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Summary: It is often of interest to compare centers or healthcare providers on quality of care delivered. We consider

the setting where evaluation of center performance on multiple competing events is of interest. We propose estimating

center effects through cause-specific proportional hazards frailty models that allow correlation among a centers cause-

specific effects. Estimation of our model proceeds via penalized partial likelihood and is implemented in R. To evaluate

center performance, we also propose a directly standardized excess cumulative incidence (ECI) measure. Therefore,

based on our proposed methods, practitioners can evaluate centers either through the cause-specific hazards or the

cumulative incidence functions. We demonstrate, through simulations, the advantages of the proposed methods to

detect outlying centers, by comparing the proposed methods and existing methods which assume uncorrelated random

center effects. In addition, we develop a Correlation Score Test to test the null hypothesis that the competing event

processes within a center are correlated. Using data from the Scientific Registry of Transplant Recipients, we apply

our method to evaluate the performance of Organ Procurement Organizations on two competing risks: (i) receipt of

a kidney transplant and (ii) death on the wait-list.

Key words: Cause-specific hazards; Center Effects; Competing Risks; Correlation Score Test; Cumulative Inci-

dence; Kidney Transplantation.
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Evaluating center performance in the competing risks setting 1

1. Introduction

The availability of electronic health records and the demand for value-driven healthcare have

led to greatly increased interest in the methods for evaluation of center performance (Ash et

al., 2012). For continuous or binary outcomes, center effects are usually estimated as either

fixed or random effects models. Evaluation of center performance is then generally carried

out by comparing these estimated risk-adjusted center effects to some fixed quantity, or the

average center effect, or by using graphical checks (Spiegelhalter et al., 2012).

The proposed methods are motivated by the end-stage renal disease (ESRD) setting. There

are thousands more patients in need of transplantation than there are donor kidneys. As a

result medically suitable ESRD patients are placed on a waiting list. For example, in 2015,

there were 98,956 patients on the kidney waiting list at year-end, but only 11,594 deceased-

donor kidney transplants (Hart et al., 2016). In the United States, there are 58 wait-lists,

each administered by an Organ Procurement Organization (OPO). Our objective here is

to evaluate OPOs with respect to (i) kidney transplantation and (ii) pre-transplant death

(competing risks) among wait-listed patients.

While there has been extensive research conducted into establishing methods for institu-

tional comparisons with respect to binary and continuous outcomes, apart from a few recent

studies, time-to-event outcomes have received considerably less attention. He and Schaubel

(2014a) assessed the standardized mortality ratio (SMR) measure based on the Cox model

and developed an alternative based on stratification. In another study, He and Schaubel

(2014b) developed a direct standardized measure of center performance.

Oftentimes in clinical and epidemiological settings, there is more than one competing

outcome of interest. In such cases, there are two approaches to conceptualize the event

times for the competing risks. The first approach assumes that, for every patient, a latent

event time (Gail, 1975; Crowder, 2001) exists for each outcome and only the minimum

Page 2 of 27Biometrics
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2 Biometrics, XXX XXXX

of these (Cox, 1959) is observed. Under this conceptualization, latent event times must act

independently in order for marginal quantities (e.g., cause- or event-specific survival function)

to be identifiable. A second approach, adopted in our report, assumes that only one event

time, pertaining to the cause of failure, exists for each subject (Kalbfleisch and Prentice,

2002). Data from such settings can now be analyzed through the analysis of cause-specific

hazards (Kalbfleisch and Prentice, 2002; Prentice and Kalbfleisch, 1978).

With competing risks data, a comparison of centers with respect to all-cause mortality

has the potential to obscure important findings by averaging of dissimilar results (Van

Rompaye et al., 2010). An analysis by cause has the potential to yield more interpretable

and insightful conclusions (Putter et al., 2007). Fan and Schaubel (2016) proposed, as a

center performance measure, the difference between the estimated cumulative incidence

of transplant for patients at a given center and the average of the estimated cumulative

incidences. Based on similar techniques, Van Rompaye, Erikson and Goetghebeur (2015)

developed an ‘excess cause-specific cumulative incidence’ (ECI). For indirectly standardized

measures, center performance is evaluated at the patient mix or covariate distribution of

each center. Although useful for internal benchmarking, directly standardized measures are

preferred for comparisons across centers (Varewyck et al., 2014). Note that random center

effects may be preferable to fixed effects in the presence of small center sizes (Ash et al.,

2012; Ohlssen et al., 2006; Kalbfleisch and Wolfe, 2013).

Most existing methods for clustered competing risks model the within-cluster dependence

through a random effect, and concentrate on a single risk (or separate models for each risk)

(Katsahian and Boudreau, 2011; Do Ha et al., 2014). In contrast, we propose a class of frailty

models which allow a centers cause-specific random effects be correlated. This approach

utilizes the additional information available in the form of correlation between cause-specific

random effects within a center.

Page 3 of 27 Biometrics
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Evaluating center performance in the competing risks setting 3

In this article, we develop a directly standardized ECI measure to contrast center per-

formance on competing outcomes. We utilize an easily implementable penalized partial

likelihood method (Ripatti and Palmgreen, 2000). Note that Gorfine and Hsu (2011) and

Gorfine et al. (2014) also developed frailty models for correlated event times within-cluster.

However, an Expectation-Maximization (EM) algorithm was used which requires numerical

integration at each E-step. In comparison, our estimation procedure does not require any

numerical integration and is implemented through a single call to coxme function of the

coxme package (Therneau, 2009).

If competing events are indeed uncorrelated, fitting separate models is appropriate and

easier than the proposed methods. Therefore, we also develop a convenient score test for

the presence of correlation between competing risks within-center. The score test does not

require fitting the joint model and, thus, provides an a priori checks the appropriateness of

using separate cause-specific models, in lieu of the proposed methods.

2. Proposed Methods

2.1 Model and Likelihood

There are J centers or clusters, with each center j having nj members (j = 1, . . . , J) so that

there are
∑J

j=1 nj = n individuals in the entire sample. For each subject i(i = 1, ..., nj) in

center j, let T 0
ij and Cij denote the failure time and the censoring time, respectively, and let

X ij be a vector of time-independent covariates. The observed event time is then defined as

Tij = min (T 0
ij, Cij). Each subject fails due to one of K causes, we use ∆ij (∆ij ∈ {0, ..., K})

to indicate the cause of the observed failure for subject i in center j, with ∆ij = 0 if T 0
ij > Cij.

The observed data consist of {Tij,∆ij,X ij, Aij} for i = 1, . . . , nj and (j = 1, . . . , J), where

Aij = 1 if subject i belongs to center j and 0 otherwise.

Additionally, we define a vector of center-specific random effects or frailties, for the jth

Page 4 of 27Biometrics
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4 Biometrics, XXX XXXX

center, γj = (γj1, ..., γjK)T , given which the event times for all subjects within that center

are assumed to be conditionally independent. Thus, the cause-specific hazard function for

cause k, for the subject i in the center j, is given by:

λijk(t|X ij, γjk) = lim
h↓0

1

h
Pr(t 6 T 0

ij < t+ h,∆ij = k|T 0
ij > t,X ij, γjk)

and is assumed to be following the proportional hazards model:

λijk(t|X ij, γjk) = λ0k(t) exp{βTkX ij + γjk} (1)

for k = 1, .., K where β1, ...,βk and λ01, ...λ0k are cause-specific regression coefficients and

cause-specific baseline hazards respectively. Here, we assume that the vector of covariatesX ij

is the same for all causes, but it can be replaced by cause-specific vectors of covariates X ijk.

The center-specific random effects imply a correlation between the cause-specific hazards

across subjects within a center. Further, by assuming that the center-specific random effect

vectors arise from a multivariate normal distribution with mean zero and covariance matrix

V j, i.e., γj ∼ MVN(0,V j), our model allows for the association of different cause-specific

hazards across individuals within a center. It is important to note that our model implies that

the cause-specific hazards for different causes may be correlated across individuals within

a center and not that the cause-specific event times within each individual are correlated.

Indeed, as we do not adopt the latent failure time paradigm, our model is agnostic about

the existence of different cause-specific event times within each individual.

We focus on the case of K = 2 competing causes, and allow for center-specific random

effects for the two different causes to be negatively associated, i.e., Corr(γj1, γj2) 6 0. To

this end we reformulate the cause-specific hazards in equation (1) as

λij1(t|X ij, b
0
j , b

1
j) = λ01(t) exp{βT1X ij + b1

j + b0
j} (2)

λij2(t|X ij, b
0
j , b

2
j) = λ02(t) exp{βT1X ij + b2

j − b0
j} (3)

where b1
j + b0

j = γj1 and b2
j − b0

j = γj2. We have decomposed a center’s cause-specific random-

Page 5 of 27 Biometrics
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Evaluating center performance in the competing risks setting 5

effect into two independent components: a shared random-effect, b0
j , acting in opposite

directions on the hazards of the two different risks, and a cause-specific random effect

component bkj . This implies that Cov(γj1, γj2) = −Var(b0
j). We further assume that jointly

bj = (b0
j , b

1
j , b

2
j) ∼ p(bj;Dj) = MVN(0,Dj(θj)), where Dj(θj) is a diagonal covariance

matrix with unknown parameters denoted by the vector θj.

We now construct the likelihood function for the model implied in equation (1) in terms of

the parameters (λ0(t),βTk ,θj). Note that, for any given subject, λij(t|X ij, bj) =
∑K

k=1 λijk(t|X ij, bj).

Thus, the cause-specific densities can be represented as fijk(t|X ij, bj) = λijk(t|X ij, bj)Sij(t|X ij, bj)

for k = {1, .., K}, where Sij(t|X ij, bj) = exp{−
∑K

k=1 λijk(t|X ij, bj)}. Hence, the likelihood

function can be written in terms of cause-specific hazard functions. Let the at-risk indicator

for subject i in center j be given by Yij(t) = I(Tij > t). Using the notation given in Section

2.1, we write the likelihood for subjects in center j as:

Lj =

∫ nj∏
i=1

K∏
k=1

{
λ0k(Tij) exp{βTkX ij + bTj Zijk}

}I(∆ij=k)

×
[
exp(−

∫ t

0

Yij(u)λ0k(u) exp{βTkX ij + bTj Zijk}du)

]
p(bj;Dj(θj))dbj (4)

where the integral sign represents the unobserved frailties given by bj being integrated out

and Zijk are design vectors setup to obtain the cause-specific hazard models in equations (2)

and (3). Specifically, if subject i is in center j then Zij1 = (1, 1, 0) and Zij2 = (−1, 0, 1), and

if subject i does not belong to center j then Zij1 = Zij2 = (0, 0, 0). It is important to note

that for the construction of the above likelihood, we assumed the following: (1) Conditional

on {X ij,Zijk, bj}, the event times and censoring times are independent and the censoring

times are non-informative for {βk, λ0k, k = 1, 2}, (2) X ij and bj are independent.

Page 6 of 27Biometrics
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6 Biometrics, XXX XXXX

2.2 Estimation

It follows from equation (4) above that the overall likelihood of the data is given by:

L =

∫ J∏
j=1

nj∏
i=1

K∏
k=1

{λ0k(Tij) exp{βTkX ij + bTj Zijk}}I(∆ij=k)

× [exp(−Λ0k(Tij) exp{βTkX ij + bTj Zijk})]× p(bj;Dj(θj))dbj, (5)

where Λ0k(Tij) exp{βTkX ij + bTj Zijk} =
∫ Tij

0
Yij(u)λ0k(u) exp{βTkX ij + bTj Zijk}du.

Let b = {b1
T , ..., bJ

T}T be a vector of all random-effects, obtained by stacking the center-

specific vectors of random effects bj, j = 1, ..., J . Correspondingly, we define p(b;D(θ)) =

MVN(0,D(θ)) such that D(θ) is a block-diagonal covariance matrix composed of blocks

formed by Dj(θj). We further assume that θj = θj′ = (θ0, θ1, θ2); i.e., the center-specific

random effect vectors, bj are i.i.d with Var(blj) = θl, l = {0, 1, 2}.

The integrand in equation (5) above can be viewed as the full likelihood of the data

under our model, composed of the conditional likelihood of the data given random effects b,

multiplied by the likelihood of the random effects. Taking the log, we define:

lfull = lcond + lb =
J∑
j=1

nj∑
i=1

K∑
k=1

I(∆ij = k){log(λ0k(Tij)) + βTkX ij + bj
TZijk}−

J∑
j=1

nj∑
i=1

K∑
k=1

Λ0k(Tij) + βTkX ij + bj
TZijk + log |D|−

1
2 − 1

2
bTD−1b (6)

The above equation is a penalized log-likelihood for the observed data. As in Ripatti and

Palmgren (2000), treating b as a fixed effect and using profile likelihood to estimate Λ0k(t)

parameters, then plugging back the resulting Breslow (1974) estimator Λ̂0k(t) into equation

(6) yields the following penalized partial log-likelihood (PPLL):

lppll = l1 + lb =
J∑
j=1

nj∑
i=1

K∑
k=1

I(∆ij = k){βTkX ij + bj
TZijk−

log
J∑
r=1

nj∑
q=1

Yqr(Tij) exp{βTkXqr + br
TZqrk}}+ log |D|−

1
2 − 1

2
bTD−1b. (7)

As recommended in Ripatti and Palmgren (2000), we suggest obtaining the estimates of

((βk, b), k = {1, 2}) as solutions to the PPLL. To estimate θ we need to integrate out b.

Page 7 of 27 Biometrics
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Evaluating center performance in the competing risks setting 7

As in Breslow and Clayton (1993), we use a Laplace saddle point approximation to the

integration of penalized partial likelihood LPPLL = exp(lppll), with respect to db. Doing so,

we obtain an expression for the log of the integrated likelihood as:

lINT = −1

2
log |D| − 1

2
log |K”(b̂)| −K(b̂)

K(b̂) =
J∑
j=1

nj∑
i=1

K∑
k=1

I(∆ij = k){βTkX ij+b̂
T

j Zijk−log
J∑
r=1

nj∑
q=1

Yqr(Tij) exp{βTkXqr+b̂
T

r Zqrk}}

+ log |D|−
1
2 − 1

2
b̂
T
D−1b̂

and b̂ denotes the solution to the partial derivatives of K(b) with respect to b, i.e., b̂ solves:

K ′(b) =

J∑
j=1

nj∑
i=1

K∑
k=1

I(∆ij = k)

[
Zijk−

∑J
r=1

∑nj

q=1 Yqr(Tij)Zqrk exp{βkXqr + br
TZqrk}∑J

r=1

∑nj

q=1 Yqr(Tij)exp{βkXqr + br
TZqrk}

]
−D−1b = 0.

(8)

The quantity K”(b̂) is the set of second partial derivatives of K(b) at b̂. K”(b̂) is also the

second partial derivative of lPPLL, evaluated at b̂. If we define H as the matrix of second

derivatives or Hessian of the PPLL with respect to (β, b), such that:

H =

H11 H12

H21 H22

 = −I(β, b) +

0 0

0 D−1


where I(β, b) = −∂2l1/∂(β, b)∂(β, b)

′
, then H(β, b̂)22 = K”(b̂). We then have:

lINT ≈ l1(β, b̂) + lb(θ, b̂)−
1

2
log |H(β, b̂)22| (9)

As demonstrated by Ripatti and Palmgren (2000), ignoring the last term on the right hand

side of equation (9) while estimating (β, b) leads to very little loss of information. This

corresponds to using the PPLL to estimate (β, b) via a Newton-Raphson algorithm. We

Page 8 of 27Biometrics
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8 Biometrics, XXX XXXX

have the following estimating equation for β:

∂lPPLL/∂β =

J∑
j=1

nj∑
i=1

K∑
k=1

I(∆ij = k)

[
X ij −

∑J
j=1

∑nj

q=1 Yqr(Tij)Xqr exp{βkXqr + br
TZqrk}∑J

j=1

∑nj

q=1 Yqr(Tij) exp{βkXqr + br
TZqrk}

]
= 0 (10)

The estimating equation for b is similarly obtained by setting ∂lPPLL/∂b to zero, and is

identical to equation (8). Thus, equation (8), required for the saddle point Laplace approx-

imation, is automatically satisfied when PPLL is used to estimate b. To estimate D(θ) we

plug the estimated values (β̂) into equation (9) and solve for θ that maximizes lINT . This

gives us the following estimating equation:

−1

2

[
tr(D−1∂D

∂θ
) + tr(H−1

22

∂D−1

∂θ
)− b̂

T
D−1∂D

∂θ
D−1b̂

]
= 0 (11)

For a diagonal covariance matrix, as in our case, we obtain the following solution:

θ̂l =
(b̂l)T (b̂l) + tr(H l

22(b̂l)
−1

)

J
, l = {0, 1, 2} (12)

where b̂l = {b̂l1, ...., b̂lJ} and H l
22(b̂l) is the sub-matrix corresponding to b̂l terms. The

proposed estimation algorithm begins with an initial guess of θ, then alternates between

using the PPLL to estimate (β, b) as listed above and using equation (12) to update θ until

convergence. As suggested by Gray (1992), the variance of (β̂
T
, b̂

T
)T is obtained as:

V̂ (β̂, b̂) = H(β̂, b̂)−1I(β̂, b̂)H(β̂, b̂)−1 (13)

To obtain the asymptotic distribution for (β̂, b̂, λ̂0k(s)), we assumed that the increments

λ̂0k(s) are independent of (β̂, b̂). Under this assumption we estimated the variance of λ̂0k(s)

via a non-parametric bootstrap approach where the values of (β̂, b̂) were treated as fixed by

setting Xβ̂ + b̂ as an offset in the linear predictor of the instantaneous hazard. Thus, our

desired asymptotic variance-covariance matrix for (β̂, b̂, λ̂0k(s)) was obtained using equation

(13) to estimate the variance of (β̂, b̂) and a non-parametric bootstrap approach to estimate

the variance of λ̂0k(s). In doing so we assume independence between λ̂0k(s) and (β̂, b̂). Our

simulation studies suggest this to be a safe assumption. In reality, the increments of λ̂0k(s)

Page 9 of 27 Biometrics
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Evaluating center performance in the competing risks setting 9

and (β̂, b̂) may be weakly correlated. However, with increasing sample size one would expect

this correlation to get weaker and have a negligible impact on the standard errors of estimates.

Then, ignoring this correlation in return for substantial gains in computational efficiency

seems appropriate. It should also be noted that, while using the Laplace approximation

to the marginal log-likelihood leads to little loss of information, it might result in a slight

underestimation of standard errors of fixed and random effect parameters if the cluster sizes

are very small, as demonstrated in Ripatti and Palmgren (2000).

2.3 Center Effect Measures: Cumulative Incidence

We define the cumulative incidence function (CIF) of cause k for subject i at center j as:

Fijk(t) = P (T 0
i 6 t,∆i = k|Ai = j,Xij), (14)

the probability that an individual i in center j experiences a cause k event by time t. To

evaluate the performance of center j with respect to type k events, we first define the average

risk of events of type k at that center as Fjk(t) = EX [Fijk(t)], which is estimated as:

F̂jk(t) = ÊX [Fijk(t)] =

∑nj

i=1 Fijk(t)

nj
(15)

Note that the above equation can be interpreted as potential risk for event k, at time t,

that would be observed if the entire study population was treated at center j, assuming

there are no unmeasured confounders. To compare the performance of center j to that of

other centers we difference this potential risk with the average of such potential risks across

all the centers. We call this measure the excess cumulative incidence. This is denoted as

δjk(t) = Fjk(t)− EA[Fjk(t)] and estimated as:

δ̂jk(t) = F̂jk(t)−
∑J

q=1 F̂qk(t)

J
(16)

2.4 Estimating Center Effects

We estimate cumulative incidence functions, defined in equation (14) using the cause-specific

hazards estimated from section 2.2. We note that the cause-specific CIF for cause k, indi-

Page 10 of 27Biometrics
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10 Biometrics, XXX XXXX

vidual i at center j can be written as:

Fijk(t) =

∫ t

0

Sij(s)λijk(s)ds, (17)

for which an estimate F̂ijk(t) is then obtained by plugging into equation (17) the following

estimated quantities:

λ̂ijk(s) = λ̂0k(s) exp(β̂kX ij + b̂jZijk) ; Ŝij(s) = exp{−
2∑

k=1

Λ̂0k(s) exp(β̂kX ij + b̂jZijk)}

where β̂k, b̂j are estimates obtained as detailed in Section 2.2, and Λ̂0k(t) =
∫ t

0
λ̂0k(s)ds is

the cumulative cause-specific baseline hazard function obtained by integrating the Breslow-

Aalen (Breslow 1974) estimate of the cause-specific baseline hazard function. Estimates of

Fjk(t) and the excess cumulative incidence at center j, δ̂jk(t), are subsequently obtained by

plugging F̂ijk(t) into equations (14) and (16) respectively.

To obtain the variance of the cause-specific cumulative incidence and excess cumulative

incidence functions, we apply a parametric bootstrap approach. Specifically, we re-sample

the estimated parameters β̂k, b̂j and λ̂0k(s) from their estimated asymptotic distributions to

obtain bootstrapped estimates of the cumulative incidence functions. The variance of F̂jk(t)

and δ̂jk(t) are estimated as variance of the corresponding bootstrapped estimates.

3. Score test of Correlation of Cause-specific Hazards

As mentioned in Section 2.1, equation (1), the cause-specific hazard function for cause k, for

the ith subject in center j, is assumed to follow:

λijk(t|X i, γjk) = λ0k(t) exp{βTkX i + γjk}

Thus, the likelihood for the observed data in center j is:

Lj =

∫ nj∏
i=1

K∏
k=1

{λ0k(ti) exp{βTkX i + γjk}}∆ik(t)

×
[
exp(−

∫ τ

0

Yi(u)λ0k(u) exp{βTkX i + γjk}dt)
]
p(γj;V (θ))dγj (18)

Page 11 of 27 Biometrics
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Evaluating center performance in the competing risks setting 11

To develop a score test of the correlation of cause-specific hazards within centers, we consider

a special case of the model in equation (1) when only K = 2 causes are present. Assume that

the center-specific random effects or frailty for cause 2 and cause 1 differ by a multiplicative

constant, i.e., γj2 = ωγj1, implying the following specification for the cause-specific hazards:

λij1(t|X i) = λ01(t) exp{βT1X i + γj1}; λij2(t|X i) = λ02(t) exp{βT1X i + ωγj1} (19)

The presence of a correlation between the cause-specific hazards within centers is then

assessed by testing H0 : ω = 0. When ω = 0, there is little evidence for a linear relationship

between center-specific random effects for causes 1 and 2. Conversely, even if the center-

specific random effects are not perfectly correlated as implied by the specification in (19)

but have a dependence of the form specified in model (1) we would expect to reject the test of

H0 : ω = 0 in favor of Ha : ω 6= 0. This is because, in case of any non-zero correlation between

the center-specific random effects, the specification in (19) with some ω 6= 0 should provide a

better fit to the observed data than that with ω = 0. Thus, we propose to test for the presence

of correlation between cause-sepcific hazards in model (1), i.e., H0 : Cov(γj1, γj2) = 0, using

the specification in (19) and testing H0 : ω = 0.

Under the joint model for the cause-specific hazards in (19), likelihood for observed data in

center j is given by:

Lj =

∫ nj∏
i=1

{λ01(ti) exp{βT1X i + γj1}}∆i1(t){λ02(ti) exp{βT2X i + ωγj1}}∆i2(t)

× [exp(−
∫ τ

0

Yi(u)λ01(u) exp{βT1X i +γj1}du)][exp(−
∫ τ

0

Yi(u)λ02(u) exp{βT2X i +ωγj1}du)]

× p(γj1; θ)dγj1. (20)

The marginal log-likelihood for the observed data at all centers is then given by:

log l(ω,βk, λ0k) =
J∑
j=1

nj∑
i=1

(
2∑

k=1

∆ik(t){log λ0k(ti) + {βTkX i}}) + log

∫
Kj(zj, t)p(zj; θ)dzj

Page 12 of 27Biometrics
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12 Biometrics, XXX XXXX

where zj = log γj1, and

Kj(z, t) = z
∑nj

i=1Ni1(t−)+ωNi2(t−)
j

× exp

{
−zj

(∫ t

0

Yi(u)λ02(u) exp{βT2X i}du
)
− zωj

(∫ t

0

Yi(u)λ02(u) exp{βT2X i}du
)}

.

3.1 Correlation Score Test

Using the above formulation, the score test for correlation of the two cause-specific hazards

tests H0 : ω = 0. The score function is:

Uω(ω,βk, λ0k) =
∑
j

∫
{
∑nj

i=1Ni2(ti)− (
∫ t

0
Yi(u)λ02(u) exp{βT2X i}du)}zωj log zjKj(zj)p(zj; θ)dzj∫

Kj(zj)p(zj; θ)dzj

Setting ω = 0 and replacing βk, λ0k and θ with their estimates when ω = 0, we have:

Uω(ω,βk, λ0k) =
∑
j

∫
{
∑nj

i=1Ni2(ti)− (
∫ t

0
Yi(u)λ̂02(u) exp{β̂T2X i}du)} log zjK̂j(zj)p(zj; θ̂)dzj∫

K̂j(zj)p(zj; θ)dzj

=
∑
j

M̂2j. ̂log zj

M̂2j is an estimate of the {
∑nj

i=1 Ni2(ti) − (
∫ t

0
Yi(u)λ02(u) exp{βT2X i}du)}, the sum of the

martingale residuals for cause 2 at center j; and ̂log zj = E[log zj|Oj], i.e., the posterior

expectation of the log frailties given the observed data in center j, Oj. If the frailties zj are

assumed to follow a log normal distribution, there is no closed form expression for ̂log zj,

however we can use the estimates γ̂j1 obtained by maximizing the penalized partial log-

likelihood for cause 1. Balan et al. (2016) note that the test of H0 : ω = 0 can be carried out

by testing if M̂2j and ̂log zj are correlated. Thus, the correlation score test (CST) tests if there

is a linear dependency between M̂2j and ̂log zj and uses the regular t statistic from linear

regression as the test statistic, t = r
√

(J − 2)/(1− r2). Under H0 : ω = 0, asymptotically, t

follows a t distribution with J − 2 degrees of freedom.

4. Simulation Studies

In the first (of two) set of simulations, we evaluated the fixed effect parameter estimators,

variance components of the random effects, and Correlation Score Test. There were K = 2

Page 13 of 27 Biometrics



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Evaluating center performance in the competing risks setting 13

competing risks, and J = 50 or J = 100 centers (configurations 1 and 2, respectively).

The center-specific random effects γj1, γj2 followed a mean zero multivariate normal (MVN)

distribution with variance components σj = (σ2
1, σ

2
2, ρ12) = (0.25, 0.25,−0.5). Using the re-

parameterization described in Sections 2.1 and 2.2, this corresponds to the center-specific

random effects vector bj = (b0
j , b

1
j , b

2
j) being generated from a MVN with mean zero and

diagonal covariance matrix D with elements θj = (θ0, θ1, θ2) = (0.125, 0.125, 0.125). The

sample size within each center was fixed at nj = 20 or nj = 50 for different sub-configurations.

In addition, we considered a single N(0, 1) covariate Xi with regression coefficients β1 = 0.5

and β2 = 1.25 for causes k = 1 and k = 2 respectively. Given βk,γj and the covariate Xi we

generated a failure time T 0
i for each subject within center j from an exponential distribution

with rate parameter µ =
∑2

k=1 µk =
∑2

k=1 exp(βkXi + γjk). We assigned a cause of failure

for subject i in center j given a failure at time t using Pr(∆i = k|T 0
i = t) = µk/µ. Finally,

all censoring occurred at time τ = 0.4 in all configurations.

As shown in Table 1, the proposed method performs very well in estimating the parameters

of interest. Also in Table 1, we present results of simulations where the center-specific random

effects γj1, γj2 were generated from a mean zero MVN with σj = (σ2
1, σ

2
2, ρ12) = (0.25, 0.25, 0),

in order to assess the loss in efficiency due to unnecessarily estimating a correlation parameter

when the true random effects are not correlated.

[Table 1 about here.]

In Table 2, we evaluate the proposed CST and a likelihood ratio test (LRT) of the

correlation between cause-specific hazards, via H0 : ρ = 0. For each (J, nj) configuration,

the Type 1 error rate was calculated as the mean number of times H0 when the random

effects were generated from a mean zero MVN with σj = (0.25, 0.25, 0). Similarly, the Power

was the mean number of rejections when the random effects were generated from a mean

zero MVN with σj = (0.25, 0.25,−0.5). The CST seems to do almost as well as the LRT,

Page 14 of 27Biometrics
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14 Biometrics, XXX XXXX

attaining a type I error rate closer to the nominal 0.05 and achieving nearly as much power.

More importantly, the CST is carried out in much less computation time, since it does not

require fitting the full model.

[Table 2 about here.]

In the second simulation study, we evaluated our estimators of the center-specific random

effects {γj1, γj2}. Again, K = 2, J = 50, and Xi ∼ N(0, 1) with regression coefficients

β1 = 0.5 and β2 = 1.25 for k = 1 and k = 2 respectively. Of the 50 centers, we fixed the

value of the random effects for center j′ and allowed the random effects for the remaining

49 centers to come from a mean 0 MVN with σj = (σ2
1, σ

2
2, ρ12) = (0.25, 0.25,−0.5). The

sample size for each of these 49 centers, nj, j 6= j′ was set equal to the random draw from a

N(100, 402) variate bounded at 20. Given βk,γj and Xi, we generated T 0
i from an exponential

distribution with rate parameter µi =
∑2

k=1 µik, where µik = exp(βkXi+γjk), and assigned a

cause of failure using Pr(∆i = k|T 0
i = t) = µik/µ. Censoring again occurred at time τ = 0.4.

We studied the performance of our estimators at different values of the random effects

{γj′1, γj′2} and at different nj′ values. We compared the proposed method to an approach

that fits separate frailty models for each k and therefore ignores the correlation between the

center-specific random effects. As shown in Table 3, the proposed method produces center

effect estimates with smaller mean square error, regardless of the center size and effect.

[Table 3 about here.]

An expanded version of Table 3 is available in the Web Appendix (see Web Table 1). While

both methods produce shrinkage, leveraging information on the correlation structure of the

center-specific random effects leads to estimates with reduced shrinkage and higher rates of

coverage. These gains in bias and coverage become more pronounced with decreasing sample

sizes, and as the true values of the center effects deviate from the mean of the random effect

distribution.
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Evaluating center performance in the competing risks setting 15

To examine our proposed excess cumulative incidence (ECI) center effect measure, we

conducted simulations where the center-specific effects {γj1, γj2} were known for all centers.

We set J = 50, with nj set equal to the maximum of 20 and a N(100, 402) variate. Center-

specific effects {γj1, γj2} were each fixed at one realization from a MVN with mean 0 and

σj = (σ2
1, σ

2
2, ρ12) = (0.25, 0.25,−0.5); theses were then treated as true center effects. We set

Xi ∼ N(0, 1), with β1 = 0.5 and β2 = 1.25 for causes 1 and 2 respectively. Failure times and

causes were then generated as presented earlier. Censoring was again at τ = 0.4. The true

ECI for each center was calculated at t = 0.3. In Table 4, we compare the proposed method

with fitting separate cause-specific Cox frailty models. In terms of mean squared error of the

ECI estimates, the proposed method generally out-performs the separate-models approach.

A striking example, from Table 4, is the ECI estimates for Center j = 23, whose true ECI

values for cause 1 and cause 2 are at opposite extremes.

[Table 4 about here.]

5. Application

We applied the proposed methods to evaluate Organ Procurement Organizations (OPOs)

with respect to two competing risks: (i) deceased-donor kidney transplantation (ii) death

(prior to transplantation). We use data from the Scientific Registry of Transplant Recipients

(SRTR). The SRTR data system includes data on all donor, wait-listed candidates, and

transplant recipients in the U.S., submitted by the members of the Organ Procurement and

Transplantation Network (OPTN), and has been described elsewhere. The Health Resources

and Services Administration (HRSA), U.S. Department of Health and Human Services

provides oversight to the activities of the OPTN and SRTR contractors.

The study cohort included patients wait-listed between 1/1/2010 and 4/30/2010. Patients

were followed from the date of listing until the earliest of receipt of a kidney transplant, death,
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16 Biometrics, XXX XXXX

removal from wait-list, or the end of the observation period, 12/31/2012. Using the proposed

methods, we compared OPOs across the U.S. with respect to the cumulative incidence

of receiving a deceased-donor transplant and the cumulative incidence of death prior to

transplantation. The time point we chose was two years post wait-listing, an appropriate time

horizon based on previous related analyses (e.g., Fan and Schaubel, 2016). Patients receiving

a living donor transplant were treated as independently censored, which is appropriate from

the perspective that living-donor transplantation depends on many factors related to a

patient’s specific circumstances and largely independent of OPO. Note that living-donor

transplantation was not a cause of our interest, rendering unappealing its inclusion as a

separate cause.

Our study population included n = 11, 759 patients across J = 58 OPOs across the U.S.

A total of 2,408 patients (20.5%) received a deceased-donor kidney transplant, while 1,114

(9.5%) died first. We adjusted for the following patient-level covariates: age at listing, race,

sex, body mass index, primary renal diagnosis, panel reactive antibody level and blood type.

Owing to the large dimension of the covariate vector, we used a two-stage approach, as done

in Kalbfleisch and Wolfe (2013), to obtain the risk-adjusted center effects (see also He and

Schaubel, 2014b). Specifically, we estimated the patient-level covariates at the first stage by

fitting a Cox model stratified by OPO. At the second stage, we estimated the cause-specific

OPO effects by fitting the proposed model, using the patient-level linear predictor from the

first stage as an offset. The estimated variance components are given by σ̂j = (σ̂2
1, σ̂

2
2, ρ̂12) =

(0.619, 0.031, 0.210). The estimated correlation was determined to be statistically significant,

with the CST yielding a p-value of 0.021.

Figure 1 displays the estimated OPO-specific ECI’s at 2 years post-listing, along with 95%

confidence intervals. The ECIs of transplantation ranged from -0.120 to 0.404, and the ECIs

of death ranged from -0.126 to 0.115. For a given OPO, a high ECI for transplantation and a
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Evaluating center performance in the competing risks setting 17

low ECI for death represent good performance. We classified OPOs as low- or high-outliers

based on the 95% confidence intervals.

[Figure 1 about here.]

We compared the proposed method to a method that ignores the correlation between the

cause-specific center effects with respect to outlier classification (Web Table 2). While the

two methods produced nearly identical classifications of OPOs based on the incidence of

transplant, the proposed method classified 6 more OPOs as outliers than fitting separate

frailty models by cause. This is a consequence of the reduction in shrinkage in the ECI

estimates by the proposed method, due to leveraging the information on the correlation

structure.

6. Discussion

In this report, we develop methods for evaluating center performance in the competing risks

setting. We propose estimating center effects through cause-specific proportional hazards

frailty models that allow correlation among a centers cause-specific hazards. We also propose

a score test to test for the presence of correlation between a center’s cause-specific hazards.

In our application, the cause-specific center effects do not seem to be strongly correlated.

In scenarios where the correlation between cause-specific center effects is on the higher side,

as maybe the case, for example, if there exists an unmeasured covariate influencing both

outcomes, using the proposed method instead of currently available methods may produce a

larger change in classification of centers than seen here. Since fitting the proposed model may

be computationally cumbersome, we recommend first using the proposed CST, to determine

if the proposed model is warranted (the alternative being cause-specific frailty models).

To ease computational burden while adjusting for case-mix in our application, we use

a two-stage approach. In the first stage, we fit a model stratified by OPO to estimate the
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18 Biometrics, XXX XXXX

regression parameters associated with a large number of patient characteristics. In the second

stage, we used the estimated regression parameters as an offset in the linear predictor of the

instantaneous hazard in a random-effects model. Note that, following this two-stage approach

has the added benefit of avoiding problems due to confounding between the patient-level

covariates and the OPO-specifc random-effects. As mentioned in Section 2.1, correlation

between covariates and random-effects is a violation of our model assumption which may

lead to biased estimates of center effects. However, using the above mentioned two-stage

approach seems to rectify this issue. This is because, in the second stage, our random effects

are estimated given Xβ̂, where β̂ is estimated from the stratified model. This ensures that

an unbiased estimate of β̂ is used while estimating the random effects. The random effects

then estimated represent an estimate of variation between centers after all the within center

variation has been accounted for accurately. It is possible that the random-effects may still be

correlated with center-level averages of the covariates X, and that this variation could further

be partitioned into variation due to differences in center-level averages of the covariates

X and other remaining variation between centers. The question of adjusting further for

between-center differences while using a random-effects model may be a policy decision. An

alternative, one-stage, approach to account for confounding by patient-level covariates is to

use the between-method decomposition of covariates as suggested by Sjölander et al. (2013),

where center-level averages of the covariates X are adjusted for.

7. Supplementary Materials

Web Appendix A, referenced in Section 4, and a web supplement containing R code and

an example data file is available with this paper at the Biometrics website on Wiley Online

Library.
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Figure 1. Analysis of Scientific Registry of Transplant Recipients (SRTR) Data: Caterpil-
lar Plots of Excess Cause-specific Cumulative Incidence of Death and Kidney Transplantation
for 58 Organ Procurement Organizations
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Evaluating center performance in the competing risks setting 23

Table 1
Estimating Regression Coefficients and Variance Components: Results from 500 Simulated Datasets

J nj
True
Value Bias ESD CP

True
Value Bias ESD CP

50 20 β1 0.5 0.007 0.075 0.946 0.5 0.000 0.075 0.954
β2 1.25 0.002 0.072 0.950 1.25 0.002 0.074 0.942
θ1 0.125 -0.003 0.068 – 0 0.022 0.036 –
θ2 0.125 -0.001 0.088 – 0.125 -0.027 0.095 –
θ3 0.125 0.005 0.087 – 0.125 -0.021 0.089 –

50 50 β1 0.5 -0.001 0.043 0.962 0.5 -0.001 0.043 0.962
β2 1.25 0.000 0.044 0.954 1.25 -0.004 0.046 0.944
θ1 0.125 -0.002 0.051 – 0 0.020 0.027 –
θ2 0.125 0.003 0.066 – 0.125 -0.020 0.073 –
θ3 0.125 -0.004 0.057 – 0.125 -0.026 0.069 –

100 20 β1 0.5 0.003 0.050 0.960 0.5 0.000 0.051 0.960
β2 1.25 0.001 0.051 0.946 1.25 0.001 0.053 0.942
θ1 0.125 -0.005 0.053 – 0 0.017 0.029 –
θ2 0.125 0.003 0.066 – 0.125 -0.019 0.074 –
θ3 0.125 -0.001 0.064 – 0.125 -0.021 0.065 –

100 50 β1 0.5 0.001 0.032 0.942 0.5 -0.001 0.033 0.944
β2 1.25 0.000 0.031 0.952 1.25 0.002 0.030 0.964
θ1 0.125 0.002 0.037 – 0 0.015 0.023 –
θ2 0.125 -0.001 0.043 – 0.125 -0.017 0.053 –
θ3 0.125 0.000 0.041 – 0.125 -0.012 0.049 –
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24 Biometrics, XXX XXXX

Table 2
Power and Type I error of proposed Correlation Score Test (CST), and Likelihood Ratio (LR) tests. The null
hypothesis is no correlation between cause-specific hazards within center: Results from 500 Simulated Datasets

Number of Centers Subjects per Center Type I Error Power

(J) (nj) LRT CST LRT CST

50 20 0.006 0.032 0.416 0.358

50 50 0.028 0.026 0.782 0.692

100 20 0.022 0.048 0.710 0.654

100 20 0.034 0.036 0.982 0.960
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Evaluating center performance in the competing risks setting 25

Table 3
Estimating Center-Specific Effects: Results from 500 Simulations

Proposed Method
Ignornig Correaltion
of Random Effects

nj′
True
Value Bias ESD ASE CP Relative MSE

20 γj′1 0.0 -0.019 0.231 0.322 0.988 1.113
γj′2 0.0 -0.015 0.239 0.305 0.980 1.084

γj′1 0.5 -0.175 0.241 0.297 0.970 1.232
γj′2 -0.5 0.168 0.249 0.327 0.972 1.248

γj′1 1.0 -0.276 0.244 0.276 0.870 1.252
γj′2 -1.0 0.397 0.244 0.354 0.838 1.700

40 γj′1 0.0 -0.007 0.222 0.263 0.988 1.093
γj′2 0.0 -0.015 0.209 0.243 0.986 1.041

γj′1 0.5 -0.097 0.208 0.232 0.946 1.203
γj′2 -0.5 0.108 0.214 0.271 0.974 1.274

γj′1 1.0 -0.141 0.203 0.209 0.916 1.242
γj′2 -1.0 0.268 0.221 0.306 0.914 1.799

60 γj′1 0.0 -0.010 0.202 0.231 0.968 1.098
γj′2 0.0 -0.005 0.187 0.210 0.976 1.074

γj′1 0.5 -0.066 0.195 0.200 0.962 1.142
γj′2 -0.5 0.070 0.209 0.240 0.958 1.148

γj′1 1.0 -0.097 0.168 0.178 0.948 1.227
γj′2 -1.0 0.219 0.219 0.276 0.890 1.666

80 γj′1 0.0 -0.018 0.181 0.210 0.988 1.095
γj′2 0.0 -0.020 0.179 0.191 0.964 1.080

γj′1 0.5 -0.071 0.180 0.180 0.954 1.170
γj′2 -0.5 0.066 0.180 0.218 0.970 1.153

γj′1 1.0 -0.105 0.161 0.161 0.894 1.206
γj′2 -1.0 0.193 0.201 0.256 0.918 1.554

100 γj′1 0.0 -0.020 0.170 0.194 0.976 1.095
γj′2 0.0 -0.015 0.157 0.176 0.978 1.065

γj′1 0.5 -0.076 0.15 0.167 0.964 1.171
γj′2 -0.5 0.059 0.197 0.203 0.932 1.123

γj′1 1.0 -0.095 0.141 0.149 0.928 1.218
γj′2 -1.0 0.155 0.196 0.242 0.944 1.494
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26 Biometrics, XXX XXXX

Table 4
Estimating Excess Cumulative Incidence: Results from 500 Simulation

Proposed Method
Ignornig Correlation
of Random Effects

Cause Center
True
Value Bias ESD ASE CP Relative MSE

1 14 -0.170 0.029 0.022 0.027 0.850 1.018
16 -0.096 0.024 0.029 0.034 0.926 0.750
17 -0.181 0.003 0.017 0.023 0.990 3.432
38 -0.138 0.017 0.024 0.029 0.958 1.226
1 -0.179 0.023 0.020 0.026 0.918 1.462
36 0.006 -0.009 0.038 0.038 0.932 0.950
4 -0.033 0.001 0.034 0.037 0.948 1.010
49 -0.070 0.018 0.029 0.034 0.944 0.777
32 -0.047 0.010 0.031 0.035 0.960 0.969
34 0.005 0.001 0.035 0.039 0.948 1.028
23 0.344 -0.022 0.045 0.047 0.934 1.279
19 0.118 -0.013 0.043 0.045 0.904 0.939
13 0.142 -0.015 0.044 0.046 0.942 1.036
15 0.127 -0.007 0.043 0.044 0.938 1.082
18 0.210 -0.022 0.047 0.048 0.904 0.988

2 26 -0.222 0.020 0.019 0.025 0.932 2.265
25 -0.140 0.014 0.027 0.029 0.936 1.196
20 -0.137 0.013 0.025 0.030 0.952 1.209
23 -0.199 0.014 0.021 0.025 0.950 2.122
5 -0.078 0.006 0.030 0.032 0.950 1.056
29 -0.017 0.004 0.034 0.033 0.922 0.954
11 -0.020 0.002 0.031 0.034 0.954 0.987
45 -0.043 0.006 0.032 0.033 0.934 0.965
34 -0.058 0.007 0.029 0.033 0.952 0.993
9 -0.009 0.001 0.031 0.033 0.946 1.016
41 0.203 -0.016 0.037 0.037 0.928 1.065
40 0.158 -0.012 0.035 0.036 0.934 1.076
31 0.157 -0.016 0.038 0.038 0.900 0.969
17 0.371 -0.020 0.037 0.034 0.902 1.327
14 0.111 -0.009 0.033 0.035 0.926 1.245
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