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Summary: Advanced hepatocellular carcinoma (HCC) has limited treatment options and poor survival, therefore

early detection is critical to improving the survival of patients with HCC. Current guidelines for high-risk patients

include ultrasound screenings every 6 months, but ultrasounds are operator dependent and not sensitive for early HCC.

Serum α-Fetoprotein (AFP) is a widely used diagnostic biomarker but it has limited sensitivity and is not elevated

in all HCC cases so we incorporate a second blood-based biomarker, des-γ carboxy-prothrombin (DCP), that has

shown potential as a screening marker for HCC. The data from the Hepatitis C Antiviral Long-term Treatment

against Cirrhosis (HALT-C) Trial is a valuable source of data to study biomarker screening for HCC. We assume

the trajectories of AFP and DCP follow a joint hierarchical mixture model with random changepoints that allows

for distinct changepoint times and subsequent trajectories of each biomarker. The changepoint indicators are jointly

modeled with a Markov Random Field distribution to help detect borderline changepoints. Markov chain Monte

Carlo methods are used to calculate posterior distributions, which are used in risk calculations among future patients

and determine whether a patient has a positive screen. The screening algorithm was compared to alternatives in

simulations studies under a range of possible scenarios and in the HALT-C Trial using cross-validation.

Key words: Changepoint models; Early detection; Markov chain monte carlo; Markov random field; Mixture

models.
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Screening with Multiple Longitudinal Biomarkers 1

1. Introduction

In the United States, the incidence of hepatocellular carcinoma (HCC) has tripled over

the last two decades, while the five-year survival of patients with HCC has remained largely

unchanged at <12% (El-Serag, 2011). Patients with early stage HCC have multiple treatment

options and the 5-year survival for treated patients exceeds 60% (Bruix and Sherman, 2005).

Five-year survival for HCC cases that are diagnosed at a later (symptomatic) stage is between

0-10%. Early detection of HCC through surveillance is critical to reducing mortality.

The target population for HCC surveillance are those patients with cirrhosis, since 80-90%

of HCC cases occur in patients with cirrhosis. Six-month ultrasonography is recommended

(Bruix and Sherman, 2011); however, there is disagreement over the benefit of surveillance.

In the United States, the majority of surveillance ultrasounds are performed at local hos-

pitals with variable quality because ultrasonography is operator dependent, not sensitive in

detecting early lesions and difficult to perform in obese patients. Serum α-Fetoprotein (AFP)

is a diagnostic HCC biomarker widely used to complement ultrasonography. The reported

sensitivity for AFP varies between 41-100% and specificity between 70-95% in both diagnostic

and screening settings and across a range of study designs (Gebo et al., 2002). Des-γ carboxy-

prothrombin (DCP) has shown potential as a complementary screening biomarker for HCC

(Marrero et al., 2009). In many cancers, including HCC, a single biomarker is unlikely to

identify all disease subtypes and screening with multiple biomarkers is necessary to produce

a highly sensitive test. It is important to differentiate between risk models that predict the

future development of disease and the focus of our paper— screening approaches to detect

current asymptomatic disease.

To date, most studies evaluating AFP and DCP have compared current biomarker levels to

a fixed threshold (Gebo et al., 2002; Marrero et al., 2009; Lok et al., 2010) but the longitudinal

trajectory of biomarkers contains valuable information. In ovarian cancer, Drescher et al.
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2 Biometrics, December 2016

(2013) demonstrated higher sensitivity of a univariate parametric empirical Bayes (PEB)

screening algorithm— first proposed by McIntosh and Urban (2003)— applied to cancer

antigen 125 (CA 125) compared to the standard threshold approach. Skates et al. (2001)

proposed a fully Bayesian screening algorithm that also improved sensitivity of CA 125 for

ovarian cancer. In HCC screening, Lee et al. (2013) found evidence that trends in AFP have

prognostic value but their approach required at least five prior measurements. Tayob et al.

(2016) implemented a univariate PEB screening algorithm for AFP that produced significant

gains in sensitivity over the standard threshold approach.

In the Skates et al. (2001) fully Bayesian screening algorithm for a single longitudinal

biomarker, the decision rule is based on the posterior risk of disease at the current screen,

given all the screening values to date. An estimate of the posterior risk requires specifying

a model for the biomarker trajectory. Skates et al. (2001) assume that in patients with

no cancer the biomarker trajectory is stable but after the onset of cancer (early in the

disease course) we may or may not observe a steady increase of the biomarker level and

this longitudinal trajectory is modeled via a hierarchical change-point and mixture model.

Norris et al. (2009) propose a longitudinal model for a single biomarker where in the absence

of disease the biomarker trajectory is stable and in the presence of disease all patients will

have an increase in their biomarker levels but there is a lag between disease onset and the

changepoint time. The two models make different assumptions about the underlying disease

mechanisms and the approach of Skates et al. (2001) is more in line with our application.

In addition to providing usable R codes to implement the methodology of Skates et al.

(2001), which are currently not available, we extend their fully Bayesian univariate screening

algorithm to screening with multiple correlated longitudinal biomarkers. This extension is

not trivial. Our proposed joint model for the multiple biomarker trajectories assumes that

each biomarker may or may not exhibit a characteristic change in their trajectory after the
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Screening with Multiple Longitudinal Biomarkers 3

onset of cancer, but neither the existence of a changepoint, the timing of said changepoint

nor the rate of change is assumed to be uniform across the biomarkers.

We propose a robust computationally efficient screening algorithm that exploits all the

available biomarker information. Patients undergoing screening often miss scheduled visits

and rarely follow the recommended surveillance interval. We may also have only a subset of

the biomarkers are measured at any particular visit (e.g. a screening algorithm with standard

serum markers measured more frequently and expensive assays less frequently). Our proposed

methodology can accommodate both unevenly spaced screening visits and “missing data”.

An ideal HCC biomarker would change trajectory early in the disease course. A posi-

tive screen would trigger further imaging with more sensitive modalities, such as magnetic

resonance imaging (MRI) or computed tomography (CT), and increase the likelihood of

detecting early stage cancer where patients have multiple viable treatment options and

simultaneously maintain affordable costs. The potential accuracy of a screening algorithm

must be fully evaluated before being used in a prospective trial. The Hepatitis C Antiviral

Long-term Treatment against Cirrhosis (HALT-C) Trial has provided valuable biomarker

data to study HCC screening (Lok et al., 2010; Sterling et al., 2012; Lee et al., 2013;

Tayob et al., 2016). The multi-center study had extensive follow-up in patients resulting in

a rich source of data to better understand screening approaches with multiple longitudinal

biomarkers in cirrhosis patients. We begin by describing the HALT-C trial data in Section

2. In Section 3 we outline each element of the proposed screening approach, including the

joint model for multiple longitudinal biomarkers and the computational procedure used to

obtain the posterior distributions needed in the posterior risk calculations. The operational

characteristics of the screening algorithm are studied in simulations (Section 4). In Section 5

we present the results from applying the screening approach to the data from the HALT-C

Trial. A discussion follows in Section 6.
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4 Biometrics, December 2016

2. HALT-C Trial

The HALT-C Trial evaluated an interferon-based therapy that aimed to prevent fibrosis

progression and other clinical outcomes in patients with chronic hepatitis C virus (HCV)

infection and either bridging fibrosis or cirrhosis. Patients underwent extensive follow-up

and were monitored for the development of HCC. Visits were scheduled every three months

for the first 42 months post-randomization and every six months thereafter. At each visit,

patients were evaluated clinically and had local laboratory tests, including AFP. DCP was

measured at a central laboratory in an ancillary study that used stored samples collected

during the first 42 months post-randomization. Patients had an ultrasound of the liver at

6, 18, 30 and 42 months post-randomization and every six months thereafter. Patients with

new lesions on ultrasound or elevated AFP were further evaluated with CT or MRI. HCC

diagnosis was based on histology and in its absence, by imaging with or without AFP. We

evaluated HCC screening in all patients, regardless of assigned treatment, since there was no

evidence the incidence of HCC differed between the two treatment groups (Lok et al., 2011).

HCV-cirrhosis patients are at high-risk and recommended for HCC surveillance. The

analysis cohort includes 48 confirmed HCC cases and 361 control patients with no HCC

during a median follow-up period of 78 months (range 15-109 months) (Web Figure 1).

In Figure 1 we plot the trajectory of AFP and DCP prior to HCC diagnosis in 4 of the 48

HCC cases. Subject 1 had increasing AFP and DCP but the changepoint for AFP was less

clearly defined compared to DCP. By jointly modeling the changepoints, we aim to borrow

information across the markers and identify changepoints that are more subtle. In Subject 2,

we observed a clear changepoint for AFP but the large variability in DCP makes it difficult

to identify the changepoint without borrowing information from the AFP trajectory. Subject

3’s AFP levels did not increase but they have a clearly defined changepoint in DCP one-year

prior to clinical diagnosis. This HCC case would not be detected with AFP screening alone.
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Screening with Multiple Longitudinal Biomarkers 5

Subject 4 has clearly identifiable changepoints for both AFP and DCP but the timing of

the changepoints and the rate of increase differed for both markers. Our goal is to develop

a fully Bayesian methodology that is able to capture these wide ranges of trajectories and

identify future HCC cases earlier.

[Figure 1 about here.]

3. Methods

Cancer screening with multiple biomarkers is an area of active research. A general longitudi-

nal screening algorithm is proposed that can be used beyond our setting of HCC screening.

3.1 Biomarker model

We propose a fully Bayesian hierarchical joint model for the trajectory of multiple biomarkers

in patients with and without the disease that extends the work of Skates et al. (2001) beyond

a single marker. For each biomarker we assume the marker levels randomly vary around a

constant mean in the absence of disease. After disease onset, each biomarker may or may not

change over time. Without loss of generality, we assume that an increase in the biomarker

is indicative of latent disease but decreases after disease onset can easily be accommodated.

Let Yijk be the kth marker level for the ith patient at the jth screening time, denoted by tij.

Without loss of generality, we assume time is measured in years from entry into the cohort.

The subscript i indexes the N patients in the study, j indexes the Ji screening times for

the ith patient, and k indexes the K biomarkers in the study. The disease status of the ith

individual is denoted by Di, where Di = 0 if the patient is disease-free at the last observation

time di and Di = 1 if the patient is clinically diagnosed at time di.

For control patients, with Di = 0, the kth marker level is assumed to randomly fluctuate

around a constant mean θik and follows the model Yijk = θik + εijk, where εijk ∼ N(0, σ2
k).

For cases, with Di = 1, we define an unobserved indicator Iik to distinguish between the

two possible models for the kth marker. If Iik = 0, then we assume that the kth marker
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6 Biometrics, December 2016

level does not increase after disease onset and follows the same model as control patients, i.e

Yijk = θik + εijk. If Iik = 1, then we assume the kth marker level randomly fluctuates around

a constant mean θik until an unobserved change-point time τik, after which the kth marker

level increases linearly at a rate of γik with model Yijk = θik + γik(tij − τik)+ + εijk, where

(.)+ indicates the positive part of the expression.

Without loss of generality, assume that i = 1, . . . , n0 indexes the controls in the study and

i = n0 + 1, . . . , N indexes the cases in the study. The likelihood under the assumed model is

L(Y; t, ·) =

n0∏
i=1

K∏
k=1

Ji∏
j=1

φ

(
Yijk − θik

σk

)

×
N∏

i=n0+1

K∏
k=1

Ji∏
j=1

φ

(
Yijk − θik

σk

)1−Iik
φ

(
Yij′k − θik − γik(tij − τik)+

σk

)Iik
,

where Y = {Yijk, i = 1, . . . , N , j = 1, . . . , Ji and k = 1, . . . , K}, t = {tij, i = 1, . . . , N and

j = 1, . . . , Ji} and φ is the standard normal probability density function.

3.2 Priors for model parameters

Screening studies often have large numbers of control patients and hence we assume unin-

formative Jeffreys’ priors, 1/σ2
k where k = 1, . . . , K, for the variability of each biomarker.

The mean biomarker level θik is assumed to be normally distributed, θik ∼ N(µθk, σ
2
θk).

The case-specific random effect for the rate γik is assumed to be log-normally distributed,

log(γik) ∼ N(µγk, σ
2
γk), reflecting our assumption that biomarker levels increase after disease

onset. Appropriate transformations can be used for biomarkers that decrease after disease

onset. The change-point time τik is assumed to follow a truncated normal (TN) distribution

with lower bound di − τ ∗k , upper bound di, mean di − µτk and variance σ2
τk. The parameter

τ ∗k is fixed based on the known preclinical behavior of the disease. In the case of HCC, a fast

growing cancer, the preclinical duration is assumed to be at most 2 years (τ ∗k = 2).

It is difficult to anticipate the joint behavior of all subject-specific parameters. In ex-

ploratory data analysis, we observed minimal correlation between the mean AFP and DCP

levels in control patients and between the trajectories of AFP and DCP in HCC cases (see
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Screening with Multiple Longitudinal Biomarkers 7

Web Appendix A.2 for full details). Accordingly, we jointly model only the indicators Iik, k =

1, . . . , K and reduce the model’s complexity, allowing us to focus on an important aspect of

the model — namely the detection of changepoints. The binary indicators, Ii = (Ii1, . . . , IiK)

are assumed to follow a Markov Random Field (MRF) distribution

P (Ii) ∝ exp

{
µI

(
K∑
k=1

Iik

)
+ ηI

(
ITi RIi

)}
,

where R is a strictly upper triangular matrix (entries above the diagonal are 1, entries in

and below the diagonal are 0) reflecting the assumption that all K markers are correlated.

Not all biomarkers are expected to increase in all the cases and µI controls the sparsity of

the model while ηI regulates the smoothness of the distribution of Ii. These properties are

clearer upon examination of the conditional distribution of Iik given all other elements of Ii:

P{Iik|(Iik′ : k′ 6= k)} =
exp {IikF (Iik)}

1 + exp {F (Iik)}
where F (Iik) = µI + ηI

∑
k′ 6=k

Iik′ .

The probability of observing a change-point in the kth marker of the ith patient depends

on both µI and the number of change-points observed in the other K − 1 markers, where ηI

moderates this dependency. The MRF defines a dependence structure helpful for detecting

borderline change-points when there are only a moderate numbers of cases.

A Beta prior was specified for the logistic transformation of µI . This was a natural

choice since in the absence of dependencies between biomarkers, the MRF model reduces

to independent Bernoulli distributions with parameter exp(µI)/{1 + exp(µI)}. A Beta prior

was also specified for ηI so that the support of this parameter can be restricted to reasonable

values. For example, suppose K = 3, Ii1 = 1 and Ii2 = 1. Then the upper limit on the prior

probability of selecting Ii3 = 1 is exp(0+1∗2)/{1+exp(0+1∗2)} = 0.88 when µI = 0. I.e. we

set an acceptable upper bound for our prior belief on the likelihood that the third biomarker

has a change-point given that the first and second biomarkers have a change-point.

We complete the model assuming that the biomarker specific mean parameters (µθk, µγk

and µτk) have normal priors and the variance parameters (σ2
θk, σ

2
γk and σ2

τk) have inverse-

Page 8 of 28Biometrics
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8 Biometrics, December 2016

gamma (IG) priors. In Figure 2, we provide a graphical representation of the assumed

probabilistic model and a summary of the hierarchical structure.

[Figure 2 about here.]

3.3 Markov Chain Monte Carlo computational algorithm

The joint posterior distribution for all the parameters is not available in closed form hence

we construct a Markov Chain Monte Carlo (MCMC) algorithm to sample from the posterior.

We provide a brief outline of the MCMC procedure used here (see Web Appendix B.1 for

full details). For most of the biomarker specific parameters (σ2
k, µθk, σ

2
θk, µγk, σ

2
γk), the full

conditional distributions are easily computed and we can employ a Gibbs sampler step. It is

not straightforward to sample from the full conditional distributions of the biomarker specific

parameters related to the change-point (µτk, σ
2
τk) or the MRF parameters (µI , ηI) thus we

employ a Metropolis-Hastings step to obtain draws from the full conditional distribution.

For the subject-specific parameter θik, we can use a Gibbs sampler since the full condi-

tional distribution is easily computed. The posterior distributions for the subject-specific

parameters Iik, γik and τik are intrinsically connected and therefore we obtain draws from

the full conditionals as detailed in the following strategy. If Iik = 1, then we have three

parameters θik, γik and τik associated with the kth biomarker of the ith patient; but if Iik = 0,

then there is only one subject-specific parameter, θik. Since the dimension of the parameter

space depends on Iik, a reversible-jump step (Green, 1995) is used to sample from the full

conditional distribution of (Iik, γik, τik).

3.4 Screening rule: Posterior risk calculation

The decision rule for a new (N + 1)th patient at screening time tij is based on the posterior

risk of disease, given the longitudinal history of each biomarker up to time tij, defined as

P (DN+1 = 1|YN+1)

P (DN+1 = 0|YN+1)
=
P (YN+1|DN+1 = 1)

P (YN+1|DN+1 = 0)
× P (DN+1 = 1)

1− P (DN+1 = 1)
,

where YN+1 = {Y(N+1)j′k, j
′ = 1, . . . , j and k = 1, . . . , K}.

The prior prevalence, P (DN+1 = 1), could be estimated from training data or an external

Page 9 of 28 Biometrics
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Screening with Multiple Longitudinal Biomarkers 9

source when necessary. For example, we can more accurately estimate the prior prevalence

from population registries when the surveillance program targets the general population.

The components P (YN+1|DN+1 = 1) and P (YN+1|DN+1 = 0) are estimated via posterior

predictive distributions for the (N + 1)th patient’s marker levels given marker levels in the

N training data patients. A Monte Carlo integration procedure is used to compute the

probabilities. See Web Appendix B.2 for the full details.

If the posterior risk exceeds a pre-specified threshold then patient history indicates that

the probability of being a case is sufficiently greater than the probability of being a control.

The screening result is deemed positive and additional testing to detect the presence/absence

of disease is recommended. In the case of HCC, a positive screen would result more sensitive

imaging, such as CT or MRI. The appropriate threshold for the posterior risk depends on the

disease context. If current practice results in all the patients undergoing additional testing,

the screening goal is to “rule out” patients from additional testing and the threshold is

chosen to maintain high sensitivity. In HCC screening, our goal is to “rule in” patients for

additional testing and therefore the threshold is chosen to ensure a low false positive rate.

The standard measures to evaluate screening are based on a single test: sensitivity (propor-

tion of cases with a positive test) and specificity (proportion of controls with a negative test).

We extend these definitions to the longitudinal screening setting. Patient-level sensitivity

is defined as the proportion of cases with at least one positive test during the screening

period. Screening-level specificity is defined as the proportion of negative tests among all the

screenings conducted in the control group. The specificity (1-false positive rate) is defined

at the screening level because each false positive result leads to further testing that can be

expensive and may lead to complications and anxiety.

4. Simulation Study

We compare our joint multivariate fully Bayesian screening algorithm (mFB-J) to existing

univariate screening approaches: univariate fully Bayesian (uFB) screening (Skates et al.,

Page 10 of 28Biometrics
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10 Biometrics, December 2016

2001), univariate parametric empirical Bayes (uEB) screening (McIntosh and Urban, 2003),

and the standard threshold (ST) approach. The gains of jointly modeling are evaluated

by including an independent multivariate fully Bayesian (mFB-I) screening algorithm that

uses three biomarkers but assumes independent Bernoulli(πk) priors for Iik (k = 1, . . . , 3).

See Web Appendix C for more details.The simulation study goal is to compare screening

approaches, under a range of possible biomarker trajectories, and evaluate which has greater

potential to increase early detection of HCC when used in clinical practice.

For each approach, we compare the full receiver operating characteristic (ROC) curve,

ROC(0.1): patient-level sensitivity corresponding to 90% screening-level specificity (reported

specificity for AFP in clinical practice (Marrero et al., 2009)) on the ROC curve, and the

timing of the first positive screen. These measures quantify the potential of each screening

algorithm to improve early detection of HCC from multiple perspectives.

We generate training data for model fitting (Section 3.3) and a validation dataset to imple-

ment screening (Section 3.4). The simulations were designed to mimic aspects of the HALT-C

Trial data structure. Each dataset includes 400 patients (each a case with probability 50/400)

followed longitudinally for up to 5 years. The screening visit time, tij, was every six months

on average, with variability included to mimic patient behavior, and three biomarkers were

measured at each visit. The length of follow-up was uniformly distributed between 0 to 5

years resulting in an unbalanced number of screening visits (Ji) for each patient.

The biomarker levels are simulated from the joint model (Section 3) for cases, with and

without a changepoint, and controls. In scenario A (Table 1), we assume the first two markers

have similar trajectories to AFP and DCP in the HALT-C study. The third biomarker had

a slightly lower rate of increase after the change-point. In scenario B, we assume all three

markers have lower rates of increase after their respective change-points. In scenario C, we

assume that the first marker has the same trajectory used in scenario A while the other 2

Page 11 of 28 Biometrics



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Screening with Multiple Longitudinal Biomarkers 11

markers have the flatter trajectory used in scenario B. These scenarios allow us to explore

screening performance under a variety of trajectories for multiple markers. See Web Table 5

for parameter values for each scenario.
4.1 Results

In each of 200 simulation studies, the hyperparameters were kept consistent across each

simulation scenario and are listed in Web Table 6. The draws from the posterior distributions

were obtained from the MCMC algorithm applied in the training data. The parameters of

the uEB screening algorithm were estimated from the training data (see Web Appendix C

for more details). All screening algorithms were then implemented in the validation data.

The empirical mean ROC(0.1) and standard error of the mean are presented in Table 1. In

all scenarios, we observe that the multivariate screening algorithms have significantly higher

ROC(0.1) than the univariate approaches; the standard threshold performs worse than either

uFB or uEB; and the uFB and uEB methods have comparable performance. Across scenarios

we note (a) the performance of all methods decrease if the rate of increase after the change-

point is decreased (scenario A vs B); (b) increasing the slope of a single biomarker increases

the performance of the corresponding univariate algorithms by a larger margin than the

improvement in the multivariate algorithms (scenario B vs C) and; (c) introducing a 15%

probability of a missed visit decreases the ROC(0.1) for all the methodologies (scenario A vs

D in Web Table 7). If we fix the threshold in the training data, the conclusions remain the

same (see Web Tables 8-9), which is expected since we are able to estimate the threshold for

specificity with high precision with large numbers of controls.

[Table 1 about here.]

Next we compare which approach has a positive screen first to evaluate the likelihood of

earlier detection in Scenario A. We define disease onset to be the earliest changepoint time

and only consider patients whose disease is detectable using the biomarkers of interest, i.e

at least one elevated marker measured after disease onset. A small subset of cases whose

markers are not elevated are excluded. In Figure 3, we observe the mFB-J is more likely to
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12 Biometrics, December 2016

have a positive screen first but there is little difference between the joint and independent

approaches. In particular, the mFB-J approach has earlier positive screens (31.32% vs 5.82%)

compared to uFB approach with marker (1), the “strongest” marker (highest sensitivity).

When we compare the uEB and uFB approaches for marker (1), the uFB has a positive

screen first 5.37% of the time while the uEB approach has a positive screen first 15.14% of

the time (Web Table 10). Similar results were observed for markers (2) and (3).

[Figure 3 about here.]

5. Results from the HALT-C Trial

The screening methods were evaluated in cirrhosis patients from the HALT-C Trial. Studies

with serial AFP and DCP in cirrhosis patients are rare and we currently do not have an

external validation dataset, hence 10-fold cross-validation is used to evaluate screening.

5.1 Joint model for log(AFP) and log(DCP+1)

The longitudinal trajectories of log(AFP) and log(DCP+1) are assumed to follow the joint

model described in Section 3.1. The priors are outlined using general notation in Section 3.2.

The hyperparameter values were chosen during exploratory analysis (Web Table 1). We chose

relatively vague priors for parameters from the control model since there was substantial data

on control patients. For parameters that were specific to the changepoint model for cases,

we used more informative priors and examined the sensitivity of the results (Section 5.3).

We expect that AFP will increase after disease onset in about 50% of patients and similarly,

DCP will increase after disease onset in about 50% of patients. Hence we specify the relatively

informative prior exp(µI)/{1+exp(µI)} ∼ Beta(30, 30). That is, the Beta prior of the logistic

transformation of µI has mean 0.5 and standard deviation 0.064. The Beta prior of ηI had

mean 0.1 and standard deviation 0.042 (ηI ∼ Beta(5, 45)). The hyperparameters for both

Beta priors are large enough to ensure stable MCMC chains but not too large given that

the sum corresponds to the assumed sample size of prior information. When µI and ηI are
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Screening with Multiple Longitudinal Biomarkers 13

set to their expected value, the prior probability that AFP has a changepoint is 0.65 if we

observe a changepoint for DCP and 0.62 if we don’t observe a changepoint for DCP.

5.2 Model assessment

It is important to assess goodness of fit since the posterior distributions of the biomarker-

specific parameters are needed for future posterior risk estimates. Each subject’s posterior

predictive distribution was calculated by drawing from a Normal distribution with the mean

functions described in Section 3.1 (using the subject-specific parameters θik, Iik, γik and

τik) and variance σ2
k. First we considered the model assumption that the trajectory of AFP

and DCP in control patients is essentially flat (i.e slope is 0). In Web Figure 4, the first

row displays the empirical distribution of the observed slopes for AFP and DCP that are

tightly centered around 0 indicating a flat profile for AFP and DCP is appropriate. In the

second row, we observe the average slope of AFP and DCP from the posterior predictive

distributions are also tightly centered around 0 indicating the model slopes were also flat.

The mean profiles of the posterior predictive distribution and 95% intervals were used to

examine model fit in HCC cases. The 95% intervals are calculated by computing the standard

deviation (SD) of the posterior predictive draws at each time point and then adding and

subtracting 1.96*SD from the mean profile. In Web Figure 12, we present the model fit for

the HCC cases depicted in Figure 1 and note the model captures the changepoints.

A key model assumption is that the biomarker-specific variance σ2
k is constant. In Web

Figure 13, we examine the residuals for the 48 cases (left column) and 361 controls (right

column) in logarithmic scale. For both AFP and DCP, there is no evidence of trends over

time and we conclude that the assumption of constant biomarker-specific variance is justified.

5.3 Prior sensitivity

The sensitivity to the prior distributions was assessed by evaluating how the posterior

probability of an AFP and DCP changepoint varied in the 48 HCC cases under three different
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14 Biometrics, December 2016

priors for ηI , µI , µγ and µτ (Web Figures 6-9). The posterior probability of a changepoint is

an important component of the model fit that affects the performance of the screening.

As we increase the ηI prior’s mean (Web Figure 6), we increase the connection between

the markers. For those with a high posterior probability of a changepoint for one marker,

increasing ηI increases the posterior probability of a changepoint for the other marker. For

borderline values (between 0.5-0.7), a higher prior mean pulls both posterior probabilities of

changepoints upwards. In µI (Web Figure 7), we observe more sensitivity in the posterior

probability of changepoints to changes in the prior’s mean but the rankings of patients are

mostly preserved. Spearman’s rank correlation was ∼ 0.99 and ∼ 0.96 for AFP and DCP

respectively, indicating the posterior inference is robust to moderate changes.

The posterior probability of changepoints are sensitive to the µγ prior (Web Figure 8).

We observe an inverse relationship between µγ prior’s mean and the posterior probability of

changepoints for AFP and DCP. The rankings of the posterior probabilities of a changepoint

are preserved for AFP (Spearman’s rank correlation: > 0.99) but not always for DCP

(Spearman’s rank correlation: 0.62-0.85). Since we have reduced follow-up for DCP, we expect

the prior selection is crucial. For µτ (Web Figure 9), we observed minimal sensitivity of the

posterior probabilities of changepoints to changes in the mean of the prior.

5.4 Cross-validated analysis

The proposed screening methodology performance was evaluated in the HALT-C Trial via

10-fold cross-validation. 361 control patients were randomly divided into nine subsets of 36

patients and one subset of 37 patients. 48 HCC cases were randomly divided into eight

subsets of 5 patients and two subsets of 4 patients. At each iteration of the cross-validation,

the validation data consists of one subset of HCC cases and one subset of controls. The

remaining nine subsets of cases and controls form the training data. The MCMC procedure

(Section 3.3) was applied to the training data to estimate the posterior distributions of

parameters in a joint model of log(AFP ) and log(DCP + 1). The MCMC algorithm was
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Screening with Multiple Longitudinal Biomarkers 15

run for 50,000 updates after a burn-in period of 2000 iterations. For each analysis, we ran

two separate chains. To reduce autocorrelation, each chain was thinned and only every 10

updates were retained. Convergence of the MCMC chains was assessed via traceplots (Web

Figure 9-10) and Gelman-Rubin statistics. Posterior inference for screening (Section 3.4) was

then applied in the validation data.

For the ST approach, we identify AFP and DCP thresholds corresponding to 90% screening-

level specificity in the training subset, calculate the patient-level sensitivity and screening-

level specificity in the validation subset and average the results across each iteration. We

estimate the ST approach has patient-level sensitivity and screening-level specificity of 59%

and 89.17% respectively for AFP and 54.66% and 89.06% respectively for DCP.

In Figure 4 we present the cross-validated ROC curves, calculated by averaging the patient-

level sensitivity across each iteration at a fixed screening-level specificity based on the entire

screening period. The ROC curves for the joint screening approaches lie above those for the

univariate approaches within the range of potential targets for screening-level specificities

(80-90%) used in HCC screening among high-risk cirrhosis patients.

[Figure 4 about here.]

We also consider the performance of the screening approaches within 1 or 2 years prior

to clinical diagnosis. These are the periods during which a positive screen is more likely to

lead to confirmation of HCC diagnosis using more sensitive imaging (CT or MRI). In Table

2 we highlight the patient-level sensitivity corresponding to 90% screening-level specificity

for each longitudinal screening method during the three different time periods.

At 90% screening-level specificity, we observe that the longitudinal screening approaches

with AFP have higher sensitivity than DCP, but this is not a fair comparison. As described

in Section 2, DCP was measured in an ancillary study to the HALT-C Trial and is only

available up to 42 months post-randomization. For all those HCC cases diagnosed in the

extended follow-up period of the study, we do not have DCP at screening times leading up
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to clinical diagnosis. While it is an advantage of our approach that we can still implement the

joint screening algorithm, this study design reduces the chance of DCP “detecting” HCC.

[Table 2 about here.]

We compare the first positive screen time across the different approaches. In Table 2, we

observe that while the mFB are more likely to have a positive screen first compared to the

uFB approaches in all three time periods, the uEB approach with AFP is more likely to have

a positive screen first within one and two years of clinical diagnosis. In addition, the uEB

approach with AFP has comparable patient-level sensitivity to the joint screening approaches

in these time periods. This result indicates that the mFB-J method is potentially more useful

for determining longer term risk of HCC, while the uEB with AFP is potentially more useful

for shorter term risk prediction, although it is unknown how the two approaches will compare

if DCP has the same extent of serial measurement and if elevated AFP was not used for

triggering work-ups to diagnose HCC (see Web Tables 2-4 for all possible comparisons).

6. Discussion

A critical component towards reducing mortality associated with HCC is detecting the

disease at an early stage when there are more treatment options available. Detecting HCC

prior to any clinical symptoms requires surveillance programs in high-risk cirrhosis patients.

Currently, all cirrhosis patients are recommended to undergo ultrasonography (that is op-

erator dependent and therefore not reliable in detecting early lesions in practice) with or

without measurement of AFP (that has limited sensitivity) every six months. Surveillance

adherence is reported to be around one-third (Singal et al., 2011), which contributes to

the high mortality associated with HCC. In addition to improving the performance of the

surveillance tests, patient outcomes could also be improved by better identifying cirrhosis

patients at higher risk of HCC and ensuring compliance among these patients.

The proposed fully Bayesian screening approach with longitudinal AFP and DCP had the

highest detection rate with at-least one positive screen in 89.5% of the HCC cases, while
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Screening with Multiple Longitudinal Biomarkers 17

maintaining a 10% false positive rate in all the screenings conducted in the control patients

in the HALT-C Trial. The proposed method was also more likely to have a positive screen

first during the entire screening period. In the 1-2 year prior to clinical diagnosis, we observed

that the parametric empirical Bayes method with AFP had comparable levels of sensitivity

to the proposed approach and was more likely to have a positive screen first. We conclude the

two approaches could each have better performance in different but complementary areas:

long term and short term risk identification, but with two caveats. First, evaluating the

added value of DCP is limited due to the shorter serial follow-up; and second, elevated AFP

triggered some of the work-ups to diagnose HCC which may put the the approach using

both AFP and DCP at a disadvantage. Further studies in cohorts with blood collection to

allow retrospective measurement of AFP and other biomarkers, where AFP is not used for

surveillance, are needed to clarify this observation.

The methodology we have developed will be applied to data from multiple ongoing longitu-

dinal studies of HCC screening in cirrhosis patients. In particular, The Texas Hepatocellular

Carcinoma Consortium (THCCC) will assemble the largest prospective cohort study of

cirrhosis patients to study early detection of HCC in the United States. They will be collecting

longitudinal AFP, DCP and other novel biomarkers for HCC. The EDRN HEDS cohort has

already recruited more than 1,400 cirrhosis patients and will include five-year follow-up

during which AFP, DCP and other emerging biomarkers will be measured longitudinally.

These two cohorts will provide a rich resource to further study HCC screening with multiple

longitudinal biomarkers and have the potential to advocate for changes to the current HCC

screening practice guidelines.

There are methodological challenges to jointly modeling the trajectories of multiple biomark-

ers. We have chosen to connect the biomarkers by jointly modeling the unobserved change-

point indicator (Iik). In sensitivity analysis, we found that the posterior inference was robust
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to moderate changes in the hyperparameters of the MRF prior. This is a very desirable

property of our approach because it implies that the performance of the screening will also

be robust to the prior assumptions. In future work, we could develop models that also

consider jointly modeling the rate of increase after the changepoint (γik) or the changepoint

time (τik) that may be useful in other settings. In our current study we have not chosen to

take this approach for two reasons: (1) we are limited by the data (48 HCC cases) and (2)

we currently do not have any scientific reason to jointly model these parameters.

Additional future work will explore multiple extensions to our model. We will modify

our model to incorporate covariates that can potentially affect biomarker levels, such as age,

gender, race, and other liver function markers. In the more general populations of the THCCC

and EDRN HEDS cohorts, where larger numbers of HCC cases are expected, the etiology

of cirrhosis could be an important covariate to include in the biomarker models. We will

also consider relaxing some of our model assumptions, such as constant biomarker-specific

variance (σk) on logarithmic scale. In the HALT-C Trial, this assumption appears reasonable

but we may need to consider time-varying variance or covariates that affect biomarker

variability in future studies. A simulation study was conducted (Web Table 11) and we found

that our proposed fully Bayesian screening methodology was robust to linear increases in

biomarker variability after the changepoint. Future work will further examine the robustness

of our proposed methodology when there are covariates that affect the biomarker-specific

variance. We will also explore extending our methodology to accommodate more general

trajectories, such as the approach taken by Chib (1998). This may be important area of

future research when we want to include novel HCC markers whose trajectories during the

pre-clinical phase are not well studied and likely to be unclear.

While it is methodologically challenging to develop screening methods for multiple longi-

tudinal biomarkers, this is an important area of research that has practical implications for
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Screening with Multiple Longitudinal Biomarkers 19

clinical practice in HCC. We have added to the field by proposing an approach that begins to

tackle this problem. We have also provided R-code for the univariate fully Bayesian method

(Skates et al., 2001), the parametric empirical Bayes method (McIntosh and Urban, 2003)

and our proposed multiple biomarker method in order to promote the more widespread usage

of these screening algorithms.

7. Supplementary Materials

Web Appendices, Tables, and Figures referenced in Sections 2, 3, 4, 5 and 6 and R-code are

available with this paper at the Biometrics website on Wiley Online Library.
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Figure 1. AFP and DCP trajectories in four example HCC cases from the HALT-C Trial.
These patients depict the wide range of biomarker trajectories we aim to capture with our
model. Linear splines have been added to the plots to guide the identification of patterns in
the trajectory. Without loss of generality, we have shifted the time scales and set di = 0 for
all patients to allow better visualization of biomarker trajectories across individuals prior to
clinical diagnosis (di). See Web Figures 2 and 3 for AFP and DCP trajectories of all 48 HCC
cases in the analysis cohort.
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Likelihood:∏n0

i=1

∏K
k=1

∏Ji
j=1 φ

(
Yijk−θik

σk

)∏N
i=n0+1

∏K
k=1

∏Ji
j=1 φ

(
Yijk−θik

σk

)1−Iik
φ
(
Yijk−θik−γik(tij−τik)+

σk

)Iik
Priors for model parameters:
Subject specific: Biomarker specific:
θik ∼ N(µθk, σ

2
θk) σ2

k ∝ 1/σ2
k

Ii ∼MRF (µI , ηI) µθk ∼ N(µ0k, σ
2
0k)

log(γik) ∼ N(µγk, σ
2
γk) σ2

θk ∼ IG(aθk, bθk)
τik ∼ TN[di−τ∗k ,di](di − µτk, σ

2
τk) µγk ∼ N(µ1k, σ

2
1k)

MRF: σ2
γk ∼ IG(aγk, bγk)

exp(µI)
1+exp(µI)

∼ Beta(p1, p2) µτk ∼ N(µ2k, σ
2
2k)

ηI ∼ Beta(p3, p4) σ2
τk ∼ IG(aτk, bτk)

Figure 2. Graphical representation and hierarchical structure of probabilistic model.
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Figure 3. The bar height corresponds to the percentage of times: the proposed joint
multivariate fully Bayesian (mFB-J) approach has a positive screen first, an alternative
method has a positive screen first and the first positive screen for both methods is the
same time after disease onset (Scenario A of the simulation study). mFB-I: independent
multivariate fully Bayesian, uFB: univariate fully Bayesian and uEB: parametric empirical
Bayes.

Page 25 of 28 Biometrics



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Screening with Multiple Longitudinal Biomarkers 25

0.00 0.05 0.10 0.15 0.20

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Screening−level Specificity

P
at

ie
nt

−
le

ve
l S

en
si

tiv
ity

mFB−J

mFB−I

uFB: AFP

uEB: AFP

uFB: DCP

uEB: DCP

Figure 4. Cross-valiated ROC curve for mFB-J: joint multivariate fully Bayesian, mFB-I:
independent multivariate fully Bayesian, uFB: univariate fully Bayesian and uEB: parametric
empirical Bayes. The ROC curve for screening-level specificity between 0.8 and 1 is shown
(See Web Figure 10 for full ROC curve).
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