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Mean survival time is often of inherent interest in medical and epidemiologic
studies. In the presence of censoring and when covariate effects are of interest,
Cox regression is the strong default, but mostly due to convenience and famil-
iarity. When survival times are uncensored, covariate effects can be estimated
as differences in mean survival through linear regression. Tobit regression
can validly be performed through maximum likelihood when the censoring
times are fixed (ie, known for each subject, even in cases where the out-
come is observed). However, Tobit regression is generally inapplicable when
the response is subject to random right censoring. We propose Tobit regres-
sion methods based on weighted maximum likelihood which are applicable to
survival times subject to both fixed and random censoring times. Under the
proposed approach, known right censoring is handled naturally through the
Tobit model, with inverse probability of censoring weighting used to overcome
random censoring. Essentially, the re-weighting data are intended to represent
those that would have been observed in the absence of random censoring. We
develop methods for estimating the Tobit regression parameter, then the pop-
ulation mean survival time. A closed form large-sample variance estimator is
proposed for the regression parameter estimator, with a semiparametric boot-
strap standard error estimator derived for the population mean. The proposed
methods are easily implementable using standard software. Finite-sample prop-
erties are assessed through simulation. The methods are applied to a large cohort
of patients wait-listed for kidney transplantation.
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1 INTRODUCTION

In biomedical studies, Cox regression1 is the most popular modeling approach for the analysis of censored data in the pres-
ence of covariate adjustment. However, the dominance of the Cox model is mostly due to convenience and the availability
of pertinent statistical software. It is possible that the investigator may prefer to describe the results of a survival analysis
to a stakeholder in terms of differences in mean lifetime. For example, a transplant nephrologist may prefer to describe
risk factors affecting pretransplant survival in terms of differences in mean survival time, as opposed to ratios of hazard
functions. The Cox model is inappropriate in a lot of settings due to violation of the proportional hazards assumption.
The default modification of the Cox model to handle time-varying covariate effects (the Cox nonproportional hazards
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model) generally yields covariate effects with an undesirable interpretation.2 In the presence of proportionality, each Cox
model parameter pertains to an ordering of survival functions, which is a very useful property. However, this simplicity
disappears under violations of the proportionality assumption. Note that, if one ignores departures from proportionality
by fitting a time-constant covariate effects in the absence of proportional hazards (ie, with the hope of obtaining an aver-
age effect), the resulting parameter estimates represent an average which is difficult to define explicitly and depends on
the (nuisance) censoring distribution.3

Mean survival time is generally not estimable nonparametrically or semiparametrically in the presence of censoring
since, in most applications, the survival function will not drop to 0. In particular, the maximum follow-up time may
correspond to a survival probability that is well above 0, in which case, the curve is not closed and mean lifetime is
inestimable. In terms of nonparametric estimation, the Kaplan-Meier4 estimator will drop to 0 if the subject with the
maximum follow-up is observed to die, but this final drop in the curve can be quite unstable and lack face validity. For
example, survival probability could be estimated at 0.4 for t = 9.9, but 0 for t = 10, which is not believable and which
would be subject to great imprecision.

Extrapolation can be used to complete the open survival curve to obtain the full mean lifetime estimate. Specifically, the
area under the survival curve, estimated either by Kaplan-Meier estimator or Cox model, attached with an extrapolated
tail serves as the mean lifetime estimate. Various methods are available for this purpose. Beyond the last observation,
Efron5 used 0, while Gill6 used the probability estimate of the last event. Brown et al7 and Gelber et al8 used an exponential
distribution to fit the survival curve while Moeschberger and Klein9 used a Weibull distribution. Gong and Fang10 derived
the hybrid estimate, along with corresponding asymptotic results, for any parametric function fit to the curve. However,
the procedures developed in Gong and Fang10 involve the explicit combination of 2 separate survival analysis techniques
to estimate the survival probability of interest, which may be inconvenient and difficult to justify or trust. Moreover, in its
existing implementation, the method cannot be used to estimate covariate effects.

An alternative is to estimate restricted mean lifetime,11 eg, given by the area under the survival curve up to a prespec-
ified time, 𝜏. Many authors have used Cox regression to estimate treatment effects expressed as differences in restricted
mean lifetime. For example, Zucker12 and Chen and Tsiatis13 proposed a method which averages the fitted values from
the Cox model. Zhang and Schaubel,14 based on Chen and Tsiatis13 paper, extended the method to take into account
dependent censoring. Later, Zhang and Schaubel15 further incorporated double robust estimation into their approach.
Potential limitations of using restricted mean lifetime include the subjective choice of 𝜏, as well as interpretability. Step-
ping back for a moment, survival times are inherently continuous, as assumed by standard nonparametric Kaplan-Meier4

and semiparametric Cox1 methods. Their continuous nature makes modeling the mean function especially appealing.
At this juncture, it is useful to make the distinction between 2 types of right censoring: fixed (which we denote by Li for

subject i) and random (denoted by Ci). Fixed censoring times are known for a subject at the time follow-up begins. For
example, in a clinical trial in which each subject is prospectively followed for 5 years, Li = L=5 years for all i. As another
example, consider an observational study (eg, using registry data) spanning a 5-year period, with staggered entry and
follow-up for all subjects ending at the end of the 5-year period. In this case, Li would not be equal for all i but would be
known for each subject at the date of study entry. For instance, Li = 3 years for a patient who enters the study 2 years into
the observation period. In contrast to fixed censoring, a random censoring time is not known at the time of study entry.
Examples include a patient's voluntary withdrawal from the study or random loss to follow-up. While it is commonplace
in survival analysis to simply consider censoring time, min{Li,Ci}, the distinction between fixed and random censoring
is important for the methods proposed in this report.

When survival times are not subject to censoring, the sample mean is the best way to summarize average survival. To
adjust for covariates in this setting, survival times could be linearly regressed on the covariates. In linear regression, life-
time as a dependent variable is assumed to follow a normal distribution. In the vast majority of practical settings, survival
times are subject to (at least fixed and perhaps random) right censoring. The Tobit model16 was proposed as a parametric
method to describe the relationship between covariates and a nonnegative censored dependent variable. Inference pro-
ceeds via maximum likelihood estimation, with survival times assumed to follow a normal distribution. However, the
Tobit model can generally only deal with fixed right censoring but not random censoring. This is an important limitation
on the context of survival analysis, since random censoring occurs frequently in clinical trials and observational studies.

In this report, we propose Tobit regression methods which can accommodate both fixed and random right censoring. In
a given study, if all censoring times were fixed, existing Tobit regression methods could be applied. We essentially propose
a weighted version of a complete-case analysis, fitting the Tobit regression model to only subjects either observed to die
or observed to live until their fixed end-of-follow-up time. We weight such subjects using a variant of inverse probability
of censoring weighted (IPCW), originally proposed by Robins and Rotnitzky17 and Robins and Finkelstein.18 Basically,
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IPCW weights the censoring and events by the inverse of the probability of not being censored, such that the weighted
version of the likelihood (and hence resulting estimators) reflect that which would have been observed in the absence
of censoring. The probability of being censored is modeled via Cox regression, with random censoring as the event. The
assumed death model is the same as in the uncensored setting, such that the estimated regression parameters have a
straightforward interpretation. An estimator of marginal mean survival time is also proposed as the empirical average of
fitted values. The proposed methods are a useful option for practitioners when mean survival time is of inherent interest
or when the proportional hazards assumption is violated.

The remainder of the article is organized as follows. The data setup and proposed methods are described in Section
2. A simulation study is presented in Section 3 to evaluate the operating characteristics of the proposed procedures. The
proposed methods are applied to a cohort of end-stage renal disease patients in Section 4. Finally, some discussion is
provided in Section 5.

2 PROPOSED METHODS

In this section, we first formalize the data structure described in Section 1. We then describe how estimation would unfold
for (1) uncensored data, (2) survival times subject to known right censoring, and (3) death times subject to both fixed and
random censoring.

2.1 Setup and model
We begin by setting up the required notation. Let i denote subject (i = 1, … ,n). We let Di denote the death time and
consider the setting wherein Di is subject to 2 types of right censoring. Specifically, let Li represent the known right
censoring time, which occurs administratively at the end of the observation period. The random right censoring time
is given by Ci. Note that Li is always known, even if Di < Li or Ci < Li. Covariate vectors pertinent to Di and Ci are
represented by Zi and ZC

i , respectively, each of which is assumed not to change after baseline (time t = 0). One observes
a vector of data for each subject, (Xi,Li,Zi,ZC

i ,Δ
D
i ,Δ

C
i ,Δ

L
i ), where follow-up time is defined as Xi = min(Di,Ci,Li), ΔD

i =
I(Xi = Di), ΔC

i = I(Xi = Ci), ΔL
i = I(Xi = Li) with I(·) being the standard 0-to-1 indicator function.

Conditional on Zi, Di is assumed to follow a normal distribution, ie, Di|Zi ∼ N(𝜇i, 𝜎
2), where 𝜎 is the common standard

deviation. Further, we assume that 𝜇i = E[Di|Zi] is a linear combination of the covariates, such that 𝜇i = 𝛽′0Zi, with 𝛽0
being the unknown parameter vector of interest. We let 𝜇 = E[Di] be the marginal expectation of the survival time at the
population level, ie, averaged over the distribution of the covariate vector, such that 𝜇 = E[E[Di|Zi]].

We assume that Di is conditionally independent of Ci given the covariate Zi. This is a somewhat stronger form of inde-
pendence than would be assumed, for example, in a Cox model for Di|Zi. The standard definition of independent censoring
used in Cox regression, 𝜆D(t|Z) = 𝜆D(t|Z,C > t) is very similar to (but theoretically does not imply) independence between
D and C given Z.

2.2 Estimation when D is subject to known censoring L
In the absence of censoring, under the assumed model, E[Di] = 𝛽

′

0Zi and var(Di) = 𝜎2, the response variate is naturally
suited to linear regression, Di = 𝛽

′

0Zi + 𝜀i where 𝜀i ∼ N(0, 𝜎2). However, if Di is potentially censored by known censoring
time Li, we could use a Tobit model to obtain an unbiased estimator of 𝛽0.

If none of the subjects are censored, the Tobit model has the likelihood function

n∏
i=1

[
1
𝜎
𝜙

(
Xi − 𝛽′Zi

𝜎

)]ΔD
i
[
Φ
(
𝛽′Zi − Li

𝜎

)]ΔL
i

, (1)

where Φ(·) and 𝜙(·) are the cumulative and probability density functions of standard normal distribution. The log
likelihood would then be given by

n∑
i=1

ΔD
i log

[
1
𝜎
𝜙

(
Xi − 𝛽′Zi

𝜎

)]
+ ΔL

i log
[
Φ
(
𝛽′Zi − Li

𝜎

)]
. (2)
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2.3 Estimation when D is potentially censored by L and C
It is frequently the case in practice that Di can be randomly right censored prior to end-of-study censoring Li. In this
setting, we propose conducting an inverse-weighted complete-case analysis of {i ∶ ΔD

i + ΔL
i = 1}, ie, a complete-case

analysis of the data that would suffice in the absence of C, inverse weighted such that the weighted data set represents
the data that would be observed in the absence of C. Analogous inverse-weighted complete case approaches have been
developed for other survival analysis settings.19 The weight function is derived through IPCW17,18 and given by Wi =
(ΔD

i + ΔL
i ) exp

{
ΛC

i (Xi)
}

, where ΛC
i (t) = ∫ t

0 𝜆C
i (u)du and 𝜆C

i (t) is the hazard function for Ci conditional on ZC
i . Note that

the quantity, exp
{
−ΛC

i (t)
}

, represents the probability of remaining uncensored (ie, not randomly censored) as of time t.
A weighted Tobit model log likelihood function can be written as

𝓁(𝛽) =
n∑

i=1
ΔD

i Wi log
[

1
𝜎
𝜙

(
Xi − 𝛽′Zi

𝜎

)]
+ ΔL

i Wi log
[
Φ
(
𝛽′Zi − Li

𝜎

)]
.

The regression coefficient 𝛽0 is then estimated by 𝛽, the root of the score function

U(𝛽) =
n∑

i=1
− ΔD

i WiZi
1
𝜎
𝜙′

(
Xi − 𝛽′Zi

𝜎

)
𝜙

(
Xi − 𝛽′Zi

𝜎

)−1

+ ΔL
i WiZi

1
𝜎
𝜙

(
𝛽′Zi − Li

𝜎

)
Φ
(
𝛽′Zi − Li

𝜎

)−1

.

The variance of 𝛽 can be estimated by v̂ar(𝛽) = n[−𝜕U(𝛽)∕𝜕𝛽]−1.
Typically, the weights {W1, … ,Wn} will not be known and will need to be estimated. Consistent with the vast major-

ity of IPCW-based methods, we assume that Ci follows a proportional hazards model, 𝜆C
i (t) = 𝜆C

0 (t) exp{𝛽′CZC
i }, where

𝜆C
0 (t) is an unspecified baseline hazard function. Parameter estimation for this model is conducted using standard partial

likelihood, based on data {Xi,ΔC
i ,ZC

i } for i = 1, … ,n. The regression coefficient 𝛽C is estimated by 𝛽C, the root of the
score function

UC(𝛽) =
n∑

i=1
∫

𝜏

0
{ZC

i − ZC(t; 𝛽)}dNC
i (t),

where NC
i (t) = ΔC

i I(Ci ≤ t) and ZC(t; 𝛽) = R(1)
C (t; 𝛽)∕R(0)

C (t; 𝛽), R(p)
C (t; 𝛽) = n−1 ∑n

i=1 Yi(t)ZC⊗p
i exp{𝛽′ZC

i } for p = 0, 1, 2,
and with the following definitions: Z⊗0

i = 1, Z⊗1
i = Zi and Z⊗2

i = ZiZ′
i . The Breslow estimator of ΛC

0 (t) is given by
Λ̂C

0 (t) = n−1 ∑n
i=1 ∫ t

0 R(0)
C (u; 𝛽C)−1dNC

i (u).
Note that the assumption required for Ci to be independently censored by Di (required for consistent estimation

of the IPCW parameters through standard partial likelihood) is implied by the afore-listed conditional independence
assumption regarding Ci and Di.

Being estimated quantities, the weights are actually random variables, such that v̂ar(𝛽) cannot be directly obtained
from available statistical software without a considerable amount of explicit programming. However, for simplicity
here, we consider the estimated weights as fixed. Note that many existing IPCW-based methods have also treated the
Ŵi(t) as fixed for the purposes of variance computation. We evaluate the accuracy of the proposed variance estimator
in Section 3.

2.4 Estimating the marginal mean survival time
We propose to estimate E[D] through 𝜇 = n−1 ∑n

i=1 𝜇i, where 𝜇i = 𝛽′Zi. With respect to variance estimation, 1 option
would be to use the delta method, but this would not account for the variability in the Z distribution. We therefore propose
to estimate var(𝜇) through a semiparametric bootstrap method. Specifically, we sample B replicates of {Z1, … ,Zn}, where
B is a large number (eg, we chose B = 1000). We then draw B replicates of 𝛽 from its asymptotic distribution, N(𝛽, v̂ar(𝛽)).
This provides B replicates, 𝜇b = n−1 ∑n

i=1 𝛽
′
bZib, for b = 1, … ,B. The bootstrap variance is then provided by the empirical

variance of the B replicates.
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3 SIMULATION

We set Zi = (1,Z1i,Z2i)
′ and, correspondingly, let 𝛽 = (𝛽0, 𝛽1, 𝛽2)

′ . We let Z1i be a Bernoulli(0.5) covariate, while Z2i is
distributed as a standard normal variate truncated by [−2, 2]. We also assume ZC

i = (Z1i,Z2i,Z3i)′ where Z3i is a count
variable which evenly distributed on integers (0, 1, … , 9). The baseline hazard function for Ci is set to 𝜆C

0 (t) = 1∕c, with
parameter vector 𝛽C = (𝛽C

1 , 𝛽
C
2 , 𝛽

C
3 )

′.
We set the parameter of interest to (𝛽0, 𝛽1, 𝛽2)

′ = (3, 0.25, 0.25)′ , and let 𝜎 = 1. We let (𝛽C
1 , 𝛽

C
2 , 𝛽

C
3 )

′ = (0.15, 0.15, 0.15)′.
We then examine 6 different scenarios, differentiated by c = 100, 50, 30 and Li = L set to 4 and 3.5, with each scenario
having different percentages of both random censoring and known (end-of-follow-up) censoring. In scenarios 1 to 3, the
percentage of subjects censored by L is approximately 16%, while the percentage censored by C equalled approximately
7%, 13%, and 20%, respectively. Similarly, in scenarios 4 to 6, the percentage censored by L remained at 30%, while the
percentage censored by C increased from 6% to 12% and to 20%. Even heavier censoring is generated in scenarios 7 and
8, in which only 40% and 20% of subjects are observed to die, respectively. Further detail is provided in Table 1. Sample
sizes were set to n = 100 and n = 250. We generated 1000 replicates for each scenario. The weighted Tobit model was
implemented by using SAS 9.3 PROC QLIM.

Simulation results are presented in Table 1. For each parameter, bias was generally small, while the empirical standard
error and asymptotic standard error were generally very close. Correspondingly, coverage probability (CP) was approxi-
mately at the nominal 95% level, even in the cases where only 53% of subjects were observed to die. Note that 47% is a fairly
high percentage of censoring, relative to the standard implied based on published reports. The CP is below the nominal
level for scenarios 7 and 8, which feature much higher censoring rates. It is possible that the large-sample results are more
accurate in much larger sample sizes, particularly for settings where a low percentage of the sample is observed to die.
With respect to bias and CP, results were generally better for n = 250 than n = 100, even for the high censoring scenarios.

4 APPLICATION

We applied the proposed methods to quantify the effects of patient characteristics on mean pretransplant survival time
among end-stage renal disease patients wait-listed for deceased-donor kidney transplantation. Data were obtained from
the Scientific Registry of Transplant Recipients (SRTR), a national population-based organ transplant registry. The SRTR
data system includes data on all donors, wait-listed candidates, and transplant recipients in the United States, as sub-
mitted by the members of the Organ Procurement and Transplantation Network and has been described elsewhere. The
Health Resources and Services Administration, U.S. Department of Health and Human Services provides oversight to the
activities of the Organ Procurement and Transplantation Network and SRTR contractors.

The study population consisted of patients wait-listed for deceased-donor kidney transplantation in the United States
between January 01, 2009 and December 31, 2014. Only adult patients (age ≥ 18 at listing) not previously transplanted
were included in the study cohort. For each patient, follow-up began on the date of wait-listing (WL) and continued until
the earliest of death, receipt of a kidney transplant, loss to follow-up, or the end of the observation period (December 31,
2014). The known censoring time was given by the time interval between the date of WL and December 31, 2014. Random
right censoring occurred at the earliest of kidney transplantation and loss to follow-up. Note that patients were censored
upon receipt of a kidney transplant since survival in the absence of kidney transplantation (ie, pretransplant survival)
was of interest. Under the kidney allocation rules in effect during our observation period, such censoring can validly be
considered to be independent of pretransplant death time, conditional on the covariate vector. Note that the treatment of
transplantation as independent censoring is not appropriate for some solid organ type, eg, liver.20,21

Covariates, each determined at the time of WL, included the following: age, gender, race, blood type, years on dial-
ysis (prior to WL), serum albumin (g/dL), height (cm), weight (kg), and the following comorbid conditions: diabetes,
hypertension, cerebrovascular disease, chronic obstructive pulmonary disease, and peripheral vascular disease.

Cox regression was used to estimate the IPCW weight, Wi, with the covariate vector being equal to that included in the
death model. As is common when using IPCW, some very large values occurred for the weight function, owing to very
small probability of remaining uncensored. Unduly large estimated weights can increase the variance of 𝛽 by inappropri-
ately assigning excessive weight to a subject. One frequently applied solution is to cap the weight. Since we found that
99% of subjects had Ŵi < 2.25, we capped the weight function at 2.25.

The study cohort consisted of n = 56 518 patients, of which 9 676 were observed to die (17.1%), 11 520 were randomly
censored (20.4%), and 35 322 were censored by end-of-study (62.5%). Elements of the estimated regression parameter are
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TABLE 2 Analysis of pre-kidney transplant survival:
estimated regression parameter (time unit: months)

Covariate 𝛽 ŜE P
Intercept 47.27 1.14 <.0001
Age, per 10 y −4.47 0.24 <.0001
Gender:

Female 2.91 0.64 <.0001
Male 0 … …

Race:
Asian 10.65 1.11 <.0001
African American 7.80 0.57 <.0001
Hispanic 7.28 0.70 <.0001
Other 9.57 1.87 <.0001
Caucasian 0 … …

Blood type:
A −1.65 0.52 .001
B −0.87 0.69 .203
AB −2.98 1.23 .015
O 0 … …

Years on dialysis −1.95 0.10 <.0001
(prior to WL)
Albumin, per g/dL 12.14 0.41 <.0001
Height, per 10 cm −1.46 0.34 <.0001
Weight, per 5 kg 0.77 0.07 <.0001
Comorbid conditions:

Diabetes −8.27 0.50 <.0001
Hypertension 3.06 0.51 <.0001
CVD −1.52 1.17 .19
COPD −5.49 1.49 .0002
PVD −5.74 0.86 <.0001

Abbreviations: COPD, chronic obstructive pulmonary disease;
CVD, cerebrovascular disease; PVD, peripheral vascular disease;
WL, wait-listing.

listed in Table 2, with the time units being months post-WL. Mean pretransplant survival time decreases by approximately
4.5 months for every 10-year increase in age, all other covariates being equal (P < .0001). Every racial minority subgroup
outlives Caucasian patients (P < .0001) by ≥7 months, with the longest mean survival estimated to be for Asian patients.
Mean survival time decreases by≈2 months per year increase in the time interval between dialysis initiation and WL. This
time interval is perhaps a surrogate for unmeasured health status factors delaying the patient being deemed medically
suitable for transplantation. Note that hypertension status is based on the receipt of a prescription for medication for the
condition. From this perspective, the apparently protective effect of hypertension may derive from a reduced mortality
risk attributable to treatment. The estimated intercept (≈4 years) applies to a patient with covariate vector 0. Since we
subtracted, from each numerical covariate, a round number approximately equal to its respective median, the intercept
corresponds to a patient with the following characteristics: age 50, male, Caucasian, Type O, 3 years prior to dialysis,
serum albumin of 3 g/dL, 170 cm tall, weighing 80 kg, and free of all 5 listed comorbidities. The reference level of each
categorical covariate was the mode.

The marginal mean survival time is estimated at 𝜇 = 41.6 months, with an estimate standard error of 0.37 months.
We evaluated the adequacy of the model, in terms of risk discrimination, through the C index, also known as the

index of concordance.22 This quantity is essentially computed as the fraction of patient pairs for which the ordering of
the death times is concordant with the ordering of the fitted mean survival times. We computed C = 0.661, indicating
that the proposed model correctly orders patient-pairs approximately twice as often as it does so incorrectly. This is a
respectable result, particularly given that C = 0.660 was computed for a Cox regression model based on the same data
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and covariate vector. Results were very similar when we computed the C index based on 10-fold cross-validation, in which
case C = 0.658 for the Tobit model and C = 0.659 for the Cox model. The consistency between the “internal” and
cross-validation versions of C is likely due to the sample size (and number of deaths) being so large. Similar findings were
reported by Schaubel et al23 in the context of end-stage liver disease.

5 CONCLUSION

The proposed method can be used to evaluate covariate effects on mean survival time, while accounting for both
end-of-study and random censoring. The proposed approach models mean survival time directly by using it explicitly as
response variate in a Tobit regression. This would often be much more convenient than what is currently a frequently
applied alternative: modeling the hazard (eg, through Cox regression), combining the regression parameter and cumula-
tive baseline hazard estimates, then transforming and finally integrating the subject-specific survival curve. Moreover, in
cases where mean survival time is of interest, the regression parameter is directly relevant, while hazard regression pro-
cedures yield covariate effects which apply directly to the hazard function but which apply indirectly to any nonlinear
function of the hazard function, such as the survival function or its integration.

The implementation of the proposed method is computationally convenient, since the Cox model and Tobit model are
widely available in standard statistical software packages, such that coding effort is reduced.

Although the methodology in this report was motivated by data originating from the health sciences and medicine, the
methods could be applied to other fields such as economics, sociology, and engineering. For example, the average time of
using a credit card before closing and how long an airplane engine can function before failure.

A limitation of the proposed method is the reliance on the normal distribution for the failure times. It is possible that
results are somewhat robust to nonnormality. However, it is well known that survival data often exhibit right skewness.

The most popular alternative to modeling mean survival time directly would be to model the restricted mean survival
time. Methods for modeling the restricted mean directly have gained increased attention in the biostatistical literature
recently.24 The main drawback to such methods is the need to select a truncation time. In particular, different investigators
could prefer different restriction times, with the inference and, hence, conclusions drawn possibly depending on which
time is chosen. That said, extrapolation is inherent when the mean is modeled based on censored data; concern along
these lines is largely mitigated by modeling the restricted mean. In the end, it can be safely stated that mean and restricted
mean are both interesting and useful bases for the analysis of censored survival times.

Future work includes consideration of dependent censoring and nonconstant variance, both of which frequently occur
in clinical and epidemiologic data, often as manifestations of unmeasured covariates.
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