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Web Appendix A: Estimation of FPCA

There is a rich literature on methods for estimating FPCA (Rice and Silverman, 1991; Yao et al.,

2005; Hall et al., 2006; Peng, 2009; James et al., 2000; Silverman, 1996; Yao and Lee, 2006; Zhou

et al., 2008; Hastings, 1970). We implement an approach that includes smoothing of the principal

component functions and is applicable for sparse data, and that preserves orthogonality of the

smoothed principal component functions so that the optimization criterion for the design stage

is straightforward to compute. We use an EM approach because it can handle the sparsity of the

longitudinal data well, and automatically computes the loadings on each principal component for

every subject. In the following paragraphs, we describe our modification of the EM algorithm used

by James et al. (2000) that incorporates the smoothing penalty proposed by Zhou et al. (2008).

For subject i, let the sampling times beT i = (ti1, , tini
) and the observations beY i = (yi(ti1), . . . ,

yi(tini
))′. We model the principal components by linear combinations of spline basis βk(t) =∑q

l=1 bl(t)θlk. Let Bi be a basis matrix such that (Bi)jl = bl(tij);θk = (θ1k, ..., θqk)
′;Θ be the

coefficient matrix such that Θ = (θ1, ...,θr) and finallyαi = (αi1, ..., αir)
′. Then the reduced rank

model can be written in the matrix form:

Y i = f(T i;η) + β(T i)αi + εi

where β(T i) = [β1(T i), ..., βr(T i)] = BiΘ, βk(T i) = (βk(ti1), ..., βk(tini
)),αi ∼ N(0,D),

and εi ∼ N(0, σ2Ini
). For the purpose of identification, we impose the orthonormal constraints:

Θ′Θ = I,
∫
bl(t)bl′(t)dt = δll′ . Thus the marginal distribution of Y i is:

Y i ∼ N(f(T i;η),Ai) Ai = β(T i)Dβ
′(T i) + σ2Ini
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and the observed log likelihood given the data is the sum of the individual’s contributions to the

log-likelihood, l =
∑N

i=1 li

l =
N∑
i=1

−ni
2
log(2π)− 1

2
log | Ai | −

1

2
(Y i − f(T i,η))′A−1i (Y i − f(T i,η)). (1)

It is difficult to find the MLE for the observed likelihood given its complexity. Instead, we employ
the EM algorithm and work with the complete data likelihood with αi assumed to be known:

n∑
i=1

−ni

2
log(2π)− ni

2
log(σ2)− 1

2
log |D | − 1

2σ2
(Y i − f(T i, η)−BiΘαi)

′(Y i − f(T i,η)−BiΘαi)−
1

2
α′iD

−1αi.

We encourage the smoothness of βk(t) by introducing a second derivative penalty λ
∫
β′′k(t)2dt

with λ being a positive smoothing parameter. To write the penalty in terms of θk, we let H be a
matrix such that the ll′ element is H ll′ =

∫
bl(t)bl′(t)dt. Thus, we have λ

∫
β′′k(t)2dt = λθ′kHθk.

We then obtain a smoothed version of FPCA by maximizing the penalized log likelihood

Q =

n∑
i=1

−ni

2
log(2π)− ni

2
log(σ2)− 1

2
log |D | − 1

2σ2
(Y i − f(T i,η)−BiΘαi)

′(Yi − f(T i,η)−

BiΘαi)−
1

2
α′iD

−1αi −
r∑

k=1

λθ′kHθk.

Green (1990) shows that the EM algorithm is also applicable to the penalized log likelihood

when the penalty term does not involve latent variables. Hence we employ the EM algorithm for

maximizing Q. The E-step and M-step of the EM algorithm are as follows. For the E-step, we

denote E(αi|Y i,η,Θ,D, σ
2) by α̂i and E(αiα

′
i|Y i,η,Θ,D, σ

2) by α̂iα′i. We have

α̂i = (σ2D−1 + Θ′B′iBiΘ)−1Θ′B′i(Y i − f(T ,η))

α̂iα′i = αiα
′
i + (D−1 + Θ′B′iBiΘ/σ

2)−1.

For the M-step, we maximize Q iteratively over η,Θ,D, σ2. The formula for η,D, and σ2 are

identical to those in (James et al., 2000) and they are omitted here. The interesting question is

how to maximize Q while preserving the orthonormality of the columns of Θ. Our solution to this

problem is a reparameterization based on singular value decomposition (SVD). In this setting, the
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optimization is carried out column-by-column of Θ. Suppose θk is being considered and the rest

of the columns, denoted by Θ(k) are kept fixed. Then θk should be orthogonal to the column space

of Θ(k). We perform a SVD on Θ(k) and we have

Θ(k) = U · S · V ′

where U is q × q orthogonal matrix, S is diagonal matrix and V is (r − 1) × (r − 1) orthogonal

matrix. Let (u1, ...,uq) be the columns of U . Then (ur, ...,uq) spans the space orthogonal to the

column space of Θ(k). Then we parameterize θk as

θk =

q∑
l=r

ulpl = ŨP

where Ũ = (ur, ...,uq) and P = (pr, ...,pq)
′. Under this parameterization, θk is always orthogo-

nal to the column space of Θ(k) and there is no restriction on P . Now by focusing on the terms in

Q that involve θk, we only need to minimize:

N∑
i=1

(Y i − f(T ,η)−BiΘαi)
′(Y i − f(T ,η)−BiΘαi) + λ̃θ′kHθk

where λ̃ = 2σ2λ. We rewrite it as

N∑
i=1

((Y i − f(T ,η)−BiΘ(k)αi(k) −Biθk)
′(Y i − f(T ,η)−BiΘ(k)αi(k) −Biθk) + λ̃θ′kHθk

=
N∑
i=1

((Y i−f(T ,η)−BiΘ(k)αi(k)−BiŨP )′(Y i−f(T ,η)−BiΘ(k)αi(k)−BiŨP )+λ̃P ′Ũ
′
HŨP

The closed form solution for P that minimizes the above equation is

P̂ = (
N∑
i=1

α̂2
ikŨ

′
B′iBiŨ + λ̃Ũ ′HŨ)−1

N∑
i=1

Ũ ′B′i(α̂ik(Y i − f(T ,η))−
∑
l 6=k

α̂ikα′ikBiθl).

Then we have θ̂k = ŨP̂ and we normalize θ̂k by dividing it by its norm. We repeat the same

procedures for k = 1, ..., r iteratively until convergence is reached. In summary, the reparame-

terization based on SVD allows us to optimize Q under the constraint that the columns of Θ are
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orthonormal. This procedure works when the number of columns, i.e., the number of principal

components is strictly larger than the number of spline bases, which is generally true.

Web Appendix B: Selecting the Number of Components and the Smoothing Parameter

The cross validation score s(r, λ) is computed by k-fold cross validation. We randomly and evenly

split the preliminary data in the simulation into k groups. We treat one group as testing data set

and the rest k − 1 groups as the training data set. We use training data to estimate an FPCA model

for the given r and λ. Then we compute the log likelihood of the testing data given the estimated

model. We repeat the process k times so that every group becomes the testing data exactly once.

Then s(r, λ) is computed as the average of log likelihoods across the k testing sets. Because of

the normal assumption, the s(r, λ) is equivalent to negative of the mean square error, less some

constant. In general, the higher the s(r, λ), the better the model fit. In the simulations and other

two real data applications, we specify k = 10.

In the simulation, we consider λ ranges from 10 to 2000. The appropriate λ for a FPCA model

with r components is chosen as λr = argmaxs(r, λ). Figure 1 of this supplementary material plots

s(r, λ) vs. λ for r = 1, 2, 3 for a sample of the simulated dataset from simulation scenarios A.1 and

A.2. The highest s(r, λ) in each case is marked by a triangle and the corresponding λ is chosen as

λ∗r .

Let s(r) = s(r, λr), i.e. the CV score for a model with r principal components and the appro-

priate smoothing parameter λr . Because the model with r + 1 components is more flexible than

the model with r components, s(r) = s(r, λr) almost always increases as r increases. Therefore

maximizing the CV score s(r) does not always lead to a parsimonious model in practice. In this

case, we use a “scree plot” as a tool to visually select the appropriate number of components

(Johnson and Wichern, 2007). In a scree plot, the CV score s(r) is plotted against r and we are

interested in the elbow point r∗ where the improvement of s(r) after r∗ is relatively much smaller
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than those before r∗. In other words, the model fit will not significantly improve if we already

have at least r∗ principal components in the model. Figure 2a and 2b of this supplement present

scree plots for data sets simulated for simulation scenarios A.1 and A.2. In general, s(r) increases

substantially from r = 1 to r = 2 but there is virtually no improvement in s(r) from r = 2 to

r = 3. So r = 2 principal components are sufficient for the data in the simulation replicates shown

in Figure 2a and 2b.

While the scree plot is simple to understand, it bears some subjective influence from the analyst

and cannot be implemented in a simulation scenario where analyst intervention is absent. Inspired

by the scree plot, we use an objective rule based approach. We set a threshold b for negligible

improvement and select the appropriate r for the data as r∗ as the smallest r such that the im-

provement in CV score by adding one more component is less than the threshold b% for negligible

improvement. The rule based approach can be clearly defined and carried out in the simulation

without outside intervention.

To specify the threshold of negligible improvement, we could consult with the investigators or

refer to the scree plot. For example, in Figure 2a and 2b, we notice from the scree plots that

improvement in CV score is generally larger than 1% from r = 1 to r = 2 and less than 1% from

r = 2 to r = 3. Therefore we set the threshold to be b% = 1% for negligible improvement in the

simulation.

Web Appendix C: Derivation of Information Matrix

We rely on formulas for matrix-based derivatives published by Harville (2001) to obtain the

information matrix, and use the form of the likelihood given in (1) in Web Appendix A. Let ηl
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and ηk be elements of the mean parameter vector η. For the ith likelihood contribution, we have:

∂li
∂ηk

= −1

2

∂

∂ηk
{(Y i − µi)′A−1i (Y i − µi)}

= −1

2
{(Y i − µi)′A−1i

∂(Y i − µi)′

∂ηk
+
∂(Y i − µi)′

∂ηk
A−1i (Y i − µi)}

= (Y i − µi)′A−1i
∂µi
∂ηk

.

The first step holds by the chain rule; the last holds sinceA−1i is symmetric, and

∂(Y i − µi)
∂ηk

= −∂µi
∂ηk

.

Next we have

∂li
∂ηl∂ηk

= (Y i − µi)′A−1i
∂µi
∂ηl∂ηl

− ∂µ′i
∂ηl

A−1i
∂µi
∂ηk

by applying the chain rule. Since E(Y i − µi) = 0 when the mean model is correct, then

E(
∂li

∂ηl∂ηk
) = −∂µ

′
i

∂ηl
A−1i

∂µi
∂ηk

.

When T i = T , then µi = µ,Ai = A, and thus

E(
∂l

∂ηl∂ηk
) =

N∑
i=1

E(
∂li

∂ηl∂ηk
) = −N [

∂µ′

∂ηl
A−1

∂µ

∂ηk
]. (2)

We now take derivatives with respect to the variance components. Let dk and dl denote the kth

and lth diagonal element of the diagonal matrixD. We have

∂li
∂dk

= −1

2

∂

∂dk
log|Ai| −

1

2

∂

∂dk
(Y i − µi)′A−1i (Y i − µi)

= −1

2
tr{A−1i

∂Ai

∂dk
− 1

2
tr{(Y i − µi)(Y i − µi)′

∂

∂dk
A−1i }

= −1

2
tr{A−1i βk(T i)β

′
k(T i)}+

1

2
tr{(Y i − µi)(Y i − µi)′A−1i βk(T i)βk(T i)A

−1
i }.

The second equality holds given the formulas for the derivative of the log of the determinant of a

matrix (Harville 2001), and because a quadratic term equals its trace and the derivative of a trace
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is equal to the trace of the derivative. The last one holds because

∂Ai

∂dk
= βk(T i)β

′
k(T i) and because

∂A−1i
∂dk

= −A−1i
∂Ai

∂dk
A−1i .

Next we have

∂li
∂dl∂dk

= −1

2
tr{ ∂

∂dl
A−1i βk(T i)β

′
k(T i)}

+
1

2
tr{(Y i − µi)(Y i − µi)′

∂

∂dl
A−1i βk(T i)βk(T i)A

−1
i }

+
1

2
tr{(Y i − µi)(Y i − µi)′A−1i βk(T i)βk(T i)

∂

∂dl
A−1i }.

Since E[(Y i − µi)(Y i − µi)′] = Ai, we have

E[
∂li

∂dl∂dk
] = −1

2
tr{ ∂

∂dl
A−1i βk(T i)β

′
k(T i)}

+
1

2
tr{Ai

∂

∂dl
A−1i βk(T i)βk(T i)A

−1
i }

+
1

2
tr{βk(T i)βk(T i)

∂

∂dl
A−1i }.

The first and third term cancel out, and simplifying the second term using rules for the trace of a

product, we have

E[
∂li

∂dl∂dk
] =

1

2
tr{β′k(T i)

∂

∂dl
A−1i βk(T i)}

=
1

2
{β′k(T i)A

−1
i

∂

∂dl
AiA

−1
i βk(T i)}

=
1

2
{β′k(T i)A

−1
i βl(T i)β

′
l(T i)A

−1
i βk(T i)}

= −1

2
{β′k(T i)A

−1
i βl(T i)}2.

When T i = T , then we haveAi = A and therefore

E[
∂l

∂dl∂dk
] = −N

2
{β′k(T )A−1βl(T )}2. (3)

For σ2 we have:

∂li
∂σ2

= −1

2
tr{A−1i

∂Ai

∂σ2
} − 1

2
tr{(Y i − µi)(Y i − µi)′

∂A−1i
∂σ2

}.
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Since ∂Ai

∂σ2 = Ini
(an ni × ni identity matrix) and ∂A−1

i

∂σ2 = A−1i
∂Ai

∂σ2 A
−1
i = −A−1i A−1i

∂li
∂σ2

= −1

2
tr{A−1i }+

1

2
tr{(Y i − µi)(Y i − µi)′A−1i A−1i }.

Then

∂li
∂σ2∂σ2

=
1

2
tr{A−1i

∂Ai

∂σ2
A−1i }

− 1

2
tr{(Y i − µi)(Y i − µi)′A−1i

∂A−1i
∂σ2

A−1i A
−1
i }

− 1

2
tr{(Y i − µi)(Y i − µi)′A−1i A−1i

∂A−1i
∂σ2

A−1i }.

Since E[(Y i − µi)(Y i − µi)′] = Ai and ∂Ai

∂σ2 = Ini we have E[ ∂li
∂σ2∂σ2 ] = −tr{A−1i A−1i }. Thus,

when T i = T

E[
∂l

∂σ2∂σ2
] = −N · tr{A−1A−1}. (4)

Finally,

∂li
∂dk∂σ2

=
1

2
tr{A−1i βk(T i)β

′
k(T i)A

−1
i }

− 1

2
tr{(Y i − µi)(Y i − µi)′A−1i βk(T i)β

′
k(T i)A

−1
i A

−1
i }

− 1

2
tr{(Y i − µi)(Y i − µi)′A−1i A−1i βk(T i)β

′
k(T i)A

−1
i }.

Hence, E[ ∂li
∂dk∂σ2 ] = 1

2
β′k(T i)A

−1
i A

−1
i βk(T i). And, when T i = T ,

E[
∂l

∂dk∂σ2
] =

N

2
β′k(T )A−1A−1βk(T ). (5)

As far as the interdependence of the mean and variance parameters, we have

∂li
∂dl∂ηk

= (Y i − µi)
∂A−1i
∂dl

∂µi
∂ηk

,

which has expected value

E(
∂li

∂dl∂ηk
) = 0, (6)

since E(Y i−µi) = 0 and the last two factors are not random variables. The same argument holds
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for E( ∂li
∂σ2∂ηk

). Hence, the information matrix is block diagonal. The first block is the information

matrix for η, i.e. I(T ;η), with elements in (2), and the second deals with variance components,

with elements given by (3), (4) and (5).

Web Appendix D: Algorithm for Identifying the Optimal Schedule

Let g(T ) = g(t1, , tn) > 0 be the objective function with T = (t1, ..., tn) being the sampling sched-

ule. The maximization is with respect to the sampling schedule T and the values of ti, i = 1, , n are

taken (without replacement) from the set of feasible sampling times S. If S contains nS elements,

there are
(
nS

n

)
sampling schedules in the pool of all candidate schedules Sc, so this number can

be extremely large even if nS and n are only of moderate size, which makes almost impossible

to enumerate all candidate sampling schedules for the purpose of maximization, particularly in a

simulation setting. Therefore, in the following we describe a more efficient maximization algorithm

based on the Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings, 1970)

Algorithm: Select an initial sampling schedule T 0 from the pool of candidate schedules Sc. Also

set up two storage arrays xf and xT of length M where M is the total number iterations to be run.

Let T k−1 denote the sampling schedules selected at the k − 1 iteration.

During the kth iteration:

(a) LetGk−1, denote the set of feasible sampling times not included in the sampling schedule T k−1

(i.e. the complement of T k−1 with respect to S).

(b) Randomly select one sampling time from T k−1 and replace it with a sampling time randomly

selected fromGk−1 to create a new sampling schedule T temp.

(c) Compute g(T k−1) and g(T temp).

(d) If g(T temp) > g(T k−1) then we let T k = T temp.

(e) Otherwise, we generate a random number q ∼ Binomial(α). If q = 1, then T k = T temp,
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otherwise T k = T k−1.

(f) Store the sampling schedule T k in xT [k] and objective value g(T k) in xf [k]. Repeat the iteration

forM times. Then we identify the maximum objective values from xf and corresponding sampling

schedule from xT

In this algorithm, we are treating the g(T ) as the probability function (less a constant) of a mul-

tivariate distribution of t1, ..., tn. The distribution can be simulated with the Metropolis-Hastings

algorithm and a uniform proposal distribution. Since the mode of the distribution is identical to the

maximum of the objective function g(·) less a constant, we are guaranteed to reach the maximum

if the Metropolis-Hastings algorithm has run long enough to converge. So the optimal objective

function and the corresponding optimal schedule will appear in xf and xT with probability 1.

Web Appendix E: Estimating Parametric Mixed Model with the R package nlme.

The nlme package is used to estimate linear and nonlinear mixed effect models. The code to

estimate the model: yij = η0i + η1itj + η2tj · exp(η3t) + εij

where ε ∼ N(0;σ2); the random effects are (η0i, η1i, η2i) ∼ N(η,Σ):

fit=nlme(y ∼ eta0+eta1*time+eta2*time*exp(-eta3*time), data=data,

fixed=eta0+eta1+eta2+eta3 ∼ 1,

random=eta0+eta1+eta2 ∼ 1|ID,

start=c(2.264, -0.1152, 1.1464, 0.6682) )
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Figure 1: Potential temporal pattern of the mean and variance of a longitudinal process. The solid
line represent the mean profile, which is assumed to be f(t; η0, η1) = η0 + η1t and (η0, η1) is
a fixed parameter vector. The dashed lines represent the variability pattern. In Figure 1a and
1b, the between subject variability is derived from the mean profile using random effect of the
parameters, i.e. the profile for subject i is f(t; ηi0, ηi1)with(ηi0, ηi1) ∼ N((η0, η1);Σ),Σ is a
2× 2 covariance matrix with elements τkl, k = 1, 2; l = 1, 2. The variability V ar(f(t; ηi0, ηi1)) =
η20τ11 + 2η0η1t + η20τ22t

2is a quadratic function of t. In these cases, the variability in the middle
of the time interval is always lower than the variability at least one end point. In Figure 1c, we
consider a more flexible structure for the between subject variability, i.e. the profile for subject i
is f(t; η0, η1) + gi(t) where gi(t) is general random process unrelated to the mean profile f(t; η).
The variability V ar(f(t; η0, η1) + gi(t)) = V ar(gi(t)) could demonstrate any pattern depending
on the property of gi(t). In particular, if the variability is higher in the middle of the time interval,
the variability structure cannot be characterized by the random effect model employed in Figure
1b and 1a. In the particular case of Figure 1c, gi(t) = η2i(t − 1)2 with η2i ∼ Normal(0, τ22). In
the simplified example of Figure 1c, a random effects model with a random quadratic term, but not
a quadratic term with fixed coefficient, could be used.



(a) Scenario A.1: r = 1 (b) Scenario A.1: r = 2 (c) Scenario A.1: r = 3

(d) Scenario A.2: r = 1 (e) Scenario A.2: r = 2 (f) Scenario A.2: r = 3

Figure 2: CV score vs. λ for various choices of r. The highest CV score is marked by a triangle in
each graph.



Figure 3: Scree plots for selected replicates in (left) Simulation A.1 and (right) Simulation A.2.




