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Summary. There is an increasing need to construct a risk-prediction scoring system for survival data and identify important
risk factors (e.g., biomarkers) for patient screening and treatment recommendation. However, most existing methodologies
either rely on strong model assumptions (e.g., proportional hazards) or only handle binary outcomes. In this article, we propose
a flexible method that simultaneously selects important risk factors and identifies the optimal linear combination of risk factors
by maximizing a pseudo-likelihood function based on the time-dependent area under the receiver operating characteristic curve.
Our method is particularly useful for risk evaluation and recommendation of optimal subsequent treatments. We show that the
proposed method has desirable theoretical properties, including asymptotic normality and the oracle property after variable
selection. Numerical performance is evaluated on several simulation data sets and an application to hepatocellular carcinoma
data.
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1. Introduction

Genomic medical research has generated a large number of
candidate biomarkers that have potential use in the early-
phase detection and prognosis of many diseases. Compared to
the conventional approach based on single biomarker, simulta-
neously using multiple biomarkers can substantially improve
the sensitivity and accuracy of early detection of diseases
(Sidransky, 2002; Etzioni et al., 2003). Multiple biomarker-
based scoring systems, such as the International Prognostic
Scoring System (IPSS) (Greenberg et al., 1997), WHO Prog-
nostic Scoring System (WPSS), and Revised International
Prognostic Scoring System (IPSS-R) (Greenberg et al., 2012),
have played fundamental roles in the treatment decision-
making process. For example, multiple biomarkers have been
used to guide treatment decisions for Myelodysplastic syn-
dromes (MDS), a heterogeneous group of myeloid disorders.
IPSS or IPSS-R can play a crucial role in differentiating
between patients at high risk of disease progression, for whom
a more aggressive treatment may be justified, and patients
with a minor risk of disease progression, for whom a more
conservative treatment may be preferable.

Although developing scoring systems for risk prediction has
been an active research area, the vast majority of them have
focused on binary outcomes (e.g., developing disease or not).
Su and Liu (1993) considered linear discriminant analysis by
maximizing the area under the receiver operating character-
istic (ROC) curve (AUC). That maximization/classification
idea has been extended in various ways, including non-normal
distributions (Pepe and Thompson, 2000), generalized lin-
ear models (Pepe et al., 2006), maximizing ROC values at

specified point (McIntosh and Pepe, 2002), maximizing sensi-
tivity over a range of specificity (Liu et al., 2005), maximizing
the empirical AUC (Ma and Huang, 2005), maximizing an
ROC-type measure given a continuous gold reference available
(Chang, 2013). Yuan and Ghosh (2008) proposed a model-
combining algorithm that builds on logistic regression models.
Recently, Chen et al. (2015) proposed an empirical-likelihood-
based approach to estimate the confidence intervals of the
AUC and find the optimal linear combination of biomarkers.
Chen et al. (2016) discussed a monotonic density ratio model
to find the asymptotically optimal combination of multiple
diagnostic tests.

Scoring systems for time-to-event data are increasingly
needed in practice. The aforementioned methods for binary
outcomes may not be efficient since the observed informa-
tion from the censored subjects cannot be fully utilized. The
existing approaches for constructing scoring systems for time-
to-event data mostly rely on the Cox model (Greenberg et al.,
1997; D’Avanzo, A., et al., 2004; Kadalayil, L., et al., 2013) or
the proportional odds model (Zheng et al., 2006), which may
lead to poor performance in risk prediction if the assump-
tion of proportional hazards (odds) is violated. Hence, it is
desirable to develop an approach that is robust to model
mis-specification for time-to-event data. In addition, given
that the recent advance of biomedical research has produced
a large volume of candidate biomarkers that may be useful
for risk prediction, it is crucial that the proposed approach
can also perform variable selection to increase the efficiency
and interpretability of the resulting scoring systems. A simple
pre-selection procedure based on unjustified criteria/incorrect
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models (e.g., marginal correlation) may lead to an undesirable
subset of risk factors.

The objective of this article is to fill these gaps by pro-
viding a method that simultaneously identifies useful risk
factors and constructs optimal risk scores for time-to-event
outcomes. The rest of the article is organized as follows:
We discuss a motivating example in Section 2. In Section
3, we construct a pseudo-likelihood function and solve the
corresponding estimation equations to optimize the inci-
dence/dynamic time-dependent AUC, which has a close
connection to the concordance summaries (Heagerty and
Zheng, 2005). In the estimating procedure, the selection of
biomarkers proceeds by regularization with adaptive lasso
penalty functions (Zou, 2006). Computationally, we consider
a kernel-smoothing technique to deal with the non-smooth
objective function (Zeng and Lin, 2007). Large-sample prop-
erties including

√
n-consistency and the oracle property after

variable selection are derived in Section 4. We present some
simulations studies and an application to hepatocellular car-
cinoma data in Sections 5 and 6. We provide proofs and
technical details in the Supplementary file.

2. A Motivating Example

Hepatocellular carcinoma (HCC) is a primary malignancy of
the liver and is now the third leading cause of cancer deaths
worldwide, with over 500,000 people affected (Kadalayil, L.,
et al., 2013). The five-year survival rate of patients with HCC
is low (<10% ) (Everhart and Ruhl, 2009), due to late detec-
tion and lack of effective treatment options for advanced-stage
HCC. There is an urgent need for methods to detect HCC
when it is in an early manageable stage of disease that is
amenable to curative treatments such as surgical resection,
liver transplantation or radiofrequency ablation (Santi, V., et
al., 2010).

Most cases of HCC are associated with cirrhosis (80%)
of which chronic hepatitis B or C are the most common
causes. However, most patients with liver cirrhosis do not
develop HCC; only 1–5% progress to HCC annually (Davis,
G. L., et al., 2010). Only a small part of this variation
in HCC risk can be predicted or explained by the existing
knowledge of HCC risk factors. For patients infected with
hepatitis C, previous studies have suggested a number of pos-
sible risk factors, including the degree of liver fibrosis and
cirrhosis, serum biomarkers (e.g., alpha-fetoprotein [AFP],
des-gamma-carboxyprothrombin [DCP]), diabetes, obesity,
use of tobacco, and excessive alcohol consumption (Lok et
al., 2009). Patients that are at high risk will be screened with
biomarkers that are positive or abnormal when early stage
tumor is present. Among HCC biomarkers, AFP is most com-
monly used for screening and diagnosis, but its sensitivity and
specificity are poor (Zhu, W. W., et al., 2013). Other tumor
biomarkers have been proposed to complement or substitute
for AFP in HCC detection, such as DCP (Song et al., 2014).
Several previous studies have recommended that a combined
test of AFP and DCP increases the sensitivity or specificity
of early HCC detection over the use of a single biomarker
(Song, P., et al., 2013). For example, in a study of 210 Chinese
patients, a combined test of DCP and AFP had a sensitivity
of 78.3%, which was higher than that of DCP alone (53.3%) or

AFP alone (58.3%) (Cui, R., et al., 2003). However, using mul-
tiple markers increase sensitivity but often decrease specificity
(Lok et al., 2010).

The precise role of these risk factors in the prediction
of HCC is not yet known. There is, thus, a great need for
reliable statistical models that can efficiently combine risk
factors for prediction purposes. Some efforts in that direc-
tion have been made. Sanyal, A. J., et al. (2006) proposed
an HCC risk prediction method based on logistic regression.
Lok et al. (2009) proposed an approach based on the pro-
portional hazard model. These approaches, however, rely on
strong model assumptions (i.e., logistic model or proportional
hazards), and their performance may be compromised when
the assumptions are violated. In this article, motivated by a
data set recently collected from a randomized two-arm trial
over 10 sites in the U.S., we propose new statistical methods
that identify risk factors associated with the development of
HCC and construct a score formula for risk prediction with-
out any model assumptions on the time to the development
of HCC.

3. Method

3.1. Notation

Let T be the time measured from the onset of the initial event
to the failure event, referred as the survival time. Denote X to
be a p-vector of the covariates including the biomarkers and
the other patients’ characteristics. Given covariates X, define
S(X) as a scoring system, where higher scores are related to
higher risk levels and shorter survival times. We assume that
the censoring time C is independent of T conditional on X.
Consider a study cohort with n patients. Let the observed
data (Z1, δ1, X1), . . . , (Zn, δn, Xn) be independent and identi-
cally distributed copies of (Z, δ, X), where Z = min(T, C), and
δ = 1l(T ≤ C) is the censoring indicator. Note that the survival
time Z is allowed to depend on the covariates X. At a given
time point t, define the risk set as R(t) = {j : Zj > t}.

We characterize the performance of the score S(X) by
the time-dependent incidence/dynamic (I/D) AUC definition
(Heagerty and Zheng, 2005), in which the time-dependent
incidence sensitivity and dynamic specificity are defined by
classifying patients into case and control groups at each time
point based on their survival status,

TPI
t (c)=P

{
S(X)>c|T = t

}
, FPD

t (c) = P
{
S(X) > c|T > t

}
.

Here TPI
t (c) (sensitivity) measures the expected fraction of

subjects with a score value greater than c among individ-
uals who experience the event of interest at time t, while
1 − FPD

t (c) (specificity) measures the fraction of subjects with
a score value less than or equal to c among those who survive
beyond time t. Then the time-dependent ROC curve is defined
by

ROCI/D
t (p) = TPI

t {(FPD
t )−1(p)}, for p ∈ [0, 1].

and its time-dependent AUC can be obtained as

AUC(t) = P
{
S(Xi) > S(Xj)|Ti = t, Tj > t

}
. (1)
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3.2. Estimation

We model the risk score S(X) for the time-to-event outcome
by using a smooth function of patients’ characteristic, denoted
by S(X;β), where β is a finite-dimensional parameter. A com-
monly used linear model summarizes the patient information
as follows,

S(Xi;β) = β1Xi1 + · · · + βpXip. (2)

For identification purposes, we set β1 = 1 in model (2). More
generally, we may consider a nonlinear score system,

S(Xi;β) =
p∑

j=1

K∑
k=1

βjkψk(Xij), (3)

where ψ1, . . . , ψK are pre-specified nonlinear basis functions,
such as polynomials. It is also possible to incorporate the
interactions between biomarkers, example, S(Xi;β) = ∑p

j=1

βjXij + ∑p

s=1

∑p

t=l+1
ηstXisXit .

Let t1 < · · · < tM be the ordered unique failure times for
{Z1, · · · , Zn}, M ≤ n. At each time point tm, the subjects in
the risk set R(tm) can be divided into two groups:

RL(tm) = {j : S(Xi;β) > S(Xj;β), Zj > tm, Zi = tm},
RH(tm) = {j : S(Xi;β) ≤ S(Xj;β), Zj > tm, Zi = tm}.

The first group RL(tm) can be viewed as the set of patients
with relatively low risk, whose score values are lower than
S(Xi;β); whereas the second group, RH(z), can be viewed as
the set of patients with relatively higher risk compared with
subject i. By the definition of AUC in (1), it is natural to use
the proportional of observing a low-risk patient in the risk set,
|RL(t)|/|R(t)|, as an estimator of AUC(t), where |A| denotes
the size of a set A. In other words, the estimated AUC(t) is the
empirical concordance probability P(S(Xi;β) > S(Xj;β)|Zj >

Zi). Therefore, we can construct a pseudo-likelihood function
by multiplying the empirical concordance probabilities at all
uncensored observations i together,

L(β) =
M∏

i=1

̂AUC(ti) =
M∏

i=1

|RL(ti)|
|RL(ti)| + |RH(ti)| . (4)

Then the estimation of β proceeds by maximizing the fol-
lowing log-pseudo-likelihood function, termed the objective
function

�n(β) = 1

n

n∑
i=1

δi log

{∑n

j=1
1l(Zj > Zi)1l(S(Xi;β)−S(Xj ;β) > 0)∑n

j=1
1l(Zj > Zi)

}
.

(5)

Note that there are several different definitions of
time-dependent ROC. We choose to work with the
incident/dynamic (I/D) time-dependent ROC over other
definitions (e.g., cumulative/dynamic) because it is closely
connected with the concordance probability, which allows
the construction of the pseudo-likelihood in (5). Moreover,

it provides a natural way to define a weighted time-averaged
summary of the AUC, which is called IAUC. Heagerty and
Zheng (2005) showed that the IAUC is equivalent to Kendall’s
τ with a proper weight function.

A major challenge with the maximization of (5) is non-
smoothness due to the indicator functions involved. The
objective function �n(β) may remain the same under a small
amount of perturbation of β; hence the finite-sample solution
may not be unique. Moreover, because of the non-smoothness
property, the maximization is computationally difficult and
cannot be solved using standard optimization algorithms
designed for continuous functions. One possible solution is
to use the Nelder–Mead method by Nelder and Mead (1965),
termed the exact method. When there are more than a few
covariates, this method can be computationally intensive.
Alternatively, we adopt a smoothing kernel to approximate
the indicator (Zeng and Lin, 2007). Specifically, we propose
to maximize the following approximation to �n(β):

�s
n(β)= 1

n

n∑
i=1

δi log

{∑n

j=1
1l(Zj > Zi)

∫ S(Xi;β)−S(Xj ;β)

−∞ K(u;hn)du∑n

j=1
1l(Zj > Zi)

}
,

(6)

where K(·, hn) is a symmetric kernel function with bandwidth
hn converging to 0 as n → ∞. In principle, any smooth sym-
metric probability density functions can be used here, such
as normal, logistic and t-distributions. We choose a standard
normal kernel for simplicity and computational tractability.
The bandwidth can be chosen by either cross-validation or
using the optimal choice of the bandwidth for density estima-
tion problems (Jones, 1990); see Section 4 of Supplementary
File for more details.

3.3. Variable Selection

With rapid developments occurring in biomedical research, a
very large number of biomarkers have become available for the
construction of the scoring system. However, many biomark-
ers might not be directly related to the risk. Therefore, it is
of great importance to include a variable selection procedure
that removes the redundant information and identifies useful
biomarkers/risk factors in making clinical decisions. Accord-
ingly, we consider adopting shrinkage penalties for variable
selection. We restrict the discussion to the linear score sys-
tem (2) for convenience. The nonlinear system can be treated
in a similar way. We propose to maximize the following loss
function,

Qn(β) = �s
n(β) − λn

p∑
j=2

J(|βj|), (7)

where λn is a tuning parameter and J(.) is a penalty func-
tion. The available choices for J(.) include smoothly clipped
absolute deviation (SCAD, Fan and Li, 2001) and adaptive
LASSO (Zou, 2006). Here, we use an adaptive LASSO penalty,
that is, J(|βj|) = |βj|/|β̃j|, where β̃j is the j-th element of β,
the solution to argmaxβ�

s
n(β). This penalty function can be

regarded as an asymptotic version of L0-penalty as long as β

is consistent (Zhang and Lu, 2007).
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Computationally, we adopt the coordinate descent algo-
rithm (Friedman et al., 2007) that solves the optimization
problem by updating one parameter at one time while keeping
all others fixed. We first fix an initial estimate β̃ by solving
argmaxβ�

s
n(β). We then update βk (k = 2, . . . , p) by solving

the one-dimensional optimization

argminβk
λn

|βk|
|β̃k|

− 1

n

n∑
i=1

δi

× log

⎧⎨
⎩

∑n

j=1
1l(Zj >Zi)

∫ h−1
n (βk(Xki−Xkj)+cij)

−∞ K(u)du∑n

j=1
1l(Zj > Zi)

⎫⎬
⎭,

keeping all other parameters fixed. Here, cij is a constant
that depends on indexes i and j only. The iterative proce-
dures continue until the pre-specified convergence criteria is
met. We denote the final solution by β̂. The selection of λn

can be achieved by cross-validation based on the prediction
performance. We will discuss this issue in details in Section
5.2.

4. Asymptotic Results

In this section, we establish asymptotic properties of the
proposed estimators. Denote the true value of β in the
scoring system by β0. We first show that the kernel-based
smoothing estimator is consistent and asymptotically nor-
mally distributed without the variable selection procedure,
by using kernel approximation theory and the techniques of
Zeng and Lin (2007).

Theorem 1. Under Conditions (C1) and (C2) listed in the
Supplementary file, β̃ → β0 almost surely and

√
n(β̃ − β0) →d

N(0, V1), in which V1 = �1
−1�2�1

−1, and

�1 = E{−∇βw
i
n(β);β0}, �2 = E{wi

n(β)⊗2;β0},

wi
n(β) =

1
nhn

∑n

j=1
1l(Zj > Zi)(∇βS(Xi;β) − ∇βS(Xj;β))K(1)

(
S(Xi;β)−S(Xj ;β)

hn

)
1
n

∑n

j=1
1l(Zj > Zi)

.

We next prove that the proposed adaptive Lasso penalty
estimator β̂ is

√
n-consistent, and present the selection con-

sistency and asymptotic normality results. Let I0 = {k : βk 
=
0, k = 1, . . . , p} be the set of important covariates. We denote
Î = {k : β̂k 
= 0, k = 1, . . . , p} as the set of selected covariates.
Note that k = 1 is always included in both sets since we fix
β1 = 1. Without loss of generality, we write β0 = (βT

10,0
T )T

and β̂ = (β̂
T

1n, β̂
T

2n)
T .

Theorem 2. Assume that Conditions (C1) and (C2) hold,
If

√
nλn = Op(1) as n → ∞, then ‖β̂ − β0‖2 = Op(n

−1/2). If√
nλn → 0 and nλn → ∞, then the adaptive Lasso estimator

β̂ satisfies β̂2n = 0 and
√

n(β̂1n − β10) → N(0, V2), in which
V2 = �11

−1�21�11
−1, and �11 and �21 are the leading d × d

submatrices of �1 and �2.

The above theorem asserts that if λn is chosen appro-
priately, then the penalization estimator enjoys the oracle

property in the sense that it performs as well as the maxi-
mum likelihood estimator under the correct model (Donoho
and Johnstone, 1994). In practice, λn can be chosen based on
cross-validation; see more details in Section 5. The asymp-
totic results in Theorem 1 hold under mild conditions on the
true score system, including linear and nonlinear models. See
the discussion and the proofs of Theorems 1 and 2 in the
Supplementary File.

5. Simulation

5.1. Score System Without Variable Selection

We first considered low-dimensional cases without variable
selection. The data were generated under the following five
scenarios:
Case 1. For each patient, we generated two independent
biomarkers: X1 from a uniform distribution on (0, 1) and
X2 from a standard normal distribution. The survival time
was generated from a mixture of two Weibull distributions
ZWeibull(2, 1) + (1–Z) Weibull(1, 2), where Z followed a
Bernoulli distribution with a success probability of 0.91l(X1 +
3X2 ≤ 0.5).
Case 2. In addition to the two biomarkers generated from
Case 1, we generated another three redundant independent
biomarkers: X3 from a beta distribution Beta(2, 5), X4 from a
Bernoulli distribution, Bernoulli(0.3), and X5 from a uniform
distribution on (−1, 1). The survival time was generated in
exactly the same way as in Case 1.
Case 3. We generated X1 from a uniform distribution on
(0.8, 1.2) and an independent random preventive inter-
vention assignment A following a Bernoulli distribution
Bernoulli(0.5). We also included the interaction of A and X1

in the score system. The survival time was generated from a
Weibull distribution with the following parameters:

θshape = (1 − A)(2 − X1) + A(1 + X1),

θscale = (1 − A)(3 − X1) + AX1.

Case 4. We considered the same setting as in Case 1 except
that the success probability of Z was changed into 0.91l(X2

1 +
1.5X2 ≤ 1/3).
Case 5. We generated X1 from Uniform(0.5, 1.5) and an
independent A from Bernoulli(0.5). The survival time T

was generated by log T ∼ N(−AX1 − (1 − A)(3.5 − 1.5X1),
0.52).

For each of 1000 simulated data sets, we used sample
sizes of n = 400 and 1000, and randomly partitioned 75%
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of the patients into a training set and 25% into a test set.
An independent censoring time was generated from a uni-
form distribution on (0, τ∗) such that either 20 or 40% of
the patients were censored. The value of τ∗ was determined
numerically such that the empirical censoring rate was close
to the desired percentage, such as 20%. For the training data,
we used the exact method, the kernel method, the Cox model,
the boosting method that maximizes the concordance prob-
ability (Mayr and Schmid, 2014), the time-varying logistic
regression model using inverse probability weighting (IPW)
(Zheng et al., 2006), and a naive logistic model that discards
the censored observations, to derive five risk score formulae.

In the kernel method, we chose a fixed bandwidth hn = n−1/3,
based on the recommendation by Jones (1990) for the optimal
choice of bandwidth for density estimation. We applied risk
score formulae to both the training and test data. Based on
the resulting risk scores, we equally divided the patients into
two groups (high-risk vs low-risk), and calculated the mean
survival time for each group. The performances were evalu-
ated by the differences in the mean survival times between
the high-risk and low-risk groups, which were denoted by
Dtest

mean. We also calculate the IAUC using the method in
Shen et al. (2015). We summarize the results in Table 1. For
all cases, the values of Dmean and IAUC obtained from the

Table 1
Simulation results for Cases 1–5: Mean survival time difference between low-risk and high-risk groups and the estimated

IAUC, obtained from the kernel-smoothing method (Ker), the exact method (Ext), the Cox model (C), the boosting method
(M), the time-varying logistic regression model (Z), and the naive logistic regression method (L) based upon 1000 replications

Setting Dtest
mean IAUC

case n cen Ker Ext C M Z L True Ker Ext C M Z L

1 200 0.2 0.42 0.42 0.19 0.32 0.18 0.07 0.61 0.58 0.58 0.53 0.59 0.53 0.51
0.4 0.24 0.27 0.10 0.18 0.05 0.04 0.59 0.57 0.56 0.52 0.59 0.51 0.51

400 0.2 0.42 0.41 0.22 0.35 0.21 0.07 0.60 0.59 0.59 0.53 0.60 0.53 0.51
0.4 0.27 0.27 0.10 0.20 0.07 0.02 0.59 0.57 0.57 0.52 0.59 0.52 0.51

1000 0.2 0.56 0.60 0.30 0.37 0.37 0.09 0.61 0.60 0.60 0.55 0.60 0.55 0.51
0.4 0.39 0.40 0.17 0.21 0.11 0.05 0.59 0.59 0.59 0.54 0.59 0.52 0.51

2 200 0.2 0.28 0.34 0.12 0.25 0.16 0.03 0.60 0.58 0.56 0.52 0.58 0.53 0.50
0.4 0.16 0.20 0.06 0.14 0.04 0.00 0.59 0.58 0.55 0.52 0.58 0.52 0.50

400 0.2 0.40 0.37 0.15 0.33 0.21 0.04 0.60 0.59 0.58 0.53 0.60 0.54 0.51
0.4 0.25 0.25 0.07 0.18 0.05 0.03 0.59 0.58 0.57 0.53 0.58 0.51 0.50

1000 0.2 0.52 0.51 0.26 0.38 0.33 0.04 0.60 0.60 0.60 0.54 0.60 0.55 0.51
0.4 0.33 0.34 0.15 0.21 0.05 0.02 0.59 0.58 0.58 0.53 0.59 0.51 0.51

3∗∗ 200 0.2 0.87 0.87 0.28 0.66 0.19 0.23 0.62 0.64 0.62 0.54 0.63 0.53 0.54
0.4 0.55 0.55 0.27 0.39 0.20 0.00 0.59 0.63 0.60 0.57 0.61 0.55 0.50

400 0.2 0.89 0.88 0.40 0.70 0.36 0.34 0.62 0.64 0.62 0.56 0.63 0.58 0.56
0.4 0.57 0.57 0.36 0.42 0.23 0.02 0.59 0.63 0.60 0.58 0.61 0.54 0.51

1000 0.2 0.94 0.93 0.60 0.72 0.48 0.45 0.62 0.64 0.62 0.59 0.63 0.61 0.58
0.4 0.61 0.60 0.51 0.43 0.27 0.06 0.59 0.63 0.60 0.61 0.61 0.54 0.52

4 200 0.2 0.43 0.46 0.33 0.30 0.33 0.11 0.61 0.58 0.58 0.55 0.59 0.55 0.52
0.2∗ 0.35 0.46 0.33 0.29 0.35 0.10 0.61 0.57 0.58 0.55 0.59 0.55 0.52
0.4 0.29 0.27 0.18 0.15 0.11 0.09 0.59 0.57 0.57 0.54 0.58 0.52 0.52
0.4∗ 0.22 0.27 0.17 0.16 0.11 0.09 0.59 0.56 0.57 0.54 0.58 0.53 0.51

400 0.2 0.48 0.54 0.38 0.34 0.41 0.11 0.60 0.59 0.59 0.56 0.60 0.56 0.52
0.2∗ 0.35 0.54 0.40 0.34 0.42 0.11 0.60 0.57 0.59 0.56 0.60 0.56 0.52
0.4 0.30 0.31 0.20 0.26 0.13 0.08 0.59 0.58 0.58 0.54 0.59 0.53 0.51
0.4∗ 0.23 0.32 0.23 0.19 0.15 0.07 0.59 0.56 0.58 0.55 0.59 0.53 0.51

1000 0.2 0.62 0.66 0.57 0.55 0.58 0.17 0.60 0.60 0.60 0.58 0.60 0.59 0.52
0.2∗ 0.42 0.66 0.58 0.36 0.59 0.15 0.60 0.58 0.60 0.58 0.60 0.59 0.52
0.4 0.38 0.40 0.30 0.29 0.20 0.07 0.59 0.59 0.59 0.56 0.59 0.54 0.51
0.4∗ 0.29 0.42 0.33 0.20 0.20 0.08 0.59 0.57 0.59 0.56 0.59 0.54 0.52

5 200 0.2 0.23 0.21 0.08 0.18 0.20 0.10 0.75 0.68 0.66 0.56 0.60 0.61 0.55
0.4 0.21 0.18 0.04 0.15 0.08 0.04 0.71 0.67 0.66 0.51 0.55 0.56 0.51

400 0.2 0.24 0.24 0.12 0.18 0.22 0.14 0.75 0.68 0.68 0.56 0.59 0.64 0.56
0.4 0.21 0.21 0.06 0.15 0.11 0.05 0.71 0.67 0.67 0.50 0.55 0.59 0.51

1000 0.2 0.25 0.25 0.19 0.19 0.23 0.20 0.75 0.68 0.68 0.58 0.59 0.66 0.57
1000 0.4 0.22 0.22 0.09 0.16 0.13 0.12 0.71 0.67 0.667 0.52 0.55 0.60 0.53

Dtest
mean: mean difference in the test data; IAUC: integrated area under the curve.

*: Case 4, the true model contains a nonlinear term. We fit both the linear model (results denoted by ∗ in the table) and the nonlinear
model to evaluate the robustness of the proposed method under model assumption violations.
**: Case 3, the true score system is two-dimensional, hence there is no “true” one-dimensional score. Therefore we use the interaction
X1(2A − 1) to generate the “True” value for IAUC.
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kernel smoothing method were very close to those obtained
from the exact method, suggesting that the kernel approxi-
mation worked well for the non-smooth object function. The
proposed methods (kernel and exact), the boosting method
and the IPW logistic method all outperform the Cox model
in most scenarios. This is expected because (1) the propor-
tional hazard assumption is violated in these cases; and (2)
the proposed method and the boosting method maximize the
AUC to separate high-/low-risk groups as much as possible,
while the Cox model maximizes the partial likelihood, which
targets a different problem. The naive logistic method does
not perform well for small sample sizes and high censoring
rate (40%). This is expected since it does not use the censored
observations.

For each case, we also calculated the IAUC using the under-
lying true score system. It can be seen that both the boosting
method and the proposed method produced IAUC values
close to the oracle truth, which confirms their prediction accu-
racy. The IPW logistic method does not work well enough
when the proportional odds assumption is strongly violated,
as in Cases 1–3, and when censoring is high (40%). For Case 4,
by comparing the results from the true model (nonlinear) and

the mis-specified model (linear), we notice that the proposed
method is quite robust to violations of model assumptions.
Compared to the other methods, our method has good perfor-
mances in all cases in terms of discriminating high-/low-risk
groups. This is because the proposed method fully utilizes
the covariate information from the censored subjects. We
also considered the sensitivity analysis for the bandwidth;
the results suggested that our method was not sensitive to
the choice of bandwidth within a reasonable range.

5.2. Variable Selection Examples

We next evaluated the performance of the penalized variable
selection method. The data were generated from the following
four situations.
Case 6 (weak correlation). We generated a biomarker X1

from Uniform(0, 1) and independently generated ten biomark-
ers X2, . . . , X11 from a joint normal distribution with
mean 0, variance 1 and correlation corr(Xi, Xj) = 0.21l(i 
=
j). We also generated 5 i.i.d. biomarkers X12, . . . , X16

from an exponential distribution with mean one. The
survival time T was generated from a log-normal distribution
log T ∼ N(5 − 3X1 − X2, 0.04).

Table 2
Simulation results for Cases 6–9: Selection frequency and estimated coefficients for Cases 6–9 based upon 1000 replications.

Case 6 Selection frequency (%) Estimated coefficients

n cen(%) X2 X3 X4 X12 X13 True Model X2 X3 X14

500 20 99.8 1.5 2.5 0.9 2.2 79.4 0.380 0.015 0.008
40 99.9 3.9 3.8 2.4 2.2 66.4 0.377 0.010 0.000

1000 20 99.6 0.7 0.8 0.3 0.3 91.8 0.363 −0.002 0.003
40 99.6 2.5 2.2 0.9 1.1 80.0 0.361 −0.002 0.000

Case 7 Selection frequency (%) Estimated coefficients

n cen% X2 X3 X4 X5 X10 True Model X2 X3 X4

500 20 100 100 6.8 6.9 4.6 55.7 0.520 0.511 0.002
40 100 100 9.5 8.4 8.0 52.1 0.521 0.511 0.003

1000 20 100 100 0.5 0.2 0.5 91.6 0.511 0.504 0.010
40 100 100 1.9 1.9 1.1 82.2 0.512 0.505 0.009

Case 8 Selection frequency (%) Estimated coefficients

n cen% X2 A X1A X2A X3A True Model X2 X1A X3A

500 20 99.6 10.8 99.8 9.5 100 46.6 0.518 0.566 1.044
40 99.8 9.4 96.0 18.0 100 37.9 0.515 0.586 1.048

1000 20 99.6 0.6 99.9 1.5 100 93.2 0.510 0.535 1.022
40 99.8 1.2 96.8 6.8 100 80.8 0.508 0.548 1.024

Case 9 Selection frequency (%) Estimated coefficients

n cen% X2 A X1A X2A X3A True Model X2 X1A X3A

500 20 100 6.9 100 62.8 100 16.3 0.592 0.612 1.076
40 99.9 9.5 100 53.9 100 18.0 0.597 0.638 1.089

1000 20 100 0.9 100 51.8 100 32.7 0.551 0.569 1.044
40 100 1.4 100 45.7 100 28.5 0.552 0.580 1.056
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Case 7 (moderate correlation). We generated 20 biomarkers
X1, . . . , X20 from a joint normal distribution with mean 0,
variance 1 and correlation corr(Xi, Xj) = 0.5|i−j|. The survival
time followed log T ∼ N(2 − X1 − 0.5X2 − 0.5X3, 0.04).
Case 8 (treatment interaction). We generated 15 biomark-
ers X1, . . . , X15 from a joint normal distribution with mean
0, variance 1 and correlation corr(Xi, Xj) = 0.151l(i 
= j). An
independent treatment indicator A was generated from a
Bernoulli(0.5) distribution. The survival time followed log T ∼
N(2.5 − X1 − 0.5X2 − 0.5X1A − X3A, 0.04).
Case 9 (strong correlation and treatment interaction) We gen-
erated X1, . . . , X10 from a joint normal distribution with mean
0, variance 1 and correlation corr(Xi, Xj) = 0.8|i−j|. We also
considered an independent indicator A from a Bernoulli(0.5)
distribution. The survival time was generated in the same way
as in Case 8.

For each case, we considered 1000 replications and summa-
rized the selection frequency of each individual biomarker and
the proportion of exactly selecting the correct model in Table
2. We listed the estimated coefficients for selected biomarkers.
We randomly partitioned the data into training (40%), valida-
tion (40%) and test (20%) sets. We let the tuning parameter λ

take values in {5, 7, 10, 15, 20, 50, 70, 100} and chose the opti-
mal one by maximizing the median survival difference (Dmed)
on the validation set.

As shown in Table 2, the proposed penalization method
showed a good selection performance, particularly when the
sample size was large. For example, under Case 8 with sam-
ple size of 1000, the selection frequencies for true variables
X2, X1A, and X3A obtained from the proposed method were
greater than 96%, and the true model was selected more than
80% of the time. The selection frequencies for false variables
A and X2A were very low (at most 7%). The method also
provided accurate estimation of the coefficients. Taking Case

7 as an example, the estimation biases were at most 0.20
for n = 500, and 0.12 for n = 1000. Case 9 was a challenging
situation because of the high correlation and the treatment
interaction. Therefore, the selection frequency of the unim-
portant variable X2A was high since X1A, X3A, and X2 were
in the true model and are highly correlated. Still, the selec-
tion frequency and estimated coefficients of all other variables
were satisfactory. To evaluate the prediction performance of
our method, we compared the difference in the mean and
median survival times for the high-risk and low-risk groups
as determined by the proposed penalized method and by the
oracle model, in which we fitted the model using the true
set of biomarkers. The results on the test and training data
(reported in brackets) are summarized in Table 3 based on
1000 replications. The prediction performance after variable
selection seemed satisfactory in the sense that the survival
time difference was very close (Cases 7–9 in particular) to
that obtained from the oracle model for both low (20%) and
high (40%) censoring rates.

Note that dividing the patients equally into two groups and
looking at their survival time difference is a convenient way
to evaluate the discrimination ability of the score systems,
but is not the only way to determine patient subgroups. In
application, a possible alternative is to apply cluster analysis
for the obtained scores to determine the cut-offs to use in
dividing patients into subgroups.

6. Data Application

In the Hepatitis C Antiviral Long-term Treatment against
Cirrhosis (HALT-C) trial, a total of 1050 patients with chronic
hepatitis C were enrolled and randomized to receive half-dose
pegylated interferon or no treatment, and were followed up
for a median of 6.1 (maximum 8.7) years to monitor the
development of HCC and liver failure. At entry,

Table 3
Simulation results for Cases 6–9: Mean/median survival time differences using the proposed penalized method (penal)

compared with the oracle model (oracle) based upon 1000 replications

Dtest
mean(Dtrain

mean) Dtest
med(Dtrain

med)

Case n cen(%) penal oracle penal oracle

6 500 20 69.4 (70.2) 96.7 (97.0) 53.5 (53.5) 71.0 (70.5)
40 43.7 (43.9) 67.3 (67.4) 50.1 (52.9) 64.9 (68.8)

1000 20 71.4 (71.6) 98.5 (98.7) 54.6 (54.2) 71.3 (70.5)
40 45.5 (45.3) 67.5 (67.3) 53.6 (54.0) 69.2 (70.2)

7 500 20 24.7 (25.0) 27.7 (28.0) 17.5 (17.6) 19.1 (19.3)
40 13.9 (13.9) 16.9 (16.9) 15.0 (16.4) 16.5 (18.0)

1000 20 25.3 (25.5) 28.0 (27.9) 17.8 (17.7) 19.2 (19.0)
40 14.2 (14.1) 16.7 (16.6) 16.7 (17.3) 17.7 (18.4)

8 500 20 40.3 (40.5) 46.2 (46.0) 27.4 (27.4) 31.0 (30.4)
40 22.3 (22.3) 26.8 (26.9) 24.2 (26.0) 26.2 (28.3)

1000 20 40.8 (41.1) 47.5 (47.2) 27.3 (27.5) 31.0 (30.4)
40 22.1 (22.2) 26.4 (26.4) 25.7 (26.9) 25.8 (28.1)

9 500 20 66.5 (65.5) 69.1 (69.6) 41.4 (40.0) 42.0 (42.2)
40 30.7 (30.5) 32.4 (32.5) 31.4 (34.6) 31.5 (34.8)

1000 20 66.9 (66.9) 69.6 (69.3) 40.8 (40.5) 42.3 (42.0)
40 30.8 (30.6) 32.7 (32.7) 34.7 (37.0) 35.0 (37.6)

Dtest
mean: mean difference in the test data; Dtrain

mean: mean difference in the training data; Dtest
med: median difference in the test data; Dtrain

med:
median difference in the training data.
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Table 4
One-year risk prediction for HALT-C data: IAUC and associated standard error (SE) for different set of risk factors

Factors IAUC SE

AFP 0.581 0.037
ALK 577 0.037
AST 0.561 0.040
DCP 0.530 0.039
Bilirubin 0.503 0.035
AFP, Ishak 0.836 0.029
DCP, Race 0.726 0.031
Score system including AFP, DCP, ALK, Ishak, Age, BMI, Gender, Drink,
Platelets, AST, Albumin, CTP, AFP*Gender, AFP*Race and DCP*Race 0.943 0.015
Score system without the interaction term DCP*Race 0.856 0.015
Lok et al. (2009)’s formula (Age, Race, Smoke, Platelets, ALK) 0.731 0.016

clinicians obtained measurements from each patient,
including blood cell count, liver panel (e.g., albumin,
aspartate aminotransferase, alanine aminotransferase, and
bilirubin), and AFP/DCP levels. Time to HCC was one
of the planned trial outcomes; hence, the HALT-C trial
provided an opportunity to identify risk factors associ-
ated with the development of HCC in a U.S. cohort with
chronic hepatitis C and advanced liver fibrosis or cirrhosis.
There were 88 patients who met the criteria for HCC. We
aimed to identify risk factors associated with the devel-
opment of HCC and to construct a score formula for risk
prediction.

We applied the method in Section 3 to the HALT-C data. In
addition to the aforementioned variables, we included demo-
graphic information (age [mean=50.1], gender [female 29%],
race [white 71.6%, Hispanic 18.2%, black and other 10.2%]),
body mass index (BMI), smoking status, alcohol consump-
tion, baseline Child-Turcotte-Pugh (CTP) score (measures
cirrhosis complications and synthetic function of the liver),
baseline liver biopsy Ishak score (measures the stage of fibrosis
on a scale from 0 to 6) and their interactions in our analysis.
We treated the time from the initial entry to the development
of HCC as the primary outcome.

We first evaluated the risk prediction abilities of individ-
ual factors and combined a subset of factors without variable
selection. To perform the assessment, we considered five-
fold cross-validation by randomly partitioning the data set
into five equal folds, choosing four for model fitting and
using the other one to calculate the IAUC for the 1-year
risk prediction with the method of Shen et al. (2015). This
procedure is repeated five times for each fold. The aver-
age of the IAUCs together with their associated standard
errors are presented in Table 4. Among all factors, AFP
had the highest IAUC (0.581), confirming the clinical experi-
ence of treating AFP as one of the most useful biomarkers
for diagnosis of HCC as a risk factor that predicts HCC
development. In contrast, bilirubin had IAUC values close to
the non-informative value of 0.50, suggesting that it did not
have good prediction performance when evaluated individu-
ally. The risk score obtained by combining risk factors may
lead to a significant increment in the IAUC. For example,
the IAUC value increased from 0.581 to 0.836 by combining
the Ishak fibrosis score with AFP. Similarly, by combining

DCP with race, the IAUC value increased from 0.530 to
0.726.

We then used the penalization method in Section 3.3 to
identify the important risk factors and build a score system.
To reduce the potential bias associated with overfitting, we
used five-fold cross-validation to choose the tuning parameter
λ in a pre-specified set that had the highest estimated mean
survival time difference between the low-risk and high-risk
groups. For simplicity, we fixed the bandwidth of the normal
kernel at n−1/3. The identified set of significant factors in the
score formula included the main effects of AFP, DCP, albu-
min, platelets, ALK, age, gender, BMI, Ishak score, and the
interaction effect of AFP * gender, AFP * Race and DCP *
Race. The IAUC by the score system was 0.943 with a stan-
dard error of 0.015, which increased the IAUC of the single
AFP by 62%.

For comparison, we also considered a risk score that con-
sisted of the set of variables provided by Lok et al. (2009)
using Cox model, and a risk score without the interaction
DCP * Race. This showed that the interaction played a role
in the score system as the IAUC dropped from 0.943 to 0.856
when the interaction was removed. The proposed set of vari-
ables increased the IAUC for the model of Lok et al. (2009)
by 29%.

We then evaluated the 5-year risk prediction performance.
The estimated IAUC of the score system was 0.720 with a
standard error of 0.045. Comparing to the 1-year risk pre-
diction, the value of IAUC was decreased by 24%. This was
expected because we were only using the baseline information
in the score system. To better illustrate, in Figure 1, on the left
side we plotted the estimated AUC curve of the score system
with 95% confidence bands and that of the single biomarker
AFP for the entire study period. This plot shows that the
score system had a significant advantage in estimation accu-
racy compared to AFP, as the AUC of the proposed score was
always above that of AFP. In the first two years, the estimated
AUC of the score system was above 0.8, indicating a good pre-
diction performance. However, the predictive ability of that
score decreased quickly over time, implying that the risk score
was not that informative for long-term risk prediction, and
that longitudinally measured values of the risk factors should
be utilized to update and improve the risk assessment. We fur-
ther divided the patients equally into high-risk and low-risk
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Figure 1. HALT-C data analysis.

groups based on their scores and plotted their corresponding
Kaplan-Meier survival curves; the proposed method managed
to separate these two subgroups well.

7. Discussion

In this article, we proposed new methods for selecting impor-
tant risk factors and constructing a clinically useful score
system. The proposed method builds on the idea of maxi-
mizing a global average of the time-dependent AUC. Hence,
it avoids the need of making strong model assumptions on
the time-to-event outcomes while boosts the overall prediction
performance.

So far, we have assumed that no two patients have the
same failure event time in the data. In the presence of ties,
the proposed method can be extended by considering all pos-
sible orderings (or randomly choosing one possible ordering),
adding a small amount to the failure times and then summing
up the likelihoods under different orderings.

In addition to ROC-based approaches, logistic regression
provides another valuable alternative to score system esti-
mation (Vexler et al., 2016). To fully utilize the censored
observations and time-to-event outcomes, inverse probability
weighting (IPW) and Bayesian models can be used. In our
simulations, we have implemented a naive logistic regression
approach and a time varying logistic regression method with
IPW for score system estimation. It can be seen that the
results from the logistic models are comparable to those from
our approach when implemented appropriately. It is of future
interest to develop a dynamic Bayesian logistic regression
approach for score system estimation and covariate selection.

To improve the precision of risk assessments, molecu-
lar/genetic data have been included in the risk profiles for
cancer research. However, measuring such biomarkers can
be expensive and labor intensive; hence, the collection of
biomarker information for each subject may be infeasible. It
will be interesting to adapt the current framework to more

complicated designs such as nested case-control and stratified
case-cohort designs (Cai and Zheng, 2013). In this article, we
assume that the score formula S(X, β) follow a known func-
tional form. In future work, it will be of interest to develop
methods to test the validity of these model assumptions.
Another important area for future research is nonparametric
estimation of functions ψ in (3) by considering basis expan-
sion techniques such as splines and wavelets. For biomarker
selection, we adopt a penalization method. It is also possible
to consider Bayesian approaches with variable selection priors
(e.g., spike-and-slab and horseshoe).

8. Supplementary Materials

Additional numerical results and technical proofs referenced
in Sections 3.2 and 4, together with the simulation code and
data are available with this article at the Biometrics website
on Wiley Online Library.
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