even easier. In Figure 10, which uses the same coordinate system as Fig. 9, flux values from the 

–ESW hemisphere have been subtracted from flux values from the corresponding spatial bin in the 

+ESW cylindrical hemisphere. Red spatial bins indicate regions in which the +ESW hemisphere 

experienced higher mean particle fluxes of heavy ions than did the –ESW hemisphere, while blue 

colors represent regions in which the mean fluxes in the –ESW hemisphere were larger. The large 

dayside region where red dominates indicates higher fluxes of heavy energetic ions in the +ESW 

hemisphere located where hybrid and particle tracking models have predicted the energetic 

plume to be [e.g. Fang et al., 2008].  The hemispheres seem far more similar on the nightside, 

perhaps even with an indication of slightly higher fluxes measured by MEX in the near-

terminator nightside, as seen in Fig. 5. 

4 Discussion 
The results presented above indicate that on the dayside there is a clear + ESW preference for 

observation of 2-15 keV heavy ions. On the nightside, this was not seen. This is in general 

agreement with the numerical models that predict a focused energetic plume of planetary ions 

escaping from Mars in the direction of the solar wind convective electric field.  
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It is interesting to note that Liemohn et al. [2014], who conducted a similar survey of energetic 

(2-5 keV) planetary ions (specifically, O+) beyond the IMB (from the 2004-2006 MEX-MGS 

overlap interval), did not find this systematic occurrence rate and flow pattern in favor of + ESW.  

This apparent discrepancy can be readily explained, however, by taking into account the 

differences between the two methodologies of the surveys.  First, the selection criterion with 

respect to ESW is different.  The former study used a window of ±30 minutes around any of the 

∪IMF values from MGS whereas the present study only uses the MEX ion data if the clock angle 

is "steady," as defined above.  Second, the criterion with respect to what is considered "high 

counts" is different.  The former study chose a cutoff of 200 counts to be classified as a 

significant observation of planetary ions, while the present study uses the more defensible value 

based on the bimodal distribution of count rates (i.e., 70).  Third, the criterion with respect to 

number of data packets in the presentation of the incidence rates is different.  The former study 

has no lower threshold for including the value for a particular spatial bin, while the present study 

requires a minimum of 20 measurements in a spatial bin before it is shown in Fig. 4.  Fourth and 

finally, the plot-style presentation of the results is made differently.  The former study only 

considered the X-integrated Y-Z plane format (MSE coordinates as viewed from the sun) while 

the present study uses a variety of formats.  All of these small but important distinctions between 

the methodologies lead to the present study producing more definitive answers regarding the 

characteristics of energetic planetary ions beyond the IMB at Mars. 

 

Regarding velocities shown in Fig. 9, they do not consistently match what would be expected 

from high energy pickup ions accelerated by the convection electric field, but this does not 

necessarily mean there is a need to search for alternative acceleration mechanisms. The fluxes 
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seen in Fig. 9 are directed more downtail (less radially outward) than is typically associated with 

the energetic plume, but this is due at least in part to the cylindrical coordinate system used, in 

which the radial component incorporates the YMSE velocity as well as the ZMSE velocity. Still, the 

velocity vectors shown are more erratic than those appearing in work using the same method but 

looking at lower energies (see Fraenz et al., [2015]). There are at least three possible 

explanations for this. First, it is possible that some of the heavy ions in the 2-15 keV energy 

range were accelerated by a process other than motional electric field, causing them not to follow 

the bulk plume flow direction. Second, there was concern that, even though a concerted effort 

has been made to avoid ghost H+ counts, the number of ions at such high energies is so low that 

even a very small amount of H+ contamination could impact results in some spatial bins. Spot-

checking revealed proton contamination to be rare but not non-existent in the mass and energy 

ranges used in this study. The global picture should be largely unaffected. Finally, velocity 

vectors are also affected by the large uncertainty in the angle of rotation to achieve MSE 

coordinates for each data packet, which leads to incorrect binning. It is likely that many of the 

values creating the vectors in one quadrant would actually be in another quadrant if the IMF 

proxy were perfect. This will lead to, for example, measurements from YMSE quadrants sneaking 

into the ZMSE quadrant and making the mean flow direction less radial than what is expected for 

the energetic plume. 

 

The reverse-asymmetry seen on the nightside, in which 2-15 keV heavy ions are seen more in the 

–ESW direction than in the +ESW direction (Fig. 5, Fig. 10, Fig. 8 a) might be explained by 

arguing that many of the ions measured are in fact plume particles moving more radially outward 

than the averaged flux vectors indicate, leaving a relative void of energetic heavy ions 
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immediately anti-sunward of the main plume of radially-directed ions.  Keeping in mind that 

Figure 3 shows that there is little data from the –ESW nightside, however, a more mundane 

possibility is that the apparent reversal in ESW asymmetry in portions of the nightside is a product 

of low counting statistics (recall the overlapping error bars in Fig. 8 (a)).  It is important to note 

that Dong et al. [2015], which was able to directly measure the direction ESW with MAVEN’s 

magnetometer when MAVEN was upstream of the bow shock, found no such reverse asymmetry 

on the nightside. Instead, across all values of XMSE examined, Dong et al. [2015] saw greater 

fluxes of O+ in the +ESW hemisphere. This suggests that the reverse asymmetry seen here is due 

to a combination of low counting statistics and uncertainty in the direction of ESW. 

 

The primary uncertainty in this study is the precise direction of the upstream IMF. The exclusion 

of times when the draping direction of the IMF was unsteady has played a role in revealing a 

clearer global asymmetry than was seen in Liemohn et al. [2014], but the results presented here 

still rely on the assumption that the magnetic field at 400km altitude has the same clock angle as 

the upstream IMF. It is known that this simplified model of field line draping is an idealization of 

the actual picture. Brain et al. [2006] found hints of “weathervaning” (a bending of field lines 

associated with unequal mass-loading along a magnetic flux tube) of the draped field in MGS 

magnetometer data as well as indications that the toward and away sectors of the solar wind do 

not result in draping configurations that perfectly mirror each other.  Luhmann et al. [2015] 

presented comparisons of the MGS draping angle with MHD results, finding some agreement but 

also noticeable differences due to weathervaning and crustal field influences. Xu et al. [2017] 

used pitch angle measurements from MAVEN’s Solar Wind Electron Analyzer to examine 

magnetic connectivity, and found that in the 400-600km range, at the latitude range used for the 
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draping proxy adopted in the present study, MAVEN saw either closed or open field lines more 

often than draped field lines (Xu et al., Figs. 8,9,10). This suggests that the strong clustering of 

estimates of ESW shown in Fig. 2 may be at least partially due to MGS at 400km, 50-60° latitude, 

having frequently measured field lines connected to the electron exobase, which may not 

correspond to draped IMF. The large uncertainty in upstream IMF angle, together with the fact 

that the clustering of values in Fig. 2 suggests that errors in the draping proxy are in part 

systematic, have inspired the planning of a project in which we will attempt to create a more 

reliable draping proxy that could be used to study the entire time period during which MGS was 

at its 400km mapping orbit. For the task of identifying hemispheric or quarter-cylinder resolution 

asymmetries, our analysis has convinced us that the Brain proxy is sufficient, allowing us to 

establish that the MEX ion data, used carefully and in conjunction with MGS, can be used to 

observe the planetary ion energetic plume statistically. 

 

Limitations of the IMA instrument have also affected the results reported here. First, the IMA 

duty is such that it is often inactive when MEX is at very high altitudes, where these ESW-

accelerated ions are most likely to be seen. Second, IMA was mounted on the spacecraft, in part, 

“to co-aligned the central plane of the IMA field of view with the ecliptic plane when the 

spacecraft is in the Earth pointing mode” [Barabash et al., 2006]. An unfortunate effect of this 

alignment is that when the IMF is in the ecliptic plane, ESW is aligned with one of IMA’s field of 

view holes. Measurements in Dong et al. [2017] depict energetic plume flow directions that such 

a field of view hole would be expected to miss, and a specific example of this can be seen in the 

case study of the plume performed by Liemohn et al. [2014] in which very strong ion beam is 

seen at the furthest extent of IMA’s elevation angle, suggesting part of this population may have 
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been missed by IMA. The distribution of ESW shown in Fig. 2, shows that much or even most of 

the time the IMF was estimated to not be in the ecliptic plane. However, since the field of view 

hole issue is expected to be worst for what is in general the most common IMF orientation, 

surveys of the energetic plume using MEX cannot hope to obtain realistic estimates of plume 

fluxes or escape rates. 

An additional uncertainty may stem from any seasonal variations of the energetic plume or of 

IMF draping around Mars. The period of time covered by this study is only slightly longer than 

one Mars year, too short of an interval to identify seasonal patterns or to guarantee that effects of 

seasonal variations are completely washed out in the statistics. Using MAVEN’s STATIC 

instrument, was found by Dong et al. [2017], that plume escape fluxes did not appear to vary 

significantly with EUV flux. However, of the two time periods considered by Dong et al., the 

period closer to the maximum of solar cycle 24 (and hence the time period from which their 

larger EUV values were drawn) was 11 November 2014 to 19 March 2015, which also happens 

to be a period that straddled Mars’ northern winter solstice. It has been found that during 

southern summer conditions such as this, the strong crustal field region raises the altitude of the 

IMB across the entire dayside [Brain et al., 2005]. Thus the unexpected result in Dong et al. 

[2017], that increased EUV did not correlate with increased plume fluxes, may be due to the 

period of higher EUV coinciding with a period of high IMB. A higher IMB would mean that 

fewer ions were born outside of this raised IMB, and ions born inside the IMB would be less 

likely to make it out into the magnetosheath where ESW is strong, effects which would tend to 

counteract the increased scale heights and increased production rates of a high EUV time period. 

Such possible seasonal effects should also exist in the present study. The time period we used 

included two northern summers but only one northern winter.  
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Given the broader communal goal of developing estimates of atmospheric loss on geological 

time scales, the question of how plume escape changes with key time-varying parameters is 

deeply important. MAVEN observations have shown the plume as well as the role of the solar 

wind convection electric field in creating the plume [Brain et al., 2015, Dong et al., 2017]. 

However, exploring the time-variation of plume escape with limited amounts of data is very 

difficult. The difficulties associated with limited data have been highlighted in the previous 

paragraph’s discussion of Dong et al. [2017], where it was noted that the period of high EUV 

flux also happened to correspond to a season that may counteract the influence of increased 

EUV. With MAVEN likely to begin prioritizing its role as a relay between Earth and assets on 

the Martian surface only a fraction of a solar cycle after its Mars orbital insertion, the importance 

of expanding the periods of time open to study is being made even more clear. As the only 

statistical study using IMA data to identify characteristics of this plume population by focusing 

specifically on the relevant locations and particle energies, we believe that this study is a first 

step toward opening a time period unseen by MAVEN to exploration of the plume and its 

variability.  

 

We have shown that, despite the fact that the MEX mission was not designed to prioritize study 

of the energetic plume population, MEX IMA can and does see a statistical plume. The next step 

is to examine how the plume, as seen by IMA, varies with parameters such as EUV flux, crustal 

field positioning, and solar wind parameters. This examination of drivers, however, is 

complicated by our finding that these same drivers of plume escape rates can be shown to 

influence the IMF clock angle proxy used in the present study. This could lead to a result in 

which we are uncertain of whether a driver’s correlation with a perceived stronger plume is truly 
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due to increased plume loss or whether the actual correlation is between the driver and better 

estimates of the +ESW  direction. Untangling these effects is beyond the scope of the present 

study. It is our hope that these exercises may be more fruitful after completion of a project 

currently under way to improve the IMF draping proxy.  

 

5 Conclusions 
This work focused on global asymmetries in the heavy ion population outside of the Martian 

IMB in the 2-15 keV energy range as seen by ion mass spectrometer IMA on Mars Express. A 

new methodology was implemented to isolate the energetic heavy ion signature in the MEX IMA 

data set, avoiding the ubiquitous solar wind proton contamination which usually obscures this 

measurement outside of the IMB. The time period during which MGS magnetometer data was 

available was trimmed down to times when the clock angle of the IMF was steady over a period 

of several hours. Using MGS estimates for the direction of the upstream IMF direction, MEX ion 

data were rotated into MSE coordinates.  

 

We conclude that, while the overall picture of flight direction remains unclear, there is a 

statistical asymmetry based on ESW in the high altitude energetic heavy ion population, as has 

been discussed previously in case studies [Dubinin et al., 2011; Edberg et al., 2009; Liemohn et 

al., 2014] and in surveys performed using MAVEN data [Brain et al., 2015, Dong et al., 2015, 

2017]. Unexpectedly, on the nightside it was in the –ESW hemisphere where more 2-15 keV 

heavy ions were detected, but this is likely attributable to insufficient counting statistics in this 

region. The difference between the +ESW quadrant and the –ESW quadrant was significant on the 
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dayside, which is consistent with kinetic models showing a somewhat narrow plume feature of 

heavy ions accelerated in the direction of ESW. 
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Figure 1. Integrated solar wind measurements showing how solar wind protons are dispersed 
across IMA’s mass channels when IMA is operating in different two different modes: a post 
acceleration of 2400V (a), and a post acceleration of 4200V (b). The energy-mass regime from 
which data was taken for this study is indicated qualitatively with a red oval. The important point 
is that the oval is empty. This highlights the fact that, for the post-acceleration voltage for which 
data was used in this study, we were able to restrict the study to an energy and mass range that is 
free of ghost count contamination. 
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Figure 2. Histogram showing the distribution of clock angles estimated from MGS draping angle 
proxy. The angle is defined counterclockwise from local east. The large peak at a convective 
electric field angle of around 330 degrees corresponds to the clustering of IMF draping angles at 
240 degrees as discussed in Brain et al., (2006), and explains the asymmetry in data coverage 
seen here in Fig. 3. 
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Figure 3. Coverage of the data used in this study in MSE coordinates, with the direction of the 

convective electric field directed upward along the vertical axis. Panel (a) shows the x-
integrated coverage as viewed from the sun, and panel (b) shows the y-integrated coverage. 
The circle represents Mars and the curves are average locations of the bow shock and IMB. 
The color of each bin indicates how many times that region was sampled. 

 
 
 

 
Figure 4.  Incidence rate of high counts. Panel (a) and is integrated along x. Panel (b) is 
integrated along y. The color of each spatial bin denotes the fraction of the total number of data 
samples in that bin in with a count rate > 70. Spatial bins with less than 20 measurements appear 
in grey. 
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Figure 5. Difference in incidence rate of high counts between the + ESW and – ESW hemispheres.  
The vertical axis is the absolute value of ZMSE. The color represents the incidence rate of high 
counts in the + ESW direction minus the incidence rate of high counts in the corresponding spatial 
bin in the – ESW direction. Spatial bins for which there were not at least 10 samples of data from 
the + ESW hemisphere and at least 10 samples of data from the – ESW hemisphere appear grey. 
Data has been integrated along y prior to calculating the difference. 
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Figure 6. This histogram shows the number of IMA data packets (vertical axis) that detected a 
given number of counts of 2-15keV heavy ions (horizontal axis). For most data packets, the 
count rate was between 10 and 50. A count rate greater than 70 is considered to be “high counts” 
for the purposes of this study. 
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Figure 7.  Incidence rate of high counts in the –ZMSE quadrant (left) and in the +ZMSE quadrant 
(right) in cylindrical coordinates. The color of each spatial bin denotes the likelihood of 
measurements taken there having greater than 70 counts of 2-15keV heavy ions. Spatial bins for 
which there were not at least 10 measurements in this quadrant appear in grey. 
 
 
 
 

 
Figure 8.  Cumulative probability distributions of 2-15keV heavy ions outside the Mars IMB for 
the nightside (a) and dayside (b). The red line shows the probability distribution of the +ZMSE 
quadrant (quarter-cylinder), and the blue line shows the distribution for the –ZMSE quadrant. The 
vertical axis shows the proportion of data packets for which the count rate exceeded the cutoff 
indicated  on the horizontal axis. The higher the cutoff, the smaller the proportion of data packets 
exceeding this threshold, causing the lines to slope down monatonically. Thin lines are 90% 
confidence windows based on counting statistics. 
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Figure 9.  2-15keV heavy ion particle flux magnititude (color) and direction (arrows). The 
coordinate system used is the equivalent of two quarter-cylinders, where data has been sorted 
into +ZMSE (top half) and –ZMSE (bottom half) quadrants before integration along curves of 
constant radiuscyl. 
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Figure 10.  Difference in magnitude of 2-15keV heavy ion particle flux. The coordinate system 
is the same as that used for Fig. 9. Flux values from the  –Zsw quadrant have been subtracted 
from flux values from the corresponding location in the +Zsw  quadrant, so that negative values 
(blue) represent locations where the mean flux was greater in the –Zsw quadrant, while positive 
values (red) represent locations where there was greater flux in the +Zsw  quadrant. 
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