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Summary: There is an increasing need to construct a risk-prediction scoring system for survival data and identify

important risk factors (e.g., biomarkers) for patient screening and treatment recommendation. However, most existing

methodologies either rely on strong model assumptions (e.g., proportional hazards) or only handle binary outcomes. In

this paper, we propose a flexible method that simultaneously selects important risk factors and identifies the optimal

linear combination of risk factors by maximizing a pseudo-likelihood function based on the time-dependent area under

the receiver operating characteristic curve. Our method is particularly useful for risk evaluation and recommendation

of optimal subsequent treatments. We show that the proposed method has desirable theoretical properties, including

asymptotic normality and the oracle property after variable selection. Numerical performance is evaluated on several

simulation data sets and an application to hepatocellular carcinoma data.
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Model-free scoring system for risk prediction 1

1. Introduction

Genomic medical research has generated a large number of candidate biomarkers that have

potential use in the early-phase detection and prognosis of many diseases. Compared to the

conventional approach based on single biomarker, simultaneously using multiple biomark-

ers can substantially improve the sensitivity and accuracy of early detection of diseases

(Sidransky, 2002; Etzioni et al., 2003). Multiple biomarker-based scoring systems, such as the

International Prognostic Scoring System (IPSS) (Greenberg et al., 1997), WHO Prognostic

Scoring System (WPSS), and Revised International Prognostic Scoring System (IPSS-R)

(Greenberg et al., 2012), have played fundamental roles in the treatment decision-making

process. For example, multiple biomarkers have been used to guide treatment decisions for

Myelodysplastic syndromes (MDS), a heterogeneous group of myeloid disorders. IPSS or

IPSS-R can play a crucial role in differentiating between patients at high risk of disease

progression, for whom a more aggressive treatment may be justified, and patients with a

minor risk of disease progression, for whom a more conservative treatment may be preferable.

Although developing scoring systems for risk prediction has been an active research area,

the vast majority of them have focused on binary outcomes (e.g., developing disease or not).

Su and Liu (1993) considered linear discriminant analysis by maximizing the area under the

receiver operating characteristic (ROC) curve (AUC). That maximization/classification idea

has been extended in various ways, including non-normal distributions (Pepe and Thompson,

2000), generalized linear models (Pepe et al., 2006), maximizing ROC values at specified

point (McIntosh and Pepe, 2002), maximizing sensitivity over a range of specificity (Liu

et al., 2005), maximizing the empirical AUC (Ma and Huang, 2005), maximizing an ROC-

type measure given a continuous gold reference available (Chang, 2013). Yuan and Ghosh

(2008) proposed a model-combining algorithm that builds on logistic regression models.

Recently, Chen et al. (2015) proposed an empirical-likelihood-based approach to estimate

This article is protected by copyright. All rights reserved
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2 Biometrics, 000 0000

the confidence intervals of the AUC and find the optimal linear combination of biomarkers.

Chen et al. (2016) discussed a monotonic density ratio model to find the asymptotically

optimal combination of multiple diagnostic tests.

Scoring systems for time-to-event data are increasingly needed in practice. The aforemen-

tioned methods for binary outcomes may not be efficient since the observed information

from the censored subjects cannot be fully utilized. The existing approaches for constructing

scoring systems for time-to-event data mostly rely on the Cox model (Greenberg et al.,

1997; D’Avanzo, A., et al., 2004; Kadalayil, L., et al., 2013) or the proportional odds model

(Zheng et al., 2006), which may lead to poor performance in risk prediction if the assumption

of proportional hazards (odds) is violated. Hence, it is desirable to develop an approach

that is robust to model mis-specification for time-to-event data. In addition, given that the

recent advance of biomedical research has produced a large volume of candidate biomarkers

that may be useful for risk prediction, it is crucial that the proposed approach can also

perform variable selection to increase the efficiency and interpretability of the resulting

scoring systems. A simple pre-selection procedure based on unjustified criteria/incorrect

models (e.g., marginal correlation) may lead to an undesirable subset of risk factors.

The objective of this paper is to fill these gaps by providing a method that simultaneously

identifies useful risk factors and constructs optimal risk scores for time-to-event outcomes.

The rest of the paper is organized as follows. We discuss a motivating example in Section 2. In

Section 3, we construct a pseudo-likelihood function and solve the corresponding estimation

equations to optimize the incidence/dynamic time-dependent AUC, which has a close connec-

tion to the concordance summaries (Heagerty and Zheng, 2005). In the estimating procedure,

the selection of biomarkers proceeds by regularization with adaptive lasso penalty functions

(Zou, 2006). Computationally, we consider a kernel-smoothing technique to deal with the

non-smooth objective function (Zeng and Lin, 2007). Large-sample properties including
√
n-

This article is protected by copyright. All rights reserved
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Model-free scoring system for risk prediction 3

consistency and the oracle property after variable selection are derived in Section 4. We

present some simulations studies and an application to hepatocellular carcinoma data in

Sections 5 and 6. We provide proofs and technical details in the Supplementary file.

2. A motivating example

Hepatocellular carcinoma (HCC) is a primary malignancy of the liver and is now the third

leading cause of cancer deaths worldwide, with over 500,000 people affected (Kadalayil, L.,

et al., 2013). The five-year survival rate of patients with HCC is low (< 10%) (Everhart and

Ruhl, 2009), due to late detection and lack of effective treatment options for advanced-stage

HCC. There is an urgent need for methods to detect HCC when it is in an early manageable

stage of disease that is amenable to curative treatments such as surgical resection, liver

transplantation or radiofrequency ablation (Santi, V., et al., 2010).

Most cases of HCC are associated with cirrhosis (80%) of which chronic hepatitis B or

C are the most common causes. However, most patients with liver cirrhosis do not develop

HCC; only 1-5% progress to HCC annually (Davis, G. L., et al., 2010). Only a small part of

this variation in HCC risk can be predicted or explained by the existing knowledge of HCC

risk factors. For patients infected with hepatitis C, previous studies have suggested a number

of possible risk factors, including the degree of liver fibrosis and cirrhosis, serum biomarkers

(e.g., alpha-fetoprotein [AFP], des-gamma-carboxyprothrombin [DCP]), diabetes, obesity,

use of tobacco, and excessive alcohol consumption (Lok et al., 2009). Patients that are at

high risk will be screened with biomarkers that are positive or abnormal when early stage

tumor is present. Among HCC biomarkers, AFP is most commonly used for screening and

diagnosis, but its sensitivity and specificity are poor (Zhu, W. W., et al., 2013). Other tumor

biomarkers have been proposed to complement or substitute for AFP in HCC detection, such

as DCP (Song et al., 2014). Several previous studies have recommended that a combined test

of AFP and DCP increases the sensitivity or specificity of early HCC detection over the use

This article is protected by copyright. All rights reserved
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4 Biometrics, 000 0000

of a single biomarker (Song, P., et al., 2013). For example, in a study of 210 Chinese patients,

a combined test of DCP and AFP had a sensitivity of 78.3%, which was higher than that of

DCP alone (53.3%) or AFP alone (58.3%) (Cui, R., et al., 2003). However, using multiple

markers increase sensitivity but often decrease specificity (Lok et al., 2010).

The precise role of these risk factors in the prediction of HCC is not yet known. There

is thus a great need for reliable statistical models that can efficiently combine risk factors

for prediction purposes. Some efforts in that direction have been made. Sanyal, A. J., et

al. (2006) proposed an HCC risk prediction method based on logistic regression. Lok et al.

(2009) proposed an approach based on the proportional hazard model. These approaches,

however, rely on strong model assumptions (i.e., logistic model or proportional hazards), and

their performance may be compromised when the assumptions are violated. In this paper,

motivated by a data set recently collected from a randomized two-arm trial over 10 sites in

the U.S., we propose new statistical methods that identify risk factors associated with the

development of HCC and construct a score formula for risk prediction without any model

assumptions on the time to the development of HCC.

3. Method

3.1 Notation

Let T be the time measured from the onset of the initial event to the failure event, referred

as the survival time. Denote X to be a p-vector of the covariates including the biomarkers

and the other patients’ characteristics. Given covariates X, define S(X) as a scoring system,

where higher scores are related to higher risk levels and shorter survival times. We assume

that the censoring time C is independent of T conditional on X. Consider a study cohort

with n patients. Let the observed data (Z1, δ1,X1), . . . , (Zn, δn,Xn) be independent and

identically distributed copies of (Z, δ,X), where Z = min(T,C), and δ = 1l(T 6 C) is the

This article is protected by copyright. All rights reserved
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Model-free scoring system for risk prediction 5

censoring indicator. Note that the survival time Z is allowed to depend on the covariates X.

At a given time point t, define the risk set as R(t) = {j : Zj > t}.

We characterize the performance of the score S(X) by the time-dependent incidence/dynamic

(I/D) AUC definition (Heagerty and Zheng, 2005), in which the time-dependent incidence

sensitivity and dynamic specificity are defined by classifying patients into case and control

groups at each time point based on their survival status,

TPI
t(c) = P {S(X) > c|T = t} , FPD

t (c) = P {S(X) > c|T > t} .

Here TPI
t(c) (sensitivity) measures the expected fraction of subjects with a score value greater

than c among individuals who experience the event of interest at time t, while 1 − FPD
t (c)

(specificity) measures the fraction of subjects with a score value less than or equal to c among

those who survive beyond time t. Then the time-dependent ROC curve is defined by

ROC
I/D
t (p) = TPI

t{(FPD
t )−1(p)}, for p ∈ [0, 1].

and its time-dependent AUC can be obtained as

AUC(t) = P {S(Xi) > S(Xj)|Ti = t, Tj > t} . (1)

3.2 Estimation

We model the risk score S(X) for the time-to-event outcome by using a smooth function of

patients’ characteristic, denoted by S(X;β), where β is a finite-dimensional parameter. A

commonly used linear model summarizes the patient information as follows,

S(Xi;β) = β1Xi1 + · · ·+ βpXip. (2)

For identification purposes, we set β1 = 1 in model (2). More generally, we may consider a

nonlinear score system,

S(Xi;β) =

p∑
j=1

K∑
k=1

βjkψk(Xij), (3)

This article is protected by copyright. All rights reserved
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6 Biometrics, 000 0000

where ψ1, . . . , ψK are pre-specified nonlinear basis functions, such as polynomials. It is also

possible to incorporate the interactions between biomarkers, e.g., S(Xi;β) =
∑p

j=1 βjXij +∑p
s=1

∑p
t=l+1 ηstXisXit.

Let t1 < · · · < tM be the ordered unique failure times for {Z1, · · · , Zn},M 6 n. At each

time point tm, the subjects in the risk set R(tm) can be divided into two groups:

RL(tm) = {j : S(Xi;β) > S(Xj;β), Zj > tm, Zi = tm},

RH(tm) = {j : S(Xi;β) 6 S(Xj;β), Zj > tm, Zi = tm}.

The first group RL(tm) can be viewed as the set of patients with relatively low risk, whose

score values are lower than S(Xi;β); whereas the second group, RH(z), can be viewed as

the set of patients with relatively higher risk compared with subject i. By the definition of

AUC in (1), it is natural to use the proportional of observing a low-risk patient in the risk

set, |RL(t)|/|R(t)|, as an estimator of AUC(t), where |A| denotes the size of a set A. In

other words, the estimated AUC(t) is the empirical concordance probability P (S(Xi;β) >

S(Xj;β)|Zj > Zi). Therefore, we can construct a pseudo-likelihood function by multiplying

the empirical concordance probabilities at all uncensored observations i together,

L(β) =
M∏
i=1

ÂUC(ti) =
M∏
i=1

|RL(ti)|
|RL(ti)|+ |RH(ti)|

. (4)

Then the estimation of β proceeds by maximizing the following log-pseudo-likelihood func-

tion, termed the objective function

`n(β) =
1

n

n∑
i=1

δi log

{∑n
j=1 1l(Zj > Zi)1l(S(Xi;β)− S(Xj;β) > 0)∑n

j=1 1l(Zj > Zi)

}
. (5)

Note that there are several different definitions of time-dependent ROC. We choose to

work with the incident/dynamic (I/D) time-dependent ROC over other definitions (e.g.,

cumulative/dynamic) because it is closely connected with the concordance probability, which

allows the construction of the pseudo-likelihood in (5). Moreover, it provides a natural way

to define a weighted time-averaged summary of the AUC, which is called IAUC. Heagerty

This article is protected by copyright. All rights reserved
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Model-free scoring system for risk prediction 7

and Zheng (2005) showed that the IAUC is equivalent to Kendall’s τ with a proper weight

function.

A major challenge with the maximization of (5) is non-smoothness due to the indicator

functions involved. The objective function `n(β) may remain the same under a small amount

of perturbation of β; hence the finite-sample solution may not be unique. Moreover, because

of the non-smoothness property, the maximization is computationally difficult and cannot be

solved using standard optimization algorithms designed for continuous functions. One possi-

ble solution is to use the Nelder-Mead method by Nelder and Mead (1965), termed the exact

method. When there are more than a few covariates, this method can be computationally

intensive. Alternatively, we adopt a smoothing kernel to approximate the indicator (Zeng

and Lin, 2007). Specifically, we propose to maximize the following approximation to `n(β):

`sn(β) =
1

n

n∑
i=1

δi log

{∑n
j=1 1l(Zj > Zi)

∫ S(Xi;β)−S(Xj ;β)

−∞ K(u;hn)du∑n
j=1 1l(Zj > Zi)

}
, (6)

where K(·, hn) is a symmetric kernel function with bandwidth hn converging to 0 as n→∞.

In principle, any smooth symmetric probability density functions can be used here, such

as normal, logistic and t-distributions. We choose a standard normal kernel for simplicity

and computational tractability. The bandwidth can be chosen by either cross-validation or

using the optimal choice of the bandwidth for density estimation problems (Jones, 1990);

see Section 4 of Supplementary File for more details.

3.3 Variable selection

With rapid developments occurring in biomedical research, a very large number of biomarkers

have become available for the construction of the scoring system. However, many biomarkers

might not be directly related to the risk. Therefore, it is of great importance to include

a variable selection procedure that removes the redundant information and identifies use-

ful biomarkers/risk factors in making clinical decisions. Accordingly, we consider adopting

shrinkage penalties for variable selection. We restrict the discussion to the linear score system

This article is protected by copyright. All rights reserved
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8 Biometrics, 000 0000

(2) for convenience. The nonlinear system can be treated in a similar way. We propose to

maximize the following loss function,

Qn(β) = `sn(β)− λn
p∑
j=2

J(|βj|), (7)

where λn is a tuning parameter and J(.) is a penalty function. The available choices for J(.)

include smoothly clipped absolute deviation (SCAD, Fan and Li, 2001) and adaptive LASSO

(Zou, 2006). Here we use an adaptive LASSO penalty, i.e., J(|βj|) = |βj|/|β̃j|, where β̃j is

the j-th element of β̃, the solution to argmaxβ`
s
n(β). This penalty function can be regarded

as an asymptotic version of L0-penalty as long as β̃ is consistent (Zhang and Lu, 2007).

Computationally, we adopt the coordinate descent algorithm (Friedman et al., 2007) that

solves the optimization problem by updating one parameter at one time while keeping all

others fixed. We first fix an initial estimate β̃ by solving argmaxβ`
s
n(β). We then update βk

(k = 2, . . . , p) by solving the one-dimensional optimization

argminβkλn
|βk|
|β̃k|
− 1

n

n∑
i=1

δi log


∑n

j=1 1l(Zj > Zi)
∫ h−1

n (βk(Xki−Xkj)+cij)

−∞ K(u)du∑n
j=1 1l(Zj > Zi)

 ,

keeping all other parameters fixed. Here, cij is a constant that depends on indexes i and j

only. The iterative procedures continue until the pre-specified convergence criteria is met.

We denote the final solution by β̂. The selection of λn can be achieved by cross-validation

based on the prediction performance. We will discuss this issue in details in Section 5.2.

4. Asymptotic results

In this section, we establish asymptotic properties of the proposed estimators. Denote the

true value of β in the scoring system by β0. We first show that the kernel-based smoothing

estimator is consistent and asymptotically normally distributed without the variable selection

procedure, by using kernel approximation theory and the techniques of Zeng and Lin (2007).

Theorem 1: Under Conditions (C1) and (C2) listed in the Supplementary file, β̃ → β0

This article is protected by copyright. All rights reserved
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Model-free scoring system for risk prediction 9

almost surely and
√
n(β̃ − β0)→d N(0,V1), in which V1 = Σ−11 Σ2Σ

−1
1 , and

Σ1 = E{−∇βwin(β);β0}, Σ2 = E{win(β)⊗2;β0},

win(β) =

1
nhn

∑n
j=1 1l(Zj > Zi)(∇βS(Xi;β)−∇βS(Xj;β))K(1)

(
S(Xi;β)−S(Xj ;β)

hn

)
1
n

∑n
j=1 1l(Zj > Zi)

.

We next prove that the proposed adaptive Lasso penalty estimator β̂ is
√
n-consistent, and

present the selection consistency and asymptotic normality results. Let I0 = {k : βk 6= 0, k =

1, . . . , p} be the set of important covariates. We denote Î = {k : β̂k 6= 0, k = 1, . . . , p} as

the set of selected covariates. Note that k = 1 is always included in both sets since we fix

β1 = 1. Without loss of generality, we write β0 = (βT10,0
T )T and β̂ = (β̂T1n, β̂

T
2n)T .

Theorem 2: Assume that Conditions (C1) and (C2) hold, If
√
nλn = Op(1) as n→∞,

then ‖β̂−β0‖2 = Op(n
−1/2). If

√
nλn → 0 and nλn →∞, then the adaptive Lasso estimator

β̂ satisfies β̂2n = 0 and
√
n(β̂1n − β10) → N(0,V2), in which V2 = Σ−111Σ21Σ

−1
11 , and Σ11

and Σ21 are the leading d× d submatrices of Σ1 and Σ2.

The above theorem asserts that if λn is chosen appropriately, then the penalization estimator

enjoys the oracle property in the sense that it performs as well as the maximum likelihood

estimator under the correct model (Donoho and Johnstone, 1994). In practice, λn can be

chosen based on cross-validation; see more details in Section 5. The asymptotic results in

Theorem 1 hold under mild conditions on the true score system, including linear and non-

linear models. See the discussion and the proofs of Theorems 1 and 2 in the Supplementary

File.

5. Simulation

5.1 Score system without variable selection

We first considered low-dimensional cases without variable selection. The data were generated

under the following five scenarios:

This article is protected by copyright. All rights reserved
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10 Biometrics, 000 0000

Case 1. For each patient, we generated two independent biomarkers: X1 from a uniform

distribution on (0, 1) and X2 from a standard normal distribution. The survival time was

generated from a mixture of two Weibull distributions ZWeibull(2, 1)+(1−Z)Weibull(1, 2),

where Z followed a Bernoulli distribution with a success probability of 0.91l(X1 + 3X2 6 .5).

Case 2. In addition to the two biomarkers generated from Case 1, we generated another

three redundant independent biomarkers: X3 from a beta distribution Beta(2, 5), X4 from

a Bernoulli distribution, Bernoulli(.3), and X5 from a uniform distribution on (−1, 1). The

survival time was generated in exactly the same way as in Case 1.

Case 3. We generated X1 from a uniform distribution on (.8, 1.2) and an independent random

preventive intervention assignment A following a Bernoulli distribution Bernoulli(.5). We also

included the interaction of A and X1 in the score system. The survival time was generated

from a Weibull distribution with the following parameters:

θshape = (1− A)(2−X1) + A(1 +X1), θscale = (1− A)(3−X1) + AX1.

Case 4. We considered the same setting as in Case 1 except that the success probability of

Z was changed into 0.91l(X2
1 + 1.5X2 6 1/3).

Case 5. We generated X1 from Uniform(.5, 1.5) and an independent A from Bernoulli(.5).

The survival time T was generated by log T ∼ N(−AX1 − (1− A)(3.5− 1.5X1), .5
2).

For each of 1000 simulated data sets, we used sample sizes of n = 400 and 1000, and

randomly partitioned 75% of the patients into a training set and 25% into a test set. An

independent censoring time was generated from a uniform distribution on (0, τ ∗) such that

either 20% or 40% of the patients were censored. The value of τ ∗ was determined numerically

such that the empirical censoring rate was close to the desired percentage, such as 20%.

For the training data, we used the exact method, the kernel method, the Cox model, the

boosting method that maximizes the concordance probability (Mayr and Schmid, 2014),

This article is protected by copyright. All rights reserved
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Model-free scoring system for risk prediction 11

the time-varying logistic regression model using inverse probability weighting (IPW) (Zheng

et al., 2006), and a naive logistic model that discards the censored observations, to derive

five risk score formulae. In the kernel method, we chose a fixed bandwidth hn = n−1/3, based

on the recommendation by Jones (1990) for the optimal choice of bandwidth for density

estimation. We applied risk score formulae to both the training and test data. Based on the

resulting risk scores, we equally divided the patients into two groups (high-risk vs low-risk),

and calculated the mean survival time for each group. The performances were evaluated by

the differences in the mean survival times between the high-risk and low-risk groups, which

were denoted by Dtest
mean. We also calculate the IAUC using the method in Shen et al. (2015).

We summarize the results in Table 1. For all cases, the values of Dmean and IAUC obtained

from the kernel smoothing method were very close to those obtained from the exact method,

suggesting that the kernel approximation worked well for the non-smooth object function.

The proposed methods (kernel and exact), the boosting method and the IPW logistic method

all outperform the Cox model in most scenarios. This is expected because (1) the proportional

hazard assumption is violated in these cases; and (2) the proposed method and the boosting

method maximize the AUC to separate high-/low-risk groups as much as possible, while the

Cox model maximizes the partial likelihood, which targets a different problem. The naive

logistic method does not perform well for small sample sizes and high censoring rate (40%).

This is expected since it does not use the censored observations.

For each case, we also calculated the IAUC using the underlying true score system. It can

be seen that both the boosting method and the proposed method produced IAUC values

close to the oracle truth, which confirms their prediction accuracy. The IPW logistic method

does not work well enough when the proportional odds assumption is strongly violated, as

in Cases 1–3, and when censoring is high (40%). For Case 4, by comparing the results from

the true model (nonlinear) and the mis-specified model (linear), we notice that the proposed

This article is protected by copyright. All rights reserved
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12 Biometrics, 000 0000

method is quite robust to violations of model assumptions. Compared to the other methods,

our method has good performances in all cases in terms of discriminating high-/low-risk

groups. This is because the proposed method fully utilizes the covariate information from

the censored subjects. We also considered the sensitivity analysis for the bandwidth; the

results suggested that our method was not sensitive to the choice of bandwidth within a

reasonable range.

[Table 1 about here.]

5.2 Variable selection examples

We next evaluated the performance of the penalized variable selection method. The data

were generated from the following four situations.

Case 6 (weak correlation). We generated a biomarker X1 from Uniform(0, 1) and indepen-

dently generated ten biomarkers X2, . . . , X11 from a joint normal distribution with mean 0,

variance 1 and correlation corr(Xi, Xj) = 0.21l(i 6= j). We also generated 5 i.i.d. biomarkers

X12, . . . , X16 from an exponential distribution with mean one. The survival time T was

generated from a log-normal distribution log T ∼ N(5− 3X1 −X2, 0.04).

Case 7 (moderate correlation). We generated 20 biomarkers X1, . . . , X20 from a joint normal

distribution with mean 0, variance 1 and correlation corr(Xi, Xj) = 0.5|i−j|. The survival

time followed log T ∼ N(2−X1 − 0.5X2 − 0.5X3, 0.04).

Case 8 (treatment interaction). We generated 15 biomarkers X1, . . . , X15 from a joint normal

distribution with mean 0, variance 1 and correlation corr(Xi, Xj) = 0.151l(i 6= j). An

independent treatment indicator A was generated from a Bernoulli(0.5) distribution. The

survival time followed log T ∼ N(2.5−X1 − 0.5X2 − 0.5X1A−X3A, 0.04).

Case 9 (strong correlation and treatment interaction) We generated X1, . . . , X10 from a joint

normal distribution with mean 0, variance 1 and correlation corr(Xi, Xj) = 0.8|i−j|. We also

This article is protected by copyright. All rights reserved
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Model-free scoring system for risk prediction 13

considered an independent indicator A from a Bernoulli(0.5) distribution. The survival time

was generated in the same way as in Case 8.

For each case, we considered 1000 replications and summarized the selection frequency of

each individual biomarker and the proportion of exactly selecting the correct model in Table

2. We listed the estimated coefficients for selected biomarkers. We randomly partitioned the

data into training (40%), validation (40%) and test (20%) sets. We let the tuning parameter

λ take values in {5, 7, 10, 15, 20, 50, 70, 100} and chose the optimal one by maximizing the

median survival difference (Dmed) on the validation set.

As shown in Table 2, the proposed penalization method showed a good selection perfor-

mance, particularly when the sample size was large. For example, under Case 8 with sample

size of 1000, the selection frequencies for true variables X2, X1A and X3A obtained from the

proposed method were greater than 96%, and the true model was selected more than 80%

of the time. The selection frequencies for false variables A and X2A were very low (at most

7%). The method also provided accurate estimation of the coefficients. Taking Case 7 as an

example, the estimation biases were at most 0.20 for n = 500, and 0.12 for n = 1000. Case

9 was a challenging situation because of the high correlation and the treatment interaction.

Therefore the selection frequency of the unimportant variable X2A was high since X1A,

X3A and X2 were in the true model and are highly correlated. Still, the selection frequency

and estimated coefficients of all other variables were satisfactory. To evaluate the prediction

performance of our method, we compared the difference in the mean and median survival

times for the high-risk and low-risk groups as determined by the proposed penalized method

and by the oracle model, in which we fitted the model using the true set of biomarkers. The

results on the test and training data (reported in brackets) are summarized in Table 3 based

on 1000 replications. The prediction performance after variable selection seemed satisfactory

This article is protected by copyright. All rights reserved
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in the sense that the survival time difference was very close (Cases 7–9 in particular) to that

obtained from the oracle model for both low (20%) and high (40%) censoring rates.

Note that dividing the patients equally into two groups and looking at their survival time

difference is a convenient way to evaluate the discrimination ability of the score systems, but

is not the only way to determine patient subgroups. In application, a possible alternative is

to apply cluster analysis for the obtained scores to determine the cut-offs to use in dividing

patients into subgroups.

[Table 2 about here.]

[Table 3 about here.]

6. Data application

In the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) trial, a total

of 1050 patients with chronic hepatitis C were enrolled and randomized to receive half-dose

pegylated interferon or no treatment, and were followed up for a median of 6.1 (maximum

8.7) years to monitor the development of HCC and liver failure. At entry, clinicians obtained

measurements from each patient, including blood cell count, liver panel (e.g., albumin,

aspartate aminotransferase, alanine aminotransferase and bilirubin), and AFP/DCP levels.

Time to HCC was one of the planned trial outcomes; hence, the HALT-C trial provided an

opportunity to identify risk factors associated with the development of HCC in a U.S. cohort

with chronic hepatitis C and advanced liver fibrosis or cirrhosis. There were 88 patients who

met the criteria for HCC. We aimed to identify risk factors associated with the development

of HCC and to construct a score formula for risk prediction.

We applied the method in Section 3 to the HALT-C data. In addition to the aforementioned

variables, we included demographic information (age [mean=50.1], gender [female 29%], race

[white 71.6%, Hispanic 18.2%, black and other 10.2%]), body mass index (BMI), smoking

This article is protected by copyright. All rights reserved
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Model-free scoring system for risk prediction 15

status, alcohol consumption, baseline Child-Turcotte-Pugh (CTP) score (measures cirrhosis

complications and synthetic function of the liver), baseline liver biopsy Ishak score (measures

the stage of fibrosis on a scale from 0 to 6) and their interactions in our analysis. We treated

the time from the initial entry to the development of HCC as the primary outcome.

We first evaluated the risk prediction abilities of individual factors and combined a subset

of factors without variable selection. To perform the assessment, we considered five-fold

cross-validation by randomly partitioning the data set into five equal folds, choosing four for

model fitting and using the other one to calculate the IAUC for the 1-year risk prediction

with the method of Shen et al. (2015). This procedure is repeated five times for each fold. The

average of the IAUCs together with their associated standard errors are presented in Table

4. Among all factors, AFP had the highest IAUC (.581), confirming the clinical experience

of treating AFP as one of the most useful biomarkers for diagnosis of HCC as a risk factor

that predicts HCC development. In contrast, bilirubin had IAUC values close to the non-

informative value of .50, suggesting that it did not have good prediction performance when

evaluated individually. The risk score obtained by combining risk factors may lead to a

significant increment in the IAUC. For example, the IAUC value increased from .581 to .836

by combining the Ishak fibrosis score with AFP. Similarly, by combining DCP with race, the

IAUC value increased from .530 to .726.

We then used the penalization method in Section 3.3 to identify the important risk factors

and build a score system. To reduce the potential bias associated with overfitting, we used

five-fold cross-validation to choose the tuning parameter λ in a pre-specified set that had the

highest estimated mean survival time difference between the low-risk and high-risk groups.

For simplicity, we fixed the bandwidth of the normal kernel at n−1/3. The identified set of

significant factors in the score formula included the main effects of AFP, DCP, albumin,

platelets, ALK, age, gender, BMI, Ishak score, and the interaction effect of AFP * gender,

This article is protected by copyright. All rights reserved
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AFP * Race and DCP * Race. The IAUC by the score system was .943 with a standard

error of .015, which increased the IAUC of the single AFP by 62%.

For comparison, we also considered a risk score that consisted of the set of variables

provided by Lok et al. (2009) using Cox model, and a risk score without the interaction

DCP * Race. This showed that the interaction played a role in the score system as the IAUC

dropped from .943 to .856 when the interaction was removed. The proposed set of variables

increased the IAUC for the model of Lok et al. (2009) by 29%.

We then evaluated the 5-year risk prediction performance. The estimated IAUC of the

score system was .720 with a standard error of .045. Comparing to the 1-year risk prediction,

the value of IAUC was decreased by 24%. This was expected because we were only using the

baseline information in the score system. To better illustrate, in Figure 1, on the left side

we plotted the estimated AUC curve of the score system with 95% confidence bands and

that of the single biomarker AFP for the entire study period. This plot shows that the score

system had a significant advantage in estimation accuracy compared to AFP, as the AUC of

the proposed score was always above that of AFP. In the first two years, the estimated AUC

of the score system was above .8, indicating a good prediction performance. However, the

predictive ability of that score decreased quickly over time, implying that the risk score was

not that informative for long-term risk prediction, and that longitudinally measured values

of the risk factors should be utilized to update and improve the risk assessment. We further

divided the patients equally into high-risk and low-risk groups based on their scores and

plotted their corresponding Kaplan-Meier survival curves; the proposed method managed to

separate these two subgroups well.

[Figure 1 about here.]

[Table 4 about here.]
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Model-free scoring system for risk prediction 17

7. Discussion

In this paper, we proposed new methods for selecting important risk factors and constructing

a clinically useful score system. The proposed method builds on the idea of maximizing a

global average of the time-dependent AUC. Hence, it avoids the need of making strong model

assumptions on the time-to-event outcomes while boosts the overall prediction performance.

So far we have assumed that no two patients have the same failure event time in the data.

In the presence of ties, the proposed method can be extended by considering all possible

orderings (or randomly choosing one possible ordering), adding a small amount to the failure

times and then summing up the likelihoods under different orderings.

In addition to ROC-based approaches, logistic regression provides another valuable alterna-

tive to score system estimation (Vexler et al., 2016). To fully utilize the censored observations

and time-to-event outcomes, inverse probability weighting (IPW) and Bayesian models can

be used. In our simulations, we have implemented a naive logistic regression approach and a

time varying logistic regression method with IPW for score system estimation. It can be seen

that the results from the logistic models are comparable to those from our approach when

implemented appropriately. It is of future interest to develop a dynamic Bayesian logistic

regression approach for score system estimation and covariate selection.

To improve the precision of risk assessments, molecular/genetic data have been included in

the risk profiles for cancer research. However, measuring such biomarkers can be expensive

and labor intensive; hence, the collection of biomarker information for each subject may be

infeasible. It will be interesting to adapt the current framework to more complicated designs

such as nested case-control and stratified case-cohort designs (Cai and Zheng, 2013). In this

paper, we assume that the score formula S(X,β) follow a known functional form. In future

work, it will be of interest to develop methods to test the validity of these model assumptions.

Another important area for future research is nonparametric estimation of functions ψ in

This article is protected by copyright. All rights reserved
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(3) by considering basis expansion techniques such as splines and wavelets. For biomarker

selection, we adopt a penalization method. It is also possible to consider Bayesian approaches

with variable selection priors (e.g., spike-and-slab and horseshoe).

8. Supplementary Materials

Additional numerical results and technical proofs referenced in Sections 3.2 and 4, together

with the simulation code and data are available with this paper at the Biometrics website

on Wiley Online Library.

Acknowledgments

The authors thank the editor, the associate editor and two reviewers for their constructive

comments that have greatly improved the initial version of this paper. This work was

supported in part by a Cancer Center Support Grant from the National Institutes of Health

(CA016672), a grant from the Cancer Prevention Research Institute of Texas (RP150587)

and UCI CORCL award.

References

Cai, T. and Zheng, Y. (2013). Resampling procedures for making inference under nested

case-control studies. Journal of the American Statistical Association 108, 1532–1544.

Chang, Y. C. (2013). Maximizing an roc-type measure via linear combination of markers

when the gold reference is continuous. Stat. Med. 32, 1893–1903.

Chen, B., Li, P., Qin, J., and Yu, T. (2016). Using a monotonic density ratio model to

find the asymptotically optimal combination of multiple diagnostic tests. Journal of the

American Statistical Association 111, 861–874.

Chen et al. (2015). Empirical likelihood ratio confidence interval estimation of best linear

combinations of biomarkers. Computational Statistics and Data Analysis 82, 186–198.

Cui, R., et al. (2003). Diagnostic value of protein induced by vitamin k absence (pivkaii) and

This article is protected by copyright. All rights reserved



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Model-free scoring system for risk prediction 19

hepatoma-specific band of serum gamma-glutamyl transferase (ggtii) as hepatocellular

carcinoma markers complementary to alpha-fetoprotein. Br J Cancer. 88, 1878–1882.

D’Avanzo, A., et al. (2004). Prognostic scoring systems in patients with follicular thyroid

cancer: a comparison of different staging systems in predicting the patient outcome.

Thyroid 14, 453–458.

Davis, G. L., et al. (2010). Aging of hepatitis c virus (hcv)-infected persons in the united

states: a multiple cohort model of hcv prevalence and disease progression. Gastroenterol-

ogy 138, 513–521.

Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage.

Biometrika 81, 425–455.

Etzioni, R., Kooperberg, C., Pepe, M. S., Smith, R., and Gann, P. H. (2003). Combining

biomarkers to detect disease with application to prostate cancer. Biostatistics 4, 523–538.

Everhart, J. E. and Ruhl, C. E. (2009). Burden of digestive diseases in the united states

part iii: Liver, biliary tract, and pancreas. Gastroenterology 136, 1134–1144.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its

oracle properties. Journal of the American Statistical Association 96, 1348–1360.
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Figure 1. HALT-C data analysis.
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Table 1
Simulation results for Cases 1–5: Mean survival time difference between low-risk and high-risk groups and the

estimated IAUC, obtained from the kernel-smoothing method (Ker), the exact method (Ext), the Cox model (C), the
boosting method (M), the time-varying logistic regression model (Z), and the naive logistic regression method (L)

based upon 1000 replications

Setting Dtest
mean IAUC

case n cen Ker Ext C M Z L True Ker Ext C M Z L
1 200 .2 .42 .42 .19 .32 .18 .07 .61 .58 .58 .53 .59 .53 .51

.4 .24 .27 .10 .18 .05 .04 .59 .57 .56 .52 .59 .51 .51
400 .2 .42 .41 .22 .35 .21 .07 .60 .59 .59 .53 .60 .53 .51

.4 .27 .27 .10 .20 .07 .02 .59 .57 .57 .52 .59 .52 .51
1000 .2 .56 .60 .30 .37 .37 .09 .61 .60 .60 .55 .60 .55 .51

.4 .39 .40 .17 .21 .11 .05 .59 .59 .59 .54 .59 .52 .51
2 200 .2 .28 .34 .12 .25 .16 .03 .60 .58 .56 .52 .58 .53 .50

.4 .16 .20 .06 .14 .04 .00 .59 .58 .55 .52 .58 .52 .50
400 .2 .40 .37 .15 .33 .21 .04 .60 .59 .58 .53 .60 .54 .51

.4 .25 .25 .07 .18 .05 .03 .59 .58 .57 .53 .58 .51 .50
1000 .2 .52 .51 .26 .38 .33 .04 .60 .60 .60 .54 .60 .55 .51

.4 .33 .34 .15 .21 .05 .02 .59 .58 .58 .53 .59 .51 .51
3∗∗ 200 .2 .87 .87 .28 .66 .19 .23 .62 .64 .62 .54 .63 .53 .54

.4 .55 .55 .27 .39 .20 .00 .59 .63 .60 .57 .61 .55 .50
400 .2 .89 .88 .40 .70 .36 .34 .62 .64 .62 .56 .63 .58 .56

.4 .57 .57 .36 .42 .23 .02 .59 .63 .60 .58 .61 .54 .51
1000 .2 .94 .93 .60 .72 .48 .45 .62 .64 .62 .59 .63 .61 .58

.4 .61 .60 .51 .43 .27 .06 .59 .63 .60 .61 .61 .54 .52
4 200 .2 .43 .46 .33 .30 .33 .11 .61 .58 .58 .55 .59 .55 .52

.2∗ .35 .46 .33 .29 .35 .10 .61 .57 .58 .55 .59 .55 .52
.4 .29 .27 .18 .15 .11 .09 .59 .57 .57 .54 .58 .52 .52
.4∗ .22 .27 .17 .16 .11 .09 .59 .56 .57 .54 .58 .53 .51

400 .2 .48 .54 .38 .34 .41 .11 .60 .59 .59 .56 .60 .56 .52
.2∗ .35 .54 .40 .34 .42 .11 .60 .57 .59 .56 .60 .56 .52
.4 .30 .31 .20 .26 .13 .08 .59 .58 .58 .54 .59 .53 .51
.4∗ .23 .32 .23 .19 .15 .07 .59 .56 .58 .55 .59 .53 .51

1000 .2 .62 .66 .57 .55 .58 .17 .60 .60 .60 .58 .60 .59 .52
.2∗ .42 .66 .58 .36 .59 .15 .60 .58 .60 .58 .60 .59 .52
.4 .38 .40 .30 .29 .20 .07 .59 .59 .59 .56 .59 .54 .51
.4∗ .29 .42 .33 .20 .20 .08 .59 .57 .59 .56 .59 .54 .52

5 200 .2 .23 .21 .08 .18 .20 .10 .75 .68 .66 .56 .60 .61 .55
.4 .21 .18 .04 .15 .08 .04 .71 .67 .66 .51 .55 .56 .51

400 .2 .24 .24 .12 .18 .22 .14 .75 .68 .68 .56 .59 .64 .56
.4 .21 .21 .06 .15 .11 .05 .71 .67 .67 .50 .55 .59 .51

1000 .2 .25 .25 .19 .19 .23 .20 .75 .68 .68 .58 .59 .66 .57
1000 .4 .22 .22 .09 .16 .13 .12 .71 .67 .667 .52 .55 .60 .53

Dtest
mean: mean difference in the test data; IAUC: integrated area under the curve.

*: Case 4, the true model contains a nonlinear term. We fit both the linear model (results
denoted by ∗ in the table) and the nonlinear model to evaluate the robustness of the proposed
method under model assumption violations.
**: Case 3, the true score system is two-dimensional, hence there is no “true” one-dimensional
score. Therefore we use the interaction X1(2A− 1) to generate the “True” value for IAUC.
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Table 2
Simulation results for Cases 6–9: Selection frequency and estimated coefficients for Cases 6–9 based upon 1000

replications.

Case 6 Selection frequency (%) Estimated coefficients
n cen(%) X2 X3 X4 X12 X13 True Model X2 X3 X14

500 20 99.8 1.5 2.5 .9 2.2 79.4 .380 .015 .008
40 99.9 3.9 3.8 2.4 2.2 66.4 .377 .010 .000

1000 20 99.6 0.7 0.8 0.3 0.3 91.8 .363 -.002 .003
40 99.6 2.5 2.2 0.9 1.1 80.0 .361 -.002 .000

Case 7 Selection frequency (%) Estimated coefficients
n cen% X2 X3 X4 X5 X10 True Model X2 X3 X4

500 20 100 100 6.8 6.9 4.6 55.7 .520 .511 .002
40 100 100 9.5 8.4 8.0 52.1 .521 .511 .003

1000 20 100 100 0.5 0.2 0.5 91.6 .511 .504 .010
40 100 100 1.9 1.9 1.1 82.2 .512 .505 .009

Case 8 Selection frequency (%) Estimated coefficients
n cen% X2 A X1A X2A X3A True Model X2 X1A X3A
500 20 99.6 10.8 99.8 9.5 100 46.6 .518 .566 1.044

40 99.8 9.4 96.0 18.0 100 37.9 .515 .586 1.048
1000 20 99.6 0.6 99.9 1.5 100 93.2 .510 .535 1.022

40 99.8 1.2 96.8 6.8 100 80.8 .508 .548 1.024

Case 9 Selection frequency (%) Estimated coefficients
n cen% X2 A X1A X2A X3A True Model X2 X1A X3A
500 20 100 6.9 100 62.8 100 16.3 .592 .612 1.076

40 99.9 9.5 100 53.9 100 18.0 .597 .638 1.089
1000 20 100 0.9 100 51.8 100 32.7 .551 .569 1.044

40 100 1.4 100 45.7 100 28.5 .552 .580 1.056

This article is protected by copyright. All rights reserved



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Model-free scoring system for risk prediction 25

Table 3
Simulation results for Cases 6–9: Mean/median survival time differences using the proposed penalized method

(penal) compared with the oracle model (oracle) based upon 1000 replications

Dtest
mean(Dtrain

mean) Dtest
med(Dtrain

med )
Case n cen(%) penal oracle penal oracle
6 500 20 69.4 (70.2) 96.7 (97.0) 53.5 (53.5) 71.0 (70.5)

40 43.7 (43.9) 67.3 (67.4) 50.1 (52.9) 64.9 (68.8)
1000 20 71.4 (71.6) 98.5 (98.7) 54.6 (54.2) 71.3 (70.5)

40 45.5 (45.3) 67.5 (67.3) 53.6 (54.0) 69.2 (70.2)
7 500 20 24.7 (25.0) 27.7 (28.0) 17.5 (17.6) 19.1 (19.3)

40 13.9 (13.9) 16.9 (16.9) 15.0 (16.4) 16.5 (18.0)
1000 20 25.3 (25.5) 28.0 (27.9) 17.8 (17.7) 19.2 (19.0)

40 14.2 (14.1) 16.7 (16.6) 16.7 (17.3) 17.7 (18.4)
8 500 20 40.3 (40.5) 46.2 (46.0) 27.4 (27.4) 31.0 (30.4)

40 22.3 (22.3) 26.8 (26.9) 24.2 (26.0) 26.2 (28.3)
1000 20 40.8 (41.1) 47.5 (47.2) 27.3 (27.5) 31.0 (30.4)

40 22.1 (22.2) 26.4 (26.4) 25.7 (26.9) 25.8 (28.1)
9 500 20 66.5 (65.5) 69.1 (69.6) 41.4 (40.0) 42.0 (42.2)

40 30.7 (30.5) 32.4 (32.5) 31.4 (34.6) 31.5 (34.8)
1000 20 66.9 (66.9) 69.6 (69.3) 40.8 (40.5) 42.3 (42.0)

40 30.8 (30.6) 32.7 (32.7) 34.7 (37.0) 35.0 (37.6)

Dtest
mean: mean difference in the test data; Dtrain

mean: mean difference in the training data; Dtest
med:

median difference in the test data; Dtrain
med : median difference in the training data.
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Table 4
One-year risk prediction for HALT-C data: IAUC and associated standard error (SE) for different set of risk factors

Factors IAUC SE
AFP .581 .037
ALK 577 .037
AST .561 .040
DCP .530 .039
Bilirubin .503 .035
AFP, Ishak .836 .029
DCP, Race .726 .031
Score system including AFP, DCP, ALK, Ishak, Age, BMI, Gender, Drink,
Platelets, AST, Albumin, CTP, AFP*Gender, AFP*Race and DCP*Race .943 .015
Score system without the interaction term DCP*Race .856 .015
Lok et al. (2009)’s formula (Age, Race, Smoke, Platelets, ALK) .731 .016
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