
SUPPORTING TEXT S1

On the relationship between TOPPE and Pulseq

On a conceptual level, TOPPE is similar to Pulseq in that in both approaches, sequence specification

is separated from hardware execution; our article thus presents TOPPE and Pulseq as parallel works.

However, as we see it, on a practical level the role of TOPPE is not to “compete” with Pulseq, but to

complement it by allowing execution of a platform-independent sequence specification on GE scanners.

Based on our understanding of Pulseq and EPIC, we believe it would be rather awkward to attempt

to write a GE driver/interpreter that interprets Pulseq files directly, without the intermediate Pulseq to

TOPPE file conversion step proposed in our article. In particular, the hierarchical structure of Pulseq

does not lend itself to easy parsing and implementation in EPIC. Specifically, EPIC requires that a rel-

atively small number of sequence modules be defined prior to execution, each specifying waveforms

on all three gradient axes as well as a (complex) RF waveform and/or data acquisition window. During

scanning, amplitude waveforms and RF/acquisition frequency and phase can be assigned dynamically.

The TOPPE file format is a simple reflection of the EPIC code structure, which greatly simplifies the task

of writing a GE hardware driver. Pulseq, on the other hand, specifies sequential execution of sequence

“blocks”, in which the composition of each block is allocated dynamically, i.e., the presence of individual

gradient or RF “events” in a block is specified during execution. To our knowledge, EPIC does not contain

a programming mechanism that mirrors this way of representing a sequence. Thus, we see the TOPPE

file format – and not just the TOPPE GE driver – as an essential piece of the proposed platform.

0

0.05

0.1

-4
-2

0
2
4

-5

0

5

0 5 10 15 20 25 30 35
-5

0

5

gx

gy

|b1|
(G)

(rad)

(G/cm)

(G/cm)

b1

ex.mod spinecho.mod readout.mod

time (msec)

Supporting Figure S1: Pulse sequence diagram for the k-space trajectory measurements shown in Fig. 3.

time (msec)

|b1|
(G)

gx

(G/cm)

tipdown.mod
readout.mod

0

0.1

0.2

-5

0

5

-1

0

1

0 10 20 30 40 50 60 70 80
-1

0

1

gy

(G/cm)

gz

(G/cm)

gy waveform 1 gy waveform 2

gz waveform 1 gz waveform 2

readout.mod

Supporting Figure S2: Example of a TOPPE sequence with multiple (64) different gy and gz waveforms

associated with one .mod file. Only two of the waveforms are shown. All 64 waveforms are loaded into

scanner memory during sequence prescription. During sequence execution, the particular waveform

to be played out is selected on-the-fly according to the corresponding entry in scanloop.txt. In this

example, each waveform is of duration 40 ms. We successfully ran this sequence and switched the

waveforms during sequence execution (not shown), according to the instructions in scanloop.txt. With

the possibility of up to 20 different .mod files, each containing multiple waveforms, we believe TOPPE

will be sufficiently flexible for most applications. However, we have observed that there appears to be a

limit on total waveform memory allowed by our GE scanner: for example, the multi-waveform .mod file

shown here appears to nearly reach the total memory limit.

time (sec)

ASLtag.mod

0
0

0.05

0.1

0
-4
-2

0
2
4

0
-5

0

5

|b1|
(G)

b1

(rad)

gx

(G/cm)

tipdown.mod readout.mod

1.40 1.45 2.000.05 2.05

Supporting Figure S3: Example of a relatively complex pulse sequence that is not easily implemented

using traditional programming techniques: Arterial Spin Labeling with stack-of-spirals readout. Following

a (velocity-selective) spin tagging pulse and a transit delay of∼1.3 sec, a train of alternating RF excitation

and data readout modules are played out (total duration ∼0.7 sec). kz (partition) encode ordering is

center-out (not shown). The flip angle is increased to maintain constant signal following each excitation.

For a given readout repetition interval and assuming tissue T1 of gray matter at 3T, we obtained the

optimal flip angle schedule using the Matlab function fmincon. Implementing such a sequence using

traditional programming techniques would be relatively laborious, and would in any case likely require

the ASL tagging pulse, flip angle schedule, and perhaps the spiral readouts to be loaded from external

files.

time (msec)

Readout
gradient

(G/cm)

0.20.1 0.30
0

1

2

Supporting Figure S4: Another example of a relatively complex pulse sequence that is not easily im-

plemented using traditional programming techniques: A set of 12 triangular readout gradients used to

measure gradient impulse response function, as implemented in (15). Although the waveforms differ

only by their time to peak (ranging from 50 to 160 µs in 10 µs increments), there is no direct way to

encode these waveforms programmatically during run-time. In TOPPE, one can either associate each

waveform with its own .mod file, or load all 12 waveforms into a single module (after zero-padding to

ensure equal waveform duration).

