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Abstract

Aim: The Guiana Shield region exhibits extraordinary topography that includes

sheer, flat-topped mountains (tepuis) atop an upland platform. Rivers of the eastern

Pakaraima Mountains descend to Atlantic coastal lowlands, often traversing spectac-

ular rapids and waterfalls. For fish species distributed in both uplands and lowlands,

it is unclear whether these rapids and waterfalls present population or biogeographi-

cal boundaries. We sought to test this using the geographically widespread banded-

electric knifefish (Gymnotus carapo) as a model.

Location: The Guiana Shield region of South America.

Methods: We sampled 60 Gymnotus carapo specimens from the Guiana Shield

region, and 75 G. carapo and closely related species from other parts of South

America. We sequenced the mitochondrial cytochrome b gene and an intron from

the nuclear S7 ribosomal protein gene, and used maximum likelihood and Bayesian

tree-building approaches to generate phylogenetic trees of haplotypes.

Results: Haplotype sharing is minimal between populations separated by elevational

barriers. We found evidence for two main haplotype clades in the Guiana Shield:

one distributed in Atlantic coastal regions that includes most lowland samples, and

one inland that includes most upland samples. Inland Guiana samples are more clo-

sely related to samples from the Amazon basin than to those of Atlantic coastal

regions. A single sample from Tafelberg tepui in Suriname was most closely related

to the Atlantic coastal lineages.

Main conclusions: Riverine barriers that result from steep elevational gradients in

the Guiana Shield inhibit gene flow between uplands and lowlands, even for a

widely distributed species. Biogeographical relationships of Guiana Shield G. carapo

are complex, with most upland lineages showing affinities to the Amazon basin,

rather than to nearby lowland drainages of the Atlantic coast.
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1 | INTRODUCTION

The Guiana Shield region of north-eastern South America is famous

for its striking topography. In particular, the Pakaraima Mountains of

Guyana, Brazil, and Venezuela are extraordinary sheer-sided table-

top mountains (tepuis) rising above an upland platform, which itself

is elevated above the lowlands (Lujan & Armbruster, 2011; McCon-

nell, 1968; Rull, 2005). These mountains are exceedingly remote, and

this region has been referred to as a “Lost World” for this reason

(e.g. Kok et al., 2016). The hydrogeography of this region is com-

plex–upland regions are drained to the west and north by the Rio

Orinoco, to the south by the Rio Amazonas via the Rio Branco and

Rio Negro, and in the east by the Mazaruni and Essequibo drainages

(Lujan & Armbruster, 2011). Rivers originating in the Pakaraima

Mountains descend by as much as 1,000 m, often via spectacular

waterfalls and rapids, before reaching the Atlantic coastal plain.

The uplands and highlands of the Guiana Shield exhibit remark-

able biological endemism across taxonomic groups, including vascular

plants (Berry & Riina, 2005), birds (Zyskowski et al., 2011), herpeto-

fauna (McDiarmid & Donnelly, 2005) and mammals (Voss, Lim, Diaz-

Nieto, & Jansa, 2013). Although sampling of fishes is generally sparse

at higher altitudes of the Guiana Shield, surveys of the upper Mazar-

uni and upper Potaro rivers also indicate endemicity and biogeo-

graphical isolation. Alofs, Liverpool, Taphorn, Bernard, and L�opez-

Fern�andez (2014) estimated fish species endemicity in the upper

Mazaruni, which is isolated from the lowland course of the river by

a series of rapids and waterfalls, to be between 67–95%. The upper

Mazaruni also hosts multiple endemic genera (in the families Cichli-

dae, Loricariidae, Crenuchidae and Lebiasinidae) suggesting a long

period of isolation (Alofs et al., 2014). The upper Potaro, which is

isolated by the Kaieteur Falls, contains the endemic Lithogenes villo-

sus, a “relict” catfish species whose morphology is so distinct that its

family-level phylogenetic placement has been subject to debate

(Armbruster, 2004; Lujan, Armbruster, Lovejoy, & L�opez-Fern�andez,

2015; Schaefer & Provenzano, 2008). Hardman, Page, Sabaj, Arm-

bruster, and Knouft (2002) provided strong evidence that fish

species distributions in the upper Potaro are affected by a series of

rapids and waterfalls.

In many cases, the isolation imposed by Guiana Shield elevation

changes and associated waterfalls and cataracts has limited fish spe-

cies distributions, and resulted in endemism across a range of taxo-

nomic levels. However, for other species, these barriers appear to be

surmountable. For example, the banded-electric knifefish Gymnotus

carapo L. is distributed in both uplands of the Pakaraima mountains

and nearby lowlands (Albert & Crampton, 2003; Hardman et al.,

2002). Gymnotus carapo, a member of the electric knifefish clade

Gymnotiformes, is the most widely distributed species in its genus,

occurring in the Amazon, Orinoco, Guianas and northeast Atlantic

Brazilian drainages, as well as on Trinidad (Albert & Crampton,

2003). Gymnotus carapo has been collected from Guianas coastal

lowland rivers including the Demerara, Berbice, Commewijne and

Suriname rivers, as well as from upland Guiana Shield localities in

the upper Mazaruni and upper Potaro drainages. Also, G. carapo was

recently collected near the summit of Tafelberg, an isolated tepui in

Suriname that has elevations ranging from 500 to 1,000 m (Fig-

ure 1). Because of its wide distribution in the Guianas, and its pres-

ence in both upland and lowland rivers, G. carapo is an interesting

model for studying biogeographical relationships, genetic connectiv-

ity and dispersal pathways in this region.

Here, we present a biogeographical analysis that focuses on

Gymnotus carapo from uplands (defined as elevations >300 m a.s.l.)

and lowlands (elevations <300 m a.s.l.) of the north-eastern Guiana

Shield region (hereafter Guianas), with three main objectives. First,

we wanted to determine whether samples from upland and lowlands

are genetically differentiated. Do the waterfalls and rapids that sepa-

rate uplands and lowlands represent a barrier to Gymnotus carapo?

Second, we investigated biogeographical relationships among upland

and lowland Guianas lineages, in relation to samples from other parts

of South America. Are individuals from uplands most closely related

to individuals from nearby lowland river basins? Alternatively,

uplands lineages from different rivers might form monophyletic

groups, indicating biogeographical connectivity among upland
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F IGURE 1 Collection localities of
Guianas region Gymnotus carapo specimens
used in this study. Yellow squares show
lowland localities (<300 m a.s.l.) and purple
circles show upland localities (300–1,500 m
a.s.l.). Dashed line indicates seasonal
connection between Rupununi and Potaro
basins. Numbers indicate localities (more
detailed information provided in Table 1):
1,2 Waini; 3, Demerera; 4–7, upper
Mazaruni; 8–11, upper Potaro; 12,
Rupununi; 13, middle Berbice; 14, upper
Berbice; 15, Courantyne; 16, Tafelberg; 17–
18, Suriname; 19–20, Commewijne [Colour
figure can be viewed at
wileyonlinelibrary.com]
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sections of different river drainages. Finally, we sought to determine

the phylogenetic affinity of the isolated Tafelberg tepui sample—

would it be most closely related to upland populations of the Pakar-

aimas, or to geographically proximate lowland populations of G. car-

apo? To address these questions, we analysed sequence data from a

mitochondrial coding gene (cytochrome b) and a nuclear intron (S7)

from individuals representing both upland and lowland populations

in the Guianas, as well as other regions of the species range in South

America.

2 | MATERIALS AND METHODS

2.1 | Study region and taxon sampling

To explore the relationships of Gymnotus carapo in the Guianas

region, we examined 60 samples obtained from upland (>300 m

a.s.l.) and lowland localities (<300 m a.s.l.) between 2008 and 2014

(collection permits issued by the Suriname Nature Conservation Divi-

son and Guyana Environmental Protection Agency: 311—2007,

1194—2014; 300408 SP:004, 030211 BR149, 040414 SP:003,

190209 SP:010, 160410 SP: 020, 111413 SP:009). Our upland sam-

ples (Table 1; Figure 1) come from three main areas, two of which

are in the Pakaraima mountains: the upper Potaro (localities 8–11)

and the upper Mazaruni (localities 4–7). The third upland area is

Tafelberg tepui (locality 16), which is geographically separated from

the other upland regions by lowland habitat. In all three cases,

upland localities are separated from lowland localities by rapids or

waterfalls. The upper Mazaruni is separated from the lowlands by a

series of steep rapids and waterfalls (Alofs et al., 2014); the upper

Potaro is separated from the lowlands by the 226 m drop of Kai-

eteur Falls (Hardman et al., 2002); and streams on Tafelberg tepui

flow over the sheer edge of the tepui, eventually draining to the

right arm of the Coppename River. Although the upper Potaro and

upper Mazaruni samples are geographically adjacent, there is no

direct connection between these rivers (Lujan & Armbruster, 2011).

Our lowland Guianas samples were collected largely from coastal

rivers in Guyana and Suriname (localities 1–3, 13–15, and 17–20)

that drain in a north-easterly direction to the Atlantic (Table 1; Fig-

ure 1). An exception is the sample from the Sawariwau River (locality

12), which runs through the lowland Rupununi area between the

Pakaraima and Kanuku mountain ranges, and forms a part of the

upper Branco that flows southwards to the Amazon basin.

To provide geographical and phylogenetic context, we also

included samples of G. carapo from other parts of South America, as

well as samples of several closely related species (Appendix S1 in

Supporting Information). Crampton, Lovejoy, and Albert (2003)

defined G. carapo sensu stricto and we included samples from sev-

eral allopatric populations delineated by these authors, including

from the western and central Amazon, and the Orinoco. Phyloge-

netic studies based on morphological and molecular data have failed

to support the monophyly of G. carapo, and have placed other

described and undescribed Gymnotus species within G. carapo

(Albert, Crampton, Thorsen, & Lovejoy, 2005; Brochu, 2011;

Crampton, Rodr�ıguez-Catt�aneo, Lovejoy, & Caputi, 2013; Lovejoy,

Lester, Crampton, Marques, & Albert, 2010; Maxime, 2013). We

included representatives of as many of these species as possible

(generally corresponding to members of “G. carapo clades” B, C, and

D from Crampton et al., 2013). As outgroups, we included G. obscu-

rus, G. varzea, G. curupira and G. chaviro (members of the “G. carapo

clade A” from Crampton et al., 2013).

2.2 | DNA extraction, polymerase chain reactions
and sequencing

DNA was extracted from muscle tissues using DNeasy Blood and

Tissue kit, following manufacturer’s instructions (Qiagen, Hilden, Ger-

many). We amplified and sequenced fragments of the mitochondrial

Cytochrome b (cyt b) gene and the first intron of the nuclear S7

gene, RP1 (Chow & Hazama, 1998). An approximately 1,100 base

pair fragment of cyt b was amplified using PCR in 25 ll reaction vol-

umes made up of 2.0 ll of DNA, 14.8 ll of de-ionized water

(ddH2O), 19 KCl Taq polymerase buffer, 2.0 mM MgCl2, 0.15 lM

each deoxynucleotide triphosphate (dNTPs), 0.4 lM forward primer,

0.4 lM reverse primer and 1U of Taq polymerase. Universal verte-

brate primers GLUDG.L (50-CGAAGCTTGACTTGAARAACCAYCGT

T-30), cytbR (50-CTCCGATCTTCGGATTACAAG-30), and cytbF (50-

TCYAWCATCTCAGCCTGATG-30) were used for cyt b amplification.

Primers specific to Gymnotus were developed for tissues that were

difficult to amplify. Thermocycler conditions for cyt b were: 95°C for

30 s for initial denaturation followed by 35 cycles of 95°C for 30 s

to denature DNA; 50.0°C for 60 s to anneal DNA, and 72°C for

90 s for elongation. This was followed by a final extension cycle for

300 s at 72°C.

An approximately 500 base pair fragment of the first intron of

S7 was amplified using PCR in 25 ll reaction volumes of 11.875 ll

ddH2O, 19 of KCl Taq polymerase buffer, 1.5 mM of MgCl2, 0.2 lM

of each of dNTPs, 1.2 lM of forward and reverse primers, and

0.625 U of Taq polymerase. Thermocycler conditions for S7 were

95°C for 30 s of initial denaturation followed by 30 cycles of 95°C

for 30 s denaturation; 50.6–55.5°C for 60 s annealing, and 72.0°C

for 120s of elongation. An extension period of 600s followed the

cycles. All PCR products were visualized using gel electrophoresis.

Products were run on a 0.8% agarose gel pre-loaded with 5.0 ll of

Amresco EZVision in-gel stain. 5.0 ll of DNA was pipette-mixed

with 3.0 ll of Thermoscientific 69 loading dye. The electrophoresis

was run for 30 min at 80 Volts and 70 milliAmperes. PCR products

were purified using ExoSAP-IT according to the manufacturer proto-

col (Affymetrix), and sanger-sequenced at the Centre for Applied

Genomics (Toronto, Canada).

2.3 | Sequence alignment and phylogenetic
analyses

Sequences were imported into GENEIOUS 6.1.7 (Biomatters Ltd, Auck-

land, New Zealand) and aligned using default CLUSTALW parameters.

For cyt b, we obtained 1,074 base pairs for 118 individuals. No
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insertions or deletions were noted. For S7, we obtained 784 base

pairs for 73 individuals, and seven indels were detected. For analysis

of the diploid nuclear S7 dataset, we used PHASE 2.1 (Stephens,

Smith, & Donnelly, 2001) to determine the allele sequences (haplo-

types) of any sequences with polymorphisms (heterozygotes). PHASE

was run for 100 iterations with a burn in of 100; the algorithm was

set to run ten times. All other priors and parameters used the default

settings. After analysis with PHASE, our S7 dataset consisted of 103

haplotypes. We used MEGA 7 (Kumar, Stecher, & Tamura, 2016) to

calculate uncorrected pairwise distances between our sequences

within the cyt b and S7 matrices.

The cyt b and S7 matrices were analysed separately using PARTITION-

FINDER 1.1.0 (Lanfear, Calcott, Ho, & Guindon, 2012) to determine the

most appropriate partition schemes and model of molecular evolution

for each partition, based on the Akaike information criterion (AIC).

Bayesian and maximum likelihood analyses were conducted on each

gene independently, using MRBAYES 3.2.2 (Huelsenbeck, Ronquist, Niel-

sen, & Bollback, 2001), and RAXML 1.31 (Stamatakis, 2006), respec-

tively. For Bayesian analyses, each analysis was run until the average

standard deviation of split frequencies was below 0.01. For Bayesian

and maximum likelihood analysis of S7, the gene was not partitioned;

an HKY model was used in MRBAYES and a GTR model in RAXML.

For analysis of cyt b, the gene was partitioned by codon position

as determined by PARTITIONFINDER. Codon positions one and two were

assigned the GTR+G+I model, and codon position three was assigned

the GTR+G model. The cyt b analysis in MRBAYES was run for 50 mil-

lion generations sampling every 10,000 generations. Our RAXML anal-

ysis included 50 searches to infer the best ML tree. Node support was

estimated by 1,000 bootstrap replicates. To analyze S7, MRBAYES was

run for 50 million generations sampling every 10,000 generations. For

RAXML, a total of 50 searches were used to generate the best ML

tree. Node support was estimated by 1,000 bootstrap replicates.

We used *BEAST 2.1.3 (Drummond, Suchard, Xie, & Rambaut,

2012) to implement a Bayesian species tree approach using the con-

catenated cyt b and S7 data. We used geographically defined lin-

eages as proxies for species, as the species identities within the

Gymnotus carapo complex are unclear. Though it is possible to esti-

mate divergence times in *BEAST using geological events or fossil

data, neither of these are readily available for the Guianas region or

Gymnotus, and we chose not to include it in our analysis. Three sep-

arate runs were conducted for 100 million generations sampling

every 10,000 generations, using unlinked trees and models for each

gene, and an additional run was conducted using only priors. We

used a GTR+G+I model for cyt b and a HKY model for S7, with a

TABLE 1 Localities of Guianas Gymnotus carapo (n = 60) included in this study. Locality numbers refer to Figure 1. Approximate elevation is
given in metres above sea level (m a.s.l.). To determine elevation, latitude and longitude were plotted using ARCGIS software on elevation maps
acquired from DIVAGIS 7.5.0 (Hijmans, Guarino, & Mathur, 2012). Dashes indicate sequence data unavailable

Locality

Number of
individuals
sampled Drainage Latitude Longitude

Elevation
category Elevation

Cyt b
haplotype S7 haplotype

1 2 Waini 7.700 �59.233 Lowland 0–105 O –

2 2 Waini 7.428 �58.676 Lowland 0–105 L –

3 1 Demerera 6.734 �58.303 Lowland 0–105 Q –

4 2 Upper Mazaruni 5.936 �60.614 Upland 493–646 A bb

5 1 Upper Mazaruni 5.708 �60.360 Upland 335–492 A bb

6 4 Upper Mazaruni 5.475 �60.779 Upland 493–646 A bb

7 3 Upper Mazaruni 5.360 �60.371 Upland 493–646 A, B bb

8 3 Upper Potaro 5.010 �59.637 Upland 493–646 C cc

8 4 Upper Potaro 5.007 �59.631 Upland 493–646 C cc

8 4 Upper Potaro 5.007 �59.636 Upland 493–646 C –

9 1 Upper Potaro 5.108 �59.635 Upland 647–818 C –

10 2 Upper Potaro 5.070 �59.653 Upland 493–646 C cc

11 2 Upper Potaro 4.933 �59.799 Upland 493–646 C dd

12 1 Rupununi 2.829 �59.808 Lowland 106–225 E ee

13 1 Middle Berbice 4.905 �58.250 Lowland 0–105 P –

14 2 Upper Berbice 4.156 �58.177 Lowland 0–105 D ac, ab

15 7 Courantyne 5.097 �57.143 Lowland 0–105 F, G, H, I fi, fh, fg

16 1 Tafelberg 3.919 �56.200 Upland 493–646 J jj

17 4 Suriname 5.586 �54.285 Lowland 0–105 K, M kk, gl

18 4 Suriname 5.452 �55.245 Lowland 0–105 L, N kk, mn

19 2 Commewijne 5.582 �54.233 Lowland 0–105 L kk, ok

20 7 Commewijne 5.586 �54.285 Lowland 0–105 L dd, kk, ok,

oo, pq, rs, tu
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strict clock imposed and a birth-death process prior for rates of

cladogensis. Log files of each separate run were examined in Tracer

1.6 (Rambaut et al., 2014) to assess convergence of parameter esti-

mates before combining all three runs to generate a single tree in

TREEANNOTATOR 1.8.1, a part of the BEAST package (Drummond et al.,

2012).

3 | RESULTS

3.1 | Distributions of haplotypes across the Guianas
region

GenBank numbers for sequences used in this study are provided in

Appendix S1. We observed a total of four different cyt b haplotypes

across 27 individuals from upland rivers, including the upper Mazar-

uni and upper Potaro Rivers from the Pakaraima mountains in

Guyana, as well as from Tafelberg tepui in Suriname (Table 1). Cyt b

haplotypes were shared between localities within the same river

drainage, but not across upland river drainages (Table 1). All 10 indi-

viduals from localities 4–7 within the upper Mazaruni shared haplo-

type A, except for a single individual from locality 7 with unique

haplotype B. All fish from the upper Potaro (localities 8–11) shared

haplotype C. The single individual from the upland Tafelberg site had

a unique haplotype (J).

We collected cyt b sequences from 33 individuals from rivers of

lowland Guyana and Suriname, and these exhibited considerably

more haplotypes (17) than upland individuals (Table 1). Also, in con-

trast to uplands, lowland rivers showed haplotype sharing across

river basins. For example, haplotype L is found in the Waini River

(locality 2), the Suriname River (locality 18) and the Commewijne

River (localities 19 and 20). Compared to upland localities, more hap-

lotype diversity was observed within lowland localities. For example,

four haplotypes were observed among the seven sequenced individ-

uals from the Courantyne River (locality 15).

For cyt b, we found no shared haplotypes between sites from

upland and lowland regions of the Guiana Shield. The mean uncor-

rected sequence divergence between individuals from the upland riv-

ers of the eastern Pakaraimas (upper Potaro and upper Mazaruni)

and lowland Guianas was 1.2%. The average sequence divergence

between the Tafelberg individual and lowland Guianas individuals

was 1.5%, and the average sequence divergence between the Tafel-

berg individual and the Pakaraima G. carapo was 1.9%.

We sequenced S7 from 35 fish from the Guianas, including 13

from upland localities and 22 from lowland localities, and recorded a

total of 18 haplotypes (Table 1). Many of the patterns observed in

cyt b were repeated in this nuclear locus. In general, fish from

upland localities had fewer haplotypes (four), compared to lowland

localities (14). We observed no haplotype sharing across basins in

upland localities, but haplotypes are shared across basins in low-

lands.

We observed minimal haplotype sharing between upland and

lowland localities. Eastern Pakaraima fish exhibited three haplotypes

(b, c and d), and the Tafelberg G. carapo had a unique haplotype (j).

These haplotypes were not observed at lowland localities, except

that haplotype c (present in both the upper Potaro and upper Mazar-

uni) was recorded in a single individual from the upper Berbice (lo-

cality 14), as well as in a single individual of Gymnotus arapaima

from the central Amazon.

The mean uncorrected sequence divergence between individuals

from the upland Pakaraima rivers and Guianas lowlands was 0.7%.

Average sequence divergence between the Tafelberg individual and

lowland Guianas individuals was 0.8%; the average sequence diver-

gence between the Tafelberg individual and Pakaraima individuals

(upper Potaro and upper Mazaruni) was 0.3%.

3.2 | Biogeographical relationships between upland
and lowland Guianas

In the cyt b topology (Figure 2), haplotypes from upland and lowland

Guianas are for the most part, but not exclusively, positioned in differ-

ent clades. Haplotypes from the upper Mazaruni (uplands), upper

Potaro (uplands) and upper Berbice (lowlands) form a monophyletic

clade that has moderate support (pp = 0.71). This clade is the sister

group of a haplotype from the Rupununi (lowlands) (pp = 0.93). We

name this entire group the “Inland Guianas Clade” (IGC), based on its

relatively inland geographical distribution. The IGC is sister (pp = 1.0)

to a group of G. carapo haplotypes and Gymnotus species (G. arapaima,

G. ucamara and G. n. sp. LORE) haplotypes from the Amazon (here-

after, the “Amazon Clade”). All other G. carapo haplotypes from the

Guianas are part of a large “Atlantic Coastal Clade” (ACC) (pp = 0.99),

with the exception of the single haplotype from Tafelburg tepui, which

is positioned as the sister lineage of the ACC (pp = 0.77). The *BEAST

tree (Figure 3) largely matches the cyt b tree, indicating a mono-

phyletic IGC that is sister to an Amazon Clade, and a monophyletic

ACC that is sister to the Tafelberg lineage.

Compared to cyt b, the S7 topology (Figure 2) shows shallower

branches and less correspondence between inferred clades and geo-

graphical distributions. The S7 tree has a clade that includes inland

haplotypes, but this clade also includes several haplotypes from

coastal regions and Tafelberg, as well as several representatives of

the closely related species Gymnotus arapaima. Other lowland/

coastal haplotypes are distributed in other parts of the tree.

4 | DISCUSSION

4.1 | Genetic divergence across the Guianas—
elevational barriers isolate the upland rivers

A key finding of our study is that for the electric knifefish Gymnotus

carapo, haplotypes are not generally shared between upland and

lowland Guianas localities. This provides evidence that barriers

between these habitats likely restrict gene flow. In most cases, rivers

that flow across planation surfaces of the Guianas experience a

steep gradient as they pass from uplands to lowlands (Hammond,

2005; McConnell, 1968). For example, as the Mazaruni River leaves

the uplands, it passes through 60 km of rapids and waterfalls (Alofs
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et al., 2014; Gery & Zarske, 2002), while the Potaro River flows over

Kaieteur Falls, a spectacular 226-m drop in elevation from the Pakar-

aima uplands (Hardman et al., 2002), then crosses another barrier

called the Tumatumari cataract, before traversing the coastal low-

lands of the Guianas. While the effect of these physical barriers on

fish communities and species distributions has been discussed (e.g.

Alofs et al., 2014; Hardman et al., 2002; Lujan & Armbruster, 2011),

our study provides the first genetic evidence that these barriers

influence genetic connectivity within a species.

The distinctiveness of upland and lowland populations reflects a

pattern of endemicity that has been reported from the Pakaraima

Mountains and associated upland areas. In fishes, there are several

species endemic to upland rivers of the Guianas, including members

of the families Hypopomidae, Cichlidae and Loricariidae, as well as

four families of Characiformes (Armbruster & Taphorn, 2011; Gery

& Zarske, 2002; L�opez-Fern�andez, Taphorn, & Liverpool, 2012;

Lujan, 2008; Lujan, Agudelo-Zamora, Taphorn, Booth, & L�opez-

Fern�andez, 2013; Maldonado-Ocampo et al., 2014; Taphorn, Lopez-

Fernandez, & Bernard, 2008). Although the antiquity of these ende-

mic species is not well known, some may date to the Oligocene or

earlier (L�opez-Fern�andez, Arbour, Winemiller, & Honeycutt, 2013;

Lujan & Armbruster, 2011), indicating a very long period of isola-

tion. We did not attempt to estimate a time-tree for G. carapo

because we do not have precise fossil or biogeographical calibration

points. However, we calculated cyt b sequence divergence between

upland taxa and other populations to be 1.5%. Based on a rate of

mitochondrial sequence divergence of approximately 1% per million

years, this would provide an age estimate of 1.5 Myr for the diver-

gence of upland G. carapo from nearby lowland populations. This

suggests that G. carapo is a more recent addition to the fauna of

upland Guiana, in line with ages of some amphibians found on

tepui summits (Kok et al., 2012, 2016). Based on these results, we

suggest that upland Guianas ichthyofauna consist of a mosaic of

relatively ancient endemics combined with more recent arrivals like

G. carapo.

4.2 | Two distinct G. carapo lineages in the Guianas

Our analyses indicated imperfect concordance between gene trees for

cyt b and S7. This pattern has been observed in other taxa where mito-

chondrial and nuclear genes have been compared (e.g. Bensch, Irwin,

Irwin, Kvist, & �Akesson, 2005; Monsen & Blouin, 2003; Wiens,

Kuczynski, & Stephens, 2010). As expected, S7 is less divergent

between populations than cyt b, and this is likely due to lower rates of

molecular evolution and larger effective population sizes for nuclear

versus mitochondrial genes. Given the very low levels of divergence

for S7 between G. carapo populations, we suggest that this gene is less

likely to track recent dispersal and genetic isolation of populations,

with observed variation potentially representing inherited ancestral

polymorphisms that have not yet “sorted” based on geography and

population barriers. In light of this, we emphasize cyt b in our interpre-

tation of biogeographical patterns, as well as the *BEAST tree, which

most closely resembles the cyt b gene genealogy.

Our phylogenetic analysis of G. carapo lineages shows a mis-

match with our initial upland and lowland site categorization.

Instead, we find evidence that two major lineages in the Guianas are

F IGURE 2 Reduced phylogenies of Gymnotus carapo lineages and closely related species, based on Bayesian analyses of two loci (complete
phylogenies included in Supplementary Materials). a) Phylogeny based on mitochondrial cyt b gene. b) Phylogeny based on intron of nuclear S7
gene. Upland Guianas samples are indicated in trees, all other samples are from lowlands (<300 m a.s.l.). Species names replaced by locality
names for G. carapo samples. Numbers above branches indicate posterior probabilities followed by bootstrap values. For S7 tree, haplotypes
determined by PHASE are indicated by lower case letters and only shown for Guianas individuals
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(1) an inland Guianas clade (IGC) that is composed of G. carapo from

the upper Mazaruni and Potaro rivers, as well as the upper Berbice

and Rupununi; and (2) an Atlantic coastal clade (ACC) that includes

fish from the coastal rivers and the Tafelberg G. carapo (Figure 4).

Surprisingly, the IGC and ACC are not each other’s closest relatives.

Instead, the IGC is most closely related to an Amazon clade that

includes samples from the upper and middle Amazon. Overall, these

patterns suggest that while elevational barriers such as waterfalls

and rapids play a significant role in shaping phylogeographical pat-

terns in G. carapo in the Guianas, they are not the only factor deter-

mining relationships among populations; it is likely that continent-

scale biogeographical connections and routes of dispersal between

areas are also key drivers.

The G. carapo ACC is in agreement with an Atlantic Coastal bio-

geographical corridor, evidence for which is summarized by Lujan

and Armbruster (2011). This corridor encompasses coastal Atlantic

drainages from the mouth of the Orinoco to the mouth of the Ama-

zon River. Dispersal within the eastern part of the corridor is likely

facilitated by north-western movements of the Amazon discharge

causing reduced salinity in coastal habitats, thereby allowing fishes

to move from mouth to mouth of separated drainages (J�egu & Keith,

1999). Sea level changes that connect rivers in coastal plains, and

headwater captures and connections are also likely enhancers of dis-

persal. The ACC geographical pattern of G. carapo cyt b and S7 hap-

lotype distributions fit this scenario of dispersal and gene flow, as

several haplotypes are distributed across multiple river drainages.

Future inclusion of G. carapo from the lower Amazon, as well as

from other Amazon drainage rivers that have been proposed as

“sources” for coastal corridor dispersers (such as the Jari River; Car-

doso & Montoya-Burgos, 2009), would clarify the biogeographical

affinities of the G. carapo ACC.

The biogeographical basis for the G. carapo IGC is less clear. This

clade includes a group of strongly geographically demarcated individ-

uals from the Pakaraimas, but also includes individuals from the

upper Berbice and Rupununi (both low elevation sites). Low levels of

genetic divergence between IGC individuals imply recent genetic

connectivity between these localities, but dispersal routes, in the

absence of more extensive sampling, remain unclear. We note that a

similar biogeographical pattern has been observed in a species of the

characiform family Crenuchidae—Skiotocharax meizon is found in the

upper Mazaruni, but has been reported from a single locality in the

Berbice as well (Presswell, Weitzman, & Bergquist, 2000).

Lujan and Armbruster (2011) have previously highlighted the

importance of the proto-Berbice palaeo-drainage for the biogeography

of the Guiana Shield region. The proto-Berbice was a large river that,

until the Plio-Pleistocene, is thought to have drained much of the

eastern Guiana Shield region, including the southern Guiana Shield

uplands, the Rupununi Savannas, and the current Berbice basin. The

fact that the IGC occupies these regions suggests that it dispersed

throughout the proto-Berbice. However, the sister–taxon relationship

between the IGC and Amazon clade suggests, alternatively, that the

IGC is the product of relatively recent dispersal from the Amazon.

While not the focus on this study, these results provide insight

regarding taxonomic and evolutionary aspects of the Gymnotus car-

apo species. Albert and Crampton (2003) defined Gymnotus carapo

sensu stricto, but phylogenetic studies using both morphological and

molecular datasets have failed to resolve G. carapo as a mono-

phyletic lineage (Albert et al., 2005; Lovejoy et al., 2010; Brochu,

2011; Crampton et al., 2013). The present study, which includes

increased molecular sampling of G. carapo populations, confirms that

there is a complex relationship between geographical isolates of this

species and their close relatives. Our analyses show that several

described species, including G. arapaima, G. ucamara, G. ardilai and G.

bahianus are nested within Gymnotus carapo lineages. In addition,

our results demonstrate discordance with Albert and Crampton’s

(2003) morphology-based population boundaries of G. carapo; nota-

bly, the putative GO (Guiana Shield and Orinoco) population defined

by Albert and Crampton (2003) encompasses at least three genetic

lineages (the ACC, IGC and a lineage in the Orinoco/Andes region)

that do not make up a monophyletic group.
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4.3 | Tafelberg tepui Gymnotus carapo

Tafelberg tepui is a table-top mountain in Suriname, and is geo-

graphically isolated from the Pakaraima mountain range of Guyana,

Brazil and Venezuela by approximately 300 km of lowland habitat.

Our single G. carapo specimen was collected from a small pool on

the summit of Tafelberg, at approximately 600 m elevation. Our

analyses suggest that this sample is genetically distinct, with unique

cyt b and S7 haplotypes that are, respectively, minimally 1.1% and

0.2% diverged from other haplotypes in our study. Our cyt b and

*BEAST phylogenies (Figures 2 and 4) place the Tafelberg sample as

the sister to the ACC, indicating an independent dispersal to this

high elevational habitat from lowland coastal habitat. The question

of whether there is a genetically isolated, self-sustaining population

of Gymnotus at the summit of Tafelberg, and what its age might be,

is deferred until samples can be procured from lowland drainages in

the immediate vicinity of this tepui.

4.4 | Gymnotus carapo, a super-dispersing,
mountain-climbing species complex

Our results highlight the continental-scale population connectivity of

a widespread Neotropical fish species. Especially impressive is the

minimal genetic divergence detected between upper Amazon individ-

uals and members of the IGC. In fact, we identified an S7 haplotype

(b) that is shared across the upper Mazaruni, middle Berbice and

upper Amazon (in G. arapaima), despite the maximum separation of

these basins by roughly 2,000 km. Also, unlike most other Neotropi-

cal fish taxa, G. carapo has gained access to extremely isolated upland

river drainages of the Guiana Shield, including rivers of the Pakaraima

mountains and Tafelberg tepui. In contrast to other taxa present in

these isolated regions, which are often endemic species or genera

(Alofs et al., 2014), we find that G. carapo is only diverged at a popu-

lation level (<2% cyt b divergence) from nearby conspecifics. We

hypothesize that this species has life-history traits that differentiate it

from other Gymnotus species (and indeed most other Neotropical fish

species) with more local distributions, and that enable both extreme

long-distance dispersal and the ability to surmount daunting eleva-

tional river barriers. Variation in dispersal ability among different fish

lineages likely contributes to the spectrum of antiquities exhibited by

inhabitants of Guianas “Lost World” rivers.
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