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1. REGULARITY CONDITIONS

We assume the following regularity conditions. These conditions are commonly used in the liter-

ature. Condition (C1) holds for a wide class of parametric functions including (4) and (5) with

scaling constraints on the ψk’s in the main paper.

(C1) The true parameter value β0 belongs to a known compact set B. The utility functions `n(β)

and Qn(β) have a unique minimizer in B.

(C2) The kernel function K(·) is thrice-continuously differentiable and its r-th order derivatives

K(r) are bounded for r = 0, . . . , 3. We assume that the bandwidth hn → 0 and nh6n →∞ as

n→∞.

By examining the proof of Theorem 1, we notice that the asymptotic results are not restricted to the

linear score system, but also work for nonlinear additive models such as S(β,X) = β1X
2
1+β2 logX2,

given that the covariates are in a compact set and the partial derivatives of S with respect to β

are continuously differentiable.

2. PROOF OF THEOREM 1

We first show that supβ∈B |`sn(β) − `n(β)| → 0. Consider an ε-net of B and denote its covering

number by mn(ε). Then given the index i fixed, under Condition (C2), for any βi, . . . ,βmn from
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each partition of B, by the approximation result in Schuster (1969),

P

sup
β∈B

∣∣∣∣∣∣ 1n
n∑
j=1

∫ h−1
n (S(Xi;β)−S(Xj ;β))

−∞
K (u) du− P{S(Xi;β) > S(X;β)}

∣∣∣∣∣∣ > ξn


≤

mn(ε)∑
k=1

P

∣∣∣∣∣∣ 1n
n∑
j=1

∫ h−1
n (S(Xi;β

k)−S(Xj ;β
k))

−∞
K (u) du− P{S(Xi;β

k) > S(X;βk)}

∣∣∣∣∣∣ > ξn/2


≤ C1mn(ε) exp(−C2nh

2
nξ

2
n)

for some positive constants C1, C2 and any sequence ξn = o(hn). Choose ε such that mn(ε) is a

polynomial in n, then

∞∑
n=1

P

sup
β∈B

∣∣∣∣∣∣ 1n
n∑
j=1

∫ h−1
n (S(Xi;β)−S(Xj ;β))

−∞
K (u) du− P{S(Xi;β) > S(X;β)}

∣∣∣∣∣∣ > ξn

 <∞

since nh2n →∞ and hn → 0. By Borel-Cantelli lemma, we have

sup
β∈B

∣∣∣∣∣∣ 1n
n∑
j=1

∫ h−1
n (S(Xi;β)−S(Xj ;β))

−∞
K (u) du− P{S(Xi;β) > S(X;β)}

∣∣∣∣∣∣→ 0

almost surely. Similarly, for every i,

sup
β∈B

∣∣∣∣∣
1
nδi
∑n

j=1 1l(Zi > Zj)
∫ h−1

n (S(Xi;β)−S(Xj ;β))
−∞ K (u) du

1
n

∑n
j=1 1l(Zi > Zj)

−E{δi(S(Xi;β) > S(X;β))|Zi > Z}

∣∣∣∣∣→ 0

almost surely. We obtain supβ∈B |`sn(β) − `n(β)| → 0 almost surely. Also, by definition, β0 is the

maximizer of `n(β). Since we assume an independent censoring condition, βn is also the minimizer

of U(β). Hence by Theorem 5.7 of van der Vaart (2000), the consistency of βsn follows.

Define

Σi
1 = −E

(
∂win
∂β

;β0

)
and Σ1 = E(δiΣ

i
1).

Following similar arguments in Zeng and Lin (2007), for every ξn → 0

sup
‖β−β0‖<ξn

|
√
n{wn(β)− wn(β0)}+ Σ1

√
n(β − β0)| = op(‖

√
nβ − β0‖)(β − β0).
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By the arguments in Schuster (1969), the assumption that nh6n → ∞ and K(r) is uniformly

bounded for 0 ≤ r ≤ 3 together guarantee that ∇βwin(β) and
√
n∆βw

i
n(β) are well defined and

uniformly bounded with repect to every i in a neighborhood around β0. In other words,

win(β)− win(β0) = −Σi
1(β − β0) +

1

2
(β − β0)

T∆βw
i
n(β0)(β − β0) + op(‖β − β0‖2).

In particular, for every ξn → 0,

sup
‖β−β0‖<ξn

|
√
n{win(β)− win(β0)}+ Σi

1

√
n(β − β0)| = op(

√
n(β − β0)).

Therefore

√
n{wn(βsn)− wn(β0)} =

1

n

n∑
i=1

δi
√
n
{
win(βsn)− win(β0)

}
= − 1

n

n∑
i=1

δiΣ
i
1

√
n(βsn − β0)

= −Σ1

√
n(βsn − β0).

Therefore the asymptotic normality follows since

√
nwn(β0) =

√
n

1

n

n∑
i=1

δiw
i
n(β0)→d N(0,Σ2).

3. PROOF OF THEOREM 2

We follow the proofs of Zhang and Lu (2007). In order to show the root-n consistency of β̂n, it

suffices to show that, for any given ε > 0, there exists a constant C such that

Pr

{
inf

β=β0+n−1/2u,‖u‖2=C
Qn(β) > Qn(β0)

}
≥ 1− ε,

where u = (u1, . . . , up) is a vector of dimension p. Note that

Qn(β0 + n−1/2u)−Qn(β0)

= `sn(β0 + n−1/2u)− `sn(β0)− λn
p∑
j=2

(
|βj0 + n−1/2uj |

|β̃j |
− |βj0|
|β̃j |

)

≤ `sn(β0 + n−1/2u)− `sn(β0) + λn

d∑
j=2

|n−1/2uj |
|β̃j |

= − 1

2n
uTΣ2u+ uTOp(1)u+ λnn

−1/2
d∑
j=2

|uj |
|β̃j |

= − 1

2n
uT {Σ2 + op(1)}u+

1

n
Op(1)

p∑
j=2

|uj |+ λnn
−1/2

d∑
j=2

|uj |
|β̃j |

. (1)
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Since β̃n is root-n consistent, for 1 ≤ j ≤ d,

1

|β̃j |
=

1

|βj0|
− sign(βj0)

β2j0
(β̃j − βj0) + op(|β̃j − βj0|) =

1

|βj0|
+
Op(1)√

n
.

Because
√
nλn = Op(1), it follows that

λnn
−1/2

d∑
j=2

|uj |
|β̃j |

= λnn
−1/2

d∑
j=2

(
|uj |
|βj0|

+
|uj |√
n
Op(1)

)
≤ CN−1Op(1).

Therefore, in (1), the first term is of the order C2n−1, while the second and third terms are of the

order Cn−1, given sufficiently large C. Hence (1) is negative if C is chosen to be sufficiently large,

and the root-n consistency follows.

Next, we show that β̂2n = 0. Following the arguments by Zhang and Lu (2007), it suffices to

show that, for any β1 satisfying ‖β1−β10‖2 = Op(n
−1/2), ∂Qn(β)/∂βj and βj have different signs

for βj ∈ (−Cn−1/2, Cn−1/2) for j = (d + 1), . . . , p and some constant C > 0. Using the Taylor

expansion,

∂Qn(β)

∂βj
=
∂`sn(β)

∂βj
− λn

sign(βj)

|β̃j |

= Op(n
−1/2)− λn

sign(βj)

|β̃j |

= n1/2

(
Op(1)− nλn

sign(βj)√
n|β̃j |

)

= n1/2
(
Op(1)− nλn

sign(βj)

Op(1)

)
.

Since nλn →∞, the sign of ∂Qn(β)/∂βj is always different from βj . The result follows.

Last, we show the asymptotic normality of β̂2n. Note that there exists a maximizer of Qn(β1,0)

(given (d+ 1), . . . , p-th components are fixed 0), which we denote by (β̂1n,0). Then

0 =
∂Qn(β)

∂β1
|βT=(β̂1n,0)

= S1n(β̂1n,0)−∇βS1n(β∗)(β̂1n − β10)− λn

(
sign(β̂1)

β̃1
, . . . ,

sign(β̂d)

β̃d

)T

= S1n(β̂1n,0)−∇βS1n(β∗)(β̂1n − β10)− λn
(

sign(β10)

β̃1
, . . . ,

sign(βd0)

β̃d

)T
, (2)

where β∗ is between β10 and β̂1n. Note that nλn → 0, we rewrite (2) as

n1/2S1n(β̂1n,0) = n1/2∇βS1n(β∗)(β̂1n − β10).
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Similar to the proof of Theorem 1, we have n1/2S1n(β̂1n,0)→d N(0,Σ2,1) and ∇βS1n(β∗)→ Σ1,1

as n→∞. The conclusion follows.

4. ADDITIONAL SIMULATION RESULTS

To demonstrate the kernel approximation (8) for the objective function (7) in the main paper, here

we consider an example with two covariates X1 and X2 and their coefficients β1 and β2. We fix

β1 = 1 and plot the objective function with β2 and their kernel approximations with bandwidths

hn = n−1 and hn = n−1/3 in Figure 1. It can be seen that the recommended choice of bandwidth

hn = n−1/3 works reasonably well.

Figure 1: Plots for the one-dimensional pseudo-likelihood function and its kernel approximation

with bandwidth h = n−1, and h = n−1/3.
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