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tAbstract 

 Red blood cell (RBC) transfusion is common in critically ill, post-surgical, and post-

trauma patients in whom both systemic inflammation and immune suppression are associated 

with adverse outcomes.  RBC products contain a multitude of immunomodulatory mediators that 

interact with and alter immune cell function.  These interactions can lead to both pro-

inflammatory and immunosuppressive effects.  Defining clinical outcomes related to 

immunomodulatory effects of RBCs in transfused patients remains a challenge, likely due to 

complex interactions between individual blood product characteristics and patient-specific risk 

factors.  Unpacking these complexities requires an in depth understanding of the mechanisms of 

immunomodulatory effects of RBC products.  In this review, we outline and classify potential 

mediators of RBC transfusion-related immunomodulation and provide suggestions for future 

research directions.     
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tINTRODUCTION 

 In the United States, 11 to 16 million red blood cell (RBC) units were administered 

annually during the last decade, equating to a RBC transfusion every 2 seconds.
1-5

   RBC 

transfusion is particularly commonplace in emergency departments, intensive care units (ICUs) 

and operating suites, with 37-60% of ICU patients receiving a transfusion during 

hospitalization.
6-12

   Nonetheless, RBC transfusion may have deleterious immunologic effects, 

particularly for critically ill patients.
13,14

  Mounting evidence from predominantly observational 

studies demonstrate independent associations between RBC transfusion, dysregulated immunity 

and increased mortality and morbidity; mechanisms of which are only partly understood.
15-26

  

The following review will summarize current literature on mechanisms of RBC transfusion-

related immunomodulation, classify potential mediators, and propose a research agenda to fill 

critical knowledge. 

Red Blood Cell Transfusion-Related Immunomodulation 

Beginning in 1973, Opelz and colleagues provided initial evidence for RBC transfusion-

related immunomodulation (TRIM) with the observation that the survival rate of transplanted 

kidneys was significantly higher in cadaveric renal transplant patients who received RBC 

transfusion.
13,27

   These findings strongly suggested immunosuppressive effects of non-

leukoreduced allogeneic RBC transfusion.  More recent findings suggest both pro-inflammatory 

and immunosuppressive effects of RBC product exposure, including pre-storage leukoreduced 

blood products.  Clinically, RBC transfusion is associated with new or worsening organ 

dysfunction, the development of nosocomial infection, and cancer recurrence, suggesting 

dysregulated recipient immune responses.
13,14,21,28-32

  The extent to which RBC transfusion 
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tdirectly contributes to immunologic dysregulation in transfused patients remains unclear, though 

a wealth of pre-clinical evidence demonstrates that RBC products can directly modulate immune 

cell function.  In a variety of pre-clinical models, RBC product exposure results in inflammatory 

effects including: leukocyte priming, enhanced neutrophil chemotaxis, monocyte/macrophage 

activation, and inflammatory cytokine release.
13,17,21,31,33-35

  Immunosuppressive effects include 

impaired natural killer cell function, alterations in T lymphocyte ratios, defective antigen 

presentation, suppression of lymphocyte proliferation, and decreased macrophage phagocytic 

function.
14,36-40

   While evidence supporting both pro-inflammatory and immunosuppressive 

effects of RBC transfusion may seem contradictory, given the complex nature of transfused 

blood products and the multitude of potentially immunomodulatory mediators contained therein, 

mixed effects are not  surprising.  Indeed, mixed immunomodulatory potential of RBC 

transfusion may be particularly relevant for critically ill patients in whom both excess 

inflammation and immune suppression are significantly associated with adverse outcomes.
14

  

Overall, defining the sum total immunomodulatory effects of particular RBC products in 

individual patients remains challenging.  Future research to determine the effects of individual 

blood products on individual patients and to mitigate potential risks depends on understanding 

mechanisms of RBC transfusion-related immunomodulation.   

While mechanisms for RBC transfusion-related immunomodulation are not yet fully 

characterized, many potential mediators have been identified.   These include leukocyte-derived 

mediators, component hemolytic contents (heme, iron release), platelet-derived factors, and 

extracellular vesicles (Figure 1).   
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PROPOSED MECHANISMS 

1.  Leukocytes and Leukocyte-derived Mediators  

The observation that pre-storage leukoreduction may mitigate TRIM suggests that either 

intact leukocytes and/or soluble leukocyte-derived mediators play a role in its development.
41-44

 

Leukoreduction removes most residual white blood cells from stored blood components and 

appears to improve clinical outcomes.  Randomized trials in surgical patients receiving either 

leukoreduced versus non-leukoreduced RBCs, autologous versus allogeneic RBC transfusions, 

or restrictive versus liberal RBC transfusion thresholds demonstrate that in each case, subjects in 

the leukoreduced, autologous or restricted transfusion arms developed fewer nosocomial 

infections.
15,45-47

  Likewise, meta-analyses demonstrate that leukoreduction, autologous RBC 

transfusions (which prevent exposure to allogeneic WBCs) and restrictive transfusion thresholds 

(which decrease exposure to residual allogeneic WBCs) are each associated with decreased risk 

of post-operative infection.
15,45,47

  RBC unit leukoreduction may also attenuate the systemic 

inflammatory response following cardiac surgery, with a dose-dependent increase in survival 

when leukoreduced RBCs are utilized.
48

  Lastly, animal models demonstrate that leukoreduction 

may reduce transfusion-associated cancer metastasis and T cell apoptosis.
29,49

  Taken together, 

these data suggest that residual leukocytes or leukocyte-derived mediators in RBC products may 

be harmful via immunomodulatory mechanisms.  Although in the US, 75-80% of RBC units 

transfused are pre-storage leukoreduced to  mitigate these risks, it is worth noting that a 

substantial number of residual leukocytes (~5000 to ~ 5 x 10
6
 leukocytes/unit) remain despite 

current leukoreduction technologies.
50-52
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tResidual leukocytes 

  Antigen presenting cells (i.e. monocytes and dendritic cells) carry major-

histocompatibility complex (MHC) II molecules (i.e. HLA-DR) on their cell surfaces.  MHC II 

molecules function to present processed antigens and activate lymphocytes.  Following 

transfusion, interactions between donor MHC II molecules on residual leukocytes and recipient 

lymphocytes may result in either alloimmunization or immune suppression.
53-56

  Features such as 

the degree of HLA compatibility, the functionality of donor antigen presenting cells (APCs), and 

the inflammatory state of the recipient likely determine whether residual allogeneic leukocytes 

induce immune tolerance or alloimmunization.
21

  In the case of immune suppression, residual 

allogeneic APCs which engage recipient T cells without necessary secondary or co-stimulatory 

signals would be expected to produce antigen-specific T cell anergy.
21

  The resulting immune 

tolerance is a proposed mechanism for allogenic RBC transfusion-related adaptive immune cell 

(T cell) suppression.
21

  T cell immune tolerance may also be responsible for development of 

microchimerism in allogenic blood transfusion recipients, whereby donor leukocytes fail to elicit 

an immune response and become “accepted” by the recipient.
57

  Microchimerism may be 

common in trauma patients and may persist for up to two years following transfusion.
57,58

  

Moreover, immune tolerance and associated microchimerism may explain the observed shift to 

immunosuppressive TH2 responses following blood transfusion.
38,59-62

  However, clear 

demonstration of direct causal links between HLA molecules on residual allogeneic APCs and 

post-transfusion immune suppression is currently lacking.    

 In addition to residual functional allogeneic leukocytes, it is possible that apoptotic 

leukocytes in RBC products may also induce immune suppression.
63

 During collection and 

storage, leukocytes undergo apoptosis.
64

  One of the early steps in apoptosis involves exposure of 
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tphosphatidyl serine on the outer leaflet of the cell membrane.  Interaction between immune cells 

and phosphatidyl serine has been shown to induce immunosuppressive signals, including release 

of anti-inflammatory cytokines IL-10 and TGF-β, inhibition of pro-inflammatory cytokine 

release, inhibition of APC activation, and predominance of immunosuppressive regulatory T 

cells.
63,65

  The degree to which apoptotic residual leukocytes in RBC units contribute to recipient 

immune suppression in the clinical setting remains unknown.  However, it is worth noting that 

similar responses may also be seen in response to phosphatidyl serine-containing membrane 

fragments or microparticles.   

 

Soluble leukocyte-derived mediators 

Removal of supernatant from stored RBC units by washing reduces the inflammatory 

response in pediatric cardiac surgery patients and pre-clinical studies suggest that RBC-induced 

immunomodulation can be recapitulated using RBC unit supernatants.
24,25,66,67

  Thus, it seems 

likely that soluble mediators also play a role in TRIM pathogenesis.     

There are multiple soluble leukocyte-derived factors, including cytokines, white blood 

cell degranulation products, soluble FAS-L, and soluble HLA molecules, which directly inhibit 

the immune response.
68,69

 Of these, sFAS-L and the anti-inflammatory cytokine, TGFβ have the 

strongest evidence suggesting that they may promote TRIM, particularly in non-leukoreduced 

blood products.
36,68

  In vitro studies indicate that sFAS-L and TGFβ found in blood components 

may directly induce innate immune cell apoptosis, impair neutrophil chemotaxis, and decrease 

natural killer cell activity.
36,69,70

  Immunosuppressive effects may not be limited to these, as 

TGFβ is a known anti-inflammatory cytokine with broad immunosuppressive effects. 
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tIn addition to anti-inflammatory cytokines, pro-inflammatory cytokines may also 

accumulate in blood products during storage.
71-74

  However, in some reports pre-storage 

leukoreduction appears to substantially decrease the accumulation of pro-inflammatory cytokines 

in RBC products such that levels are undetectable.
72,74

  When cytokines are detected, it is unclear 

whether their concentrations are high enough to strongly influence recipient immune 

function.
73,74

  In addition to cytokines, white blood cell degranulation products such as histamine 

and eosinophil cationic protein have been detected in red blood cell components.
75

  Each of these 

mediators has immunomodulatory potential.  For example, histamine has been shown to inhibit 

neutrophil chemotaxis and decrease T cell proliferation, while eosinophilic cationic protein may 

also reduce T cell proliferation.
76,77

       

 While leukocytes and leukocyte-derived soluble mediators appear to promote TRIM, 

such effects are likely reduced by pre-storage leukoreduction.  Because evidence for TRIM 

remains in the post-leukoreduction era, it is likely that non-WBC derived factors are also 

involved.
14

   

 

2.  Red Blood Cell Storage Lesion and Decompartmentalized RBC Contents  

 Another potential mechanism for TRIM arises from the RBC, itself.  As RBC units age 

under refrigerated conditions, a well described “storage lesion(s)” develops.  The RBC storage 

lesions are characterized by altered RBC morphology, rheological changes, metabolic 

derangements, changes in oxygen affinity, changes in osmotic regulation, and changes in the 

ability to vasoregulate.
78-85

 In addition, RBC hemolysis (both during storage and post-

transfusion) can lead to reduced pH, increased lactate and other metabolic wastes, release of 

microparticles, as well as accumulation of cell-free hemoglobin (CFH), heme, and iron.
26,78,86-90
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tIron content can be in the form of transferrin bound iron (TBI), non- transferrin bound iron 

(NTBI), or plasma labile iron (PLI).  Given the well-described bioactivities of these species, 

RBC hemolysis can disturb plasma redox balance and broadly disrupt normal signaling in 

coagulation, vascular, and immune systems.
4,22,23,78,86,91,92

    

In normal physiology, plasma haptoglobin sequesters CFH, forming a complex for 

removal by macrophages via CD163.
18,22,23,93

   However in critical illness, even moderate 

intravascular hemolysis may overwhelm plasma-binding capacity resulting in unbound 

extracellular hemoglobin.  When extracellular hemoglobin is unbound, it becomes oxidized to 

methemoglobin, releasing free heme.  Free heme can then undergo the Fenton Reaction to cause 

further release of iron..
67,93-97

   Accumulation of un-complexed heme and iron in plasma is 

associated with significant tissue damage, presumably by iron-catalyzed generation of reactive 

oxygen species (ROS), promotion of other radical chains, increases in leukocyte activation and 

migration, upregulation of adhesion molecules, and subsequent deleterious effects to tissue 

barriers and to immunity.
22,93,98-104

  In murine models, transfusion of long-stored RBCs led to 

increased iron in the form of NTBI and augmented circulating pro-inflammatory cytokine 

release.
22,23,105,106

   However, in human healthy volunteers, while transfusion with older versus 

fresher RBCs significantly increased circulating NTBI levels, a pro-inflammatory cytokine 

response was not observed. 
91,105,107

  The lack of observed inflammatory response in the human 

studies may relate to differences between mice and humans, relative transfusion dose; or the 

inflammatory response to RBC transfusion may not be apparent in healthy subjects (without 

underlying inflammation).  That said, in a study of 33 premature neonates, while levels of NTBI 

were increased post transfusion, NTBI levels were not associated with increases in plasma 
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tinflammatory cytokines.
108

  These data suggest that pro-inflammatory effects of NTBI may be 

minimal.   

 RBC transfusion may also burden the mononuclear phagocyte system (MPS), delivering 

large amounts of hemoglobin and RBC contents to monocytes and macrophages.
93

  Phagocytosis 

of RBCs by macrophages (i.e. extravascular hemolysis) increases macrophage intracellular heme 

and iron to a degree that can trigger inflammasome activation and pro-inflammatory cytokine 

release via NLRP3 and NF-κB signaling; this process is further exacerbated by generation of 

iron-related reactive oxygen species.
93

 Conversely, macrophage exposure to high concentrations 

of heme may also bias macrophage phenotype from the activated/inflammatory (M1) phenotype 

toward an immunosuppressive (M2) profile via upregulation of heme-oxygenase 1 and release of 

the anti-inflammatory cytokine, IL-10.
109

  Similarly, macrophage iron loading may promote 

immune suppression by inhibiting IFN-γ-mediated secretion of pro-inflammatory cytokines, 

reducing expression of MHC II and impairing nitric oxide synthesis.  Cumulatively, these effects 

compromise phagocytic and microbicidal macrophage activity.
110

  Iron overload may also further 

promote immune suppression by impairing proliferation and activation of T, B, and natural killer 

cells.
111

  Additionally, independent of direct effects on immune cells, un-complexed heme and 

iron may directly promote bacterial growth.
78,93,105

   

 Finally, an additional compound of interest is ubiquitin, an intracellular regulatory 

protein present in a variety of cell types.  RBCs carry large amounts of ubiquitin relative to other 

cell types, and extracellular ubiquitin has been found to accumulate in RBC unit supernatants 

during storage.
112

  Extracellular ubiquitin has varied effects on immune cell function, including 

blunting LPS-induced TNFα production while augmenting LPS-induced IL-8 production.
112-114

 

Additionally, extracellular ubiquitin found in RBC units may skew helper T cell function toward 
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tan immunosuppressive Th2 phenotype, as evidenced by increased IL-4 production and decreased 

IFNγ production by LPS-stimulated PBMCs exposed to 35-day-old stored RBC supernatant or 

ubiquitin.
112,114

  The mix of pro-inflammatory and immunosuppressive effects of extracellular 

ubiquitin mirrors immunomodulatory effects observed in response to RBC supernatants in vitro 

and may explain mixed responses reported in vivo. 

In summary, soluble mediators resulting from RBC ageing and breakdown are varied, 

and individual mediators likely have pleiotropic effects on recipient immune response.  Although 

animal studies show worsened survival and increased inflammation from transfusion with longer 

stored RBCs, these findings have not been demonstrated in recently published human 

RCTs
4,16,78,87,115

.  This may be because animals studies can carefully delineate “fresh vs. old” 

RBC cutoffs (i.e. >21 days) whichhas proven difficult in human RCTs, where a mean duration of 

RBC storage in the US of 17.9 days results in comparisons between “fresh” vs. “middle-

age”
87,116

.    Additionally, storage duration effects may be more robust if transfusion occurs in the 

setting of more significant baseline inflammation, though to date this question has not been 

adequately evaluated.  The relative impact of inflammatory and immunosuppressive effects of 

RBC-derived mediators for individual patients, particularly in the setting of baseline 

inflammation or immune suppression, remains largely unknown.  It is likely that a complex 

interplay between de-compartmentalized RBC contents and underlying host immune response 

contributes to patient-specific immune modulation, a topic of active ongoing research.    

   

3.  Residual Platelets and Platelet-derived Factors 

 While less is known about platelet-derived factors as TRIM mediators, emerging data 

strongly suggests that platelets and platelet-derived factors have important immunomodulatory 

Page 11 of 27

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 1 (434) 964-4100

Transfusion

This article is protected by copyright. All rights reserved.



A
ut

ho
r M

an
us

cr
ip

tpotential.
117-119

  For instance, platelet-derived microparticles are capable of inducing both 

immune cell suppression and activation.
120,121

  Platelets themselves may play important roles in 

modulating immune cell response in both health and disease, suggesting that residual platelets 

found in RBC products likely contribute to immunomodulation.  Non-leukocyte reduced RBC 

units have been shown to accumulate platelet-leukocyte aggregates over time, which correlate 

with immune cell apoptosis and monocyte tissue factor expression.
122

  These changes are 

expected to be immunomodulatory, however effects of platelet-leukocyte aggregates on recipient 

immune cells was not evaluated.  Likewise, the immunodulatory potential of residual platelets 

within leukoreduced red blood cell products is unknown.   

 

4.  Bioactive Lipids and Extracellular Vesicles  

Bioactive Lipids 

Bioactive lipids with pro-inflammatory and pro-coagulant activity accumulate during 

storage in RBC units and may contribute to inflammatory complications of RBC transfusion, 

including transfusion-related acute lung injury (TRALI).
83,123

 Accumulation of some bioactive 

lipids, such as lysophosphatidylcholines, appears to be reduced by leukoreduction.
124

 However, a 

variety of polyunsaturated fatty acids, including arachidonic acid, linoleic acid, docosahexaenoic 

acid, and their metabolites accumulate in RBC units despite leukoreduction.
123,125

  Arachidonic 

acid and its oxidized metabolites, when isolated from older stored RBC supernatants, are capable 

of priming neutrophils in vitro.  Further, infusion of these bioactive lipids in rats that are primed 

by LPS, induce acute lung injury - providing evidence that bioactive lipids may provide the 

second-hit in the two-hit model of non-antibody mediated TRALI.
125,126

  Observational studies 

demonstrating the presence of lipids with neutrophil priming activity in the plasma of TRALI 
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tpatients provide additional supportive evidence of the link between bioactive lipids and non-

antibody mediated TRALI.
127

  The extent to which bioactive lipids may contribute to systemic 

inflammation or modulation of immune function outside of TRALI remains unclear and is a 

topic deserving of further study.        

 

 

Extracellular vesicles 

Extracellular vesicle count and profile in blood products 

 The term extracellular vesicle (EV) broadly encompasses larger microvesicles (200-1200 

nm), exosomes (30-150 nm) and apoptotic bodies (50-500 nm).
128-130

  For over a decade, it has 

been appreciated that plasma from healthy subjects contains EVs, including exosomes, derived 

from leukocytes, platelets, RBCs and endothelial cells.
131-133

   

 EV counts in RBC products increase with storage duration.
86,134

  Storage-related 

morphological changes to RBCs are accompanied by shedding and release of RBC-derived EVs, 

while residual platelets and leukocytes contribute to platelet-derived and leukocyte-derived 

EVs.
135-138

  Tracking EV cell of origin reveals that RBC-derived EVs increase continuously 

during storage, while platelet-derived EV counts peak at 3-4 weeks of storage.
86,139

  EV release 

and accumulation are significantly influenced by component manufacture processes and storage 

conditions such that individual products may have very different EV profiles despite similar 

storage duration.
140,141 

 

In vitro evidence for EV TRIM effects 
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t Though once considered debris without bioactivity and discounted as artifact, EVs are 

increasingly recognized as playing a central role in the body’s complex network of intercellular 

signaling, both in normal physiology and in disease.
142

  EVs derived from stored platelets bind to 

and activate neutrophils in vitro, and have anti-inflammatory or pro-inflammatory effects on 

monocytes and macrophages.
135,

 
143,144

  Neutrophil and RBC-derived EVs are also capable of 

suppressing inflammatory responses.
130,145

  Similar to the variability in effects of EVs from 

various cell types, EVs isolated from plasma have dual pro-inflammatory and 

immunosuppressive effects.
139,146

  The proposed mechanism of action of blood-derived EVs 

varies, with immunosuppressive effects potentially mediated by FasL expression by EVs, and 

inflammatory effects resulting from direct activation of monocytes and other antigen-presenting 

cells after EV uptake by these cells.
139,146

  

In vivo evidence for EV TRIM effects 

 Given the incomplete understanding of how EVs from different cells of origin might act, 

it is not surprising that in vivo evidence of an EV-based role in TRIM is scant.  The circulating 

half-life of EVs appears to be fairly short, less than 15-20 minutes in a rat model.
86

  However, 

the biologic activity of EVs is likely related to EV uptake by target cells rather than plasma 

concentration.  For example, injected EVs are rapidly and widely distributed to the spleen, liver, 

kidneys, and lungs in mice.
147

  Donor dendritic cell-derived EV uptake by dendritic cells in a 

recipient mouse can activate responding T cells in an antigen-specific manner.
148

  This property 

has been exploited by several groups as a potential vaccine delivery approach.
149-151

  

Additionally, adoptive transfer of CD154 (CD40L)-expressing platelet-derived EVs is sufficient 

to stimulate IgG production and germinal center formation in mice after adenovirus vaccination, 

indicating that exogenous EVs can modulate a nascent immune response
152

.  The significance of 
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tthe immunomodulatory effects of EVs found in blood products transfusion recipients remains an 

open question and an area of active research.  Better understanding EV interaction with the 

human immune system would allow manipulation of this pathway, both in the context of 

transfusion-related immunomodulation and in the context of immune perturbation seen in many 

hospitalized patients. 

 

FUTURE DIRECTIONS 

 Ample evidence exists that RBC products are capable of interacting with and modulating 

immune cell function through a variety of mechanisms and mediators; however, conclusive 

clinical evidence of TRIM effects in transfused patients remains elusive.  Given recent clinical 

studies that fail to demonstrate benefit to fresh RBC transfusion compared to longer stored 

products, one might conclude that RBC TRIM does not exist in the era of pre-storage 

leukoreduced blood products or that RBC storage duration does not contribute to TRIM 

mechanisms.
87,115,153,154

  However, emerging evidence suggests that the concentrations of 

potentially immunomodulatory mediators vary not only with storage duration, but also with 

donor characteristics, manufacturer, storage solution, and other processing factors.
88,155-158

   We 

are only beginning to understand the complex interplay between storage duration, processing 

methods, RBC unit contents, and subsequent potential TRIM effects.  Similarly, a patient’s 

underlying state of inflammation and/or immune suppression at the time of transfusion likely 

influences the immunologic response to transfusion.  Critically ill patients, in particular, exhibit 

both exaggerated systemic inflammation and immune suppression that fluctuate over time.
159-164

  

In this context, one would expect that immunologic effects of RBC transfusion might vary 
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twidely based on the underlying state of the recipient’s immunologic response.  However, most 

studies to date have failed to sufficiently characterize or account for individual differences in 

pre-transfusion immune function.  Additionally, patients who are transfused with RBCs often 

also receive other blood products, which may have different or additive TRIM effects.
14,165

    

Overall, much work remains to understand interactions between individual blood product 

characteristics and patient-specific risk factors with respect to clinical consequences of TRIM.   

Defining immunomodulatory mediators found within blood products, and understanding 

how these mediators may modulate recipient immunity is essential to identify potential TRIM 

effects at the bedside.  A bench to bedside approach must carefully attempt to define these 

mediators in context of host immune function.  Next, guided by an enhanced understanding of 

TRIM biology, observational studies will be necessary to determine patient-specific risk factors 

for specific TRIM effects and related clinical consequences.  Moreover, delineation of the effects 

of RBC donor, product processing and storage conditions upon accumulation of 

immunomodulatory mediators can then inform future prospective and interventional trials aimed 

at defining and ameliorating TRIM effects for those patients most at risk.   
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Figure 1 

Red blood cell (RBC) units contain multiple immunomodulatory mediators, including 

leukocyte-derived, red blood cell-derived, platelet-derived, and lipid and microvesicle-

derived factors.  Effects of these mediators on immune cell function vary and include both 

inflammatory and immunosuppressive changes.  As such, the sum total 

immunomodulatory effects of RBC transfusion on recipient immune function will likely 

vary based on individual unit and recipient characteristics.   
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