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Abstract

Mean survival time is often of inherent interest in medical and epidemiologic
studies. In the presence of censoring and when covariate effects are of interest,
Cox regression is the strong default, but mostly due to convenience and famil-
iarity. When survival times are uncensored, covariate effects can be estimated
as differences in mean survival through linear regression. Tobit regression can
validly be carried out through maximum likelihood when the censoring times
fixed (i.e., known for each subject, even in cases where the outcome is ob-
served). However, tobit regression is generally inapplicable when the response
is subject to random right censoring. We propose tobit regression methods
based on weighted maximum likelihood which are applicable to survival times
subject to both fixed and random censoring times. Under the proposed ap-
proach, known right censoring is handled naturally through the tobit model,
with Inverse Probability of Censoring Weighting (IPCW) used to overcome
random censoring. Essentially, the re-weighting data are intended to repre-
sent those that would have been observed in the absence of random censoring.
We develop methods for estimating the tobit regression parameter, then the
population mean survival time. A closed form large-sample variance estima-
tor is proposed for the regression parameter estimator, with a semiparametric
bootstrap standard error estimator derived for the population mean. The pro-
posed methods are easily implementable using standard software. Finite-sample
properties are assessed through simulation. The methods are applied to a large
cohort of patients wait-listed for kidney transplantation.
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1 INTRODUCTION

In biomedical studies, Cox regression[1] is the most popular modeling approach for

the analysis of censored data in the presence of covariate adjustment. However, the

dominance of the Cox model is mostly due to convenience and the availability of perti-

nent statistical software. It is possible that the investigator may prefer to describe the

results of a survival analysis to a stakeholder in terms of differences in mean lifetime.

For example, a transplant nephrologist may prefer to describe risk factors affecting

pre-transplant survival in terms of differences in mean survival time, as opposed to

ratios of hazard functions. The Cox model is inappropriate in a lot of settings due

to violation of the proportional hazards assumption. The default modification of

the Cox model to handle time-varying covariate effects (the Cox non-proportional

hazards model) generally yields covariate effects with an undesirable interpretation

[2]. In the presence of proportionality, each Cox model parameter pertains to an

ordering of survival functions, which is a very useful property. However, this simplic-

ity disappears under violations of the proportionality assumption. Note that, if one

ignores departures from proportionality by fitting a time-constant covariate effects

in the absence of proportional hazards (i.e., with the hope of obtaining an average

effect), the resulting parameter estimates represent an average which is difficult to

define explicitly and depends on the (nuisance) censoring distribution [3].

Mean survival time is generally not estimable non- or semi-parametrically in the

presence of censoring since, in most applications, the survival function will not drop

to zero. In particular, the maximum follow-up time may correspond to a survival

probability that is well above 0, in which case the curve is not closed and mean

lifetime is inestimable. In terms of nonparametric estimation, the Kaplan-Meier [4]

estimator will drop to 0 if the subject with the maximum follow-up is observed to

die, but this final drop in the curve can be quite unstable and lack face validity. For
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example, survival probability could be estimated at 0.4 for t = 9.9, but 0 for t = 10,

which is not believable and which would be subject to great imprecision.

Extrapolation can be used to complete the open survival curve to obtain the full

mean lifetime estimate. Specifically, the area under the survival curve, estimated

either by Kaplan-Meier estimator or Cox model, attached with an extrapolated tail

serves as the mean lifetime estimate. Various methods are available for this purpose.

Beyond the last observation, Efron [5] used 0, while Gill [6] used the probability es-

timate of the last event. Brown et al. [7] and Gelber et al. [8] used an exponential

distribution to fit the survival curve while Moeschberger and Klein [9] used a Weibull

distribution. Gong and Fang [10] derived the hybrid estimate, along with corre-

sponding asymptotic results, for any parametric function fit to the curve. However,

the procedures developed in [10] involve the explicit combination of two separate sur-

vival analysis techniques to estimate the survival probability of interest, which may be

inconvenient and difficult to justify or trust. Moreover, in its existing implementation,

the method cannot be used to estimate covariate effects.

An alternative is to estimate restricted mean lifetime [11]; e.g., given by the area

under the survival curve up to a pre-specified time, τ . Many authors have employed

Cox regression to estimate treatment effects expressed as differences in restricted

mean lifetime. For example, Zucker [12] and Chen and Tsiatis [13] proposed a method

which averages the fitted values from the Cox model. Zhang and Schaubel [14], based

on Chen and Tsiatis [13] paper, extended the method to take into account depen-

dent censoring. Later Zhang and Schaubel [15] further incorporated double robust

estimation into their approach. Potential limitations of using restricted mean life-

time include the subjective choice of τ , as well as interpretability. Stepping back for

a moment, survival times are inherently continuous, as assumed by standard non-

parametric Kaplan-Meier [4] and semiparametric Cox [1] methods. Their continuous
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nature makes modeling the mean function especially appealing.

At this juncture, it is useful to make the distinction between two types of right

censoring: fixed (which we denote by Li for subject i) and random (denoted by Ci).

Fixed censoring times are known for a subject at the time follow-up begins. For

example, in a clinical trial in which each subject is prospectively followed for 5 years,

Li = L=5 years for all i. As another example, consider an observational study (e.g.,

using registry data) spanning a 5 year period, with staggered entry and follow-up for

all subjects ending at the end of the 5-year period. In this case, Li would not be equal

for all i, but would be known for each subject at the date of study entry. For instance,

Li = 3 years for a patient who enters the study 2 years into the observation period. In

contrast to fixed censoring, a random censoring time is not known at the time of study

entry. Examples include a patient’s voluntary withdrawal from the study, or random

loss to follow-up. While it is commonplace in survival analysis to simply consider

censoring time, min{Li, Ci}, the distinction between fixed and random censoring is

important for the methods proposed in this report.

When survival times are not subject to censoring, the sample mean is the best

way to summarize average survival. To adjust for covariates in this setting, survival

times could be linearly regressed on the covariates. In linear regression, lifetime as a

dependent variable is assumed to follow a normal distribution. In the vast majority

of practical settings, survival times are subject to (at least fixed, and perhaps ran-

dom) right censoring. The Tobit model [16] was proposed as a parametric method to

describe the relationship between covariates and a non-negative censored dependent

variable. Inference proceeds via Maximum Likelihood Estimation, with survival times

assumed to follow a Normal distribution. However, the Tobit model can generally

only deal with fixed right censoring, but not random censoring. This is an impor-

tant limitation on the context of survival analysis, since random censoring occurs
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frequently in clinical trials and observational studies.

In this report, we propose Tobit regression methods which can accommodate

both fixed and random right censoring. In a given study, if all censoring times were

fixed, existing Tobit regression methods could be applied. We essentially propose

a weighted version of a complete-case analysis, fitting the Tobit regression model

to only subjects either observed to die or observed to live until their fixed end-of-

follow-up time. We weight such subjects using a variant of Inverse Probability of

Censoring Weighted (IPCW), originally proposed by Robins and Rotnitzky [17] and

Robins and Finkelstein [18]. Basically, IPCW weights the censoring and events by

the inverse of the probability of not being censored, such that the weighted version

of the likelihood (and hence resulting estimators) reflect that which would have been

observed in the absence of censoring. The probability of being censored is modeled

via Cox regression, with random censoring as the event. The assumed death model is

the same as in the uncensored setting, such that the estimated regression parameters

have a straightforward interpretation. An estimator of marginal mean survival time

is also proposed as the empirical average of fitted values. The proposed methods are

a useful option for practitioners when mean survival time is of inherent interest, or

when the proportional hazards assumption is violated.

The remainder of the article is organized as follows. The data set-up and proposed

methods are described in Section 2. A simulation study is presented in Section 3 to

evaluate the operating characteristics of the proposed procedures. The proposed

methods are applied to a cohort of end-stage renal disease patients in Section 4.

Finally, some discussion is provided in Section 5.
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2 PROPOSED METHODS

In this section, we first formalize the data structure described in Section 1. We

then describe how estimation would unfold for (i) uncensored data (ii) survival times

subject to known right censoring (iii) death times subject to both fixed and random

censoring.

2.1 Set-up and Model

We begin by setting up the required notation. Let i denote subject (i = 1, . . . , n). We

let Di denote the death time, and consider the setting wherein Di is subject to two

types of right censoring. Specifically, let Li represent the known right censoring time,

which occurs administratively at the end of the observation period. The random right

censoring time is given by Ci. Note that Li is always known, even if Di < Li or

Ci < Li. Covariate vectors pertinent to Di and Ci are represented by Zi and ZC
i ,

respectively, each of which is assumed not to change after baseline (time t = 0). One

observes a vector of data for each subject, (Xi, Li, Zi, Z
C
i , ∆D

i , ∆C
i , ∆L

i ), where follow-

up time is defined as Xi = min(Di, Ci, Li), ∆D
i = I(Xi = Di), ∆C

i = I(Xi = Ci),

∆L
i = I(Xi = Li) with I(·) being the standard 0-1 indicator function.

Conditional on Zi, Di is assumed to follow a Normal distribution; i.e., Di|Zi ∼
N(µi, σ

2), where σ is the common standard deviation. Further, we assume that

µi = E[Di|Zi] is a linear combination of the covariates, such that µi = β′0Zi, with β0

being the unknown parameter vector of interest. We let µ = E[Di] be the marginal

expectation of the survival time at the population level; i.e., averaged over the distri-

bution of the covariate vector, such that µ = E[E[Di|Zi]].

We assume that Di is conditionally independent of Ci given the covariate Zi. This

is a somewhat stronger form of independence than would be assumed, for example,

in a Cox model for Di|Zi. The standard definition of independent censoring used in
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Cox regression, λD(t|Z) = λD(t|Z, C > t) is very similar to (but theoretically does

not imply) independence between D and C given Z.

2.2 Estimation when D is subject to known censoring L

In the absence of censoring, under the assumed model, E[Di] = β′0Zi and var(Di) =

σ2, the response variate is naturally suited to linear regression, Di = β′0Zi + εi where

εi ∼ N(0, σ2). However, if Di is potentially censored by known censoring time Li, we

could employ a Tobit model to obtain an unbiased estimator of β0.

If none of the subjects are censored, the Tobit model has the likelihood function

n∏
i=1

[
1

σ
φ

(
Xi − β′Zi

σ

)]∆D
i

[
Φ

(
β′Zi − Li

σ

)]∆L
i

, (1)

where Φ(·) and φ(·) are the cumulative and probability density functions of standard

normal distribution. The log likelihood would then be given by

n∑
i=1

∆D
i log

[
1

σ
φ

(
Xi − β′Zi

σ

)]
+ ∆L

i log

[
Φ

(
β′Zi − Li

σ

)]
. (2)

2.3 Estimation when D is potentially censored by L and C

It is frequently the case in practice that Di can be randomly right censored prior

to end-of-study censoring Li. In this setting, we propose carrying out an inverse-

weighted complete-case analysis of {i : ∆D
i + ∆L

i = 1}; i.e., a complete-case analysis

of the data that would suffice in the absence of C, inverse weighted such that the

weighted data set represents the data that would be observed in the absence of C.

Analogous inverse-weighted complete case approaches have been developed for other

survival analysis settings; e.g., [19]. The weight function is derived through IPCW

[17, 18] and given by, Wi = (∆D
i + ∆L

i ) exp
{
ΛC

i (Xi)
}
, where ΛC

i (t) =
∫ t

0
λC

i (u)du

and λC
i (t) is the hazard function for Ci conditional on ZC

i . Note that the quantity,

exp
{−ΛC

i (t)
}
, represents the probability of remaining uncensored (i.e., not randomly

censored) as of time t.
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A weighted Tobit model log likelihood function can be written as

`(β) =
n∑

i=1

∆D
i Wi log

[
1

σ
φ

(
Xi − β′Zi

σ

)]
+ ∆L

i Wi log

[
Φ

(
β′Zi − Li

σ

)]
.

The regression coefficient β0 is then estimated by β̂, the root of the score function

U(β) =
n∑

i=1

−∆D
i WiZi

1

σ
φ′

(
Xi − β′Zi

σ

)
φ

(
Xi − β′Zi

σ

)−1

+∆L
i WiZi

1

σ
φ

(
β′Zi − Li

σ

)
Φ

(
β′Zi − Li

σ

)−1

.

The variance of β̂ can be estimated by v̂ar(β̂) = n[−∂U(β)/∂β]−1.

Typically, the weights {W1, . . . , Wn} will not be known and will need to be esti-

mated. Consistent with the vast majority of IPCW-based methods, we assume that

Ci follows a proportional hazards model, λC
i (t) = λC

0 (t) exp{β′CZC
i }, where λC

0 (t) is an

unspecified baseline hazard function. Parameter estimation for this model is carried

out using standard partial likelihood, based on data {Xi, ∆
C
i , ZC

i } for i = 1, . . . , n.

The regression coefficient βC is estimated by β̂C , the root of the score function

UC(β) =
n∑

i=1

∫ τ

0

{ZC
i − ZC(t; β)}dNC

i (t),

where NC
i (t) = ∆C

i I(Ci ≤ t) and ZC(t; β) = R
(1)
C (t; β)/R

(0)
C (t; β), R

(p)
C (t; β) =

n−1
∑n

i=1 Yi(t)Z
C⊗p
i exp{β′ZC

i } for p = 0, 1, 2, and with the following definitions:

Z⊗0
i = 1, Z⊗1

i = Zi and Z⊗2
i = ZiZ

′
i. The Breslow estimator of ΛC

0 (t) is given

by Λ̂C
0 (t) = n−1

∑n
i=1

∫ t

0
R

(0)
C (u; β̂C)−1dNC

i (u).

Note that the assumption required for Ci to be independently censored by Di

(required for consistent estimation of the IPCW parameters through standard par-

tial likelihood) is implied by the afore-listed conditional independence assumption

regarding Ci and Di.

Being estimated quantities, the weights are actually random variables, such that

v̂ar(β̂) cannot be directly obtained from available statistical software without a con-

siderable amount of explicit programming. However, for simplicity here we consider

8

This article is protected by copyright. All rights reserved.



the estimated weights as fixed. Note that many existing IPCW-based methods have

also treated the Ŵi(t) as fixed for the purposes of variance computation. We evaluate

the accuracy of the proposed variance estimator in Section 3.

2.4 Estimating the marginal mean survival time

We propose to estimate E[D] through µ̂ = n−1
∑n

i=1 µ̂i, where µ̂i = β̂′Zi. With

respect to variance estimation, one option would be to use the Delta Method, but this

would not account for the variability in the Z distribution. We therefore propose to

estimate var(µ̂) through a semi-parametric bootstrap method. Specifically, we sample

B replicates of {Z1, . . . , Zn}, where B is a large number (e.g., we chose B = 1000).

We then draw B replicates of β̂ from its asymptotic distribution, N(β̂, v̂ar(β̂)). This

provides B replicates, µ̂b = n−1
∑n

i=1 β̂′bZib, for b = 1, . . . , B. The bootstrap variance

is then provided by the empirical variance of the B replicates.

3 SIMULATION

We set Zi = (1, Z1i, Z2i)
′ and, correspondingly, let β = (β0, β1, β2)

′. We let Z1i be a

Bernoulli(0.5) covariate, while Z2i is distributed as a standard Normal variate trun-

cated by [−2, 2]. We also assume ZC
i = (Z1i, Z2i, Z3i)

′ where Z3i is a count variable

which evenly distributed on integers (0, 1, . . . , 9). The baseline hazard function for

Ci is set to λC
0 (t) = 1/c, with parameter vector βC = (βC

1 , βC
2 , βC

3 )′.

We set the parameter of interest to (β0, β1, β2)
′ = (3, 0.25, 0.25)′, and let σ = 1.

We let (βC
1 , βC

2 , βC
3 )′ = (0.15, 0.15, 0.15)′. We then examine 6 different scenarios,

differentiated by c = 100, 50, 30 and Li = L set to 4 and 3.5, with each scenario

having different percentages of both random censoring and known (end-of-follow-up)

censoring. In scenarios 1-3, the percentage of subjects censored by L is approximately

16%, while the percentage censored by C equalled approximately 7%, 13% and 20%
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respectively. Similarly, in scenarios 4-6, the percentage censored by L remained at

30%, while the percentage censored by C increased from 6%, to 12%, and to 20%.

Even heavier censoring is generated in scenarios 7 and 8, in which only 40% and 20%

of subjects are observed to die, respectively. Further detail is provided in refer Table

1. Sample sizes were set to n = 100 and n = 250. We generated 1000 replicates for

each scenario. The weighted Tobit model was implemented by using SASr 9.3 PROC

QLIM.

Simulation results are presented in Table 1. For each parameter, bias was generally

small, while the Empirical Standard Error (ESE) and Asymptotic Standard Error

(ASE) were generally very close. Correspondingly, coverage probability (CP) was

approximately at the nominal 95% level, even in the cases where only 53% of subjects

were observed to die. Note that 47% is a fairly high percentage of censoring, relative to

the standard implied based on published reports. The CP is below the nominal level

for scenarios 7 and 8, which feature much higher censoring rates. It is possible that

the large-sample results are more accurate in much larger sample sizes, particularly

for settings where a low percentage of the sample is observed to die. With respect

to bias and CP, results were generally better for n = 250 than n = 100, even for the

high censoring scenarios.
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4 APPLICATION

We applied the proposed methods to quantify the effects of patient characteristics on

mean pre-transplant survival time among end-stage renal disease (ESRD) patients

wait listed for deceased-donor kidney transplantation. Data were obtained from the

Scientific Registry of Transplant Recipients (SRTR), a national population based

organ transplant registry. The SRTR data system includes data on all donors, wait-

listed candidates, and transplant recipients in the U.S., as submitted by the members

of the Organ Procurement and Transplantation Network (OPTN), and has been de-

scribed elsewhere. The Health Resources and Services Administration (HRSA), U.S.

Department of Health and Human Services provides oversight to the activities of the

OPTN and SRTR contractors.

The study population consisted of patients wait listed for deceased-donor kidney

transplantation in the United States between 01/01/2009 and 12/31/2014. Only

adult patients (age≥18 at listing) not previously transplanted were included in the

study cohort. For each patient, follow-up began on the date of wait listing (WL), and

continued until the earliest of death, receipt of a kidney transplant, loss to follow-

up or the end of the observation period (12/31/2014). The known censoring time

was given by the time interval between the date of wait listing and 12/31/2014.

Random right censoring occurred at the earliest of kidney transplantation and loss to

follow-up. Note that patients were censored upon receipt of a kidney transplant since

survival in the absence of kidney transplantation (i.e., pre-transplant survival) was

of interest. Under the kidney allocation rules in effect during our observation period,

such censoring can validly be considered to be independent of pre-transplant death

time, conditional on the covariate vector. Note that the treatment of transplantation

as independent censoring is not appropriate for some solid organ type; e.g., liver (see

[20; 21].
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Covariates, each determined at the time of wait listing, included the following:

age, gender, race, blood type, years on dialysis (prior to wait listing), serum albumin

(g/dL), height (cm), weight (kg), and the following comorbid conditions: diabetes,

hypertension, cerebrovascular disease (CVD), chronic obstructive pulmonary disease

(COPD) and peripheral vascular disease (PVD).

Cox regression was used to estimate the IPCW weight, Wi, with the covariate

vector being equal to that included in the death model. As is common when using

IPCW, some very large values occurred for the weight function, owing to very small

probability of remaining uncensored. Unduly large estimated weights can increase

the variance of β̂ by inappropriately assigning excessive weight to a subject. One

frequently applied solution is to cap the weight. Since we found that 99% of subjects

had Ŵi < 2.25, we capped the weight function at 2.25.

The study cohort consisted of n = 56, 518 patients, of which 9,676 were observed

to die (17.1%); 11,520 were were randomly censored (20.4%); and 35,322 were cen-

sored by end-of-study (62.5%). Elements of the estimated regression parameter are

listed in Table 2, with the time units being months post-wait listing. Mean pre-

transplant survival time decreases by approximately 4.5 months for every 10 year

increase in age, all other covariates being equal (p < 0.0001). Every racial minority

subgroup outlives Caucasian patients (p < 0.0001) by ≥7 months, with the longest

mean survival estimated to be for Asian patients. Mean survival time decreases by

≈ 2 months per year increase in the time interval between dialysis-initiation and wait

listing. This time interval is perhaps a surrogate for unmeasured health status factors

delaying the patient being deemed medically suitable for transplantation. Note that

hypertension status is based on the receipt of a prescription for medication for the

condition. From this perspective, the apparently protective effect of hypertension

may derive from a reduced mortality risk attributable to treatment. The estimated
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intercept (≈ 4 years) applies to a patient with covariate vector 0.Since we subtracted,

from each numerical covariate, a round number approximately equal to its respective

median, the intercept corresponds to a patient with the following characteristics: age

50, male, Caucasian, Type O, 3 years prior dialysis, serum albumin of 3 g/dL, 170

cm tall, weighing 80 kg, and free of all five listed comorbidities. The reference level

of each categorical covariate was the mode.

The marginal mean survival time is estimated at µ̂ = 41.6 months, with estimate

standard error 0.37 months.

We evaluated the adequacy of the model, in terms of risk discrimination, through

the C index, also known as the Index of Concordance [22]. This quantity is essentially

computed as the fraction of patient pairs for which the ordering of the death times

is concordant with the ordering of the fitted mean survival times. We computed

C = 0.661, indicating that that the proposed model correctly orders patient-pairs

approximately twice as often as it does so incorrectly. This is a respectable result,

particularly given that C = 0.660 was computed for a Cox regression model based

on the same data and covariate vector. Results were very similar when we computed

the C index based on 10-fold cross-validation, in which case C = 0.658 for the tobit

model and C = 0.659 for the Cox model. The consistency between the ‘internal’ and

cross-validation versions of C is likely due to the sample size (and number of deaths)

being so large. Similar findings were reported by Schaubel et al. [23] in the context

of end-stage liver disease.

5 CONCLUSION

The proposed method can be used to evaluate covariate effects on mean survival

time, while accounting for both end-of-study and random censoring. The proposed

approach models mean survival time directly by using it explicitly as response vari-
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Table 2: Analysis of pre-kidney transplant survival: Estimated regression parameter
(time unit: months)

Covariate β̂ ŜE p

Intercept 47.27 1.14 <0.0001
Age (per 10 years) -4.47 0.24 <0.0001
Gender:

Female 2.91 0.64 <0.0001
Male 0 .. ..

Race:
Asian 10.65 1.11 <0.0001
African American 7.80 0.57 <0.0001
Hispanic 7.28 0.70 <0.0001
Other 9.57 1.87 <0.0001
Caucasian 0 .. ..

Blood Type:
A -1.65 0.52 0.001
B -0.87 0.69 0.203
AB -2.98 1.23 0.015
O 0 .. ..

Years on dialysis -1.95 0.10 <0.0001
(prior to WLa)
Albumin (per g/dL) 12.14 0.41 <0.0001
Height (per 10 cm) -1.46 0.34 <0.0001
Weight (per 5 kg) 0.77 0.07 <0.0001
Comorbid conditions:

Diabetes -8.27 0.50 <0.0001
Hypertension 3.06 0.51 <0.0001
CVDb -1.52 1.17 0.19
COPDc -5.49 1.49 0.0002
PVDd -5.74 0.86 <0.0001

Notes: (a) WL = wait listing (b) CVD = cerebrovascular disease (c) COPD = chronic
obstructive pulmonary disease (d) PVD = peripheral vascular disease
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ate in a Tobit regression. This would often be much more convenient than what is

currently a frequently applied alternative: modeling the hazard (e.g., through Cox

regression), combining the regression parameter and cumulative baseline hazard es-

timates, then transforming and finally integrating the subject-specific survival curve.

Moreover, in cases where mean survival time is of interest, the regression parameter

is directly relevant, while hazard regression procedures yield covariate effects which

apply directly to the hazard function, but which apply indirectly to any non-linear

function of the hazard function, such as the survival function or its integration.

The implementation of the proposed method is computationally convenient, since

the Cox model and Tobit model are widely available in standard statistical software

packages, such that coding effort is reduced.

Although the methodology in this report was motivated by data originating from

the health sciences and medicine, the methods could be applied to other fields such as

economics, sociology and engineering. For example, the average time of using a credit

card before closing, and how long an airplane engine can function before failure.

A limitation of the proposed method is the reliance on the Normal distribution

for the failure times. It is possible that results are somewhat robust to non-normality.

However, it is well known that survival data often exhibit right-skewness.

The most popular alternative to modeling mean survival time directly would be

to model the restricted mean survival time. Methods for modeling the restricted

mean directly have gained increased attention in the biostatistical literature recently

[24]. The main drawback to such methods is the need to select a truncation time.

In particular, different investigators could prefer different restriction times, with the

inference and, hence, conclusions drawn possibly depending on which time is chosen.

That said, extrapolation is inherent when the mean is modeled based on censored

data; concern along these lines is largely mitigated by modeling the restricted mean.
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In the end, it can be safely stated that mean and restricted mean are both interesting

and useful bases for the analysis of censored survival times.

Future work includes consideration of dependent censoring and non-constant vari-

ance, both of which frequently occur in clinical and epidemiologic data, often as

manifestations of unmeasured covariates.
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[18] Robins JM, Finkelstein DM. Correcting for noncompliance and dependent cen-

soring in an AIDS clinical trial with inverse probability of censoring weighted

(IPCW) Log-rank tests. Biometrics. 2000;56:779-788.

[19] Schaubel DE, Zhang H, Kalbfleisch JD, Shu X. Semiparametric methods for

survival analysis of case-control data subject to dependent censoring. Canadian

Journal of Statistics. 2014;42:365-383.

[20] Gong Q, Schaubel DE. Partly conditional estimation of the effect of a

time-dependent factor in the presence of dependent censoring. Biometrics.

2013;69:338-347.

[21] Gong Q, Schaubel DE. Estimating the average treatment effect on survival

based on observational data and using partly conditional modeling. Biometrics.

2017;73:134-144.

19

This article is protected by copyright. All rights reserved.



[22] Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in devel-

oping models, evaluating assumptions and adequacy, and measuring and reducing

errors. Statistics in Medicine. 1996;15(4):361-387.

[23] Schaubel DE, Guidinger MK, Biggins SW, et al. Survival benefit-based deceased-

donor liver allocation. American Journal of Transplantation. 2009;9(4 Pt 2):970-

981.

[24] Tian L, Zhao L, Wei LJ. Predicting the restricted mean event time with the

subject’s baseline covariates in survival analysis. Biostatistics. 2014;15:222-233.

20

This article is protected by copyright. All rights reserved.


