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ABSTRACT 

 

An imposed magnetic field influences the flow structure and transport characteristics of a 

moving electrically conducting fluid. Such magnetohydrodynamic (MHD) flows are 

ubiquitous in nature and technological applications, for example in casting of steel and 

aluminum and growth of semiconductor crystals. In many situations, the effect of the 

magnetic field is combined with that of mean shear and occurs in the presence of transport 

of heat and admixtures. In the performed doctoral research, extensive Direct Numerical 

Simulations (DNS) are conducted for the flows of an electrically conducting fluid in a 

channel with imposed magnetic field. The cases of wall-normal, spanwise and streamwise 

orientations of the magnetic field are considered. The strength of the magnetic field varies 

in such a way that the flow transitions from fully turbulent state to slightly below the 

laminarization threshold. The main goal of the investigation is to understand the flow 

transformation and the effect of the magnetic field on the characteristics of the transport of 

a passive scalar (e.g. temperature or admixture). It is found how the magnetic field affects 

the scalar distribution and the rate the turbulent transport across the channel. In the range 

of the magnetic field strengths considered, the effect is strong in the cases of the wall-

normal and spanwise magnetic field, but weaker in the case of the streamwise field. A 

major outcome of the study is the establishment of a nearly linear dependency of the 

turbulent scalar flux of the magnetic interaction parameter (the Stuart number). One-

dimensional models, of flow field and scalar distribution with approximations of eddy 

diffusivity and eddy viscosity are developed on the basis of the computational results. 

Scalar transport and perturbation dynamics are also investigated for the channel flow with 

spanwise magnetic field for the flow regime characterized by the large-scale intermittency 

characterized by long periods of nearly laminar, nearly two-dimensional behavior 

interrupted by brief turbulent bursts.  

Keywords Magnetohydrodynamics, Turbulent Transport, Passive Scalar 
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CHAPTER I 

INTRODUCTION 

1.1 Influence of magnetic field on electrically conducting fluid  

Magnetohydrodynamics (MHD) is the theory of the macroscopic interaction between 

magnetic fields and the flow of electrically conducting non-magnetic fluids, which can be 

observed in nature as well as in industrial processes [1]. MHD is relevant for a wide range 

of physical disciplines, which include astro- and geo-physical fluid dynamics, laboratory 

and industrial applications, as well as the plasma confinement. The broad spectrum of 

MHD applications is based on the coupling between flow field and magnetic field which 

can be more or less strong. For the case of weak coupling, one of the two fields acts upon 

the other without being significantly affecting itself. One such example is industrial or 

laboratory scale flows, where magnetic field is only weakly affected by the flow of 

conducting fluid, while seriously modifying the structure and transport characteristics of 

the flow. In the case of strong coupling between the two fields, both field differs sharply 

from what they would be, either in electromagnetism or in fluid mechanics [2]. One such 

example is the dynamo effect or the expulsion of the magnetic field in geophysical and 

astrophysical context which explains the mechanism of magnetic field generation by a 

celestial body such as earth or star.  

In MHD, the basic principles of the interaction combine the principles of the classical fluid 

mechanics and electrodynamics. The interactions of a magnetic field, B and a velocity field 

u can be explained in three steps as follow [1]: 

a. The relative movement of conducting fluid and a magnetic field causes an e.m.f. 

(of the order of (|u×B|) to develop as per Faraday’s law of induction. In general, the 

electrical currents will ensue, the current density being of order σ(u×B), where σ is 
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the electrical conductivity. The induced currents produce a second, induced 

magnetic field, b, following the Ampere’s law. The total magnetic field is thus 

includes the original magnetic field plus the induced magnetic field. The change in 

flow structure is usually such that the fluid appears to ‘drag’ the magnetic field lines 

along with it. 

 

 

 

Figure 1.1: Influence of magnetic field on electrically conducting non-magnetic fluid 

b. The total magnetic field interacts with the induced current density j which give rise 

to a Lorentz force per unit volume j × B. This acts to inhibit the relative movement 

of the magnetic field and the fluid.  

 

Each unit volume of liquid having j and B experiences Lorentz Force which may lead to 

pressure drop, turbulence modifications and change in heat and mass transfer and other 

important MHD phenomena.   

The interaction results in influencing the relative movement of fluid and field. The 

magnetic field affects the flow in two different ways. First, the additional suppression of 

turbulence is caused by the induced currents via Joule dissipation. Second, the flow 

acquires anisotropy of gradients.    

B

0 
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The magnetic fields behave according to the conductivity of the medium. In resemblance 

with the hydrodynamic Reynolds number (Re) the magnetic Reynolds number is one of 

the key important dimensionless parameters in MHD which is a measure of relative 

strength of the induced magnetic field (b) in comparison with the imposed or original 

magnetic field (B). It is defined as follow: 

 

                                                         𝑅𝑚 =
𝑈𝐿

𝜆
   ,                                                          (1.1) 

 

where U and L are the characteristic velocity and length scales in the flow and 𝜆  is the 

magnetic diffusivity of the fluid given by 𝜆 =  (𝜇0𝜎)−1, 𝜇0 and 𝜎 being the magnetic 

permeability of free space and the electrical conductivity of the fluid respectively. 

For low-Rm (𝑅𝑚<<1) case, the medium is generally a poor conductor, the induced 

magnetic field in fluid motion is negligible by comparison with the imposed field. The 

interaction is dissipative in nature rather than elastic and the damping of mechanical motion 

is caused by converting the kinetic energy into heat via Joule dissipation. The current study 

focuses on low-Rm flow of MHD which involves the industrial and laboratory scale flows 

(e.g. liquid metal) rather than on high-Rm flow (𝑅𝑚) which covers geophysical or 

astrophysical MHD.    

The advection is relatively unimportant for low-𝑅𝑚  case and so the magnetic field will 

tend to relax towards a purely diffusive state which is determined by the boundary 

conditions rather than flow. The distinctive feature of low-Rm flow (𝑅𝑚<<1) is the nearly 

one-way coupling between magnetic field and the flow. The diffusive cut-off length-scale 

of the magnetic field is sufficiently large in such cases, so that the magnetic field can be 

resolved in numerical simulations. The task of modeling turbulence and scalar transport at 

smaller scales reduces to the problem of low-𝑅𝑚 turbulent transport which is addressed in 

this dissertation.  
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1.2 MHD applications 

As explained in section 1.2, the MHD application areas can be classified in terms of the 

range of Magnetic Reynolds Number (𝑅𝑚). Figure 1.2 shows some application areas of 

MHD in terms of 𝑅𝑚  range.  

 

 

Figure 1.2: MHD application in terms of Magnetic Reynolds Number, 𝑅𝑚  scale 

 

The fact that magnetic field can be successfully utilized to heat, stir or levitate fluid, or to 

control transport characteristics, produces a range of technological applications. In general, 

MHD applications can be subdivided into two areas. In one area, there are technical devices 

whose working principal is based on MHD effects, e.g. MHD pumps, MHD generator, 

plasma confinement in fusion reactors [3]. The second area involves industrial production 

processes which may be optimized or controlled using MHD effects, e.g. transport control 

Earth Dynamo 
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by MHD in fusion blankets, continuous steel casting, crystal growth devices, levitation 

melting etc.  

Industrial or engineering applications of MHD began late by around the 1960s. It started 

due to the need to pump liquid Sodium that was used as a coolant in fast breeder reactors 

and to enable confining plasma which was necessary to perform controlled thermonuclear 

fusion for power generation. Subsequently, in 1970s, many traditional processes related to 

metal casting were revisited and were modified/replaced in ways that involved utilizing 

magnetic fields to improve process efficiency and product quality [4]. Continuous casting 

of steel also started during the same time. As a result, pumping of liquid metal using 

electromagnetic pumps, stirring of molten metal using rotating magnetic fields during the 

casting process to obtain better and homogenous ingots, damping of molten metal flow 

using static magnetic fields to prevent surface contamination occurring due to entrainment, 

and magnetic levitation to  melt highly reactive metals like Titanium, have become some 

of the common processes in the metallurgical industry that take advantage of 

magnetohydrodynamic phenomena. Controlled silicon crystal growth using magnetic 

fields [5] and non-intrusive flow measurement techniques are a few more applications of 

recent interest. Currently, the engineering applications of MHD are myriad and it is 

possible to mention only a few important ones here for reasons of brevity.   

 

1.2.1 Electromagnetic Braking in Continuous Steel Casting 

A process of particular interest relevant to the scopes of the current study is the continuous 

casting of steel. Steel is widely used engineering material with strong prevalence in 

automotive industries in automotive body structure. Steelmaking is a sophisticated high 

tech process in which technological advancement plays a crucial role.   Several challenges 

are encountered in production of high quality steel due to the flow fluctuations in molten 

steel as follow: 
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• Porosity: Oxidation process introduces entrapment of hot gases in liquid steel 

which must be released during cooling process to avoid the problem of porosity in 

steel. Effective mixing is required to encounter the problem.  

• Grain Structure: Flow fluctuation in liquid steel prevents it become desired fine-

grained structure due to the formation of separate crystals with boundaries.  

• Slag: Slag forms as a layer of oxidized impurities on top of liquid steel which can 

reduce material properties if remains in metal. It must be kept separate from metal.     

The above-mentioned challenges during casting process significantly affect the quality of 

the product. In the process of steel casting, liquid steel is continuously supplied to a water 

cooled copper mold through a submerged inlet pipe. Recirculation is created in the mold 

due to the strong momentum of injected liquid steel which induces entrapment of particles 

and impurities. Another potentially drawback feature of the process is the impingement of 

feeding jets into the solidifying shell, which can produce a ‘hot spot’, shell erosion or even 

breakdown. Both problems can be alleviated by actively controlling the flow of the molten 

steel using the so-called EMBR (Electro-Magnetic BRaking) device [2]. An intense (0.1 to 

0.5 T) static magnetic field is imposed to suppress the turbulent feeding jet and to damp 

turbulent eddies. The primary effect of the magnetic field is to brake the mean flow; the 

motion of the fluid through the magnetic field induces Lorentz forces, which tend to 

counteract the motion perpendicular to the magnetic field. Another effect is magnetic 

dissipation of turbulence, or joule dissipation, which reduces the turbulent transport of heat 

and momentum. Figure 1.3 shows the effect of a localized magnetic field on the mean flow 

in the mold [6]. The momentum of inlet jet is reduced and redirected. The penetration depth 

of the jet is thus considerably reduced, as is the entrapment of oxide particles and gas 

bubbles. The meniscus, i.e. the near-wall interface between liquid steel and the slag layer, 

will be calmer and the surface temperature higher. Because of the increased stability, the 

process often leads to a substantial reduction of cracks in the surface of the product.   
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Figure 1.3: Outline of flow field and transport of inclusions in continuous slab casting. Left 

side of the figure is showing conventional casting without magnetic braking and right side 

is showing an electromagnetic brake (EMBR) has been applied to brake the momentum of 

the inlet jet [6] 

Experimental investigations on continuous steel casting and EMBR are difficult to perform 

due to the existence of harsh operating conditions and shear limitations in measurement 

techniques. Numerical flow simulation is used by the manufacturer of the magnetic brake 

for casting process optimization in regard to the performance specifications [7, 8, 9]. In 

simulating turbulent flows, the main approach used as to solve equations for mean 

velocities, mean temperatures etc. The effects of the turbulent fluctuations on the mean 

flow are accounted by considering model equations for statistical quantities. Common 

quantities used in turbulence models are the kinetic energy of the turbulence and quantities 

related to length scale and time scales or time scales of the largest turbulent eddies which 

are main features for most of the turbulent transport. Commercial numerical flow solvers 

can be extended to include the effect of the magnetic field on the mean flow but the effect 

of the magnetic field on turbulence is very difficult to incorporate [6]. In general, 
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conventional turbulence model cannot capture the turbulence structures elongated in the 

direction of the magnetic field which are very important for a correct description of Joule 

dissipation of turbulence.    

1.2.2 Crystal growth by Czochralsky Method 

Another example of low-Rm MHD application is the growth of large silicon crystals by 

Czochralsky method, where magnetic fields are used to achieve better quality of the crystal 

growth through suppression of undesired fluctuations of temperature and admixture 

concentration and establishing favorable temperature gradient near the solidification 

surface. The electromagnetic control is considered critical for the current industry 

transition to larger (d~300-400 mm) crystals [10].  

   

 

Figure 1.4: Crystal growth [10] 

1.2.3 Fusion enabling technology 

Liquid metal (Li or Li, Pb) cooling and breeding blankets for future nuclear fusion reactors 

have applications for the principle of low-Rm MHD flow.  
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                                            Figure 1.5: Fusion reactor (www.iter.org) 

Strong magnetic fields generated in the reactor penetrates blanket and dramatically change 

the flow structure creating yet unsolved problems of sharp increase of the flow resistance, 

suppression of turbulence and associated reduction of heat and admixture transport.   

1.3 Importance of fundamental understandings of low-Rm MHD  

In all technological applications, magnetic field directly affect the rate of energy 

consumption and environmental impact. Considering the production volume and the rate 

played by these technologies in the economy, the ultimate effect of even small 

technological improvements is difficult to overestimate. For example, in steel casting, the 

magnetic field control leads to more reliable quality of the product and consequently, 

reduce the impact on environmental and energy consumptions through by avoiding extra 

grinding, oxidizing or treating operations. In the Aluminum production, better 

understanding and accurate modeling of the melt flows and interface instability have been 

identified as a high priority task face by the industry [11]. The potential benefits achievable 

through redesigning existing cell lines and optimizing new designs include nationwide 

annual energy savings up to 20TWh and strong reduction or even complete elimination of 

emission of PFC (perfluorocarbon) gases, currently at the level of 10Tg Eq (teragram 

equivalent) per year. As a result, solving the problem of reducing flow resistance and 

enhancing heat and admixture transport in breeding blankets is recognized as the key to the 

energy efficiency of the future fusion reactors.  
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Some of the discussed technologies in section 1.2, for example, EMBR or Hall-Heroult 

electrolysis are well established. The others, such as the use of magnetic fields in crystal 

growth, are in the stage of development and early applications, while yet others such as the 

fusion reactor blankets are currently non-existent.  The role of magnetic field and the 

resultant flow field interactions in all the technological applications are far from being fully 

understood. A case of example is EMBR which has been in mass production for more than 

two decades. EMBR devices are prone to undesirable effects upon installation. Sometimes, 

the imposed magnetic field increases the heat transfer toward the mold wall and enhances 

the hot spot effect instead of suppressing it.  

1.4 Background and Motivation for the doctoral work 

Since the inception in 1930, the liquid metal MHD has been studied in different aspects 

and perspectives. However, understanding of MHD flows is far from complete and 

generally, lays significantly behind the understanding achieved in classical non-magnetic 

hydrodynamics. The scarcity of reliable experimental data attributed to the non-transparent 

liquids such as liquid metal or oxide melts in which practical flow field observation is 

impossible to achieve. Recent advancement in measurement techniques, such as ultrasound 

velocimetry, inductive tomography etc. made some improvement in experimental findings. 

However, significant challenges remain to comprehend the understanding of flow physics, 

transport phenomena and application specific ambiguities on how an imposed magnetic 

field influences the flow of an electrically conducting fluid.  

The broad topic of the current study is the effects of the magnetic field on turbulence and 

passive scalar transport in channel. Such wall-bounded flows are nearly ubiquitous in 

technological MHD, and therefore, are of practical importance. Technological MHD flows 

are found in a transitional laminar-to-turbulent case or magnetic field suppresses turbulence 

and instabilities. Even though the Reynolds number is typically large, a magnetic field can 

lead to laminarization or to transformation into a weakly turbulent state. The effect of the 

magnetic field on transport of scalars (admixture concentrations or heat) is critical for many 

technological applications. In some of them, such as continuous casting or crystal growth, 
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the magnetic field is applied intentionally to control the transport, while in others, most 

prominently in blankets for fusion reactors, the suppressive effect of the magnetic field is 

undesirable and must be rectified. The configuration of a channel flow in a uniform 

transverse magnetic field chosen for the present study represents the quintessence of MHD 

flows. At the same time, the configuration is sufficiently simple and well-defined to be 

appropriate for a study of the fundamental features of the flow-field interactions.  

1.4.1 Basic features of wall-bounded MHD flows 

The basic principles of interaction between the imposed magnetic field and the flow are 

relatively well understood in wall-bounded flow [1-3, 12-14]. Far from walls, the main 

effect is two-fold. In first instance, the induced electric currents result in Joule dissipation, 

which serves as an additional mechanism of conversation of kinetic energy of the flow into 

heat; i.e. of flow suppression. Secondly, the flow becomes anisotropic. The magnetic field 

tends to eliminate velocity gradients and elongate flow structures in the direction of the 

magnetic field lines. In the limit of strong field, the flow approaches two-dimensional form 

with all variables uniform in the direction of the magnetic field. The anisotropy leads to 

suppression of nonlinear energy transfer to small length scales. A sufficiently strong 

magnetic field can laminerize the flow. It can be stressed out that only anisotropy of 

gradients is directly created by the magnetic field. Non-uniformity of amplitudes of 

velocity components (anisotropy of the Reynold stress tensor) is often generated in MHD 

flows, but indirectly and in the form that strongly depends on the nature of the flow.  

1.4.2 Large Scale Intermittency 

The intermittency phenomena is a unique flow regime in MHD which was discovered for 

forced homogenous turbulence in [13] and later found in an ideal flow within tri-axial 

ellipsoid [14] and a channel flow in a spanwise magnetic field [15]. In a range of 

intermediate values of magnetic interaction parameter which is a measure of magnetic field 

strength, the flows develop global intermittency, in which periods of slow nearly two-

dimensional and nearly laminar evolution of alternate with three-dimensional turbulent 
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bursts. The mechanism which leads to intermittency is explained in detail in the literature 

review section (section 5.1) of Chapter 5. The intermittency is universal in nature in 

realistic MHD flow, for example in a steel casting mold or as a small-scale feature of 

turbulent dynamo. In the current study, the intermittency is explored in broad scopes of 

energy spectrum and integral transport characteristics since such intermittent flow can 

affect the homogeneity of the end product of engineering scale flow greatly as it alters 

between different energy states and structures. The results of the current study on 

intermittency are presented in Chapter 5.  

1.4.3 Duct flow as an archetypal MHD flow 

A rectangular duct in the presence of a transverse magnetic field is an archetypal case of 

liquid metal MHD. In this role, the place occupied by the duct flow in MHD is much more 

prominent than the place of its non-magnetic counterpart in hydrodynamics. In fact, the 

pioneering study of the duct flow [16] is considered by many a starting point of the 

discipline. Importance of the MHD duct flow stems from the fact that, albeit simple, the 

configuration incorporates the main features of technological liquid metal flows: magnetic 

suppression and anisotropy, strong mean shear and characteristics MHD boundary layers. 

At a sufficiently strong magnetic field, the flow develops flat core. The mean shear and 

thus, potential for instability and turbulence are limited to the boundary layers. They 

develop as a result of interaction between the driving force (pressure gradient), viscous or 

turbulent momentum transfer, and the Lorentz force. The latter is defined by the 

distribution of electric currents, which, in turn, is determined by the flow and electric 

properties of the walls and the liquid.  

Two types of MHD boundary layers are recognized [3, 17]. The Hartmann layers appears 

at the walls perpendicular to the magnetic field and have thickness 𝛿~𝐿/𝐻𝑎, where L is 

the duct width along the magnetic field. This has profound consequences for flows with 

high values of magnetic field strength, for example, in fusion reactor blankets. Strong shear 

within the Hartmann layers results in drag resistance and renders the designs concepts with 

large lithium flow rate highly problematic. The sidewall layers develop at the walls parallel 
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to the magnetic field. Their thickness is ~𝐿/𝐻𝑎1/2. The flow structure within the sidewall 

layers varies with wall conductance. In many cases, for example when all four walls are 

perfectly conducting and perfectly insulating, the profile follows usual boundary layer 

pattern, with velocity monotonously decreasing from the value of the core flow to zero. 

There are special cases, in particular, a duct with conducting Hartmann walls and insulating 

sidewalls, in which the sidewall layers are characterized by jet-like behavior and carry a 

large part of the flow rate [3, 17].  

1.4.4 Numerical Simulation of MHD Flows in channel 

In the current work, influence of imposed magnetic field on channel geometry is studied 

with respect to turbulence and passive scalar transport. A comprehensive literature review 

is done with regards to the scope of the current work. In Chapter 3, 4, 5 and 6, the reviews 

are presented in detail. In this section, a brief overview of the prior works is highlighted.  

The first paper which is written by Hartmann [18] about the influence of imposed magnetic 

field in wall-normal direction of a channel, presents analytical solution of laminar flow. It 

is shown for the first time that a sufficiently strong magnetic field profoundly changes the 

velocity field [19]. DNS of flow in a channel to study the effect of magnetic field 

orientation on the pressure drop is conducted by Lee and Choi [20]. Magnetic field 

orientations of sreamwise, wall-normal and span-wise directions are considered in the 

study. Increased drag in wall-normal direction of magnetic field is found due to the 

Hartmann effect. Large Eddy Simulation (LES) in a channel flow under a wall normal 

magnetic field is performed by Kobayashi [21]. Results with a Coherent Structure 

Smagorinsky Model (CSM) are compared with those using the Smagorinsky Model (SM) 

and Dynamic Smagorinsky Model (DSM). Satake, Kunugi, Kazuyuki and Yasuo [22] 

presents Direct Numerical Simulation (DNS) results of the effect of magnetic field on wall 

bounded turbulence in a channel at a high Reynolds Number of 45818 and Hartmann 

numbers (Dimensionless Number presenting strength of the magnetic field defined in 

Chapter 2) of 32.5 and 65. A uniform magnetic field is applied normal to the wall and 

various turbulence quantities were analyzed. Large scale structures are found to decrease 
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in the core of the channel. Therefore, the difference between production and dissipation in 

the turbulent kinetic energy are found to decrease upon increase of Hartmann number in 

the central region of the channel. Boeck et al [23] performs DNS studies of the effect of 

the wall normal magnetic field on a turbulent flow in a channel at different Reynolds and 

Hartmann numbers. The three-layer near wall structure consisting of viscous region, 

logarithmic layer and plateau are reported at higher Hartmann numbers. These structures 

are reported signifying the importance of viscous, turbulent and electromagnetic stresses 

on the streamwise momentum equation. The turbulent stresses were found decaying more 

rapidly away from the wall than predicted by mixing-length models. Noguchi and Kasagi 

[24] also conducts the DNS in MHD channel flow under transverse magnetic field at  

Reτ =150 and Ha=6.  

Krasnov et al. [25] performs DNS and LES in a channel flow under span-wise magnetic 

field at two Reynolds numbers (10,000 and 20,000) and Hartmann numbers varying over 

a wide range. The main effect of the magnetic field is observed in turbulence suppression 

and reduction in the momentum transfer in the wall normal direction. The centerline 

velocity increases while the mean velocity gradient close to wall reduces and thus reducing 

the drag. The coherent structures are found to be enlarged in the horizontal direction upon 

increasing the Hartmann number. From comparison of LES with the DNS, the dynamic 

Smagorinsky model is found to reproduce the changes in the flow more accurately. 

Yamamoto et al. [26] performs DNS on fully developed turbulent channel flow with 

imposed magnetic field on wall-normal direction. High and low Prandtl number conditions 

(Pr = 5.25 and 0.025, respectively) are evaluated. MHD effect on heat transfer degradation 

is found to be larger for high magnetic interaction parameter ranges. A new correlation is 

suggested for the MHD heat transfer in case of high Prandtl number fluid (Pr =5.25).   

 

1.5 Objectives 

The focus of the current doctoral research is on transport of a passive scalar (temperature 

or concentration of an admixture) in low magnetic Reynolds number (𝑅𝑚) flow in 

channels. Since low-𝑅𝑚 and low-Prm (Prandtl Number) magnetohydrodynamic flow forms 
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the basis of important industrial technological applications (e.g. continuous steel casting, 

crystal growth), fundamental understandings of transport characteristics are of great 

importance to produce successful application.   

Different orientations of an imposed magnetic field with varying magnetic field strength 

configurations are considered for the flow of an electrically conducting fluid and resultant 

scalar transport which have never been analyzed before. Through the analysis with high-

resolution numerical simulations, following pressing questions are attempted to be 

addressed:  

 

• What is the effect of imposed magnetic field on turbulent scalar-transport in 

Channel flow? 

 

-The question includes multiple questions related to the specific effect produced by 

the magnetic field, namely suppression or enhancement of transport, development 

of coherent structure, combined effect of magnetic field and mean shear, etc. In 

addressing the questions, the scalar field introduced via imposed mean gradients at 

various orientations of magnetic field is considered. The objective is to identify and 

understand the main features of the MHD flow transformation affecting the scalar 

transport.   

 

• How does the large-scale intermittency between 2D laminar and 3D turbulent 

regime affect the passive scalar transport? 

 

- Large scale intermittency is a regime observed in flows of electrically conducting 

fluids (i.e. liquid metal) in the presence of the imposed magnetic field. It is 

characterized by flow experiencing long periods of nearly laminar, nearly two-

dimensional flow interrupted by violent three-dimensional bursts [15]. The proposed 

doctoral study aims to investigate the intermittency phenomena in the case of a 

channel flow with span-wise magnetic field. The study also focuses on transport 
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properties of the flow, distribution of the perturbation energy between mean flow and 

fluctuations and the effect of the strength of the magnetic field.  

 

• 1D modeling of Eddy viscosity and diffusivity for Magnetohydrodynamic Channel 

flow. 

-For a fully developed 1D MHD flow with an imposed magnetic field in wall-

normal direction, the current study develops correlation for eddy viscosity and 

diffusivity based on the direct numerical simulation (DNS) results.  

 

1.6 Outline of the Thesis 

In the next chapter, formulation of the problem and numerical models representing the 

doctoral study have been discussed. The MHD equations in non-dimensional forms with 

non-relativistic MHD approximation and scalar transport equation have been presented for 

different orientations of the magnetic field. The boundary conditions, numerical scheme 

and solver methodologies are discussed.  

In Chapters III and IV, the results for the turbulent flow structure and scalar transport with 

different orientation of the magnetic fields are presented. In Chapter V, the intermittency 

phenomenon for the case of a channel flow with span-wise magnetic field and the related 

scalar transport characteristics are discussed. Finally, in Chapter VI, approximate 1D 

models for eddy viscosity and eddy diffusivity for fully developed flow are presented.  
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CHAPTER II 

GOVERNING EQUATIONS AND MODELS 

2.1 Physical Models 

2.1.1 Basic Laws 

The mathematical equations describing Magnetohydrodynamic (MHD) flows combine 

conventional hydrodynamic equations with electrodynamic equations. The system of 

equation is comprised of conservation of mass, conservation of linear momentum i.e. 

Navier-Stokes equations with additional Lorentz force term and Maxwell’s equations 

describing the electro-magnetic effects.  

The flow of an incompressible electrically conducting fluid (e.g. liquid metal) subjected to 

an imposed uniform constant magnetic field 𝑩 in a channel is considered. The conservation 

of mass is represented by (2.1), where 𝒖 is the velocity field. In the conservation of 

momentum (2.2), 𝑷 is the pressure field, 𝑭𝑳 is the Lorentz force, ρ and 𝜐 are the density 

and kinematic viscosity of the liquid metal respectively.  

 

                      Conservation of mass        ∇. 𝒖 = 𝟎                                                         (2.1)        

      Conservation of Momentum  
𝜕𝒖

𝜕𝑡
+ (𝒖. ∇)𝒖 = −

𝟏

𝝆
∇𝑷 + 𝜐∇𝟐𝒖 + 𝑭𝑳                       (2.2) 

The transport of a passive (not affecting the flow) scalar (temperature or concentration of 

an admixture) is also considered. The transport equation of passive scalar is expressed by 

(2.3) where 𝜃 is the passive scalar, 𝜒 is diffusivity of scalar, which is 𝜐/𝑃𝑟 for temperature 

and 𝜐/𝑆𝑐 (Pr is Prandtl number of the fluid, 𝜐 kinematic viscosity and Sc is Schmidt 

Number) for mass transport.   
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Passive scalar transport equation                 
𝜕𝜃

𝜕𝑡
+ 𝒖. ∇𝜃 = 𝜒∇2𝜃                                                      (2.3) 

The Maxwell’s equations describing the electromagnetic effects are:               

                                          Gauss’s Law            𝛻. 𝑬 =
𝜌𝑒

𝜖0
                                              (2.4) 

        Solenoidal nature of magnetic field         𝛻. 𝑩 =  0                                               (2.5) 

           Faraday’s law in differential form         𝛻 × 𝑬 = −
𝜕𝐵

𝜕𝑡
                                      (2.6) 

  Ampere-Maxwell equation         𝛻 × 𝑩 =  𝜇0𝑱 +  𝜇0𝜖0
𝜕𝐸

𝜕𝑡
                                        (2.7) 

In the above-mentioned equations, 𝜖0 is the electric constant (also called the permittivity 

of free space), µ0 is the magnetic constant (also called the permeability of free space), σ is 

the electrical conductivity, treated here as a constant, ρe is the charge density, 𝑱 is the 

electric current density, E and B are the electric and magnetic fields. The MHD 

electrodynamic equations are simplified from the Maxwell’s equations (2.4)-(2.7), charge 

conservation (2.8), Ohm’s law (2.9) and Lorentz force (2.10) 

                           Charge conservation            𝛻. 𝑱 = −
𝜕𝜌𝑒

𝜕𝑡
                                            (2.8) 

                           Ohm’s law                 𝑱 = 𝜎(𝑬 +  𝑢 ×  𝑩)                                          (2.9) 

                      Lorentz Force                 𝑭𝑳 =  𝑱 ×  𝑩                                                   (2.10) 

In MHD, the charge density ρe is considered immaterial. It is assumed that the positive and 

negative charges are equilibrated on the time scale relative to the speed of light, i.e. 

practically immediately in comparison to the typical time scale of the flow. As such, 

Gauss’s law is dropped and the charge conservation equation (2.8) is reduced to equation 

(2.11). Also, in MHD, the displacement currents are negligible compared to the current 

density 𝑱, therefore, Ampere-Maxwell equation (2.7) reduces to equation (2.12). The MHD 

equations become (2.11) to (2.16). Detailed derivations can be found in many textbooks 

including [1] and [27].  
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                                                             𝛻. 𝑱 =  0                                                           (2.11) 

                                                    𝛻 × 𝑩 =  𝜇0𝐽                                                            (2.12) 

                                                    𝛻 × 𝑬 =  −
𝜕𝐵

𝜕𝑡
                                                           (2.13) 

                                                     𝛻. 𝑩 =  0                                                                  (2.14) 

                                                 𝑱 = 𝜎(𝑬 +  𝑢 ×  𝑩)                                                                     (2.15) 

                                                           𝑭𝑳 = 𝑱 ×  𝑩                                                       (2.16) 

2.1.2 MHD Quasi-Static approximation  

An imposed steady magnetic field 𝑩𝟎 applied to the flow of an electrically conducting fluid 

in a channel is considered in the current study. The electric current induced in the flow 

𝑱𝟎~𝜎𝒖 × 𝑩𝟎 generates additional magnetic field 𝒃. The total field, 𝑩 = 𝑩𝟎 + 𝒃 satisfies 

the MHD equations in section 2.1.1. The can be simplified using the Quasi-Static 

approximation for the case of laboratory and industrial flow of liquid metals. The 

approximation has been derived theoretically [1] and verified experimentally.  

In explaining the Quasi-Static approximation, two dimensionless parameters are defined in 

MHD. The first parameter is the magnetic Reynolds number, which is expressed as,  

                                                                                  𝑅𝑚 = 𝑢𝑙/𝜆 = 𝜇𝜎𝑢𝑙                                                    (2.17)           

The magnetic Reynolds number defines the ratio of advection to diffusion in a magnetic 

field. U and L are the typical velocity and length scale of the flow. The magnetic Prandtl 

number is defined as 

                                                                                 𝑃𝑟𝑚 = 𝜐/𝜆                                                                  (2.18)           

Where ν is the kinematic viscosity of the fluid and 𝜆 = 1/(𝜎𝜇0) is the magnetic diffusivity. 

σ and µ0 are the electric conductivity of the fluid and the magnetic permittivity of vacuum. 

For almost all technological and laboratory flows of liquid metal including the flows in the 
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continuous steel casting and liquid metal blankets of the fusion reactors, the magnetic 

Reynolds number and magnetic Prandtl number are both significantly small 

 

                                                                                 𝑅𝑚 ≪  1  ,                                                                     (2.19)       

                                                                            𝑃𝑟𝑚 ≪  1  .                                                                      (2.20)       

 

In such cases, the magnetic field 𝒃 associated with induced currents, 𝑱𝟎~𝜎𝒖 × 𝑩𝟎, is 

negligible compared to the imposed magnetic field 𝑩𝟎. In another way, it can be 

approximated that 𝒃 adjusts instantaneously to changes of the flow velocity. As such, 

diffusion of the magnetic field dominates its advection, and the two-way coupling between 

the fluid motion and the magnetic field is reduced to the one-way effect of the magnetic 

field on the flow. The Lorentz force and Ohm’s law are reduced as: 

 

                                                                              𝑭𝑳 = 𝑱 × (𝑩𝟎 + 𝒃) ≈ 𝑱 × 𝑩𝟎                                     (2.21)     

 

                                                                               𝑱 ≈ 𝜎(𝑬𝟎 + 𝒖 × 𝑩𝟎)                                                  (2.22)     

 

The imposed steady magnetic field is represented by 𝑩𝟎 and as the induced magnetic field 

𝒃 is ignored, 𝑩𝟎 is replaced with 𝑩. The electric field E is irrotational (see (2.13)) and can 

be represented by −∇𝜑, where 𝜑 is the electric potential. Combining with conservation of 

current equation ∇. 𝑱 = 0, the current 𝑱 can be uniquely determined as 

 

                                              𝑱 ≈ 𝜎(−∇𝜑 + 𝒖 × 𝑩)                                   (2.23) 

 

with the potential 𝜑 being the solution of the Poisson equation 

 

                                                                             ∇2𝜑 = ∇. (𝒖 × 𝑩) .                                                      (2.24)     
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2.1.3 Flow configuration and governing equations 

A fully developed turbulent flow of an incompressible electrically conducting fluid in a 

plane channel with electrically perfectly insulating walls is considered in the current study. 

The flow is driven by an imposed streamwise pressure gradient. A uniform constant 

magnetic field 𝑩 is imposed in the wall-normal (z), spanwise (y) or streamwise (x) 

direction as depicted in figure (2.1).  

 

     

 

Figure 2.1: Channel flow configuration with different orientations of magnetic field 

 

The quasi-static MHD approximation introduced in section 2.1.2 is assumed to be valid for 

the electromagnetic part of the model. The system of governing equation reduces to the 

Navier-Stokes equation with the additional Lorentz force term expressed in equation (2.2) 

and (2.16), the incompressibility condition (2.1), the Ohm’s law for the induced electric 

current (2.23), the equation for the electric potential expressing the constrain of charge 

conservation (2.24) and the equation for the transport of passive scalar (2.3). The system 

of equations is summarized below.                                                                                                                                                      

 

                                              
𝜕𝒖

𝜕𝑡
+ (𝒖. ∇)𝒖 = −

𝟏

𝝆
∇𝑷 + 𝜐∇𝟐𝒖 +  𝑱 ×  𝑩                     (2.25) 

                                                       ∇. 𝒖 = 𝟎                                                                 (2.26) 

                                                       𝑱 = 𝜎(−𝛁𝜑 + 𝒖 × 𝑩)                                           (2.27) 
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                                                                               ∇2𝜑 = ∇. (𝒖 × 𝑩)                                                      (2.28)     

 

                                                    
𝜕𝜃

𝜕𝑡
+ 𝒖. ∇𝜃 = 𝜆∇2𝜃                                                   (2.29)                               

 

In order to non-dimensionalize the equations (2.25) to (2.29), the channel half-width of the 

duct L as the typical length scale, mean velocity U as the velocity scale, 𝜌𝑈2 as the pressure 

scale, the imposed magnetic field strength B as the magnetic field scale, the combination 

parameter U, LB as the electric potential, 𝜎𝑈𝐵 as the scale for current density and the scalar 

difference between the walls as the scale for the scalar field are used.  The equations in 

non-dimensional form are: 

 

                                          
𝜕𝒖

𝜕𝑡
+ (𝒖. ∇)𝒖 = −∇𝒑 +

1

𝑅𝑒
∇𝟐𝒖 +  𝑵(𝒋 × 𝒆𝑩)                    (2.30) 

                                                       ∇. 𝒖 = 𝟎                                                                 (2.31) 

                                                       𝑱 = 𝜎(−𝛁𝜑 + 𝒖 × 𝑩)                                           (2.32) 

 

                                                                            ∇2𝜑 = ∇. (𝒖 × 𝒆𝑩)                                                      (2.33)     

 

                                              
𝜕𝜃

𝜕𝑡
+ 𝒖. ∇𝜃 =

1

𝑃𝑟𝑅𝑒
∇2𝜃                                                   (2.34)                               

 

Where u = (u,v,w), p, 𝜃, j and φ are, velocity, pressure, passive scalar, current density and 

electric potential fields respectively. The unit vector 𝒆𝑩 indicates the direction of the 

magnetic field.   

The non-dimensional parameters are the Reynolds number 

 

 

                                                          𝑅𝑒 ≡
𝑈𝐿

𝜐
                                                              (2.35)                 
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The Prandtl number 

 

                                                      𝑃𝑟 ≡
𝜐

𝜒
                                                                    (2.36)                 

 

Where 𝜒 is the scalar diffusivity 

 

and either the Hartmann number 

 

                                       𝐻𝑎 ≡ 𝐵𝐿 (
𝜎

𝜌𝜐
)

1/2

                                                                   (2.37)                 

 

Or the magnetic interaction parameter 

 

                                             𝑁 ≡
𝐻𝑎2

𝑅𝑒
=

𝜎𝐵2𝐿

𝜌𝑈
                                                              (2.38)                 

 

which represents the relative importance of the Lorentz and inertial forces and can be 

viewed as a measure of the strength of the effect of the magnetic field on the flow. Large 

Stuart number means that the effect of the Lorentz force is strong and rapid. In most of the 

cases presented in the dissertation, the Stuart number is not small, thus the velocity field 

can be assumed transformed by the Lorentz force substantially. 

 

2.2 Boundary conditions 

The boundary condition in the streamwise and spanwise directions involve periodicity of 

the electric potential φ, velocity 𝑢, scalar fluctuations 𝜃 and pressure 𝑝 at x = 0, L (L is the 

length of the channel). The channel walls are assumed to be perfectly electrically 

insulating, impermeable and allowing no slip of velocity, and maintained at constant values 

of the scalar. The non-dimensional form of the boundary conditions is: 
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                                          𝑢 = 0 𝑎𝑡 𝑧 = ±1                                                               (2.39)                 

 

                                         
𝜕𝜑

𝜕𝑛
= 0 𝑎𝑡 𝑧 = ±1                                                               (2.40)                 

 

                  𝜃 = 1 𝑎𝑡 𝑧 = −1, 𝜃 = 0 𝑎𝑡 𝑧 = 1                                                              (2.41)                 

 

The flow is driven by an imposed uniform streamwise gradient of mean pressure (not 

shown in equation (2.25) which is adjusted after time step to maintain the non-dimensional 

mean streamwise velocity equal to 1. Another integral requirement imposed in the solution 

is that of zero total electric current in the computational domain: 

 

 

                                                      ∫ 𝒋 𝑑𝑥 = 0                                                              (2.42)                 

 

2.3 Numerical method and discretization Scheme 

Numerical methods used in the current study are described here. The discussion concerns 

the time and space discretization scheme as well as parameters and grids used in the 

simulations.  

  

2.3.1 General Features 

The works presented in Chapter III-V have been carried out conducting Direct Numerical 

Simulation (DNS) using the updated version of the numerical method described as the 

scheme B in Krasnov et al. [28]. The pressure field is computed using the standard 

projection method, so that the velocity field satisfies the incompressibility condition. The 

time integration scheme is of the second order and based on the backward differentiation-

Adam-Bashfort discretization scheme. Two Poisson equations: the projection method 

equation for pressure (2.47) and electric potential equation (2.43) are solved at every time 



25 

 

step using FFT in the stream-wise direction and the cyclic reduction solver in the y-z plane.  

Each time step includes the following substeps: from time 𝑡𝑛 to 𝑡𝑛+1 = 𝑡𝑛 + ∆𝑡 

 

 

1. The electric potential equation is solved as: 

 

                   ∇2𝜑𝑛 = ∇. (𝒖𝑛 × 𝒆)                                                                      (2.43) 

 

2. The electric current is computed as: 

 

                     𝒋𝑛 = −∇𝜑𝑛 + (𝒖𝑛 × 𝒆)                                                                          (2.44) 

 

3. The right-hand side of the Navier-Stokes equation is computed explicitly as: 

 

𝑭𝑛 = −(𝒖𝑛. ∇)𝒖𝑛 +
1

𝑅𝑒
∇2𝒖𝑛 + 𝑁(𝒋𝑛 × 𝒆)                                                     (2.45)  

 

4.    The intermediate velocity 𝒖∗ is calculated as: 

 

3𝒖∗−4𝒖𝑛+𝒖𝒏−𝟏

2∆𝑡
= 2𝑭𝑛 − 𝑭𝑛−1                                                   (2.46) 

 

5. The pressure equation is solved as: 

 

                                  ∇. (∇𝑝𝑛+1) = ∇2𝑝𝑛+1 =
3

2∆𝑡
∇. 𝒖∗                                  (2.47)                                  

 

6. The pressure correction is added to restore the solenoidality of the velocity field as: 

 

                                𝒖𝑛+1 = 𝒖∗ −
2

3
∆𝑡∇𝑝𝑛+1                                                   (2.48) 
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7. Solving the scalar transport equation for scalar: 

        

       
3𝜃𝑛+1−4𝜃𝑛+ 𝜃𝑛−1

2∆𝑡
=

1

𝑃𝑟𝑅𝑒
𝛻2𝜃𝑛+1 + 2𝑃𝑛 − 2𝑃𝑛−1                                     (2.49) 

 

Where 𝑃𝑛 = −𝛻𝜃𝑛𝒖𝑛.  

 

2.3.2 Computational grid and spatial discretization 

The spatial discretization is based on the finite-difference scheme of the second-order. The 

scheme is fully conservative in regard to mass, momentum, energy, scalar and electric 

charge conservation. The only deviation from the local conservation principle is for kinetic 

energy for which the error is of the third order and dissipative and such does not affect the 

accuracy and stability of the scheme [29]. The discretized computational grid is clustered 

in the wall-normal direction to provide adequate numerical resolution of the MHD 

boundary layer. The discretization is conducted on a non-uniform grid clustered toward the 

walls of the channel according to: 

 

𝑦 =
𝑡𝑎𝑛 ℎ(𝐴𝑦𝜂)

𝑡𝑎𝑛 ℎ(𝐴𝑦)
,   𝑧 =

𝑡𝑎𝑛 ℎ(𝐴𝑧𝜉)

𝑡𝑎𝑛 ℎ(𝐴𝑧)
 ,                                                    (2.50) 

 or 

 𝑦 =  𝐶𝑦 𝑠𝑖𝑛(𝜋𝜉/2) + (1 − 𝐶𝑦)𝜉, 𝑧 =  𝐶𝑧 𝑠𝑖𝑛(𝜋𝜂/2) + (1 − 𝐶𝑧)𝜂.                         (2.51)   

 

where  −1 ≤ 𝜉 ≤  1  and −1 ≤ 𝜂 ≤  1 are the transformed coordinates, in which the grid 

is uniform. The stretching coefficients 𝐴𝑦, 𝐴𝑧 determine the degrees of near-wall clustering 

in (2.50). In (2.51), 𝐶𝑦 and 𝐶𝑧 are the blending coefficients of the Chebyshev and identity 

transformations. The values 𝐶𝑦 = 𝐶𝑧 = 0.96 are typically used. 
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2.3.3 Solution treatment of Poisson equations 

Periodicity in streamwise direction for the channel flow is considered as an approximation 

for flow homogeneity. As such, the Poisson equations (Pressure and electric potential) are 

solved using the method described in [28] which uses the FFT transform in the periodic 

coordinate. The two-dimensional Poisson equations for the Fourier coefficient are written 

in terms of the transformed coefficient as general separable elliptic PDEs. Central 

difference of second order has been used to discretize the equations and solved by the cyclic 

reduction direct solver in the y-z plane which is a part of software package Fishpack [30].  

 

2.3.4 Space discretization 

The discretization has been conducted directly on the non-uniform grid in the physical 

coordinates. The collocated grid arrangement is used for the solution variables u, p, j and 

φ, which are all stored at the same grid points. The equations (2.43)-(2.49) are also 

approximated at these points. In collocated grid arrangement, the intermediate velocity 

(2.46) and current fluxes (2.44) are all computed at half-integer grid points located midway 

between the regular grid points in a staggered arrangement shown in figure 2.2 below. The 

collocated grid arrangement for the proposed scheme is considered as finite difference to 

advance the solution.  
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Figure 2.2: Collocated grid arrangement for discretized solution variables (source: [28]) 

The first order derivatives are approximated by the following discretization formula: 

 

 At regular grid points:    
δ2𝑓

∆δ2𝑥
|

𝑥𝑖

≡
1

2

𝑓𝑖−𝑓𝑖−1

𝑥𝑖−𝑥𝑖−1
+

1

2

𝑓𝑖+1−𝑓𝑖

𝑥𝑖+1−𝑥𝑖
                             (2.52) 

 

At staggered grid points:   
δ1𝑓

δ1𝑥
|

𝑥𝑖

≡
𝑓𝑖+1/2−𝑓𝑖−1/2

𝑥𝑖+1/2−𝑥𝑖−1/2
                                        (2.53)  

 

     For staggered grid points:  
δ1𝑓

δ1𝑥
|

𝑥𝑖+1/2

=
𝑓𝑖+1−𝑓𝑖

𝑥𝑖+1−𝑥𝑖
                                               (2.54)    

 

Linear interpolations between regular and staggered grids have been used as:  

           

                                                   𝑓𝑖+1/2 =
𝑓𝑖+𝑓𝑖+1

2
                                                         (2.55) 

                                 𝑓𝑖 ≡ 𝑓𝑖+1/2 − (𝑓𝑖+1/2 − 𝑓𝑖−1/2)
𝑥𝑖+1/2−𝑥𝑖

𝑥𝑖+1/2−𝑥𝑖−1/2
                                (2.56)  

 

The velocity fluxes at half-integer points are calculated at the velocity collection substep 

(equation 2.48) using the Rhie and Chow interpolation formula [31]: 

                -u, P, j, φ 

            -Fi (Velocity flux) 

             -Fj (Current flux) 
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                                             𝐹𝑖
𝑛+1 = 𝑢𝑖

𝑥𝑖 −
2∆𝑡

3
 
δ1𝑝𝑛+1

δ1𝑥𝑖
                                                 (2.57) 

 

                                                𝐹𝑖
𝑛+1 = 𝑢𝑖

𝑥𝑖 −
2∆𝑡

3
 
δ1𝑝𝑛+1

δ1𝑥𝑖
                                              (2.58)    

 

The incompressibility is imposed in velocity fluxes as: 

 

                                             
δ1𝐹𝑖

δ1𝑥𝑖
= 0                                                                           (2.59)    

 

The electric current fluxes at half-integer points are based on conservative approach 

outlined in [32]: 

 

                              𝐺𝑖
𝑛 = −

δ1𝜑𝑛

δ1𝑥𝑖
+ (𝒖𝑛 × 𝑒)𝑖

𝑥𝑖                                                             (2.60) 

 

Current conservation condition is approximated as 

 

                                                                 
δ1𝐺𝑖

𝑚

δ1𝑥𝑖
= 0                                                      (2.61) 

 

The Poisson equation for the electric potential is obtained by substitution of (2.60) into 

(2.61): 

 

                                     
δ1

δ1𝑥𝑖
(

δ1𝜑𝑛

δ1𝑥𝑖
) =

δ1

δ1𝑥𝑖
(𝒖𝑛 × 𝒆)𝑖

𝑥𝑖                                            (2.62) 

 

In summary, the electromagnetic part of the problem solution scheme is implemented as 

follows: 

(i) Solution of Poisson equation (equation 2.62) 
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(ii) Calculation of current fluxes (equation 2.60) 

(iii) Interpolation of the current fluxes onto the integer grid points 

 

𝑗𝑖
𝑛 = 𝐺𝑖

𝑛𝑥𝑖 

 

(iv) Calculation of the Lorentz Forces 𝑁 (𝑗𝑛 × 𝑒) at the integer grid points 

 

There are other aspects of the discretization scheme, namely the treatment of the the 

boundary conditions at the discretized collocated grid points and the implementation of the 

Poisson equation solutions through software package Fishpack and Mudpack which have 

been adopted from [28].  

 

2.4 Parameters and Computational Domain 

The problems described in Chapter 3 and 4 in the current study are solved at the Reynolds 

number Re = 6000 and Prandtl number Pr = 1. The Hartmann number and Stuart Numbers 

are varied for all configurations of the magnetic field so that the maximum value of Ha and 

N are sufficiently large to generate substantial MHD effect but still significantly smaller 

than the laminarization thresholds. Detailed discussion on the rationales behind variations 

of Ha and N is outlined in Chapter 3. The computational domain has the dimensions 

2𝜋 × 2𝜋 × 2 in the streamwise, spanwise and wall-normal directions respectively. The 

computational grid consists of 2563 points. The wall clustering parameter is chosen as 

A=1.5 for all configurations.  The minimum grid step ∆𝑧 near the wall is 2.34 x 10-3 while 

the maximum ∆𝑧 at the center of the channel is 1.29 x10-2 as a result of the clustering. The 

results of DNS of channel flows with spanwise [25] and wall-normal [23] magnetic fields 

conducted at closed values of Re and Ha confirm that the size of the domain and the grid 

resolution used in the study are sufficient for an accurate DNS.  
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The numerical model has been verified by running test cases and comparing the results 

with MHD flow computations [20, 23, 25] and DNS of scalar transfer in turbulent channel 

flows without and with magnetic field [33, 34].   

 

In Chapter 5, the simulations are conducted at the Reynolds number of 5333. The explored 

range of the Hartmann number is 30 ≤ Ha ≤ 160. The Prandtl number Pr = 1 is chosen for 

all the computations. The computational domain has the dimensions of 2π ×4π ×2 in the 

streamwise, spanwise, and wall-normal directions, respectively. The computational grid 

consists of 64 × 64 × 80 points. The points are distributed uniformly in the streamwise and 

spanwise directions and clustered toward the walls using the coordinate transformation per 

equation (2.50) and (2.51) with A = 1.5.  
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CHAPTER III 

 

FLOW FIELD IN MHD CHANNEL FLOW WITH DIFFERENT 

ORIENTATIONS OF MAGNETIC FIELD 

 

3.1 Background   

The key focus of the proposed doctoral study is to obtain understanding of transport of a 

passive scalar (temperature or concentration of an admixture) in magnetohydrodynamic 

(MHD) turbulent flows. The magnetic field influences the transport indirectly, via 

transformation of the velocity field. As such, the effects of the magnetic field of various 

orientations on the flow itself are analyzed prior to the scalar transport analysis. In this 

chapter, the transformation of flow field and turbulent transport characteristics are 

discussed. The resultant effects on passive scalar transport due to the transformation of 

flow field have been discussed in Chapter 4. Outcomes of proposed doctoral research 

investigations which are described in Chapter 3 and 4 have been published in [35].  

 

3.2 Review on earlier works  

As discussed in Chapter 2, for the case of low-𝑅𝑚 MHD flow, magnetic Reynolds number 

(𝑅𝑚) and the magnetic Prandtl number (𝑃𝑟𝑚) are assumed to be much smaller than 1. Such 

flow is typical for industrial and laboratory flows of liquid metals and other electrically 

conducting fluids. In many such flows, for example in continuous steel casting or growth 

of large semiconductor crystals, transport of heat and admixtures is technologically 

important. The magnetic fields are, in fact, often imposed with the explicit goal of 

controlling the transport (see, e.g. [1]). Usually, the effect of the magnetic field occurs in 

the presence of electrically insulating walls and strong mean shear of the flow. This forms 
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the motivation of the proposed doctoral research. It has been analyzed in the current study 

that how an imposed constant and uniform magnetic field affects scalar transport in the 

archetypical turbulent flow with walls and mean shear channel flow. In this section, a brief 

review of earlier works addressing this question has been made. The magnetic field 

influences the transport indirectly, via the transformation of the velocity field. Therefore, 

the review starts with the effect on the flow in this chapter. A review on earlier work on 

scalar transport is made in Chapter 4.  

The basic features of an imposed constant magnetic field on a turbulent flow of an 

electrically conducting fluid are relatively well understood. The main defining parameter 

is the magnetic interaction parameter (the Stuart number-defined in Chapter 2, 2.38).  The 

parameter can be viewed as the ratio of the eddy turnover time τeddy ≡ L/U to the Joule 

damping time τJ ≡ ρ/σB2 where σ and ρ are the electric conductivity and density of the fluid, 

B is the imposed magnetic field, and L and U are the typical length and velocity scales.   

For homogeneous turbulence without mean shear, the main feature of the transformation 

is the structure anisotropy of velocity and pressure fluctuations, which appears as 

elongation of flow structures in the direction of the magnetic field (see, e.g., [13, 36]). The 

anisotropy results from the action of the Joule dissipation that damps velocity gradients 

along the magnetic field lines. Interestingly, the structure anisotropy of approximately 

equal strength develops in a wide range of length scales, from the largest energy containing 

scales to the beginning of the dissipation range [37]. Anisotropy of another kind, namely 

the inequality of the average velocity components (the anisotropy of the Reynolds tensor 

of turbulent stresses), is not generated directly by the magnetic field, but develops as a part 

of the flow transformation. The form and degree of this anisotropy depend on the boundary 

conditions and the stage of the flow evolution (e.g., the study of decaying turbulence [38] 

as an example).  

 

The mechanisms leading to the anisotropy of Reynolds stress tensor are nonlinear and 

complex. They are not fully understood, except in the case of large magnetic interaction 

parameter N, when the flow evolution is dominated by the Joule dissipation (e.g., [12, 39]). 
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In the presence of mean shear, the effect of the magnetic field is modified. For the case of 

homogeneous turbulence, this is analyzed in [40]. It is found that the flow transformation 

is largely determined by the ratio of the typical time scale associated with the mean shear 

τshear ≡ 1/S, where S is the shear rate, and the Joule damping time τJ . The effects of the 

shear or of the magnetic field are dominating if τshear/τJ is, respectively, larger or smaller 

than one.  

 

Among the possible configurations of the channel flow with imposed uniform magnetic 

field, the most extensively studied is that of the classical Hartmann flow, in which the 

magnetic field is in the wall-normal direction, and the walls are electrically insulating (see 

figure 2.1 in Ch 2 with configurations) (e.g., [16, 18, 20, 21, 23, 41]). At a sufficiently 

strong magnetic field, the flow acquires a structure with two regions: the core with 

suppressed turbulence and nearly flat mean velocity profile, and the Hartmann boundary 

layers with strong mean shear and turbulence. The friction drag increases with the strength 

of the magnetic field in high-Ha high-Re flows because of stronger mean shear near the 

walls, except in a small range of weak fields. At small Ha, such as those considered in the 

present study, the effect is offset by suppression of turbulent momentum transfer and the 

friction drag decreases slightly. 

 

The case of a spanwise (parallel to the walls and perpendicular to the flow) magnetic field 

is considered in [20] and [25]. Differently from the wall-normal magnetic field, the 

spanwise field does not interact directly with the mean flow. The mean flow is affected 

indirectly, via suppression of turbulent fluctuations leading to reduction of wall-normal 

momentum transport. The cumulative effect is that of reduction of friction drag and 

modification of the mean flow profile characterized by increased centerline velocity and 

absence of log-layer behavior. The typical size of the coherent structures of the flow 

increases in the spanwise and streamwise directions [25]. 
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Based on the literature review, the only work that considers the effect of a streamwise 

magnetic field on a turbulent channel flow was [20]. The streamwise magnetic field does 

not interact directly with the mean flow, but has an indirect effect via modification of 

turbulent fluctuations. The fluctuations of the spanwise and wall-normal velocity 

components are suppressed, while the fluctuations of the streamwise velocity component 

become stronger, as a result of stabilization of streamwise streaks. There is some drag 

reduction, although weaker than in the spanwise field case. In general, a noticeable 

modification of the flow requires considerably higher values of N in the case of the 

streamwise magnetic field than in the other two cases. 

  

3.3 Results and Discussion 

In the light of the literature review in the preceding section, the current study explores the 

classic wall-normal magnetic orientation initially to reproduce the results obtained with the 

given problem and grid resolution. Afterwards, the spanwise and streamwise magnetic field 

orientations have been investigated in great details. The new features from the current DNS 

study which are presented in this section involve exploring the effects of streamwise 

magnetic field extensively which has not been reviewed previously, estimation of flow 

statistics and eddy viscosity, detail explanations of flow transformation and structure 

anisotropy in light of the scalar transport mechanism.  

The flows at the same at the same value of 𝑅𝑒 = 6000 and various values of Ha are 

computed per Table 3.1. For each magnetic field orientations, the Ha numbers are varied 

keeping in mind turbulent to laminar transition under the effect of imposed magnetic field.  

For all the configurations of the magnetic field, the maximum values of Ha and N are 

selected sufficiently large to generate substantial MHD effect, but still significantly smaller 

than the laminarization thresholds. The second condition is necessary to avoid uncertainties 

and possible inaccuracies related to the behavior of numerical solutions near the threshold  

[28, 41]. The laminarization threshold in the case of the wall-normal magnetic field is 

determined on the basis of the numerical and experimental studies of transition in 
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Hartmann layers [42, 43] as Re/Ha ≈ 380.  For 𝑅𝑒 = 6000 which is considered in the 

current study, the laminarization threshold yields at  Ha ≈ 15.8. In the case of the spanwise 

field, [25] have found that, at Re = 6667, the laminarization occurs at Ha between 30 and 

40. The only result available for the streamwise magnetic field is that of [20], where it has 

been found that, at Re = 4000, the flow is laminar at Ha = 49 and possibly becomes laminar 

at Ha = 35. The threshold should be higher in the current study to higher Re. It is found in 

the current study that the flow remains turbulent at Ha = 40, but limited the results 

presented in the thesis to Ha ≤ 30 because of the uncertainty introduced by structures of 

large streamwise scales developing in the streamwise magnetic field at larger Ha. 

 

All the flow properties discussed in this section are obtained for fully developed turbulent 

flows. For each case, the solution is calculated until the friction coefficient and the Nusselt 

number (Discussed in detail in Chapter IV) become statistically steady. After that, the flow 

is computed for not less than 1000 time units, which should be compared with the non-

dimensional convective time scale L/U = 1. The data are collected at this stage.  

 

The mean flow characteristics, such as the mean streamwise velocity U(z), mean-square 

fluctuations of velocity, Reynolds stress components are obtained using averaging over 

time and wall-parallel (x-y) planes. This operation is denoted in the following text as 〈. . . 〉. 

For example, the mean velocity is: 

 

                                              𝑈〈𝑧〉  = 〈𝑢(𝑥, 𝑦, 𝑧, 𝑡)〉                                       (3.1) 

 

The turbulent fluctuation of velocity is defined as differences between the instantaneous 

and mean fields: 

                                                           𝒖′ = 𝒖 − 𝑼𝒆𝒙                                                      (3.2) 
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As integral characteristics of the flow, the friction coefficient has been used.  

 

                                                         𝑐𝑓 ≡
1

𝑅𝑒
 
𝑑𝑈

𝑑𝑧
|

𝑤𝑎𝑙𝑙
=

𝑑𝑃

𝑑𝑥
                                             (3.3)                                               

Where dP(x)/dx is the imposed pressure gradient driving the flow. The wall-friction 

velocity uτ and the corresponding Reynolds number 

 

                           𝑢𝜏 ≡ √𝑐𝑓 , 𝑅𝑒𝜏 ≡  𝑢𝜏𝑅𝑒                                                                     (3.4) 

The analyzed flow regimes are listed in Table 3.1. The table shows the values of the integral 

characteristics just defined as well as some other properties that will be defined later. 

 

Table 3.1:  

𝐻𝑎, 𝑁 𝑈𝑐𝑙 𝑅𝑒𝜏 𝑐𝑓 × 103 [𝜈𝑡] ×  103 

 0, 0 1.151 341.6 3.254 3.719 

Wall-normal 

5, 0.00417 

10, 0.0167 

13.3, 0.0295  

 

1.165 

1.125 

1.099 

 

343.6 

343.5 

338.4 

 

3.279 

3.218 

3.180 

 

3.341 

2.403 

1.389 

Spanwise 

10, 0.0167 

20, 0.0667 

30, 0.150 

 

1.164 

1.206 

1.280 

 

335.0 

311.4 

261.1 

 

3.121 

2.678 

1.895 

 

3.208 

2.091 

1.005 

Streamwise 

10, 0.00417 

20, 0.0667 

30, 0.150 

 

1.162 

1.163 

1.160 

 

340.8 

338.4 

332.2 

 

3.234 

3.180 

3.064 

 

3.731 

3.393 

3.551 

 

Table 3.1: Computed Integral Characteristics. 𝑈𝑐𝑙-mean velocity at the centerline, 𝑅𝑒𝜏-

Reynolds number based on wall-friction velocity 𝑢𝜏, 𝑐𝑓 friction coefficient, 𝜈𝑡 – volume-

averaged turbulent viscosity 
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3.3.1 Mean Flow  

The effect of the magnetic field on the mean flow is illustrated in figure 3.1. In the case of 

the wall-normal magnetic field, the well-known formation of a flattened core and Hartmann 

boundary layers of thickness ∼L/Ha (see, e.g., [20, 21, 23]) are observed.  

 

Figure 3.1: Mean velocity profile for different orientations of magnetic field (the 

orientations are indicated above the plots). 

For the case of the spanwise magnetic field, figure 3.1 shows increase of the centerline 

velocity and widening of the boundary layers. This effect is observed in Krasnov et al. [25] 

and explained by suppression of wall-normal turbulent momentum transfer. Changes in the 

center line velocity are also shown by Table 3.1.  
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Considering the results shown in figure 3.1 for the case of the stream wise magnetic field, 

the effect is observed at the same values of Ha, as significantly weaker than in the other 

two cases (this was also observed in [20]). The mean velocity profile barely changes with 

Ha  numbers. It is noted as in the spanwise case, there is no direct interaction between the 

mean flow and the magnetic field. As it will be discussed in next section, the indirect effect 

via the suppression of turbulent fluctuations is also not strong. 

 

3.3.2 Log-Layer behavior of the mean flow 

In turbulent channel flow, the mean velocity at a point is proportional to the logarithm of 

the distance from that point to the wall according to the log-layer profile of the wall.  

The effect of the magnetic field on the log-layer behavior of the mean flow velocity has 

been analyzed by computing the coefficient γ which is expressed as: 

 

                                              𝛾 = 𝑧+ 𝑑𝑈+

𝑑𝑧+                                                   (3.5) 

 

where U+ =U/uτ and  𝑧+ = (𝑧 + 1)𝑅𝑒𝜏 are the velocity and distance in wall units. The 

coefficient should be constant and equal to the reciprocal von Karman constant in the area 

where U(z) follows the log-law. The data obtained for the flow with Ha = 0 and for flows 

with the highest Ha for each orientation of the magnetic field are shown in figure 3.2. For 

the flow without magnetic field, we see results typical of moderate-Re turbulence. 

Approximate log-law behavior starts at z + about 40. The results obtained for the wall-

normal and spanwise magnetic fields are in agreement with the results of, correspondingly, 

[23] and [25]. In the wall-normal case, the log-layer behavior is approximately as well- 

defined as in the hydrodynamic case. The reciprocal von Karman constant γ is somewhat 

smaller. If the magnetic field is spanwise, the log-layer behavior disappears altogether. For 

the case of the streamwise magnetic field, the log-layer behavior is similar to that of the 

hydrodynamic case. 
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Figure 3.2: Coefficient γ for flow without magnetic field and flows with strongest 

magnetic fields for each orientation of magnetic field  

 

3.3.3 Profile of mean square velocity fluctuations 

The flow transformation under the action of the magnetic field becomes clearer if the 

profiles of mean square velocity fluctuations shown in figures 3.3 and 3.4 are considered.  

Figure 3.4 also shows the profiles of the Reynolds stress component τ13 = ⟨u′w′⟩ 

representing turbulent transport of momentum in the wall-normal direction. It is observed 

that the wall-normal and spanwise magnetic fields result in noticeable reduction of 

perturbations of all three velocity components. Suppression of ⟨v′2⟩ and ⟨w′2⟩ is particularly 

strong. The streamwise magnetic field suppresses ⟨v′2⟩ and ⟨w′2⟩, although to a significantly 

smaller degree. There is practically no influence of the streamwise magnetic field on the 

fluctuations of the streamwise velocity component (figure 3.3). Moreover, one can detect 

slight increase of ⟨u′2⟩ with Ha. An evident explanation is that the streamwise velocity 

fluctuations appear primarily in the form of streaks, which have very weak gradients in the 

streamwise direction and, thus, are the structures least suppressed and, possibly, enhanced 

via stabilization by the streamwise magnetic field. 
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Figure 3.3: Profiles of mean-square fluctuations of streamwise (left) and spanwise (right) 

velocity components. 
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Figure 3.4: Profiles of mean-square fluctuations of wall-normal velocity component (left) 

and wall-normal turbulent stress (right). 
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The suppression of the velocity fluctuations leads to reduction of the turbulent stress τ13 . 

As one can see in figure 3.4, the reduction is significant in the cases of wall-normal and 

spanwise magnetic fields and much less so in the case of the streamwise field. This results 

in lower wall friction (see the values of 𝑐𝑓 and 𝑅𝑒𝜏 in table 3.1). 

 

3.3.4 Turbulent eddy viscosity  

The turbulent eddy viscosity has been computed as: 

 

                                        𝜐𝑡(𝑧) = −
𝜏13

𝑑𝑈/𝑑𝑧
                                                                      (3.6) 

 

The results are presented in figure 3.5. The figure also shows the eddy viscosity volume-

integrated over the interior of the channel per the expression in (3.7).  

 

                  [𝜐𝑡(𝑧)] = −
1

1.8
∫ 𝜐𝑡(𝑧)𝑑𝑧

0.9

−0.9
                                                                        (3.7) 

 

The integration limits are z = ±0.9 are chosen so as to exclude the boundary layer behavior 

(see figures 3.1-3.4). Values of [νt] are listed in table 3.1. One can see that the suppression 

of turbulent fluctuations by the magnetic fields results in reduction of the eddy viscosity, 

which is strong in the cases of wall-normal and spanwise field and, at the same Ha, much 

weaker in the case of the streamwise field. For the case of the streamwise field, the effect 

of the magnetic field in suppressing the wall-normal component of turbulent fluctuations 

is weak which results in less reduction of momentum transfer. As a result, the magnitude 

of eddy viscosity does not decrease with the increase of magnetic field strength.    
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Figure 3.5: Top row and the left figure in the bottom row: Turbulent eddy viscosity (21) as 

a function of wall-normal coordinate. The orientations of the magnetic field are as indicated 

above each plot. The right figure in the bottom row shows eddy viscosity integrated over 

z from z = −0:9 to z = 0:9. 

 

3.3.5 Transformation of the spatial structure of the flow 

The transformation of the spatial structure of the flow caused by the magnetic fields has 

been analyzed using instantaneous velocity distributions in the planes z =const, x = const, 

and y=const . The results mostly confirm the conclusions made in earlier studies, such as 

[20, 23, 25]. This includes the effect of the magnetic field on the streamwise streaks near 

the channel walls. For the case of wall-normal magnetic field orientation, no significant 

change is observed in the case of wall-normal magnetic field at Ha = 5 and 10.  
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At Ha = 13.3, which is close to the laminarization threshold, the streaks become larger in 

all three directions. Figure 3.6 shows the streamwise velocity spatial structure for different 

strength of magnetic field in wall-normal direction.  

 

The spanwise field results in the streaks, which are much weaker and have larger wall-

normal and spanwise length scales than in the hydrodynamic case. As shown in figure 3.7, 

the streamwise streak has become noticeable for Ha= 30.0. The main effect of the 

streamwise orientation of magnetic field is the stabilization of the streaks, which become 

visibly more coherent and increase their typical streamwise length scale. This effect, 

however, only becomes significant at Ha above 30.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Spatial structure of streamwise velocity with wall-normal magnetic field. 

Instantaneous distributions in the x-z (wall-normal) cross-sections are shown  

                     Ha=0 

 

                    Ha=10.0 

             

          Ha=5.0

 
 

         Ha=13.3 

 

ux 
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Analyzing the effect of the magnetic field on the wall-normal and spanwise velocity 

components, it is found that, in addition to reduction of amplitude, the flow structures 

acquire larger typical length scales. In agreement with [25], the increase of the typical 

length scale of turbulent fluctuations is particularly strong in the case of the spanwise 

magnetic field. 

 

 

 

 

 

 

 

 

 

Development of structural 

Anisotropy 

The transformation of the velocity 

field can be also analyzed in the 

frame-work of the concept of structure 

anisotropy [28], which is a 

quantitative as-sessment of the 

tendency of a turbulent flow to have 

structures of different typical sizes in  

Figure 3.7: Spatial structure of streamwise velocity with span-wise magnetic field. 

Instantaneous distributions in the x-z (Spanwise) cross-sections are shown.   
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ux 
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Development of structural 

Anisotropy 

The transformation of the velocity 

field can be also analyzed in the 

frame-work of the concept of structure 

anisotropy [28], which is a 

quantitative as-sessment of the 

tendency of a turbulent flow to have 

structures of different typical sizes in  

Figure 3.8: Spatial structure of streamwise velocity with streamwise magnetic field. 

Instantaneous distributions in the x-z (Streamwise) cross-sections are shown.   

 

3.3.6 Structure anisotropy  

The transformation of the velocity field can be also analyzed in the framework of the 

concept of structure anisotropy [44], which is a quantitative assessment of the tendency of 

a turbulent flow to have structures of different typical sizes in different directions. In the 

case of the MHD channel flow, the structure anisotropy is created by the magnetic field, 

which transforms flow structures so that they are elongated along the magnetic field lines, 

and by the mean shear, which stretches the structures in the streamwise direction. One can 

use different measures of the structure anisotropy, such as two-point correlations [25], 

conditional averaging of coherent structures [45], or one-point structure tensors [40, 46]. 

We follow the version of the last approach that uses the anisotropy coefficients.  

 

                     Ha=0 

  

                    Ha=20.0 

             

          Ha=10.0 

 
 

         Ha=50.0 

 

ux 
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                            𝐺𝑖𝑗
𝑘 ≡

〈(𝜕𝑢𝑘/𝜕𝑥𝑖)2〉(1+𝛿𝑘𝑖)

〈(𝜕𝑢𝑘/𝜕𝑥𝑗)2〉(1+𝛿𝑘𝑗)
, 𝑖 ≠ 𝑗                                                  (3.8)                                        

 

Such coefficients have been applied in studies of MHD turbulence [13, 25, 47]. 𝐺𝑖𝑗
𝑘  is equal 

to one in a flow with perfectly statistically isotropic field and zero in a flow, in which the 

distribution of uk is two-dimensional, independent of the coordinate xi. The results are 

presented in figure 3.9. The coefficients computed for the stream wise and wall-normal 

velocity components are shown for the hydrodynamic case and for the cases corresponding 

to the maximum of Ha for each orientation of the magnetic field. The coefficients 𝐺13
1   and 

𝐺13
3  can be interpreted as the typical ratios of wall-normal to streamwise length scales, 

while the coefficients 𝐺23
1   and 𝐺23

3    show the similar ratios of wall-normal to spanwise 

scales. It can be observed that the structure anisotropy properties are about the same for the 

two velocity components. Close to the walls, the wall-normal velocity derivative is much 

larger than the spanwise and streamwise derivatives in the typical boundary layer behavior. 

Outside the viscous boundary layer, where the coefficients are more representative of the 

length scales of coherent flow structures, 𝐺23
1  and 𝐺23

3   approach one in the hydrodynamic 

case and the cases of wall-normal and streamwise magnetic field. The velocity structures 

have approximately equal spanwise and wall-normal sizes. In the case of the spanwise 

velocity field, the coefficients are significantly smaller indicating, in agreement with the 

results of [25] that the spanwise scale of velocity structures is increased by the spanwise 

magnetic field.  

 

Considering the coefficients 𝐺13
1  and 𝐺13

3   , the streamwise elongation of flow structures 

generated by the mean shear should be taken into account. The coefficients are much 

smaller than one, except in the middle of the channel. The decrease in the case of the 

spanwise magnetic field was reported in [25] and explained by the increase of the typical 

streamwise scale. The reduction of the coefficients seen in figure 3.9 for the case of the 

streamwise magnetic field is evidently also related to the elongation of the flow structure 
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in the streamwise direction, this time caused by direct action of the anisotropic Joule 

dissipation. 

   

 

 

Figure 3.9: Anisotropy coefficients (see (23)) computed for the streamwise (top) and 

wall-normal (bottom) velocity components. Curves for the flow with zero Ha and for 

flows with the maximum Ha at each orientation of the magnetic field are shown. 

 

3.4 Conclusion 

The DNS results of the flow field of the MHD turbulent flow in a channel with an imposed 

uniform magnetic field at different orientations have been discussed in this chapter. The 
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results concerning the transformation of the flow field is discussed in detail which affects 

the scalar transport described in Chapter 4.  Some of the results discussed regarding the 

flow field in current study confirm the conclusions made in earlier studies, such as [20, 21, 

23, 25, 41] on the basis of DNS and LES conducted at similar Re and Ha.  
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CHAPTER IV 

 

PASSIVE SCALAR TRANSPORT IN MHD CHANNEL FLOW 

 

4.1 Background  

In this chapter, the results pertaining to passive scalar transport with the effect of the 

magnetic field has been discussed. There is lack of experimental and numerical studies 

which focuses on the effect of the imposed magnetic field on turbulent scalar transport, 

especially in what concerns the role of magnetic field orientation on scalar transport is 

almost non-existent. As such the current study involves extensive efforts towards 

understanding the passive scalar transport mechanism under the influence of imposed 

magnetic field. The chapter begins with the review of earlier works. Comprehensive 

discussions on mean scalar transport, turbulent flux contributions, role of eddy diffusivity 

and scalar anisotropy development follows after that. Through the extensive DNS 

conducted for flow field and scalar transport, the proposed doctoral study yields correlation 

for scalar transport in the form of Nusselt number with the effect of different orientation 

and strength of magnetic fields which is highlighted and discussed in this chapter.   

 

4.2 Review on earlier works  

A comprehensive literature review has been made as a part of the proposed doctoral 

research. In this section, a summary of the literature containing passive scalar transport 

under the influence of an imposed magnetic field is presented.  

Yamamoto et al [34] carried out DNS to investigate the magnetohydrodynamic (MHD) 

pressure loss and heat-transfer characteristics of the low-magnetic Reynolds number and 

higher Prandtl number (Pr) fluid such as the FLiBe and evaluated the MHD turbulence 
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model in higher Reynolds number (Re) condition.  Non-slip and periodic conditions were 

imposed for boundary conditions of velocity and the constant temperature at top and 

bottom boundaries (Ttop>Tbottom) and the periodic conditions were imposed for a passive 

scalar field.  The flow found to be laminar at Ha=16.0 and the wall shear stress showed to 

have temporal intermittency at Ha=13.0 with Ha=13.2 produced laminar result. As a result, 

the maximum Ha maintaining turbulence was found to be at Ha=13.0. With higher Ha 

number the suppression of the Reynolds shear stress was increased with the Reynolds shear 

stress became zero in the whole channel at Ha=16.0. Although the flow found to be laminar 

at Ha=16.0, the temperature field showed linear profile after long computational time 

compared to velocity field. The friction drag coefficient and Nusselt number which were 

obtained from the simulation are mentioned in the table below: 

 

Table 4.1:  

Reτ Ha Pr Friction drag coefficient 

(Cf) 

Nusselt number  

(Nu) 

150 0 5.7 6.33E-6 15.73 

150 8 5.7 6.20E-6 14.00 

150 12 5.7 5.70E-6 10.53 

150 16 5.7 5.55E-6 1.00 

 

Table 4.1: Computational results of DNS by Yamamoto et al [34] 

 

It was observed from the study that the similarity-law between the velocity and temperature 

profiles was not satisfied with increase of Hartman number (Ha) and was noticeable at the 

near critical Ha condition to maintain turbulent flow. It was inferred that in higher Re 

condition, MHD turbulence models coupled with k-ε model of turbulence can reproduce 

the MHD pressure loss trend with increase of Ha.  
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DNS of turbulent heat transfer under a uniform magnetic field at high Reynolds number 

for low Pr number fluid was carried out by the Satake et al. [48].  Spectral finite difference 

methods were used for the simulation in the DNS code. The Reynolds number based on 

the bulk velocity, viscosity and channel width was set to be constant as 45,818. A uniform 

magnetic field perpendicular to the wall of the channel was employed. The Hartmann 

number was taken as 0 and 65, with the Prandtl number as 0.06. The computational grid 

was taken to be as 1024×1024×768. With DNS, the turbulent quantities such as the mean 

temperature, turbulent heat flux and temperature variant were obtained. The velocity 

fluctuations were found to decrease at the channel center whereas temperature variance  

increased except in the near-wall region, which showed up laminar profile. It was attributed 

that the heat transfer enhancement at turbulent flow for low Pr fluid cannot be acceptable 

where the flow state happens to be turbulent flow at high Reynolds number. It was 

concluded the thermal mixing augmentation is necessary for low Pr number fluid flow in 

fusion reactor design.  

 

Piller et al [49] performed DNS of the velocity and temperature fields for turbulent flow in 

a channel to examine the influence of Prandtl number Pr on turbulent transport. The 

Reynolds number, based on the half-height of the channel and the friction velocity was Reτ 

= 150. Prandtl numbers of 1.0, 0.3, 0.1, 0.05, 0.025 were studied. The influence of Pr on 

Reynolds transport, on the turbulent diffusivity and on the spectral density function of the 

temperature fluctuations was studied. The spectral density functions of the fluctuating 

temperature was applied to provide an interpretation of the observed influence of Prandtl 

number on the eddy diffusivity and on statistical properties of the fluctuating temperature 

field. A monotonic decrease in turbulent diffusivity was observed with decreasing Pr at all 

wall coordinate points. It was inferred that the molecular diffusivity acts as a filter by 

decreasing the effectiveness of large-frequency velocity fluctuations in creating 

temperature fluctuations which in turn causes the observed decrease in turbulent 

diffusivity.  
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Dritsells et al. [45] conducted a numerical study of the effects of magnetic field on the 

coherent structures and the associated heat transfer in a turbulent channel flow with 

constant temperature at the bottom (cold) and top (hot) walls. Two fluids with Prandtl 

numbers of 0.01 and 0.71 were studied with a Reynolds number of 5600 based on the bulk 

velocity and wall distance. The study aimed to investigate the statistically significant 

effects of the magnetic field on the coherent structures near the non-conducting walls of a 

low Reynolds turbulent channel flow with heat transfer. It was found that the conditionally 

averaged quasi-streamwise vortices were modified by the magnetic field with their size 

being increased and their strength decreased. The underlying organized fluid motions were 

found to be damped by the Lorentz force and turbulent heat transfer was decreased by the 

magnetic field. In case of higher Prandtl number fluid, a similarity between the coherent 

temperature and the coherent streamwise velocity fluctuations was observed for both types 

of flow. This was diminished for the lower Prandtl number fluid, especially in the 

magnetohydrodynamic flow, inhibiting the intrusion of cold (hot) fluid from the cold (hot) 

wall towards the central region.  

 

Kassinos et al. [46] examined the transport of a passive scalar in homogenous MHD 

turbulence that underwent shear in a rotating frame. The frame rotation and imposed 

magnetic field were aligned with the spanwise direction while the mean scalar gradient was 

in the transverse direction within the plane of the mean shear. It was found that the applied 

magnetic field has a strong effect on the transport of the passive scalar. Magnetic effects 

were found to be more pronounced when the time scale of the mean shear is comparable 

or long compared to the Joule time (τshear/τm) and when the magnetic Reynolds number is 

relatively low. The most drastic modifications to passive scalar transport were observed 

when τshear≥τm and these are shown to be linked to changes in the structure of the velocity 

and scalar fields. It was attributed that the observed evolution of the scalar flux coefficients 

can be explained in terms of structural information provided by the one-point structure 

tensors, except for high magnetic Reynolds numbers flows, where the alignment of the 

velocity fluctuation field with the spatially varying local mean magnetic field can, under 
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certain conditions, lead to loss of coherence and suppression of the correlation between the 

velocity and scalar fields.  

Based on the literature review, it appears that the effect of magnetic field of any other 

orientation except wall-normal orientation has never been addressed. The studies of the 

wall-normal field case were conducted in a wide range of Prandtl and Reynolds numbers, 

and at the strength of the magnetic field going up to the level of complete laminarization 

of the flow. It was found that the magnetic field invariably led to suppression of scalar 

transport across the channel. This was attributed to suppression of fluctuations of the wall-

normal velocity component. The transformation of the scalar distribution was described, 

the main observed effects were the modification of the mean scalar profile characterized 

by thicker boundary layers and increase of variance of scalar fluctuations in the core flow 

[48] and enhanced correlation between scalar and velocity fluctuations.  

In the proposed doctoral study, the question of the effect of the imposed magnetic field on 

turbulent scalar transport in a channel has been investigated rigorously. The approach of 

high resolution DNS is applied to conduct a systematic study. For the first time, the cases 

of spanwise and streamwise magnetic field are considered together with the classical case 

of the wall-normal field.  

 

4.3 Results and Discussion 

As already discussed in chapter 3, all of the flow properties are obtained for fully developed 

turbulent flows. For each case, the solution is calculated until the friction coefficient and 

the Nusselt number become statistically steady. After that, the flow is computed for not 

less than 1000 time units, which should be compared with the non-dimensional convective 

time scale L/U = 1. The data are collected at this stage. The mean scalar characteristics, 

mean-square fluctuations of scalar turbulent scalar fluxes, etc are obtained using averaging 

over time and wall-parallel (x-y) planes. This operation is denoted in the following text as 

〈 〉. For example, the mean scalar is: 
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                                                𝑇(𝑧)  =  〈𝜃(𝑥, 𝑦, 𝑧, 𝑡)〉                                                                 (4.1) 

 

The turbulent fluctuations of scalar is defined as differences between the instantaneous and 

mean fields: 

                                                       𝜃′ =  𝜃 − 𝑇                                                                      (4.2) 

 

The values of Prandtl number (defined in Chapter 2, equation 2.18) and Schmidt number 

(dimensionless number defining the ration of momentum to the diffusion of mass in a fluid) 

in the technological applications vary from values much smaller than one (e.g., Prandtl 

numbers of liquid metals) to values much larger than one (Schmidt numbers for some 

admixtures in crystal growth). Since the focus of the study is on the basic features of the 

effect of the magnetic field rather than on a specific application, Pr = 1 has been used in 

all the computations.  

 

4.3.1 Mean scalar perturbations and transport 

The turbulent scalar flux in the wall direction is defined as 𝑞𝑡(𝑧) as: 

                                                 𝑞𝑡(𝑧)  =  〈𝑤𝜃′〉                                              (4.3)                  

 

The Scalar transport equation defined in Chapter 2 is: 

 

                                          
𝜕𝜃

𝜕𝑡
+ 𝒖. ∇𝜃 =

1

𝑃𝑟𝑅𝑒
∇2𝜃                                                         (4.4)    

 

Applying the averaging 〈 〉 to (4.4), the expression depicting the connection between the 

turbulent and molecular transports and the Nusselt Number has been obtained as: 

 

                      𝑞𝑡 −
1

𝑃𝑟 𝑅𝑒

𝑑𝑇

𝑑𝑧
 =  

1

2𝑃𝑟𝑅𝑒
 𝑁𝑢                                                                       (4.5) 

 

where Nusselt Number (Nu) is defined as, 
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                                                  𝑁𝑢 ≡ 2
𝑑𝑇

𝑑𝑧
|

𝑤𝑎𝑙𝑙
                                                             (4.6) 

 

In wall units, scaling z by 𝑅𝑒𝜏
−1 , replacing T by  

 

                                                      𝑇+(𝑧) =  
𝑇𝑤−𝑇(𝑧)

𝑇∗                                                       (4.7) 

 

where the wall friction scalar is defined as  

 

                                         𝑇∗ ≡
𝑢𝜏

𝑃𝑟𝑅𝑒 
 
𝑑𝑇

𝑑𝑧
|

𝑤𝑎𝑙𝑙
                                                                 (4.8) 

 

and scaling 𝑞𝑡(𝑧) by 𝑢𝜏𝑇∗, the equation (4.5) is transformed as: 

 

                                       𝑞𝑡
+ +  

1

𝑃𝑟 

𝑑𝑇+

𝑑𝑧+  = 1                                                              (4.9)                                                                                                                                                                                                                              

 

Distributions of the mean scalar T and the mean-square perturbations of the scalar 〈𝜃′2〉 

across the channel are shown in figure 4.1. 

  

Considering the curves of T(z), the effect of the magnetic field is observed to be the same 

qualitatively for all three orientations. The diffusion boundary layer becomes wider and the 

decrease of mean scalar within it becomes smaller. The effect was earlier reported for the 

wall-normal magnetic field [34, 45]. It is evident from the current study that it also exists 

in the cases of spanwise and, to a smaller degree at the same Ha, streamwise field.  
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Figure 4.1: Profiles of mean scalar T(z) (left) and of the mean-square perturbations of the 

scalar ⟨𝜃 ,2⟩ (right). The orientations of the magnetic field are as indicated above each 

plot. 
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Analyzing the profiles of the mean-square perturbations, the perturbations are seen to be 

suppressed within the boundary layers. The effect is particularly strong in the cases of wall-

normal and spanwise magnetic fields. Comparing with the mean-square velocity 

perturbations shown in figures 3.3 and 3.4 in chapter 3, the transformation of ⟨θ′2⟩ in this 

area is observed to be similar to the moderately strong transformation of ⟨u ′2⟩ rather than 

that of ⟨w′2⟩. This will be confirmed by the further results from the current study that show 

strong correlation between the perturbations of scalar and streamwise velocity near the 

walls.  

 

In the middle of the channel, the variance of the scalar increases in amplitude (figure 4.1). 

This has been reported in earlier studies for the case of the wall-normal magnetic field [50]. 

Similar transformation occurring in the cases of spanwise and streamwise fields has been 

observed. To explain the mechanism behind this observation, the balance equation 

determining the distribution of scalar variance across the channel is considered:  

 

                                        
1

𝑃𝑟𝑅𝑒

𝑑2〈𝜃′2〉

𝑑𝑧2
=  

𝑑〈𝑤𝜃′2〉

𝑑𝑧
− ∏ + 2𝜖𝜃                                         (4.10)                                                                

 

The term in the left-hand side and the first term in the right-hand side represent the transport 

of the variance by molecular and turbulent diffusivities. The second term in the right-hand 

side is the variance production expressed as   

 

                                                ∏ = −2〈𝑤𝜃′〉
𝑑𝑇

𝑑𝑧
                                                          (4.11) 

 

and the last term εθ is the rate of scalar diffusion.  

 

Directly evaluating the terms of (4.9) for the flow without magnetic field, (4.9) showed 

that the last two terms were dominant and nearly canceling each other outside the boundary 
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layers. The data obtained through the DNS of the proposed doctoral research enables 

evaluation of the production term (4.11). The results are shown in figure 4.2.  

 

 

Figure 4.2: Production term (4.8) in the scalar variance equation (4.7) 

 

It can be seen that the imposed magnetic fields of all three orientations suppress the 

production. According to (4.7), this may lead to larger positive curvature 𝑑2〈𝜃′2〉/𝑑𝑧2 of 

the curve 〈𝜃′2〉 (𝑧) . One can, therefore, expect faster growth of 〈𝜃′2〉 toward the middle 

of the channel which is observed in figure 4.1.  

 

The mean scalar profiles have also been plotted in wall units, i.e. as T+(z+). The plots for 

the highest Ha for each magnetic field orientation are shown in figure 4.3. Simulations of 

the scalar transport in a channel without magnetic field (see, e.g., [51, 52]) showed that, at 

sufficiently large Re, the profiles exhibited log-layer behavior, although not as well-defined 

as for the profiles of mean velocity. In order to evaluate the behavior in the cases with 

magnetic fields, we have computed the reciprocal von Karman constant.  

 

                                                      𝛾 = 𝑧+ 𝑑𝑇+

𝑑𝑧+                                                              (4.12) 
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The coefficient is shown in figure 4.3. It is evident that, in agreement with earlier results, 

nearly log-layer behavior is observed in the hydrodynamic case at z+ between 

approximately 40 and 150. The situation is changed by the magnetic fields of all three 

orientations. The intervals of z+, where an approximately log-layer behavior can be 

claimed, become somewhat smaller.  It is also observed that the reciprocal von Karman 

constant γ is substantially increased in the presence of wall-normal and spanwise, but not 

streamwise magnetic field. 

 

 

Figure 4.3: Mean scalar profiles in wall units (left) and the coefficient computed 

according to (4.12) (right). 

 

One can also hypothesize that the increase of scalar variance in the middle of the channel 

is related to development of large-scale turbulent coherent structures in the presence of the 

magnetic field (see, e.g. [25, 35]). The phenomenon deserves further analysis, in which the 

physical nature of the effect is fully revealed. It would also be interesting to explore the 

evolution of the scalar variance at higher Hartman numbers when the flow approaches he 

laminarized state. These questions will be left for future studies and not considered in the 

dissertation.   
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4.3.2 Turbulent Scalar Flux 

Profiles of the mean turbulent scalar flux in the wall-normal direction 𝑞𝑡(𝑧)  are shown in 

the left-hand side column of figure 4.4. It is observed that the magnetic field invariably 

suppresses the transport. The effect is very strong in the cases of wall-normal and spanwise 

magnetic fields. It is, at the same Ha, weaker, but still noticeable in the case of the 

streamwise field. The possible mechanisms of reduction of qt can be, in a formal way, 

categorized into three groups: those leading to reduction of w, those leading to reduction 

of θ ′, and those leading to reduced correlation between θ′ and w. Figure 3.3 in Chapter 3 

unambiguously demonstrates that the magnetic fields of all the three orientations are 

effective mechanisms of the first group. As shown in figure 4.1, they also act as 

mechanisms of the second group, although the effect is much weaker and, in the cases of 

wall-normal and streamwise magnetic fields, limited to the boundary layers. The amplitude 

of scalar perturbations in the middle of the channel is, in fact, increased by the magnetic 

fields. In order to determine, whether the loss of correlation plays a role, variation of 

correlation coefficients defined by equation (4.12) are shown in figure 4.4.    

 

                                           𝑅𝑤𝜃(𝑧) =
𝑞𝑡

〈𝑤2〉1/2〈𝜃′2〉1/2                                                     (4.13) 

 

One can see that the correlation is affected only weakly by the wall-normal magnetic field. 

Observing this in combination with the distributions of figure 4.1, it is concluded that the 

suppression of the turbulent transport in this case is primarily due to the reduction of 

amplitude of velocity fluctuations. In the case of the spanwise field, loss of correlation is 

noticeable and increasing with Ha, but its magnitude is only so big as to account for a 

fraction of the observed (nearly three-fold at Ha = 30) reduction of qt. The main factor 

remains the suppression of wall-normal velocity fluctuations shown in figure 3.3. In the 

case of the streamwise magnetic field, the role of the loss of correlation is more significant 

than in the other two cases. This conclusion is based on the observation that the reduction 
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of qt is more modest, while the loss of correlation is comparable with that in the spanwise 

field case.  

 

 

Figure 4.4: Profiles of turbulent scalar flux (4.3) (left) and of the correlation coefficient 

(4.12) (right). The orientations of the magnetic field are as indicated above each plot. 
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4.3.3 Integral scalar transport across the channel 

The key contribution of the proposed doctoral study is highlighted in this section which 

outlines the integral scalar transport across the channel and develops a correlation for the 

scalar transport in terms of magnetic interaction parameter.  

The reduction of 𝑞𝑡(𝑧) as presented in the preceding section by the magnetic field results 

in decreasing the integral scalar transport across the channel. This can be seen in the values 

of Nu listed in Table 4.1. As an additional illustration, figure 4.5 shows Nu − 1 as a function 

of N. It can be observed that in the case of the spanwise field, the function is nearly linear: 

 

                                            𝑁𝑢 − 1 = (𝑁𝑢 − 1)𝐻𝑎=0  − 𝐶𝑁                                      (4.14) 

 

 

Table 4.2  

Ha, N Nu [αt] x10-3 [Prt]  

Ha = 0, 0 13.72 5.009 0.7392 

Wall-normal 

5, 0.00417 

10, 0.0167 

13.3, 0.0295  

 

12.85 

10.13 

6.83 

 

4.341 

2.934 

1.475 

 

0.7632 

0.8118 

0.9351 

Spanwise 

10, 0.0167 

20, 0.0667 

30, 0.150 

 

12.97 

10.26 

6.04 

 

4.501 

3.112 

1.537 

 

0.714 

0.680 

0.693 

Streamwise 

10, 0.00417 

20, 0.0667 

30, 0.150 

 

13.45 

12.52 

11.56 

 

4.702 

4.049 

3.686 

 

0.792 

0.931 

0.957 

 

Table 4.2: Computed integral characteristics. Nu – Nusselt number (4.11), [αt], and [Prt]– 

volume-averaged diffusivity (37), and Prandtl number (39) 
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Figure 4.5: Nusselt number Nu in excess of 1 as a function of the magnetic interaction 

parameter N for different orientations of the magnetic field 

 

Similar linear approximations can be applied, although with lower accuracy, to the cases 

of streamwise and wall-normal fields. It has been used to quantify the suppression of the 

scalar transport by a single coefficient - the slope C. 

Using linear fitting, the slope C has been obtained as: 

C = −236.4 in the case of the wall-normal field 

 C = −51.6 in the case of spanwise field  

C = −14.5 in the case of streamwise field. 

 

4.3.4 Correlation coefficient  

Figure 4.6 shows the average scalar flux in the streamwise direction  

                                       𝑞𝑢𝜃(𝑧)  =  〈𝑢′𝜃〉                                                                    (4.15) 

 

and the corresponding correlation coefficient   

                       𝑅𝑢𝜃(𝑧)  =  
𝑞𝑢𝜃

〈𝑢′2〉1/2〈𝜃′2〉1/2                                                                       (4.16) 
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Although not contributing directly into the scalar transport between the channel walls in 

the conditions of a fully developed flow (see (25)), quθ is interesting in the general context 

of turbulent scalar transport in the presence of mean shear and magnetic field. It can be 

observed in figure that, locally, the streamwise flux is much stronger than the wall-normal 

flux 𝑞𝑡 shown in figure 4.6, especially near the channel wall. This can be explained by the 

presence of strong negative correlation between θ/ and u/, which is seen in the right plot of 

figure 4.6, and the significant strength of perturbations in the form of high-speed and low-

speed streaks. The sign of the correlation can be easily explained if we consider the role of 

the wall-normal velocity. For example, near the wall z = -1, positive w transports higher 

values of θ and lower values of u from the wall, resulting in formation of a zone with low-

speed streak) and Similarly, negative w transports lower values of and higher values of 

from the channel core resulting in formation of a zone with u′ < 0 (a low-speed streak) and 

θ′ > 0. Similarly, negative w transports lower values of θ and higher values of u from the 

channel core resulting in a zone with u′ > 0 (a high-speed streak) and θ′ < 0. The result is 

the negative correlation between θ′ and u′, which is strong due to the dominance of u′ in 

the flow field. At the opposite wall z = 1, similar reasoning requires profiles with positive 

quθ  and Ruθ, antisymmetric to those shown in figure 4.6. 

 

 

Figure 4.6: Profiles of turbulent scalar flux in the streamwise direction (4.13) (left) and 

correlations coefficients (4.14) (right). 
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4.3.5 Eddy Diffusivity 

As similar to the eddy viscosity (3.6), the eddy diffusivity of the turbulent scalar transport 

in the wall-normal direction has been computed as:  

 

                                               𝛼𝑡(𝑧) = − 
𝑞𝑡

𝑑𝑇/𝑑𝑧
                                                           (4.17) 

 

The results are presented in figure 4.7. The figure also shows the eddy diffusivity integrated 

over the volume of the core flow: 

 

                                  [𝛼𝑡] =
1

1.8
 ∫ 𝛼𝑡(𝑧)𝑑𝑧

0.9

−0.9
                                                  (4.18) 

 

The limits of integration are chosen as for the eddy viscosity in (3.6). i.e. excluding the . 

the contribution of boundary layers. The values of eddy diffusivity [𝛼𝑡] are shown in Table 

4.1.   

 

It can be seen that the suppression of the turbulent scalar transport by the magnetic field 

consistently leads to reduction of eddy diffusivity. The general tendency is the same as for 

the eddy viscosity shown in figure 4.7, although there are differences. In order to quantify 

them and to provide information for future attempts of turbulence modeling, the turbulent 

Prandtl number as a function of the wall-normal coordinate has been computed as follows:  

 

                                            𝑃𝑟𝑡(z)  =  
νt(z)

αt(z)
                                                                 (4.19) 

 

and using the volume-averaged quantities  

 

                                   [𝑃𝑟𝑡 (𝑧)]  =  
[𝜈𝑡(𝑧)]

[𝛼𝑡(𝑧)]
                                                                    (4.20)                                                                                                    
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the values of which are listed in Table 4.1. The results are shown in figure 4.8. For the 

hydrodynamic case, in agreement with the results of earlier DNS [53], Prt is about one near 

the walls and decreases significantly towards the middle of the channel. For the flows with 

magnetic fields, the near-wall behavior is approximately the same, but the transformation 

of turbulence in the core flow acts differently on the eddy viscosity and eddy diffusivity. 

The effect varies depending on the orientation of the magnetic field. In the wall-normal 

case, it can be described as an increase of the Prandtl number, which is small at Ha ≤ 10 

but becomes significantly larger at Ha=13.3, i.e. close to the laminarization threshold. In 

the case of the spanwise field, we see a decrease of except in the very middle of the channel, 

where it increases. The suppression of turbulent fluctuations and growth of their typical 

length scale leads to a somewhat stronger reduction of eddy viscosity than of eddy 

diffusivity.   

 

A comparably strong, but opposite tendency is observed when the magnetic field is in the 

streamwise direction. The turbulent Prandtl number increases with the strength of the 

magnetic field. 
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Figure 4.7: Turbulent eddy diffusivity as a function of wall-normal coordinate. The last 

plot shows the volume-averaged diffusivity (4.18). 
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Figure 4.8: Turbulent Prandtl number as a function of wall-normal coordinate. The last 

plot shows the volume-averaged number (4.20). 

 

4.3.6 Computed scalar structure 

The structure of the computed scalar fields is illustrated in figures 4.9–4.11. Instantaneous 

distributions of θ are shown in three cross-sections: parallel to the wall within the boundary 

layer (figure 4.9) and perpendicular to the wall along the spanwise y-axis (figure 4.10) and 

along the streamwise x-axis (figure 4.11). For every cross-section, solutions at the highest 

Ha for each orientation of the magnetic field are presented.  
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Figure 4.9: Instantaneous distribution of scalar at z = 0:979. 

 

The scalar distribution within the boundary layers, which is illustrated in figure 4.8, can be 

interpreted on the basis of strong correlation between the scalar and the fluctuations of the 

streamwise velocity (see figure 4.6). At such a strong correlation, the scalar field closely 

follows the pattern of high-speed and low-speed streaks. The conclusions in regard of the 

effect of the magnetic field on the streamwise velocity made in the present study and in the 

earlier studies, such as [20, 21, 23, 25, 41], can be directly applied to the scalar.  This is 

confirmed by our results shown in figure 4.8.  The scalar ‘streaks’ increase in size and 

coherence in the presence of the wall-normal magnetic field at Ha=13.3 (close to the 

laminarization threshold). The spanwise field also increases the typical size of the ‘streaks’. 

Both wall-normal and spanwise magnetic fields reduce the variance of θ/ , which is already 

shown in figure 4.1. The effect of the streamwise magnetic field is weaker. Figures 4.9 and 

4.10 provide a view of the transformation of the scalar field in the core flow.  
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Figure 4.10: Instantaneous distribution of scalar at x = 0. 

 

 

Figure 4.11: Instantaneous distribution of scalar at y = 0. 
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It has been observed that the transformation is only noticeable in the cases of wall-normal 

and spanwise magnetic fields. In both cases, the core flow area shrinks as the boundary 

layers become thicker (see figure 4.1). Furthermore, similarly to the velocity components, 

the scalar distribution is characterized by larger length scales than in the flow without 

magnetic field. 

 

4.3.7 Scalar Structure Anisotropy 

The last characteristic of the scalar field explored in the current study is the structure 

anisotropy. Similarly to velocity (eqn (3.8) in Chapter-3), the anisotropy is measured by 

the coefficient 

                     𝐹𝑖𝑗 ≡
〈(𝜕𝜃/𝜕𝑥𝑖)2〉

〈(𝜕𝜃/𝜕𝑥𝑗)
2

〉
 , 𝑖 ≠ 𝑗                                                                            (4.21)                                                                                         

Fij = 1 corresponds to a perfectly isotropic scalar field, in which the integral length scales 

in the directions of are the same.  Fij = 0 means a perfectly two-dimensional distribution, 

in which does not vary along the coordinate. The results of the computations are shown in 

figure 4.11. Anisotropy in the (x-z)-plane (left plot) and (y-z)-plane (right plot) is 

presented. Comparing the scalar anisotropy coefficients with the velocity anisotropy 

coefficients shown in figure 3.9, strong similarities especially with the anisotropy of the 

streamwise velocity are found per figure 4.11.  

 

Figure 4.12: Scalar anisotropy coefficients F13 (left) and F23 (see (4.19)). 
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Near the walls, where θ/ is in almost perfect anti-correlation with u/, strong wall-normal 

derivatives results in very small F13 and F23. In the core flow area, the scalar distribution 

becomes more isotropic, although the coefficients never reach 1.0, i.e., the integral length 

scales in the streamwise and spanwise directions remain larger than the wall-normal scale. 

The only significant effect of the magnetic field on the scalar anisotropy is in the case of 

the spanwise field (see figure 4.11). The spanwise field is known to increase the typical 

spanwise and streamwise length scales of velocity (ref [13] and figure 3.9 in Chapter 3). 

The same effect for the velocity and the corresponding decrease of the anisotropy 

coefficients for the scalar has been observed in the current study.  

 

4.4 Conclusion 

The main results of the presented work concern the effect of the magnetic field on the scalar 

distribution and the rate the turbulent scalar transport across the channel. In the range of 

the Hartmann numbers considered, the effect is found to be strong in the cases of wall-

normal and spanwise magnetic field, but less so in the case of streamwise field. The 

turbulent scalar flux is substantially reduced (see figure 4.4) due to the suppression of wall-

normal velocity fluctuations and some loss of correlation between the scalar and the wall-

normal velocity. This results in reduction of the Nusselt number. As illustrated in figure 

4.5, for all three orientations of the magnetic field, the decrease of Nu −1 is rather 

accurately approximated by linear functions of the magnetic interaction parameter N.  

It is interesting that the transformation of the mean scalar profiles in figure 4.1 is 

qualitatively similar to the transformation observed in the hydrodynamic case at decreasing 

Pr [49, 52]. Both the transformations are caused by suppression of the wall-normal 

turbulent transport of the scalar. The mechanisms of suppression are, however, different. 

In the low-Pr flows, high molecular diffusivity acts as a ’filter’ preventing the formation 

of scalar fluctuations with short wavelengths, thus removing the short-wavelength 

component of the transport. In the MHD case, as it has been demonstrated through current 
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study, the mechanism is that of suppression of the wall-normal velocity fluctuations and 

reduction of velocity-scalar correlation by the magnetic field. 
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CHAPTER V 

 

SCALAR TRANSPORT AND PERTURBATION DYNAMICS IN 

INTERMITTENT MHD FOW 

 

5.0 Introduction 

The influence of magnetic field on turbulent flow and scalar transport characteristics of 

electrically conducting fluid have been discussed in Chapter 3 and 4 which highlights main 

features of the flow such as, turbulence suppression, development of Hartmann Boundary 

Layer and anisotropy, degradation of scalar transport etc. Apart from the features discussed 

so far, there exists a unique flow regime in electrically conducting fluid especially liquid 

metal for the case of spanwise magnetic field which was first discussed in [15]. Similar 

regimes exist in all MHD systems without solid walls crossing the magnetic field line [13, 

76]. It is characterized by long periods of nearly steady, two-dimensional (2D) flow 

interrupted by violent three-dimensional bursts. Contrary to the over-simplification that the 

magnetic field always dumps turbulence and helps to reduce undesired velocity 

fluctuations, the regime features novel characteristics of the flow where the flow repeats 

itself in violent transitioning between 2D state where turbulence is fully suppressed, and 

fully turbulent three-dimensional (3D) states. The new regime which is defined as Large-

scale Intermittency [15] occurs in a wide range of parameters (e.g. Harmann number) and 

have implications for metallurgical and other low-Rm technological flow. A case example 

is continuous casting of steel described in Chapter 1. During the casting process, the mixing 

and transport can be increased primarily when the turbulent burst happens due to 

intermittency. However, when the flow transforms to quasi-2D state due to magnetic 

damping by the imposed magnetic field, the flow fluctuation and mixing reduced which 
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results in inhomogeneous casting of steel. Similar phenomena may happen in admixtures 

transport (e.g. Growth of Crystal described in Chapter [15]).  

In the current study, the work in Ref [15] is further comprehended by conducting direct 

numerical simulation (DNS) to analyze features of the intermittent regime, such as  

transport of a passive scalar, distribution of perturbation energy between mean flow and 

fluctuations, and the effect of the strength of the magnetic field which provides sort of 

book-end on influence of imposed uniform magnetic field on turbulent  and scalar transport 

characteristics in a channel. In this chapter, the results of the scalar transport and 

perturbation dynamics in intermittent MHD has been discussed. The outcome of the 

discussed results in this chapter is published in the research article [54].  

 

5.1 Background and review on earlier work 

The large-scale intermittency discovered in [15] occurs in a certain range of the magnetic 

field strength, where the flows experience cycles with long periods of nearly laminar, 

nearly two-dimensional behavior interrupted by relatively brief turbulent bursts. The key 

to understanding the large-scale intermittency is the direct effect of the Joule dissipation of 

induced electric currents on the flow. The dissipation rate is proportional to the square of 

the velocity derivative in the direction of the magnetic field [1]. The flow structures with 

large derivatives are suppressed, while the structures uniform along the magnetic field lines 

do not induce electric currents and, therefore, remain unaffected. The situation becomes 

more complex in systems with Hartmann walls (walls perpendicular to the magnetic field). 

In this case, the global distribution of electric potential causes currents and Joule 

dissipation within the Hartmann boundary layers even when the flow structures in the core 

are uniform along the magnetic field. In Ref. [15], the large-scale intermittency was 

demonstrated for the channel flow with spanwise magnetic field, i.e. for the case when the 

Hartmann walls are absent. The driving mechanism of the intermittency is the classical 

Tollmien-Schlichting (TS) instability of the laminar channel flow to two-dimensional 

spanwise rolls. Since these structures are uniform in the direction of the magnetic field, 

they do not experience suppression due to the Joule dissipation. However, when the rolls 
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develop to a finite amplitude and give rise to secondary three-dimensional instabilities and, 

then, to turbulence, strong Joule dissipation appears. It suppresses the turbulence and 

returns the flow into a state close to the laminar base flow. The process then repeats in 

cycles of transitions between two unstable attractors: the laminar base flow and the three-

dimensional turbulence. Interestingly, the two-dimensional non-laminar solution obtained 

in the simulations with imposed two-dimensionality [55] or at stronger magnetic fields is 

never approached by the intermittent flow. The mechanism just described appears to be of 

general kind, not limited to the specific configuration of the channel flow with spanwise 

field. It can be hypothesized that the intermittency may develop if two necessary conditions 

are satisfied: (1) the flow may experience a hydrodynamic instability, whose development 

is not affected or only weakly affected by the magnetic field, and (2) the magnetic field is 

not strong enough to prevent development of three-dimensional secondary instabilities, but 

strong enough to suppress the resulting turbulence. 

 

The validity of the hypothesis is demonstrated by two other examples, in which similar 

intermittent behaviors are observed: the periodic box turbulence with large-scale forcing 

[13, 56] and the ideal flow in a tri-axial ellipsoid [57]. In more realistic systems, the first 

of the two conditions listed above practically limits the possible configurations to those 

with either infinite or large dimension in the direction of the magnetic field. Still, one can 

think of numerous situations, including those with large magnetic Reynolds numbers, in 

which the intermittency is possible. It should be also noted that the scenario just described 

remains valid if the magnetic field is replaced by another physical mechanism that 

suppresses three-dimensional perturbations, but allows unimpeded development of a two-

dimensional instability. An example is recently provided by simulations of a channel flow 

with rotation around the spanwise axis [58]. The spanwise rotation suppresses turbulence 

on one, so-called stable, side of the channel [59, 60]. It does not, however, affect the growth 

of purely spanwise TS rolls. The resulting flow dynamics obtained in Ref. [58] at the bulk 

Reynolds numbers between 5000 and 30,000 and sufficiently high rotation rates is 

remarkably similar to the large-scale intermittency in the MHD channel observed in Ref. 
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[15]. The flow evolves in cycles, each consisting of growth of TS rolls, their three-

dimensional breakdown, and return to the base state. Depending on the magnitude of the 

rotation rate, the intermittency occurs only on the stable side of the channel, the other side 

remaining turbulent, or in the entire channel. The time of the process is about 1000 

convective time units, which is close to the period observed in Ref. [15] for the MHD 

channel flow. 

 

From the viewpoint of general hydrodynamics, the large-scale intermittency is a 

manifestation of transition between laminar and turbulent states. The situation, in which 

the transition leads to localized, either in space or time, turbulent zones (sometimes called 

patterned turbulence phenomena [61] is not uncommon. It can be mentioned the turbulent 

patches in pipe, channel, boundary layer, and other parallel shear flows [61-65] and the 

striped turbulence in Taylor and plane Couette flows [66-69] that typically takes the form 

of oblique turbulent stripes and requires large streamwise and spanwise dimensions of the 

computational domain to be detected in simulations. The common feature of all these 

flows, also present in our case, is the range of parameters, in which a linear or nonlinear 

instability mechanism is sufficiently strong to create turbulence, but the turbulence lacks 

ability of self-sustaining in the entire flow domain or over a long period of time. 

In the current study, the intermittency in the case of the channel flow with spanwise 

magnetic field is further studied. Attention is given to the transport properties of the flow, 

distribution of the perturbation energy between mean flow and fluctuations, and the effect 

of the strength of the magnetic field. 

 

5.2 Model for the intermittency study 

A fully developed flow of an incompressible electrically conducting fluid in a plane 

channel is considered in the current study similar to configuration described in Chapter 3 

and 4 (please refer to figure 2.1 in Chapter 2 for the channel configuration). The walls are 

perfectly electrically insulating. The flow is driven by an imposed streamwise pressure 

gradient maintained so that the total flow rate is constant. A uniform constant magnetic 
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field of strength B is applied in the spanwise (parallel to the walls and perpendicular to the 

mean flow) direction. A passive scalar field θ (e.g., temperature or concentration of an 

admixture) is present in the flow. The magnetic Reynolds and Prandtl numbers are assumed 

to be much smaller than one, which corresponds to a typical situation in technological or 

laboratory flows of liquid metals and other electrically conducting fluids. As a result, the 

induced magnetic field is much smaller than the imposed magnetic field and can be 

neglected in the Ohm’s law and the Lorentz force. The quasistatic approximation described 

in chapter 2 [1] is valid. The equations in non-dimensional form are 

 

                                          
𝜕𝒖

𝜕𝑡
+ (𝒖. ∇)𝒖 = −∇𝑝 +

1

𝑅𝑒
∇𝟐𝒖 +  𝐍(𝐣 × 𝒆𝒚)                       (5.1) 

                                                       ∇. 𝒖 = 𝟎                                                                   (5.2) 

                                                       𝒋 = −∇𝝋 + 𝒖 × 𝒆𝒚                                                  (5.3) 

 

                                                                                  ∇2𝜑 = ∇. (𝒖 × 𝒆𝒚)                                                      (5.4) 

     

                                                        
𝜕𝜃

𝜕𝑡
+ 𝒖. ∇𝜃 =

1

𝑃𝑟𝑅𝑒
∇2𝜃                                                   (5.5)                               

 

where u = (u, v,w), p, θ, j, and φ are velocity, pressure, passive scalar, current density, and 

electric potential fields, respectively. The streamwise, spanwise, and wall-normal 

coordinates are, correspondingly, x, y, and z. The unit vector ey represents the direction of 

the magnetic field. 

 

The boundary conditions in the streamwise and spanwise directions are those of periodic 

velocity, pressure perturbations, scalar, and electric potential. The channel walls are subject 

to no slip velocity condition, perfectly electrically insulating, and maintained at constant 

values of the scalar: 
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                                                          𝑢 = 0 𝑎𝑡 𝑧 = ±1                                                               (5.6)                 

 

                                                         
𝜕∅

𝜕𝑛
= 0 𝑎𝑡 𝑧 = ±1                                                               (5.7)                 

 

                                 𝜃 = 1 𝑎𝑡 𝑧 = −1, 𝜃 = 0 𝑎𝑡 𝑧 = 1                                                              (5.8)            

 

The typical scales used for non-dimensionalization are the channel half-width L as the 

length scale, mean velocity U as the velocity scale, L/U as the time scale, ρU2 as the 

pressure scale, the strength of the imposed magnetic field B as the magnetic field scale, 

ULB as the scale of electric potential, σUB as the scale of current density, and the scalar 

difference between the walls as the scale for the scalar field. 

 

The non-dimensional parameters of the model are the Reynolds number (2.17), Prandtl 

number (2.18) and either the Hartmann number (2.37) or the magnetic interaction 

parameter (2.38).   

 

The equations and boundary conditions have the laminar, steady-state “base flow” solution 

with parabolic velocity profile and purely diffusive scalar transport 

 

                              𝒖𝑏𝑎𝑠𝑒 = (3/2)(1 − 𝑧2)𝑒𝑥, 𝜃𝑏𝑎𝑠𝑒 = (1/2)(1 − 𝑧)                            (5.9)                                              

 

It can be noted that, in addition to being an exact solution for the channel flow with 

spanwise magnetic field, ubase is an asymptotic limit of the velocity distribution in the core 

(outside the Hartmann boundary layers) of the flow in a rectangular duct of large aspect 

ratio with the imposed magnetic field parallel to longer sides. This can be obtained from 

the expansion series solution [3] of the MHD duct flow or numerically, as in Ref. [70]. 

According to Ref. [70], in the range of Ha considered in this paper, ubase is a good 

approximation of the core flow velocity at aspect ratios above 10. 
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The problem is solved numerically following the DNS approach. The numerical method is 

based on the second-order finite difference scheme described as the scheme B in Ref. [74], 

the details of which has been discussed in chapter 2. The method has been extended in Ref. 

[35] to include the solution of the scalar transport equation (5.5). The scheme utilizes the 

explicit backward-difference/Adams-Bashfort scheme for time discretization and the 

standard projection technique to satisfy incompressibility. The spatial discretization is on 

a spatially non-uniform structured collocated grid. Velocity and current fluxes at half-

integer grid points are obtained by interpolation and applied in evaluation of differential 

operators to ensure that the scheme is nearly fully conservative in regard of the mass, 

momentum, energy, scalar, and electric charge conservation principles [71, 75]. Further 

details can be found in Chapter 2 per Ref. [74] as well as in the recent works, where the 

scheme was applied [35, 72, 73].  

 

The simulations are conducted at the Reynolds number of 5333, which is the same as the 

Reynolds number used by Ref. [15], where it was presented as 8000 based on the channel 

half-width and the centerline velocity of the laminar flow. The value is higher than the 

linear stability limit of the hydrodynamic channel flow Re = 3848. The explored range of 

the Hartmann number is 30 ≤ Ha ≤ 160. 

 

The Prandtl number Pr = 1 is chosen for all the computations. As a justification, the current 

study considers that the values of Prandtl and Schmidt numbers in the technological 

applications involving liquid metals vary from those much smaller than one (Prandtl 

number in heat transfer) to those much larger than one (Schmidt number in transport of 

certain admixtures). Since the current investigation is the first in nature, in which the scalar 

transport in the presence of large-scale intermittency is considered, the study considers Pr 

= 1 and limit the discussion of the effect of Pr (undoubtedly significant) to the qualitative 

arguments given in the conclusion of this chapter. 
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The computational domain has the dimensions of 2π ×4π ×2 in the streamwise, spanwise, 

and wall-normal directions, respectively. The computational grid consists of 64 × 64 × 80 

points. The points are distributed uniformly in the streamwise and spanwise directions and 

clustered toward the walls using the coordinate transformation z = tanh (Aζ )/tanh (A) with 

A = 1.5. The grid is similar to the grid used in [15], the differences being that the current 

study uses finite difference rather than pseudo-spectral discretization and that the number 

of grid points in the wall-normal direction is slightly larger in the current study (Ref. [15] 

used 64 Chebyshev functions). 

 

One may argue that the choice of the domain size and numerical resolution in current study 

is inadequate, because smaller grid steps are needed to fully resolve the small-scale motions 

during the turbulent bursts and because larger streamwise size of the domain is needed to 

capture the long-range interaction of the evolving TS rolls. The justification of the current 

study approach is two-fold. First, as discussed in Ref. [15], the mechanisms and major 

features of the process are not significantly affected by the small-scale resolution and the 

domain size. Second, the intermittency has a very large time scale, which requires 

simulations of flow evolution during tens of thousands of time units. Performing such 

simulations with a significantly finer grid and in a substantially larger domain would be 

either computationally unfeasible or feasible in the form of very large-scale massively 

parallel computations. It is considered unnecessary in the current study and a somewhat 

inaccurate numerical model is used as a compromise. 

 

5.3 Results and Discussion 

One simulation of a flow realization is conducted for every explored value of Ha. In each 

run, the computation started with the developed turbulent flow at Ha = 30 and conducted 

the computations until a pattern of regular cyclic transitions between laminar and turbulent 

states has been established. After that, the simulation is continued for not less than ten 

cycles. Flow properties are studied, and time-averaged statistics is accumulated during this 

period.  
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5.3.1 Flow evolution and perturbation energy 

The current study differs from the procedures followed in Ref. [15] in the numerical 

method on how flow evolves in intermittency cycle. In the spectral method solution of Ref. 

[15], random noise of average amplitude 10−6 was constantly added to the velocity field 

thus setting the “floor” of the perturbation energy during the periods of nearly laminar 

behavior. Noise is not added in the current simulations. It is found that in the finite 

difference solution, presumably due to the discretization error, the floor has been 

repeatedly reproduced at some small energy (see figure 5.1). For the purpose of 

verification, the run at Ha =100 is repeated with the noise added. No significant differences 

in the results in comparison with the no-noise run has been detected. 

The current numerical model has been verified comparing the results obtained at Ha = 80 

with those published in [15]. Good agreement is found for the integral characteristics of 

the process, such as the peak magnitude of the perturbation energy. The lengths of the 

intermittency cycle are only slightly different. This shows that the addition of weak random 

noise and the numerical dissipation of the finite difference discretization do not 

significantly affect the intermittent behavior.  
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Figure 5.1: Evolution of the kinetic (a, c, e) and scalar (b, d, f) energies of the 

perturbations during two cycles of large-scale intermittency at Ha = 80. 
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The large-scale intermittency has been detected in the current study simulations at 40 ≤ Ha 

≤ 140. At smaller Hartmann numbers, as found from the computations at Ha =30, the flow 

remained persistently turbulent, although the nature of the turbulence was significantly 

modified by the spanwise magnetic field in the manner described in earlier publications 

[35, 25].  At higher Ha, the flow becomes purely 2D channel flow [55]. This is found in 

the current study simulations with Ha = 160. For all the intermittent flow regimes, perfectly 

periodic behavior of the integral characteristics of the flow has been demonstrated from the 

simulation. In particular, the length of a cycle has been virtually constant, and the peak 

amplitudes of velocity and scalar perturbations has demonstrated only slight variations. 

Further in this section, the flow behavior during an intermittency cycle has been analyzed. 

The analysis is different from Ref. [15] in three aspects. One is that the present study 

investigates the transport properties of the flow by analyzing the behavior of a passive 

scalar field. Another is that in the current study the modification of the mean flow during 

the cycle has been considered. The current study also presents the data illustrating how the 

characteristics change with the Hartmann number. The flow evolution is described in terms 

of growth and decay of velocity and scalar perturbations. The perturbations are defined 

with respect to the base flow (5.9): 

 

                                               𝒖′ = 𝒖 − 𝒖𝒃𝒂𝒔𝒆,  𝜃′ = 𝜃 − 𝜃𝑏𝑎𝑠𝑒                                         (5.10) 

 

and, as in Ref. [15], with respect to the instantaneous mean flow: 

 

                                         𝒖′′ = 𝒖 − 〈𝒖〉,  𝜃′′ = 𝜃 − 〈𝜃〉                                             (5.11) 

 

where 〈 〉 is averaging in the x − y plane, and the scalar perturbations θ” analogous to the 

velocity perturbations u” computed in Ref. [15] has been introduced in the simulation. The 

need for the two types of perturbations stems from the intention to consider the evolution 

of their difference, which is, evidently, the distortion of the mean velocity and scalar: 
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    ∆𝒖 ≡ 𝒖′ − 𝒖′′ = 〈𝒖〉 − 𝒖𝒃𝒂𝒔𝒆, ∆𝜃 ≡ 𝜃′ − 𝜃′′ = 〈𝜃〉 − 𝜃𝑏𝑎𝑠𝑒                                (5.12) 

                                         

The distortion develops during the stages of the flow evolution when the perturbation 

amplitude is finite. As will be seen in the following, it plays a significant role in the energy 

balance during an intermittency cycle. In order to quantify the evolution of the flow, kinetic 

and scalar energies as volume averages of, respectively, square of velocity and scalar have 

been computed. For example, the total energies are 

 

                                              𝐸 =  𝑉−1 ∫ 𝒖2𝑑𝑉
𝑉

, 𝐸𝜃 = 𝑉−1 ∫ 𝜃2𝑑𝑉
𝑉

                             (5.13) 

 

In a similar way, the energies 𝐸′, 𝐸𝜃
′  of the perturbations (5.10), energies 𝐸", 𝐸𝜃

"    of the 

perturbations (5.11), and the energies  ∆𝐸, ∆𝐸𝜃 of the distortion of mean velocity and scalar 

(5.12) have been computed.  

 

It is straightforward to derive the following relations between the energies just introduced: 

 

𝐸′ = 𝐸" + ∆𝐸,   𝐸𝜃
′ = 𝐸𝜃

" + ∆𝐸𝜃,                                           (5.14) 

 

                       𝐸 = 𝐸𝑏𝑎𝑠𝑒 + 𝐸′ + 𝐸𝑚, 𝐸𝜃 = 𝐸𝜃𝑏𝑎𝑠𝑒 +   𝐸𝜃
′  + Eθm                              (5.15) 

                                                                                                                             

In the last formula, Ebase and Eθbase are the energies of the base flow and scalar distribution 

(5.9) and 

 

𝐸𝑚 =  2𝑉−1 ∫ (𝒖𝑏𝑎𝑠𝑒 . ∆𝒖)𝑑𝑉
𝑉

, 𝐸𝛩𝑚 =  2𝑉−1 ∫ (𝜃𝑏𝑎𝑠𝑒∆𝜃)𝑑𝑉
𝑉

                                           (5.16) 

 

are the terms that appear as a result of our decomposition of the mean fields into the base 

and distortion components. Further understanding of the flow behavior is provided by 

considering separately the evolution of the velocity and scalar components uniform in the 

spanwise (y) direction usp, θsp and the components uniform in the streamwise (x) direction 
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ustr , θstr. The components are found by averaging the computed fields in the respective 

directions. Their energies will be referred to as 𝐸𝑠𝑝
′ , 𝐸𝜃𝑠𝑝

′ , 𝐸𝑠𝑡𝑟
′ , 𝐸𝜃𝑠𝑡𝑟

′  if computed for 

perturbations (5.10) and as  𝐸𝑠𝑝
" , 𝐸𝜃𝑠𝑝

" , 𝐸𝑠𝑡𝑟
" , 𝐸𝜃𝑠𝑡𝑟

"   if computed for perturbations (5.11). 

At last, with the purpose of separating the secondary instabilities leading to a turbulent 

burst from the growth of TS rolls and the mean flow distortion, the energies E3D, Eθ3D of 

the components of the perturbations (5.10) non-uniform in the spanwise direction and 

defined as 𝒖𝟑𝑫
′ = 𝒖′ − 𝒖𝒔𝒑

′ , 𝜃3𝐷
′ = 𝜃′ − 𝜃𝑠𝑝

′  

 

5.3.2 Velocity during an intermittency cycle 

The typical intermittent behavior is illustrated in Fig. 5.1 that presents the results obtained 

at Ha = 80. Only two of the ten cycles computed during the stage of a fully developed flow 

are shown. Figure 5.1(a) shows the kinetic energy of the velocity perturbations (5.15) 

defined, as in Ref. [15], with respect to the instantaneous mean flow. As it can be observed 

that a cycle can be divided into three stages indicated in Fig. 5.1 by the typical time 

moments t1, t2, t3. The velocity perturbations u” during each of these moments are illustrated 

in Fig. 5.2. During the first stage, to which can be referred to as the “growth stage”, the 

velocity field is nearly perfectly spanwise-independent (𝐸′ ≈ 𝐸𝑠𝑝
"  as can be seen in Fig. 

5.1(a)). Its energy grows due to the amplification of unstable Tollmien-Schlichting (TS) 

rolls (see Fig. 5.2(a)), which are uniform in the spanwise direction and, thus, not affected 

by the magnetic field. 
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Figure 5.2: Evolution of perturbation velocity u” and scalar θ” during one cycle at Ha = 80. 

(a) Velocity vectors and scalar distribution in a cross-section y = const at t = t1 during the 

growth stage (see Fig. 5.1) when velocity and scalar perturbations are nearly purely 

spanwise-independent. (b) and (c): Isosurfaces of u” and θ” at t = t2 during the turbulent 

burst. For u”, the range is [−0.47, 0.35], the isosurfaces at u” = − 0.15, and 0.15 are shown. 

For θ”, the range is [−0.25, 0.26], the isosurfaces at θ” =−0.09, and 0.09 are shown. (d) and 

(e): Isosurfaces of u” and θ” at t = t3 during the decay stage. For u”, the range is [−0.023, 

0.038], the isosurfaces at u” =−0.01, and 0.01 are shown. For θ”, the range is [−0.059, 

0.059], the isosurfaces at θ” =−0.02, and 0.02 are shown. 

 

The second stage, which can be called a “burst,” starts when the TS rolls experience 

secondary instability leading to turbulence (see Fig. 5.2(b)). This transfers the energy into 

3D velocity fluctuations. As demonstrated in [15], this causes Joule dissipation, which is 
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sufficiently strong to suppress the turbulence and initiate the third stage, namely the stage 

of “decay.” As demonstrated in [15], the decay of 3D kinetic energy is primarily due to the 

direct suppression by the Joule dissipation, while the decay of 𝐸𝑠𝑝
"  is, apparently, due to the 

viscous dissipation and transfer of energy into 3D perturbations. As can be seen in Fig. 

5.1(a), the perturbation energy at this stage is almost entirely in streamwise-independent 

velocity. It is illustrated in Fig. 5.2(d) and discussed in Ref. [15] that, at this stage, the 

perturbations u” are dominated by streamwise streaks. 

 

Figure 5.1(c) shows the terms of the decomposition (5.14) of the perturbation kinetic 

energy. It can be observed that, during the growth stage, the perturbations u’ measured with 

respect to the base state are nearly identical to the perturbations u” with respect to the 

instantaneous mean flow. The mean flow distortion has the energy 𝛥𝐸 several orders of 

magnitude smaller than 𝐸′ ≈ 𝐸". 𝛥𝐸 starts to grow rapidly when the TS rolls reach high 

amplitude and becomes of the same order of magnitude as 𝐸′ and 𝐸" during the turbulent 

burst. After the burst, 𝐸"decreases much faster than 𝐸′ and 𝛥𝐸 and soon becomes negligibly 

small. During the decay stage, 𝐸′ ≈ 𝛥𝐸, i.e., the perturbations are almost entirely in the 

form of the distortion of mean flow. The streamwise streaks identified in [15] and 

illustrated in Fig. 5.2(d) dominate the velocity deviation from the instantaneous mean, but 

are, in fact, negligible in comparison with the simultaneous distortion of the mean velocity 

profile. The persistence of the mean flow distortion during the decay phase is easy to 

explain. Being spanwise-uniform, this component is not affected by the Joule dissipation, 

while its large typical length scale results in weak viscous dissipation. 
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Figure 5.3: Profiles of mean velocity 〈𝑢〉 and scalar 〈𝜃〉 and their deviations 𝛥𝑢, 𝛥𝜃  from 

the base flow (5.9). The profiles are shown at Ha = 80 for the typical time moments during 

the stages of 2D growth (t1), turbulent burst (t2), and decay (t3) (see Fig. 5.1). The scalar 

profiles are also shown for the time moment t4 typifying the stage of “sub-diffusive” scalar 

transport (see Fig. 5.6). 

 

The profiles of instantaneous mean velocity 〈𝑢〉(z, t) and its distortion 𝛥𝑢 at the typical 

time moments t1, t2, and t3 are shown in Fig. 5.3. Significant distortion has been observed 

during the turbulent burst at t = t2 and almost as strong in the decay phase at t = t3. 
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The global balance of kinetic energy has been obtained through the computations per 

(5.15). A peculiar feature of the balance is the behavior of the total kinetic energy E with 

respect to the base flow level Ebase = 1.2. During the growth stage, increase of the 

perturbation energy E’ leads to increase of E well above Ebase. The relation changes during 

the turbulent stage. The total energy E drops rapidly and becomes noticeably smaller than 

Ebase. It remains smaller well into the decay stage. This seemingly paradoxical behavior is 

related to the large negative value of Em in (5.15) (see Fig. 1(e)). An explanation can be 

seen in Figs. 5.3(a) and 5.3(c). The mean flow distortion 〈𝑢〉, while conserving the total 

flow rate, reduces 〈𝑢〉 in the high-speed core, thus transforming the profile into one with 

lower energy. 

 

The profiles of the x − y-averaged rms perturbations of the velocity components are shown 

in Figs. 4(a)–4(c). The perturbations are computed as in (5.14), i.e., with respect to the base 

flow. The profiles at t = t1 show the effect of the TS rolls, which generate u’ and w’, but not 

v’. The profiles at t = t2, when the flow is apparently turbulent, show significant differences 

with the profiles observed in the fully developed turbulent flows in a channel with a 

spanwise magnetic field [25]. In particular, the peaks of ((𝑢′2)1/2) are much farther from 

the wall in our case than in a developed turbulent flow. For ((𝑤′2)1/2), a distribution with 

the maximum in the middle instead of the distribution with two maxima not far from the 

wall typical for developed turbulence is observed. During the decay stage, at t = t3, the 

perturbations are predominantly in the streamwise velocity component, which is in full 

agreement with the fact that the perturbations at this stage consist of the mean flow 

distortion and streak-dominated perturbations u” (see Figs. 5.1 and 5.2(d)).  
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Figure 5.4: Profiles of x-y-averaged rms perturbations of velocity components and scalar 

at Ha = 80 at the stages of 2D growth (time t1), turbulent burst (t2), and decay (t3) (see 

Fig. 5.1). 

 

The wall-normal momentum transport by the velocity fluctuations is illustrated in Fig. 

5.5(a) by the profiles of the Reynolds stress component 𝜏13 ≡ 〈𝑢′𝑤′〉. The transport is only 

noticeably strong during the turbulent burst. The computations of the correlation 

coefficient 𝜏13/((𝑢′2)1/2(𝑤′2)1/2) have shown that, in addition to much larger amplitude 

of fluctuations, this is caused by stronger correlation between u’ and w’. 

The discussion of the evolution of velocity field during an intermittency cycle is concluded 

by the data in Fig. 5.6(a) presenting the skin friction coefficient Cf. In non-dimensional 

units, Cf is defined as the imposed pressure gradient needed to drive the flow. In agreement 
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with [15], Cf  grows nearly twice the base flow level during the turbulent burst, when strong 

wall-normal momentum transfer is generated by velocity fluctuations, but remains very 

close to the base flow level during the rest of the cycle. 

 

 

Figure 5.5: Profiles of x-y-averaged wall normal transport rates of momentum and scalar 

at Ha = 80 at the stages of 2D growth (time t1), turbulent burst (t2), and decay (t3) 

(see Fig. 5.1). 

 

 

Figure 5.6: Evolution of the skin friction coefficient (a) and Nusselt number (b) at Ha = 80 

during the same two cycles as in Fig. 1. Two horizontal lines show the values for the base 

flow state (5.13) and the perfectly 2D flow [55] obtained in our case at Ha = 160 and higher. 
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5.3.3 Passive scalar during an intermittency cycle 

The evolution of the scalar field during an intermittency cycle at Ha = 80 is presented in 

Figs. 5.1–5.6. Various characteristics are shown in parallel with the respective 

characteristics of velocity. Considering the energy curves of the scalar perturbations θ” 

with respect to the instantaneous mean distribution (see Fig. 5.1(b)) and the spatial structure 

of θ” at the typical time moments (see Figs. 5.2(a), 5.2(c), and 5.2(e)), It can concluded that 

the scalar field goes through the same three stages as the velocity field. 

In the growth stage, the scalar energy 𝐸𝜃
"  is practically identical to the energy of the 

spanwise uniform instability modes 𝐸𝜃𝑠𝑝
" . A prominent feature of the scalar distribution at 

this stage is the sheet-like zones of large positive and negative θ” extending along the walls 

(see Fig. 5.2(a)). The absence of strong correlation between u” and θ” visible in Fig. 5.2(a) 

is because of the difference between the speeds of streamwise transport of the scalar (the 

local speed of the mean flow) and the phase speed of the moving TS rolls. 

 

During the turbulent burst, the quasi-2D structure of the scalar perturbations breaks down 

into a three-dimensional distribution that has the typical spanwise length scale similar to 

the scale of velocity distribution (see Fig. 5.2(c)). In the decay stage, the scalar 

perturbations are nearly streamwise independent (𝐸𝜃
" ≈ 𝐸𝜃𝑠𝑝

"  in Fig. 5.1(b)) and are 

dominated by streak-like structures (see Fig. 5.2(e)). 

 

Considering the decomposition of the scalar perturbations θ’ into the deformation of the 

mean scalar profile 𝛥𝜃 and the perturbations with respect to the instantaneous mean θ” 

 (see Fig. 5.1(d)), it is found that, similarly to velocity, 𝛥𝜃 is negligibly weak during the 

growth stage, but is much stronger than θ” during the decay stage, when it constitutes 

practically entire θ’. Similarity to velocity field in the behavior of the total energy of the 

scalar 𝐸𝜃  (see Fig. 5.1(f)) is also seen. It increases above the base flow level 𝐸𝜃𝑏𝑎𝑠𝑒 = 1/3 

during the late growth and early turbulent stages. After the peak of the turbulent burst, 𝐸𝜃 
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drops sharply below 𝐸𝜃𝑏𝑎𝑠𝑒 as a result of the mean flow transformation causing negative 

𝐸𝜃𝑚 in (5.15). 

 

The qualitative similarity between the evolutions of scalar and velocity is not surprising, 

since the second largely determines the first. At the same time, certain differences are 

observed. One is that the energy of scalar perturbations decays much slower after the burst 

than the kinetic energy. This is true for the perturbations with respect to instantaneous mean 

(cf. Figs. 5.1(a) and 5.1(b)) and with respect to the base state (cf. Figs. 5.1(c) and 5.1(d)). 

As a result, the minimum levels reached by the scalar perturbation energies are several 

orders of magnitude higher than the minima of kinetic energies. The slower decay of the 

scalar can be explained by the fact that the scalar is not directly affected by the Joule 

dissipation. Its decay is caused solely by diffusion. 

  

Yet another difference between the dynamics of the scalar and velocity fields can be 

observed in Fig. 5.1. The visible switch from decay to growth occurs significantly 

(hundreds of time units) later for the scalar than for velocity. This cannot be attributed to 

the delayed correlation buildup between velocity and scalar, since the time needed for the 

buildup is ∼1 in our variables. The correct explanation is that the “switch” indicates the 

time moment when the energy associated with the growing TS rolls exceeds the energy of 

the decaying components. Since the decay is slower for the scalar than for velocity, the 

“switch” occurs at a higher amplitude of growing perturbations and, thus, at a later time. 

The transformation of the mean scalar 〈𝜃〉(z, t) and its deviation 𝛥𝜃  from the base flow 

distribution (5.13) is illustrated in Figs. 5.3(b) and 5.3(d). It is evident that strong 

transformation develops during the turbulent burst and persists during the decay stage (see 

profiles at t = t2 and t = t3). The transformation is rather peculiar in its dissimilarity to the 

transformation observed in the fully developed turbulent flows (see, e.g., Ref. 35). 

Boundary layers similar to those in a turbulent flow develop near the walls. The shape of 

the profile between the boundary layers is, however, quite different from the nearly straight 

line typical for turbulent flows. As the middle of the channel is considered, the slope 



97 

 

becomes nearly zero just outside the boundary layer and then increases rising above the 

slope of a laminar profile. 

 

The rms scalar perturbations (𝜃′2)1/2  and the wall-normal scalar transport by velocity 

fluctuations 𝑞𝑡  = 〈𝑤′𝜃′〉 are shown, respectively, in Figs. 5.4(d) and 5.5(b) illustrate two 

interesting features of the scalar evolution. One is that the spatial distribution of (𝜃′2)1/2 

tends to be more similar to the distribution of  (𝑢′2)1/2 than (𝑤′2)1/2. The correlation 

coefficients 𝑅𝑢𝜃 = 〈𝑢′𝜃′〉/((𝑢′2)1/2(𝜃′2)1/2 has been computed (not shown) and found 

that Ruθ is consistently larger than Rwθ . This dominance of the streamwise velocity 

component in determining the passive scalar distribution is known from the studies of 

turbulent scalar transport in shear flows. The main explanation is that u/ is simply stronger 

than w/. 

 

Another interesting feature is the distribution of scalar flux qt during the turbulent burst 

(t = t2 in Fig. 5.5(b)). qt has two “bulges” near the walls, but is small in the middle of the 

channel. It has been found that the suppression of the scalar transport is primarily due to 

almost zero correlation between w’ and θ’ in the middle. The “bulges” of qt provide an 

explanation of the peculiar shape of 〈𝜃〉 at t2 and t3 observed in Fig. 5.3. Applying, as an 

approximation, the steady-state balance of the x − y-averaged wall-normal scalar transport 

(see, e.g., Ref. 35 or other works on turbulent scalar transport in channels), it is found that 

local increase of qt must be accompanied by corresponding decrease of diffusive transport 

and, thus, of the slope of 〈𝜃〉. 

 

The transformation of the scalar distribution affects the global wall-to-wall scalar transport, 

which we define as the Nusselt number:   

 

                                                   𝑁𝑢 ≡ 2
𝑑𝑇

𝑑𝑧
|

𝑤𝑎𝑙𝑙
                                             (5.17)                                                                                                                             

 



98 

 

The wall-normal derivative in (5.17) can be taken at z = −1 or z = 1. The choice may have 

a slight effect on the instantaneous values, but the shapes of the curves Nu(t) and the values 

obtained by time integration over the intermittency cycle are, of course, the same. 

 

The Nusselt number computed at Ha = 80 is shown as a function of time in Fig. 5.6(b). 

Strong (nearly three-fold) increase during the turbulent burst is observed. During the rest 

of the cycle, Nu is much smaller, close to the value Nu = 1 of the base flow. Interestingly, 

during the significant time period of the late decay and early growth stages, when the flow 

is close to its base state, Nu is smaller than 1. The scalar transport can be called “sub-

diffusive.” The effect is found in the present computations in the intermittent regimes at 

Ha = 60, 80, 100, 120, and 140. It becomes stronger at higher Ha. The minimum value of 

Nu is 0.883 at Ha = 120 and 0.718 at Ha = 140. The phenomenon has been investigated 

and it is found that it is caused by a modification of the mean scalar profile. An illustration 

is provided in Figs. 5.3(b) and 5.3(d), which shows 〈𝜃〉 and 𝛥𝜃 at the moment t4 

corresponding, as shown in Fig. 5.6(b), to Nu < 1. The profile deviates from the base state 

(5.9) so that the slope |dθ/dz| at the wall is slightly smaller than the base state value 1/2. 

The reasons for formation of such a profile become clear if the distribution of the mean 

scalar forming in the result of a turbulent burst (see, e.g., curves of 〈𝜃〉 and 𝛥𝜃  for t = t3 in 

Figs. 5.3(b) and 5.3(d)) is considered. As a result of non-uniform turbulent scalar flux qt 

(see Fig. 5.5(b)), the distribution of 𝛥𝜃 has two stronger peaks in the middle of the channel 

and two weaker peaks near the walls. The transformation of the profile after the burst is 

predominantly controlled by diffusion. It is virtually evident, but has also been confirmed 

by the current solution of the one-dimensional diffusion equation, that this transformation 

leads to the profiles of 〈𝜃〉 and 𝛥𝜃  illustrated by the curves at t = t4 in Figs. 5.3(b) and 

5.3(d). 

 

The analogous “sub-viscous” wall-normal momentum transport with Cf below the base 

flow value 3Re −1 = 0.00056253 during the late decay and early growth stages is also 

detected in the present simulation, but the effect is much weaker and only observed at Ha 
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= 120 and 140. The minimum value of Cf   is 0.0005619 at Ha = 120 and 0.000539 at Ha = 

140. 

 

5.3.4. Effect of Hartmann number 

This section reports the results of our study of the influence of the magnetic field strength, 

as defined by the Hartmann number, on the intermittency. At each Ha, integral 

characteristics, such as the cycle duration and the maximum and cycle-averaged energies, 

are obtained by time-averaging over ten consecutive intermittency cycles. As it has been 

already mentioned, variations among the cycles are small, so the data can be considered as 

characteristics of an individual cycle. The data for the fully turbulent flow at Ha = 30 and 

for the purely 2D (spanwise-uniform) flow at Ha = 160 are included for comparison, where 

appropriate. 

Considering the nature of the direct (via the Joule dissipation) effect of the magnetic field 

on the flow, conjectures can be made concerning the influence of field strength on the 

intermittency cycle. As illustrated later in this section, the real behavior is largely in 

accordance with the reasoning, although more subtle in some aspects. 

 

The strength of the magnetic field does not affect the growth of the TS rolls, which are 

spanwise uniform. On the contrary, the turbulent burst is sensitive to the field strength. A 

stronger magnetic field should slow down the development of secondary instabilities, thus 

extending the 2D growth phase and allowing the TS rolls to grow longer and to a higher 

amplitude before they break down. A stronger magnetic field should also result in stronger 

suppression of 3D velocity perturbations and, thus, lower amplitude and smaller duration 

of the burst. During the decay phase, a stronger magnetic field should lead to faster decay 

of perturbations u” with respect to the instantaneous mean, but cannot directly affect the 

mean flow distortion 𝛥𝑢 . The effect of the magnetic field on the scalar is, of course, 

indirect, via the velocity field. Taking into account the correlation between the velocity and 
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scalar intermittency cycles demonstrated earlier in this section, similar changes in the 

evolution of scalar field are expected. 

 

The time characteristics of the intermittency cycle are presented in Fig. 5.7. The curves of 

the kinetic perturbation energy E’ (see Fig. 5.1(c)) are used to evaluate the growth and 

decay times measured, respectively, as the intervals, during which E/ grows from a 

minimum to a maximum at the peak of a turbulent burst and from a maximum to the next 

minimum. As it is predicted, the decay time decreases strongly with Ha. The projected 

increase of the growth time, however, does not occur. The tendency is that the growth time 

decreases with Ha, albeit significantly slower than the decay time and with some growth 

between Ha = 60 and 80 and between Ha = 100 and 120. 

 

To explain this behavior, it can be recalled that the perturbation energy E/ consists of the 

energy E” of the perturbations u” with respect to the instantaneous mean and the energy 𝛥𝐸 

of the mean flow distortion. During the decay stage, 𝛥𝐸 dominates and the time moment 

tmin of minimum E’ is, in fact, the moment when the energy E’ of the growing TS rolls first 

exceeds the decaying 𝛥𝐸 (see Fig. 5.1(c)). Stronger suppression of turbulent burst 

fluctuations by a stronger magnetic field inhibits the energy transfer from the mean flow 

to fluctuations and, as it is found, leads to slower decay of 𝛥𝐸. As a result, the cross-over 

moment tmin occurs at higher values of 𝛥𝐸 and E”. The effect is not very strong, but 

sufficient to somewhat lengthen the decay stage and, correspondingly, shorten the growth 

stage. 
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Figure 5.7: Growth time, decay time (see text for definitions), and total intermittency cycle 

time as functions of Ha. The results are obtained by averaging over ten consecutive cycles 

of fully developed intermittent flows. 

 

The cumulative effect is that the total cycle length is reduced significantly at higher Ha. 

The data illustrating the effect of the Hartmann number on the energy characteristics are 

presented in Fig. 5.8. It is shown that the kinetic and scalar energies of the perturbations u/ 

and θ/ with respect to the base flow (see (5.9)) split into the spanwise-uniform (2D) and 

non-uniform (3D) components. The energy curves marked as 2D thus show the 

characteristics of 2D TS rolls and mean flow distortion, while the curves marked as 3D 

show the energies of 3D fluctuations resulting from the secondary instabilities of the TS 

rolls. For the kinetic (Figs. 5.8(a) and 5.8(b)) and scalar (Figs. 5.8(c) and 5.8(d)) energies, 

the maximum and average values during a cycle are shown, both obtained by averaging 

over ten consecutive cycles of a fully developed flow. 

 

It can be observed that a stronger magnetic field means reduction of the maximum and 

average values of the kinetic energy of 3D modes. This is an effect of stronger Joule 

suppression of turbulence during the burst. At the same time, the maximum value of the 

2D energy has the tendency to increase. Similar tendencies are observed for the energy of 

the scalar. 
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Figure 5.8: Maximum and cycle-averaged kinetic and scalar energies of the perturbations 

u/ and θ/ with respect to the base flow (5.9). The energies of perturbations uniform (2D) 

and non-uniform (3D) in the spanwise direction are shown separately as functions of Ha. 

The data are obtained as in Fig. 5.7. The 2D energy points at Ha = 160 correspond to the 

purely 2D non-intermittent flow regime obtained at this Ha. 

 

The behavior of the cycle-averaged energies shown in Figs. 5.8(b) and 5.8(d) is a 

cumulative result of the change of the time and energy characteristics of the cycle. One can 

identify the main tendencies: a stronger magnetic field leading to increase of the energy of 

2D spanwise-independent components of velocity and scalar fields (except at small Ha) 

and decrease of the energy of 3D components. The just concluded discussion of the effect 

of magnetic field strength on the dynamics of an intermittency cycle helps to understand 
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the behavior of the maximum and cycle-averaged friction coefficient and Nusselt number 

shown in Fig. 5.9.  

 

 

Figure 5.9: Friction coefficient Cf   and Nusselt number Nu as functions of Ha. Maximum 

and cycle-averaged values obtained as in Figs.7 and 8 are shown. The points at Ha = 160 

correspond to the purely 2D non-intermittent flow regime. The points at Ha = 30 are for 

the sustained turbulent flow obtained at this Ha. 

 

One can think of three limiting values of Cf   and Nu: the lowest values corresponding to 

the base flow, the significantly higher values corresponding to the fully developed 2D flow, 

in which the momentum and scalar transport are provided by finite-amplitude deformed 

TS rolls (see Fig. 5.6 and the points at Ha = 160 in Fig. 5.9), and the even higher values of 

a turbulent flow. An intermittency cycle is a solution trajectory between the unstable 

attractors of the base flow and turbulence. The time spent by the solution near the 

turbulence attractor is much smaller than the time spent near the base flow state. 

Accordingly, Cf and Nu of intermittent regimes show the cycle-averaged values only 

slightly higher than the base flow limits. The effect of the strength of the magnetic field on 

the average values is very weak. The maximum values of Cf   and Nu are significantly 

higher than the base flow and 2D flow limits, but, except at Ha = 40, lower than the values 

obtained in a truly turbulent flow at Ha = 30. The effect of Ha on the maximum values of 
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Cf and Nu is to reduce them, which can be attributed to suppression of 3D turbulent 

fluctuations by the magnetic field. 

 

5.4 Conclusion 

A detailed parametric study of the phenomenon of large-scale intermittency in the MHD 

channel flow with spanwise magnetic field has been presented in this section. The current 

study expands the understanding on intermittency with complete picture on perturbation 

dynamics and energy spectrum during intermittency phenomena. In particular, the 

proposed doctoral study on intermittency describes the dynamics of a passive scalar field 

and quantify the effect of the intermittency on the transport rate. It is found that the scalar 

perturbations and the Nusselt number follow the cyclic evolution correlated with the cycles 

of velocity, albeit with some differences and unexpected effects, such as the sub-diffusive 

scalar transport during a significant segment of the cycle. Strong deformations of mean 

velocity and scalar that dominate velocity and scalar perturbations during the decay stage 

have been observed. The effect of the strength of the magnetic field on an intermittent flow 

is found to be complex, although the main features can be identified as the stabilization of 

the growing TS rolls and suppression of their secondary instabilities and the resulting 

turbulence. 

A few comments are in order concerning the effect of the parameters of the numerical 

model on the results. The spanwise and streamwise sizes of the computational domain are 

particularly important in the current study. The streamwise size affects the growth rate and 

secondary instabilities of the TS rolls [74, 75]. Increasing this size in the current model 

could lead to some change in the duration of the growth phase and the strength of turbulent 

bursts, but is not expected to have a substantial effect on the nature of the cycling. 

Increasing the spanwise size of the computational domain would activate modes of larger 

spanwise wavelengths, which are less susceptible to the suppression by the magnetic field. 

The test studies reported in [15] indicate that the result would be the shift of the upper 

boundary of the range of Ha, in which the intermittency is observed, to higher values. At 
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the same time, the principal mechanisms of growth and decay causing the intermittency 

would not change, so the cycling would remain largely the same. Furthermore, it should be 

considered that in any real system the spanwise size is limited by the Hartmann walls. It 

would be interesting to conduct the simulations at the same time scale as in the present 

study, but in a much larger computational domain. This could, among other possible 

results, clarify the relation between the time intermittency and the spatial intermittency in 

the form of turbulent stripes observed, among other systems, in the channel flow with 

imposed magnetic field [76]. The study has to be left for the future, when it becomes 

computationally more feasible. Yet another feature of the numerical model with possible 

implications for the intermittency effect, namely the constant flux formulation used in the 

present model. To verify the effect, a test run with constant imposed pressure gradient is 

conducted, which has been taken equal to the gradient in the laminar base flow at the same 

Re. Intermittency cycling with period about 4000 convective time units has been found. 

During the bursts, the perturbation energy grows to amplitudes comparable to the 

amplitudes reported earlier in this section. The increase of flow resistance during each burst 

cause approximately 5% drop of mean flow velocity. This implies reduction of the effective 

Reynolds number that assists the magnetic field in suppression of perturbations. After the 

suppression, the mean velocity increases back to nearly the base flow value and the next 

cycle begins. In order to evaluate the practical implications of the intermittency for the 

scalar transport and dispersion, the effect of the Prandtl (Schmidt) number has to be 

considered. In liquid metals, the Prandtl number is typically small (∼10−2–10−1). This 

means that the heat transfer is dominated by conduction and, probably, affected only 

slightly by the turbulent bursts. On the contrary, the Schmidt number tends to be larger 

than one. The effect of the intermittency on the admixture transport and dispersion is, 

therefore, significant, probably stronger than present study. The possibility of the existence 

of a flow cannot be excluded, in which periodic turbulent velocity bursts lead to sustained 

turbulent fluctuations of a scalar. This can be a subject of future investigations. 



106 

 

CHAPTER VI 

1D MODEL FOR FLOW FIELD AND PASSIVE SCALAR TRANSPORT 

 

6.1 Introduction 

One of the desired outcomes of a direct numerical simulation (DNS) is the detection of 

possible simple relationships between the mean flow characteristics and the problem 

parameters. Especially sought for are such relationships for the coefficients of eddy 

viscosity and diffusivity, since they may provide a basis for development of simple low-

dimensional models of the mean flow. For example, in present study, a highly desired 

outcome would be a set of simple approximate formulas modeling the behavior of eddy 

viscosity (νt (z)), eddy diffusivity (αt (z)) and turbulent Prandtl number (Prt (z)). Such simple 

formulas derived from DNS are not unheard of in MHD. For example, the LES 

Smagorinski constant in homogeneous turbulence was shown in [77] to be well 

approximated by a linear function of the anisotropy coefficient (equation 3.8 in Chapter 3). 

Accurate empirical relations that would express the effect of magnetic field via parameters 

of the problem, such as the Hartmann number Ha, magnetic interaction parameter N, or the 

anisotropy coefficients (equation 3.8 in Chapter 3) and (equation 4.21 in chapter 4) are 

difficult to formulate. As illustrated in figures 3.5, 4.7, and 4.8, the profiles of eddy 

viscosity, diffusivity, and Prandtl number change with the strength and orientation of the 

magnetic field in a complex way that does not allow a universal desired interpretation. 

However, models can be developed for each specific orientation of the magnetic field. In 

this section, this is done for the case of wall-normal magnetic field.
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6.2 Background 

In connection to the approach used in the current study to propose 1D models of mean flow 

and scalar for the case of a one-component fully developed flow of an electrically 

conducting fluid in a channel with imposed magnetic field, a review is conducted on the 

earlier work pertaining to mean flow and turbulence closure models. The review also 

provides a background of prior works done in the area where turbulence closure and 

transport models are proposed in general framework of DNS apart from the mean flow. 

Special attention is given on the eddy diffusivity and eddy viscosity modeling approach in 

describing the mean flow characteristics.   

Due to the low computational cost, Reynolds-averaged Navier-Stokes (RANS) simulations 

are widely used for industrial flow simulations. However, RANS method has limitation in 

modeling complex turbulence interactions for the mean flow variables. There exists a 

scarcity of available literature on the application of RANS models for MHD flows. In 

general, RANS method is applied for MHD flow computations using RANS equations with 

standard turbulence models and wall functions. The current effort in regard to RANS 

simulation includes improvement on the standard approach through the development of 

MHD-specific turbulence models [78, 79] and wall functions.  

 

An electromagnetically extended Reynolds stress transport model is developed by Widlund 

et al. [79] by transporting an additional scalar parameter which contained information on 

the dimensionality and anisotropy of the turbulence that is induced specifically by 

electromagnetic effects. Application of the model to a case of decaying turbulence in the 

presence of a magnetic field showed good agreement with DNS data.  

 

Kenjeres er al [78] developed a model of magnetohydrodynamic (MHD) interactions 

within the framework of the second-moment closure based on direct numerical simulation 

(DNS). The MHD effects are taken care in the transport equations for the turbulent stress 

tensor and energy dissipation rate. The validation of the model is conducted in plane 
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channel flows with different orientation of magnetic field against the available DNS (Re = 

4600, Ha = 6), large eddy simulation (Re=2.9 × 104, Ha = 52.5, 125) and experimental data 

(Re = 5.05 × 104 and Re = 9 ×104, 0≤ Ha ≤ 400) show good agreement for all considered 

cases.  

 

Wilson et al. [80] performs study on capability of a linear eddy-viscosity type model (a 

low-Re k—ε model, with electromagnetic modifications as proposed by Kenjereš [78]), in 

successful capturing of the effects of the different force fields over two test cases; a simple 

2D fully-developed channel flow with an imposed wall-normal magnetic field, and a 3D 

time-dependent case of Rayleigh–Bénard convection. In the channel flows (Reτ = 150, 

1150), the primary effect of the Lorentz force is found as a deformation in mean shear and 

a reduction in turbulent shear stress levels throughout the channel; something which the 

k—ε model is known to respond well to. As such, the additional electromagnetic 

modifications to the k and ε equations led to an overprediction of the reduction in shear 

stress, leading to the prediction of a laminar core region, in disagreement with DNS data.  

 

Yamamoto et al. [81] propose a new RANS model for turbulent channel flows imposed 

wall-normal magnetic fields with heat transfer. This proposal model can be ensured 

adequate MHD effects on model functions and parameters in the turbulent eddy viscosity 

and the production minus destruction term of the epsilon-transport equation. With this new 

proposal model, the Nusselt number of several Prandtl number fluids (Pr = 0.025, 5.25 and 

25) under the magnetic fields can be predicted in the range of less than 5% errors compared 

with the DNS database.  

 

A detailed RANS based modeling approach with model for turbulent closure and scalar 

transport is beyond the scope of the current study. However, model equations are developed 

for mean flow and scalar for the case of a simplified one-component fully developed flow 

using the RANS approach for mean flow and scalar equation when the flow is statistically 
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steady. In developing the model equation, linear approximation of eddy diffusivity and 

eddy viscosity is used.     

 

6.3 Model equation formulations for mean flow and scalar 

In this section, the model equations for mean flow and scalar are derived by applying time 

averaging on the momentum and scalar transport equation. In RANS simulations, only the 

mean flow is computed. The non-dimensional MHD equations described in Chapter 2 

(Equation 2.30-2.33) can be expressed in terms of the mean velocity, 𝒖̅ , pressure 𝑷 and 

electric current 𝑱̅ , as, 

 

                       
𝜕𝒖̅

𝜕𝑡
+ (𝒖̅. ∇)𝒖̅ = −∇𝑷 +

1

𝑅𝑒
∇𝟐𝒖̅ +  𝑁(𝒋̅ × 𝒆𝑩̅̅̅̅ ) +

𝝏𝝉𝒊𝒋

𝝏𝒙𝒋
                                       (6.1)                                                                        

                                                       ∇. 𝒖̅ = 𝟎                                                                   (6.2) 

                                                       𝒋̅ =  −𝛁𝜑 + 𝒖̅ ×  𝒆𝑩̅̅̅̅                                                 (6.3) 

 

                                                                                  ∇2𝜑 = ∇. (𝒖̅ × 𝒆𝑩̅̅̅̅ )                                                       (6.4) 

 

Where, 𝜏𝑖𝑗 represents turbulent stresses.  

 

 

 

 

 

 

 

Figure 6.1: Schematic of fully developed streamwise flow in a channel with wall-normal 

orientation of magnetic field 
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If a fully developed, 1-compnent streamwise flow is considered (figure 6.1), equation (6.1) 

is simplified to the form in equation (6.5) below due to the achievement of statistical steady 

state by time averaging. 

   

                      0 = −∇𝑷 +
1

𝑅𝑒
∇𝟐𝒖̅𝒙 +  𝑁(𝒋̅ × 𝒆𝑩̅̅̅̅ ) +

𝝏𝝉𝟏𝟑

𝝏𝒛
                                                     (6.5)                                                                        

 

Where mean velocity 𝒖̅𝒙 , is defined as, 

 

                                                        𝒖̅𝒙 = 𝒖𝒙(𝒛) 𝒊 ̅                                                              (6.6)                                                       

 

Equation (6.2) to (6.4) can be written with 𝒖̅𝒙 as,  

 

                                                       ∇. 𝒖̅𝒙 = 𝟎                                                                 (6.7) 

                                                       𝒋̅ =  −𝛁𝜑 + 𝒖̅𝒙 ×  𝒆𝑩̅̅̅̅                                               (6.8) 

 

                                                                                  ∇2𝜑 = ∇. (𝒖̅𝒙 × 𝒆𝑩̅̅̅̅ )                                                       (6.9) 

 

The non-dimensional scalar transport equation presented in chapter 2 (equation 2.34) can 

be expressed in terms of mean mean passive scalar 𝑇(𝑧) as,  

 

                                                 
𝜕𝑇

𝜕𝑡
+ 𝒖̅. ∇𝜃 =

1

𝑃𝑟𝑅𝑒
∇2𝑇                                                             (6.10) 

 

For the case of fully developed streamwise 1D flow, the time averaging, eliminates the first 

term, 
𝜕𝑇

𝜕𝑡
  in equation (6.10) as the passive scalar transport becomes statistically steady or 

time invariant. Equation (6.10) then can be written in terms of mean scalar 𝑇(𝑧) and 

turbulent scalar flux  𝑞𝑡(𝑧) as, 
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1

𝑃𝑟𝑅𝑒

𝑑2𝑇

𝑑𝑧2
−

𝑑𝑞𝑡

𝑑𝑧
= 0                                                               (6.11) 

 

In chapter 4, the eddy diffusivity is defined as,  

 

                                               𝛼𝑡(𝑧) = − 
𝑞𝑡

𝑑𝑇/𝑑𝑧
                                                             (6.12) 

 

The Peclet number (Pe) is defined as a ration of advective transport rate to diffusive 

transport and expressed as,  

 

                                             𝑃𝑒 =
𝐿𝑈

𝛼
= 𝑃𝑟 𝑅𝑒                                                            (6.13)                  

 

Substituting the relation (6.12), (6.13) into (6.11), the scalar transport equation can be 

written as follow, 

 

                                                  
𝑑

𝑑𝑧
[(

1

𝑃𝑒
+ 𝛼𝑡)

𝑑𝑇

𝜕𝑧
] = 0                                   (6.14) 

 

The mean flow and mean passive scalar for the fully developed streamwise flow presented 

by equation (6.5) and (6.14) respectively will be considered for each orientation of 

magnetic field in the following section below.   

 

6.3.1 Wall-normal magnetic field 

The imposed wall-normal magnetic field are expressed as, 

                            

                                  Imposed magnetic field,  𝒆𝑩̅̅̅̅  =  𝒆𝒛̅̅ ̅                                            (6.15) 

                                                                             

                                𝒖̅𝒙  ×  𝒆𝑩̅̅̅̅  =  [
i̅ 𝑗 ̅ 𝑘̅

𝑢̅𝑥 0 0
0 0 1

]  =  (−𝑢̅𝑥) 𝒋 ̅                                       (6.16) 
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Substituting (6.16) to (6.9),  

                                     ∇2𝜑 = ∇. (𝒖̅𝒙  ×  𝒆𝑩̅̅̅̅ ) =  ∇. [(−𝑢̅𝑥)𝒋]̅  =  −
𝜕𝑢𝑥

𝜕𝑦
 = 0                     (6.17)                               

 

which yields,                    𝜑 =  constant                                                                          (6.18) 

 

Substituting (6.18) to (6.8),  

  

                               𝒋̅ =  −𝜵𝜑 + 𝒖̅𝒙 × 𝒆𝑩̅̅̅̅ =   (−𝑢̅𝑥 ) 𝑒𝑦̅̅ ̅                                             (6.19)  

 

Lorentz force is computed as, 

 

            𝑭𝑳 =  𝒋̅ ×  𝑩̅   =   [
i̅ 𝑗 ̅ 𝑘̅
0 −𝑢̅𝑥 0
0 0 1

] = −(𝑢̅𝑥)𝒊 ̅                                                    (6.20) 

 

Substituting (6.20) in (6.5),  

 

                       0 = −∇𝑃 +
1

𝑅𝑒
∇𝟐𝑢̅𝑥 − 𝑁𝑢̅𝑥 +

𝝏𝝉𝟏𝟑

𝝏𝒛
                                                             (6.21)               

 

Equation (6.21) represents the equation for mean flow for the case of imposed wall-normal 

magnetic field.  

The pressure gradient for the case of the fully developed 1D flow is constant. As such ∇𝑃 

can be expressed as,  

 

                                                   ∇𝑃 =  
𝑑𝑝

𝑑𝑥
= constant =  𝑐                                            (6.22)               

                                                 

The turbulent stress tensor, 𝜏13  is expressed as,   
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                                                        𝜏13 = 𝜈𝑡
𝑑𝑢𝑥

𝑑𝑧
                                                              (6.23) 

 

Substituting (6.22) and (6.23) in (6.21) and re-arranging, equation (6.21) becomes as 

follow, 

 

                                                      
𝑑

𝑑𝑧
[(

1

𝑅𝑒
+ 𝜈𝑡)

𝑑𝑢𝑥

𝑑𝑧
] − 𝑁𝑢̅𝑥 = 𝑐                                           (6.24) 

 

Equation (6.24) represents the general form of mean flow equation for the case of fully 

developed streamwise flow with imposed wall-normal magnetic field, the solution of 

which is presented in section 6.5.  

 

6.3.2 Streamwise magnetic field 

Considering the streamwise orientation of magnetic field,  

 

                                                                 𝒆𝑩̅̅̅̅ = 𝒆𝒙̅̅ ̅                                                         (6.25) 

Therebefore,  

                       𝒖̅𝒙  ×  𝒆𝑩̅̅̅̅   =  [
i̅ 𝑗 ̅ 𝑘̅
𝑢̅ 0 0
1 0 0

]  =  0                                                                                 (6.26) 

 

Substituting (6.26) in (6.9), 

 

                                                                  ∇2𝜑 =  0                                                        (6.27)  

 

Or                                                                    𝜑 =  𝑐1𝑧 + 𝑐2                                                        (6.28)  

 

The insulating boundary conditions in walls described in Chapter 2 (Equation 2.40), 
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𝜕𝜑

𝜕𝑛
= 0 𝑎𝑡 𝑧 = ±1                                                               (6.29)                 

 

Using (6.15) into (6.14), 

                                                                  𝜑 =  constant                                                        (6.30)  

 

Substituting (6.26) and (6.30) in (6.8),       

 

                                                           𝒋̅ =  𝟎                                                                        (6.31)   

 

Considering equation (6.31), it can be attributed that there is no direct effect of Lorentz 

force term for the case of streamwise magnetic field. The effect of magnetic field is solely 

in modification of turbulence.  

 

6.3.3 Spanwise magnetic field 

Considering the spanwise orientation of magnetic field,  

 

                                                                 𝒆𝑩̅̅̅̅ = 𝒆𝒚̅̅ ̅                                                         (6.32) 

 

                       𝒖̅𝒙 × 𝒆𝑩̅̅̅̅   =  [
i̅ 𝑗 ̅ 𝑘̅
𝑢̅ 0 0
0 1 0

]  =  𝑢̅𝑥 𝑗 ̅                                                                           (6.33) 

 

Substituting (6.33) in (6.9), 

 

                              ∇2𝜑 = ∇. (𝒖̅𝒙 × 𝒆𝑩̅̅̅̅ ) =  
𝝏𝑢𝑥

𝝏𝒛
                                                                     (6.34)  

 

The insulating boundary conditions in walls described in Chapter 2 (Equation 2.40), 
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𝜕𝜑

𝜕𝑛
= 0 𝑎𝑡 𝑧 = ±1                                                               (6.35)                 

 

Solving (6.34) and using the boundary conditions in (6.35).  

 

                                               
𝜕𝜑

𝜕𝑧
= 𝑢̅𝑥                                                                                                  (6.36) 

 

Using (6.20) and (6.36) in (6.8),  

 

                                                       𝒋̅ = −𝑢̅𝑥 + 𝑢̅𝑥 = 0                                                                 (6.37)   

 

Considering equation (6.37), it can be concluded that there is no direct effect of Lorentz 

force at least in the zone of fully developed flow for the case of spanwise magnetic field.  

 

6.4 Solution of Mean scalar with eddy diffusivity approximation 

In this section, the solution of mean scalar equation (6.14) is presented through the linear 

approximation of eddy diffusivity for all magnetic field orientations.  

 

Considering the linear approximation, the eddy diffusivity can be expressed as,   

 

                                              𝛼𝑡 = 𝑎 + 𝑏𝑧                                                                   (6.38) 

 

Substituting (6.38) in (6.14) yields,  

 

                                           
𝑑

𝑑𝑧
[(

1

𝑃𝑒
+ 𝑎 + 𝑏𝑧)

𝑑𝑇

𝜕𝑧
] = 0                                   (6.39) 

 

Considering  𝑘 =
1

𝑃𝑒
+ 𝑎, equation (6.39) can be re-written as, 
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𝑑

𝑑𝑧
[(𝑘 + 𝑏𝑧)

𝑑𝑇

𝜕𝑧
] = 0                                                  (6.40) 

 

Solving the second order differential equation of (6.40), the scalar solution can be 

expressed as, 

 

                                     𝑇(𝑧) =  
𝑐1

𝑏
𝑙𝑛(𝑘 + 𝑏𝑧)  + 𝑐2                                                   (6.41) 

 

Where,  𝑐1 and 𝑐2 are constants, the value of which will be computed from the boundary 

conditions. 

 

The mean scalar solution per equation (6.41) can be expressed per equation (6.42) and 

(6.43) considering piecewise linear profile of eddy diffusivity (see figure 6.1 for example) 

from the DNS result of eddy diffusivity profile (figure 4.8 in chapter 4 for wall-normal 

case).   

 

For −1 ≤  𝑧 ≤  𝑧∗,   𝑇−(𝑧) =  
𝑐1

𝑏
𝑙𝑛(𝑘 + 𝑏𝑧)  + 𝑐2                                                            (6.42)     

 

For 𝑧∗ ≤  𝑧 ≤  0,   𝑇+(𝑧) =  
𝑑1

𝑏′ 𝑙𝑛(𝑘′ + 𝑏′𝑧)  +  𝑑2                                                            (6.43) 

 

While considering the DNS profile of eddy diffusivity, only channel half-width is 

considered because of the symmetry of variation. As such figure 6.2 is showing the general 

scheme of piecewise linear profile approximation up to mid-channel width.  
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Figure 6.2: Piecewise linear approximation of eddy diffusivity for Ha=5 in imposed wall-

normal magnetic field orientation 

 

 

 

The imposed boundary condition for scalar in channel-walls are:  

  

                         𝜃 = 1 𝑎𝑡 𝑧 = −1, 𝜃 = 1/2  𝑎𝑡 𝑧 = 0                                    (6.44) 

 

Another boundary condition can be attributed considering the general piecewise profile of 

eddy diffusivity across the channel in wall-normal (z) direction.  

 

Considering scalar profile for  −1 ≤  𝑧 ≤  𝑧∗,  as  𝑇 = 𝑇−   and for   𝑧∗ ≤  𝑧 ≤  0, as  

 𝑇 = 𝑇+, the boundary condition at transition coordinate 𝑧∗  is expressed as, 

 

                                       
  𝑑𝑇−

𝑑𝑧
(𝑧∗) =  

𝑑𝑇+

𝑑𝑧
(𝑧∗)                                                   (6.45) 

 

 

Z* 

Piecewise linear profile 
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6.4.1 Mean scalar for wall-normal magnetic field orientation 

As an illustration of the derived mean scalar per equation (6.42) and (6.43), the wall-normal 

case of Ha = 5 is presented here.  

The piecewise linear profile for eddy diffusivity from the DNS profile of Ha =5.0 (figure 

6.2) is estimated as: 

 

For     −1 ≤  𝑧 ≤  𝑧∗ = −0.7,   𝛼𝑡 = 0.01933 (1 + 𝑧)                                              (6.46) 

 

For  𝑧∗ = −0.7 ≤  𝑧 ≤  0,    𝛼𝑡 = 0.0036 − 0.00314𝑧                                                 (6.47)    

 

The transition co-ordinate 𝑧∗ is estimated through optimization of fitting in OriginLab 

software where the regression error of goodness of fitting is minimized by chi-square 

statistical method [82].   

Considering (6.46) and (6.47), the constants in the piecewise linear profiles are, 

 

      a=b=0.01933(𝑓𝑜𝑟 − 1 ≤  𝑧 ≤  𝑧∗ = −0.7)                                                                            (6.48)   

 

     a=0.0036 and b=-0.00314 (𝑓𝑜𝑟 𝑧∗ = −0.7 ≤  𝑧 ≤  0)                                          (6.49)                                          

 

Substituting the constants, a and b from (6.48) & (6.49) to (6.42) & (6.43) and using the 

BC’s in (6.44) and (6.45), the solution for mean scalar is obtained for Ha = 5,  

 

𝑇−(𝑧) =  −0.0776 𝑙𝑛(0.019497 + 0.019333𝑧)  +  0.3194                                               (6.50) 

 𝑇+(𝑧) =  0.478 𝑙𝑛(0.0038 − 0.00314𝑧)  + 2.5206                                                  (6.51) 

 

The final solution for Ha =5 can be expressed as, 

𝑇(𝑧) = {
−0.0776𝑙𝑛(0.019497 + 0.019333𝑧) + 0.3194, −1 ≤  𝑧 ≤  𝑧∗ = −0.7 

0.478 𝑙𝑛(0.0038 − 0.00314𝑧)  + 2.5206,  𝑧∗ = −0.7 ≤  𝑧 ≤  0
 

                                                                                                                                      (6.52) 
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Figure 6.3, shows the mean scalar distribution in the channel for Ha = 5.0 with imposed 

wall-normal magnetic field which is computed from the 1D model in (6.52) and compared 

with the DNS result. The 1D model, which is based on the approximation of eddy 

diffusivity, predicts the mean scalar distribution within reasonable accuracy compared to 

the DNS result.  

 

 

Figure 6.3: Distribution of Mean Scalar T(z) for Ha=5 for wall-normal case 

 

The 1D models of scalar distribution for Ha = 0, 10.0 and 13.3 are obtained in similar way 

as described above for Ha =5.  The model equations are as follow.  

 

For Ha = 0, 

𝑇(𝑧) = {
−0.0276𝑙𝑛(0.03121 + 0.01837𝑧) + 0.2125, −1 ≤  𝑧 ≤  𝑧∗ = −0.68 

0.256 𝑙𝑛(0.0026 − 0.00414𝑧)  + 1.234,  𝑧∗ = −0.68 ≤  𝑧 ≤  0
 

                                                                                                                                     (6.53) 

 For Ha = 10, 

𝑇(𝑧) = {
−0.072 𝑙𝑛(0.031 + 0.0124𝑧) + 0.3499, −1 ≤  𝑧 ≤  𝑧∗ = −0.81 
0.412 𝑙𝑛(0.0045 − 0.00523𝑧)  + 2.6901,  𝑧∗ = −0.81 ≤  𝑧 ≤  0

 

                                                                                                                                      (6.54) 

 For Ha = 13.3, 
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𝑇(𝑧) = {
−0.068 𝑙𝑛(0.027 + 0.0136𝑧) + 0.4258, −1 ≤  𝑧 ≤  𝑧∗ = −0.831 

0.536 𝑙𝑛(0.0065 − 0.0043𝑧) + 2.7343,  𝑧∗ = −0.831 ≤  𝑧 ≤  0
 

                                                                                                                                      (6.55)     

Figure 6.4 shows the mean scalar distribution for Ha=0, 10 and 13.3 computed through the 

1D models in (6.53-6.55) and compared with DNS results. Similar to Ha=5.0, the 1D 

models predict the distribution with reasonable accuracy. Figure 6.5, shows the mean scalar 

profile for all computed cases of Ha=0, 5, 10 and 13.3 through the 1D model solutions.  

  

 

 

 

 

 

 

                               

 

Figure 6.4: Distribution of Mean Scalar T(z) for Ha=0, 10 and 13.3 for wall-normal case 
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Figure 6.5: Profiles of mean scalar computed through the 1D model for wall-normal case 

 

6.4.2 Mean scalar for spanwise magnetic field orientation 

The 1D models of scalar distribution for Ha = 0, 10, 20 and 30 for spanwise orientation of 

magnetic field are obtained from the method outlined before in section 6.3.1. They are, 

For Ha = 0, 

𝑇(𝑧) = {
−0.0362𝑙𝑛(0.0411 + 0.01236𝑧) + 0.463, −1 ≤  𝑧 ≤  𝑧∗ = −0.741 

0.256 𝑙𝑛(0.0026 − 0.00414𝑧)  + 3.63,  𝑧∗ = −0.741 ≤  𝑧 ≤  0
 

                                                                                                                                     (6.56) 

 For Ha = 10, 

𝑇(𝑧) = {
−0.0289 𝑙𝑛(0.0362 + 0.0258𝑧) + 0.2621, −1 ≤  𝑧 ≤  𝑧∗ = −0.744 

0.377 𝑙𝑛(0.0042 − 0.00364𝑧)  + 3.882,  𝑧∗ = −0.744 ≤  𝑧 ≤  0
 

                                                                                                                                      (6.57) 

 For Ha = 20.0, 

𝑇(𝑧) = {
−0.068 𝑙𝑛(0.027 + 0.0136𝑧) + 0.4258, −1 ≤  𝑧 ≤  𝑧∗ = −0.746 

0.536 𝑙𝑛(0.0065 − 0.0043𝑧) + 2.2643,  𝑧∗ = −0.746 ≤  𝑧 ≤  0
 

                                                                                                                                      (6.61)     

For Ha = 30.0, 

𝑇(𝑧) = {
−0.068 𝑙𝑛(0.027 + 0.0136𝑧) + 0.4258, −1 ≤  𝑧 ≤  𝑧∗ = −0.0.748 

0.712 𝑙𝑛(0.0312 − 0.013𝑧) + 3.5167,  𝑧∗ = −0.748 ≤  𝑧 ≤  0
 

                                                                                                                                      (6.58)     
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Figure 6.6 shows the mean scalar distribution for Ha=0, 10, 20 and 30 computed through  

 

 

 

 

 

 

 

                               

                                                                                                      

                  

 

 

 

 

 

 

 

Figure 6.6: Distribution of Mean Scalar T(z) for Ha=0, 10, 20 and 30 for spanwise case 

 

 

 

 

 

 

 

 

 

Figure 6.7: Profiles of mean scalar computed through the 1D model for spanwise case 
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the 1D models in (6.56-6.58) and compared with DNS results. Similar to Ha=5.0 in wall-

normal case, the 1D models predict the distribution with reasonable accuracy. Figure 6.7, 

shows the mean scalar profile for all computed cases of Ha=0, 10, 20 and 30 through the 

1D model solutions. 

 

6.4.3 Mean scalar for streamwise magnetic field orientation 

The 1D models of scalar distribution for Ha = 0, 10, 20 and 30 for streamwise orientation 

of magnetic field are obtained from the method outlined before. They are, 

 

For Ha = 0, 

𝑇(𝑧) = {
−0.0332𝑙𝑛(0.0411 + 0.01236𝑧) + 0.463, −1 ≤  𝑧 ≤  𝑧∗ = −0.64 

0.247 𝑙𝑛(0.0028 − 0.00294𝑧)  + 1.1945,  𝑧∗ = −0.64 ≤  𝑧 ≤  0
 

                                                                                                                                     (6.59) 

 For Ha = 10, 

𝑇(𝑧) = {
−0.042 𝑙𝑛(0.0362 + 0.0258𝑧) + 0.1946, −1 ≤  𝑧 ≤  𝑧∗ = −0.642 

0.258 𝑙𝑛(0.0032 − 0.00314𝑧)  + 1.232,  𝑧∗ = −0.642 ≤  𝑧 ≤  0
 

                                                                                                                                      (6.60) 

 For Ha = 20.0, 

𝑇(𝑧) = {
−0.049 𝑙𝑛(0.027 + 0.0136𝑧) + 0.2165, −1 ≤  𝑧 ≤  𝑧∗ = −0.653 

0.276 𝑙𝑛(0.0039 − 0.0034𝑧) + 1.2621,  𝑧∗ = −0.653 ≤  𝑧 ≤  0
 

                                                                                                                                      (6.61)     

For Ha = 30.0, 

𝑇(𝑧) = {
−0.053 𝑙𝑛(0.018 + 0.0113𝑧) + 0.2253, −1 ≤  𝑧 ≤  𝑧∗ = −0.654 

0.289 𝑙𝑛(0.0043 − 0.0023𝑧) + 1.1852,  𝑧∗ = −0.654 ≤  𝑧 ≤  0
 

                                                                                                                                      (6.62)     

Figure 6.8 shows the mean scalar distribution for Ha=0, 10, 20 and 30 computed through 

the 1D models in (6.56-6.58) and compared with DNS results. Figure 6.9, shows the mean 

scalar profile for all computed through the 1D model solutions. 
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Figure 6.8: Distribution of Mean Scalar T(z) for Ha=0,10,20 and 30 for streamwise case 

 

 

Figure 6.9: Profiles of mean scalar computed through the 1D model for streamwise case 
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6.5 Solution of mean flow with eddy viscosity approximation 

In this section, the solution of mean flow equation (6.24) is presented considering linear 

approximation of eddy viscosity.   

 

Considering linear approximation of eddy viscosity, 𝜈𝑡 

 

                                              𝜈𝑡 = 𝑎 + 𝑏𝑧                                                                   (6.63) 

 

Where a and b are constants of linear function.  

 

Substituting (6.67) into (6.33) and by re-arranging it with definitions of constants, equation 

(6.33) is expressed as, 

 

                                            (𝑎𝑧 + 𝑘)
𝑑2𝑢𝑥

𝑑𝑧2 + 𝑎
𝑑𝑢𝑥

𝑑𝑧
− 𝑁𝑢̅𝑥 = 𝑐                                               (6.64) 

 

Where,  𝑘 =  𝑏 +  
1

𝑅𝑒
 .  

 

Equation (6.64) can be also written as,   

 

                                             𝑢̅𝑥
" +

𝑎

𝑎𝑧+𝑘
𝑢̅𝑥

′ −
𝑁

𝑎𝑧+𝑘
𝑢̅𝑥 =  

𝑐

𝑎𝑧+𝑘
                                               (6.65) 

 

Which is similar to general form of non-homogenous second order linear differential 

equation with variable co-efficient expressed by,   

 

                                               𝑢" + 𝑝(𝑧)𝑢′ + 𝑞(𝑧)𝑦 =  𝑔(𝑧)                                               (6.66) 

 

Solution of equation (6.66) provides the mean flow, 𝑢̅𝑥(𝑧) 
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The linear approximation of the eddy viscosity is obtained using the DNS data illustrated 

in figure 3.5 of chapter 3. As illustrated in figure 6.10, the computed profile is 

approximated by a piecewise-linear function. The wall-normal coordinate  𝑧∗ represents 

the transition coordinate for the piecewise linear profile of eddy viscosity in figure (3.5). 

The transition coordinate 𝑧∗ is determined by optimization of fitting in OriginLab software 

where the regression error of goodness of fitting is minimized by chi-square statistical 

method [82].   

 

 

 

Figure 6.10: Piecewise linear approximation of eddy viscosity 

 

As an example of determining the piecewise linear profile, the DNS data of eddy viscosity 

profile for Ha =5 is presented in figure 6.10.  

For     −1 ≤  𝑧 ≤  𝑧∗ = −0.72,   𝜈𝑡 = 0.02312(1 + 𝑧)                                             (6.67) 

 

For  𝑧∗ = −0.72 ≤  𝑧 ≤  0,    𝜈𝑡 = 0.0052 − 0.00394𝑧                                                 (6.68)    

Z* 

Piecewise linear profile 
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Considering (6.67) and (6.68), the constants in the piecewise linear profiles are, 

 

      a=b=0.02312(𝑓𝑜𝑟 − 1 ≤  𝑧 ≤  𝑧∗ = −0.72)                                                                       (6.69)   

 

     a=0.0052 and b=-0.00394 (𝑓𝑜𝑟 𝑧∗ = −0.72 ≤  𝑧 ≤  0)                                        (6.70)                                          

 

The mean velocity profile is divided into two parts:  

 

                                          𝑢̅𝑥(𝑧) = 𝑢̅𝑥
−(𝑧)            for  −1 ≤ 𝑧 ≤ 𝑧∗                                 (6.71) 

                                         𝑢̅𝑥(𝑧) = 𝑢̅𝑥
+(𝑧)            for  𝑧∗ ≤ 𝑧 ≤  0                                 (6.72) 

 

With the matching conditions, 

   

                                                            𝑢̅𝑥
−(𝑧∗)  = 𝑢̅𝑥

+(𝑧)                                                      (6.73) 

 

Or,                                                
𝑑𝑢𝑥

−(𝑧∗)

𝑑𝑧
=

𝑑𝑢𝑥
+(𝑧)

𝑑𝑧
                                                                (6.74) 

                                          

 

The no slip boundary conditions at the walls are: 

 

                                     𝑢̅𝑥(−1) =  0                                                                                    (6.75) 

 

The symmetry condition at z = 0 is expressed as, 

 

                                                          
𝑑𝑢𝑥

+(0)

𝑑𝑧
 =  0                                                              (6.76) 

The integral solution of constant volumetric rate is expressed as, 

 

                      ∫ 𝑢̅𝑥
−(𝑧)𝑑𝑧

𝑧∗

−1
+  ∫ 𝑢̅𝑥

+(𝑧) 𝑑𝑧
0

𝑧∗ = 1                                                              (6.77) 



128 

 

The solution equation (6.77) for mean flow using the boundary conditions (6.73) to (6.77) 

and constants from (6.69) and (6.70) involves complex analytical solution expressed in  

terms of Bessel functions which is left as a scope for future studies. As an alternative, 

numerical shooting method can be attempted to solve the mean flow.    
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CHAPTER VII 

CONCLUSIONS 

The current study presents the results of the direct numerical simulations of turbulence and 

scalar transport in the channel flow with imposed magnetic field. The effect of different 

orientations and strength of the magnetic field is considered.   The main conclusion is that 

the imposed magnetic fields, especially those in the wall-normal and spanwise directions, 

significantly reduce the turbulent scalar transport and modify the properties of the scalar 

distribution.   

 

For the case of the wall-normal magnetic field, the study confirms findings reported in 

earlier works, which includes formation of a flattened core and Hartmann boundary layers 

in the mean velocity profile, noticeable reductions of the amplitude of perturbations of all 

three velocity components, etc. The current study shows that the reduction of the velocity 

fluctuations and eddy viscosity are significant in the case of the spanwise magnetic field 

and less so in the case of the streamwise magnetic field. The mean velocity is observed to 

be decreased with increase in magnetic field for the case of the wall-normal and spanwise 

magnetic field and observed to be largely unaffected by the streamwise magnetic field.  

The spatial structure analysis of flow transformation reveals that streamwise streaks 

develop near the channel walls at the magnetic field strength close to the laminarization 

threshold for the cases of the spanwise and wall-normal magnetic fields.   

 

The flow transformation due to the influence of the magnetic fields also affects the scalar 

transport across the channel. Considering the distribution of mean scalar, the effect of the 

magnetic field appears to be qualitatively same for all three orientations. This includes 

widening of diffusion boundary layers and smaller decrease of mean scalar within it. The 

reduction of turbulent scalar flux is observed with the increase of the magnetic field 
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strength for all three orientations. The effect is more noticeable for the wall-normal and 

spanwise than for the streamwise magnetic field. The reduction of the scalar flux results in 

decrease of integral scalar transport across the channel which is presented as Nusselt 

number reduction in the current study. A linear approximation of the variations of the 

Nusselt number with magnetic interaction parameters is presented. This is a major outcome 

of the current study as one can utilize the correlations to evaluate the scalar transport across 

the channel. In broader sense, the correlations can be used for a more general situation of 

a turbulent flow with magnetic field.  They indicate the trends in the change of the rate of 

turbulent transport in the directions parallel and perpendicular to the field. Instantaneous 

distributions of scalar near the boundary layer appears to follow the same pattern as those 

of velocity which is characterized by the development of high-speed and low-speed streaks 

in the streamwise direction. The effect is noticeable significantly for the case of wall-

normal and spanwise magnetic fields due to the strong correlation between instantaneous 

velocity and scalar component. Development of strong scalar anisotropy is observed for 

the case of spanwise magnetic field.  

 

The current study expands the understanding of large-scale intermittency and complements 

the analysis with detailed parametric studies with emphasis on scalar transport and 

perturbations dynamics. The effect of intermittency on the scalar transport rate is quantified 

in the present study. Generally, the scalar perturbations and Nusselt number are found to 

follow the cyclic evolutions correlated to cycles of velocity with some differences and 

unexpected effects such as sub-diffusive scalar transport rate during a significant segment 

of the cycle. The main features of the effect of the magnetic field on intermittent flow can 

be identified from the current study as the stabilization of the growing TS rolls and 

suppression of their secondary instabilities and the resulting turbulence. 

 

Simple one-dimensional models for flow field and scalar transport are presented in the 

current study based on the linear approximations of eddy viscosity and eddy diffusivity 

using DNS results. Due to the complexity of analytical solution, only model equations are   
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presented for the case of flow field with associated boundary conditions. The solutions of 

derived 1D model concerning the mean scalar transport are presented for all of the 

Hartmann numbers considered in current study. The 1D model appears to provide 

reasonably accurate distribution of mean scalar which can be utilized for the case of 

channel flow with imposed magnetic field.   
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