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Web Appendix A

Prior specification

In this Section, we specify prior distributions for the model parameters of the spatial Bayesian
latent factor regression model. With regard to specifying priors, it is practically important
to choose conditionally conjugate priors given the high dimensionality of the application. A
prior distribution is defined conjugate when the resulting posterior distribution is in the same
family as the prior, that is, when the posterior has the same algebraic form as the prior, but
with different (updated) parameter values. Choosing conditionally conjugate priors leads to an
efficient posterior computation via a Gibbs sampler. For this reason, we have chosen Gaussian
priors (multivariate, when appropriate) for the model parameters in Sections 2.1 and 2.2 of the
paper, and Gamma priors on the residual precisions. We begin by providing details on the prior
for the factor loading matrix Λ.

Careful modeling of Λ is crucial in that the factor loading matrix ultimately controls sparsity
and basis selection. Following [6], we adopt a multiplicative gamma process shrinkage (MGPS)
prior on the loadings [2]:

λjh|ιjh, τh ∼ N(0, ι−1jh τ
−1
h ), ιjh ∼ Gamma

(ρ
2
,
ρ

2

)
, τh =

h∏
l=1

δl (1)

δ1 ∼ Gamma(a1, 1), δl ∼ Gamma(a2, 1), l ≥ 2 (2)

1



with j = 1, . . . , p and h = 1, . . . , k. Elements {δl}l≥1 are independent, τh is a global shrinkage
parameter for the hth column of Λ and the ιjh’s are local shrinkage parameters for the elements
in the hth column. Under the choice a2 > 1, the τh’s are stochastically increasing favoring more
shrinkage as the column index increases and preventing the factor splitting problem [2]. The
local shrinkage parameters prevent over-shrinking the nonzero loadings. Therefore, the MGPS
prior shrinks a subset of the loadings strongly towards zero while retaining a sparse signal. For
more details on the properties of this prior, we defer to [2].

To obviate the need for pre-specifying the number of factors, we follow [2] and implement
an adaptive algorithm for choosing k. The idea behind this sampler is to strike a balance
between missing important factors by choosing k too small and wasting computation on an
overly conservative value. At iteration t, one monitors the number of columns of Λ having
all elements within some pre-specified small neighbourhood of zero. If the number of such
columns drops to zero, then a column is added to Λ by sampling the new loadings from the
prior distribution, and otherwise discard the redundant columns in that the contribution of
the factors is negligible. The other parameters are also modified accordingly. By proposing
an oversized set of basis functions (large p in Equation 2 of the paper), we can ultimately
control the complexity of our model by including or excluding a particular basis (Equation 9
in the paper) based on its contribution to the likelihood of the observed data. To guarantee
convergence of the chain, the adaptations are designed to satisfy the diminishing adaptation
condition in Theorem 5 of [10].

The Bayesian specification of our model is completed by placing a Gamma prior on the
residual precisions, σ−2m ∼ Gamma(aσ, bσ), for m = 1, . . . , p, and, if covariate information is
available, a Cauchy prior (equivalently, a t-distribution with one degree of freedom) on the
matrix of coefficients β as follows

βl ∼ N(0,Diag(w−1lj )), wlj ∼ Gamma

(
1

2
,
1

2

)
(3)

for l = 1, . . . k and j = 1, . . . , r. To ensure conjugacy and speedy update, we expressed the
Cauchy as an inverse gamma mixture of a normal distribution. The Cauchy distribution is used
here as an alternative to the Gaussian distribution as it is more robust to outliers.

Finally, the diagonal orthant (DO) multinomial probit extension for reverse inference (Sec-
tion 2.2 in the paper) requires setting priors on αj and γj , for j = 1, . . . , J . We choose
αj ∼ N(mα, vα) and γj ∼ Nk(µγ ,Σγ), and posterior computation can proceed via conditionally
conjugate Gibbs steps.

Setting p, b, and hyperparameters

To implement our methodology, one has to choose the hyperparameters for the priors above
as well as the number of bases p in Equation 2 of the paper and their bandwidth b = 1

2s2

(Equation 3 in the paper), where s is the length-scale of the kernel. Likely, the most daunting
task is the choice of the bandwidth b. For the simulations and real data analyses we considered
values of b in the interval [0.00781, 0.00195], which corresponds to s2 ∈ [64, 256]. For a given
number of basis functions p, larger values of s2 ensure smoother surfaces. We recall that we
used a 2 × 2 × 2 mm brain mask, thus a value of s2 = 64 corresponds to a standard deviation
of s = 8 mm for the 3D kernels (equivalently, 4 voxels). In general, one can not obtain rougher
surfaces than the resolution determined by the bandwidth, thus the choice of b requires careful
sensitivity analysis to identify a value that induces the desired level of smoothness for the inten-
sities. Applications with intensities exhibiting a different degree of smoothness in different areas
of the spatial domain would require spatially adaptive smoothness, which can potentially be
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achieved by choosing a pre-specified finite dictionary of different bandwidths and then allowing
the kernels to have varying unknown bandwidths via a griddy Gibbs sampler.

In addition to choosing the bandwidth, one has to choose the number of bases p. For any
given bandwidth, a smaller value for p results in sparser bases with non-overlapping kernels
(the same holds for a given number of bases and a narrower bandwidth). This produces visu-
ally unappealing surfaces that exhibit peaks at those kernels centred in proximity of clusters
of foci while dropping off quickly beyond the kernel core. In general, one can include a rich,
pre-specified set of basis functions since the model allows automatic shrinkage and effective
removal of basis coefficients not needed to characterize any of the intensities under study. In
our 3D applications, we considered values of p ranging between 400 and 600. At a given axial
slice, knot locations formed a 2D grid of equally spaced kernels. At the successive axial slice,
knots were given a δ translation along the x-axis to help entertaining a richer variety of shapes.
In practical situations, sensitivity analysis is required to choose these parameters jointly, and
changing either one of p or b possibly requires fine tuning the other as necessary to find the best
combination to fit the data. We remark that different combinations of p and b, chosen as advised
above, did not impact on the predictive performance of our model in the simulations and real
data analyses, but only affected the qualitative representation of the estimated intensities.

With regard to specifying hyperparameter values, one needs to set hypeparameters ρ, a1,
and a2 for the MGPS prior in Equation (1) and Equation (2). As remarked above, a choice
a2 > 1 induces stochastically increasing τh in (1), which favors more shrinkage as the column
index increases. In the real data analysis (Section 3 in the paper), we set ρ = 3, a1 = 2.1, and
a2 = 3.1, and our sensitivity analyses showed robustness to different choices of these hyperpa-
rameters. Furthermore, one has to choose aσ and bσ, which are the hyperparameters values of
the Gamma prior on σ−2j , j = 1, . . . , p. Our suggestion is to fix a mean and variance for these
Gamma priors and solve for the hyperparameters. For example, we assigned a Gamma(1, 0.3)
prior distribution with mean 1/3 to the diagonal elements of Σ−1 for the real data analysis.

The DO multinominal probit model (Section 2.2) requires setting the hyperprior parameters
of priors αj ∼ N(mα, vα) and γj ∼ Nk(µγ ,Σγ), for j = 1, . . . , J . With regard to the emotion
meta-analysis dataset, and assuming that all emotion types are equally likely a priori, we can
set mα = Φ−1(1/J), where J is the number of unique study types and Φ(·) is the standard
normal CDF. Alternatively, we can have the hyperprior mean to be type-specific, mα,j , and set
mα,j = Φ−1(sj), where sj is the sample proportion of type j studies. Further, we set vα = 1,
µγ = 0, and Σγ = I.

In practical applications, there is often little prior information to guide the selection of higher
order hyperparameters, therefore it is important to perform sensitivity analysis to investigate
robustness of the results to different choices of these values. That is, one should repeat the
analysis for different choices of p, b and {ρ, a1, a2, aσ, bσ,mα, vα,µγ ,Σγ}, and see how the pos-
terior distributions of the model parameters (and various statistics) vary. Refer to Algorithm 1
for a sketch of the pseudo-code for sensitivity analysis.

Algorithm 1 Pseudo-code for sensitivity analysis

for s = 1 : Number of repetitions do
Choose {p, b} and hyperparameters {ρ, a1, a2, aσ, bσ,mα, vα,µγ ,Σγ}
Set initial values for the model parameters

repeat
Parameters sampling: Gibbs steps + Hamiltonian Monte Carlo

until Convergence
Export parameters estimates
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Posterior computation

To facilitate the routine implementation of the proposed method, the Matlab code for the
Bayesian spatial latent factor regression model and its extensions to reverse inference are avail-
able at the Biometrics website on Wiley Online Library. Here we provide a description of the
MCMC algorithm used to update from the posterior distribution of the model parameters in
Section 2.1. Posterior computation proceeds via a hybrid Gibbs sampler with a Hamiltonian
Monte Carlo (HMC) step [7] to update the basis function coefficients θi. The sampler cycles
through the following steps:

1. Update of θi: Conditioning on all other model parameters, the log-posterior is given by

log π(θi | −) ∝ −
∫
B

exp{b(s)>θi}ds+

ni∑
j=1

b(xij)
>θi −

1

2
(θi −Ληi)

>Σ−1(θi −Ληi),

for i = 1, . . . , n. We recall that {xij}ni
j=1 denotes the set of foci reported by study i. After

discretising to a grid B ⊆ B, the log posterior becomes

log π(θi | −) ∝ −V
∑
l∈B

exp{b(l)>θi}+

ni∑
j=1

b(xij)
>θi−

1

2
(θi−Ληi)

>Σ−1(θi−Ληi), (4)

where V is the volume of each voxel. We resort to HMC [7] to sample from (4) by defining
the potential energy function as

U(θi) = − log π(θi | −),

and its derivative with respect to θi corresponds to

∂U

∂θi
= V

∑
l∈B

b(l)> exp{b(l)>θi} −
ni∑
j=1

b(xij)
> + (θi −Ληi)

>Σ−1.

The kinetic energy, K(θ̃i), is assumed to have form K(θ̃i) =
∑p

m=1

θ̃2ij
2 . A detailed

presentation of Hamiltonian dynamics is beyond the scope of this paper. We defer to [7]
for a description of the leapfrog method and further details

2. Update of Λ: Sample λjh, δ1, δh, ιjh from the following posteriors:

(a) Denote the jth row of Λk∗ (the loading matrix Λ truncated to k∗ � p) by λj ; the
λj ’s have conditionally independent conjugate posteriors given by

π(λj | −) ∼ Nk∗((D−1j + σ−2j η
>η)−1η>σ−2j θ

(j), (D−1j + σ−2j η
>η)−1)

with D−1j = diag(ιj1τ1, . . . , ιjk∗τk∗), η> = [η1, . . . ,ηk∗ ] and θ(j) = (θj1, . . . , θjn), for
j = 1, . . . , p

(b) Sample ιjh from

π(ιjh | −) ∼ Gamma

(
ρ+ 1

2
,
ρ

2
+
τhλ

2
jh

2

)
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(c) Sample δ1 from

π(δ1 | −) ∼ Gamma

a1 +
pk∗

2
, 1 +

1

2

k∗∑
l=1

τ
(1)
l

p∑
j=1

ιjlλ
2
jl

 ,

and for h > 2, sample δh from

π(δh | −) ∼ Gamma

a2 +
p

2
(k∗ − h+ 1), 1 +

1

2

k∗∑
l=h

τ
(h)
l

p∑
j=1

ιjlλ
2
jl

 ,

where τ
(h)
l =

∏l
t=1,t6=h δt for h = 1, . . . , k∗

The sampling begins with a very conservative choice of k∗, which is then automatically
selected within the adaptive Gibbs sampler as described in [2]

3. Update of ηi: Sample ηi from the full conditional posterior

π(ηi | −) ∼ N
((

Λ>Σ−1Λ + Ik

)−1
(Λ>Σ−1θi + β>Zi),

(
Λ>Σ−1Λ + Ik

)−1)
for i = 1, . . . , n. We recall that Zi is the r × 1 vector of covariates for study i

4. Update of σ2j : Denote with σ−2j , j = 1, . . . , p, the diagonal elements of Σ−1. Assume

σ−2j ∼ Gamma(aσ, bσ). Sample σ−2j from conditionally independent posteriors

π(σ−2j | −) ∼ Gamma

(
aσ +

n

2
, bσ +

∑n
i=1(θij − λjηi)

2

2

)
where λj corresponds to the jth row of Λ

5. Update of β: A Cauchy prior is induced on the columns of the r× k matrix of coefficients
as follows

βl ∼ N(0,Diag(w−1lj )), with wlj ∼ Gamma

(
1

2
,
1

2

)
for l = 1, . . . , k and j = 1, . . . r. The update proceeds by sampling

(a) ωlj from its full conditional posterior

π(ωlj | −) ∼ Gamma

(
1,

1

2

(
1 + β2lj

))
(b) the lth column of β from its full conditional posterior

π(βl | −) ∼ N
((

Z̃Z̃> + E−1l

)−1
Z̃η>·l ,

(
Z̃Z̃> + E−1l

)−1)
,

where η>·l ∼ N(Z̃>βl, In) denotes the lth column of the n×k transpose of the matrix
of latent factors η, In is the n × n identity matrix, and Z̃> denotes the transpose
of the r × n matrix of predictors Z̃. Each row i of Z̃> corresponds to the vector of
covariates for study i, for i = 1, . . . , n. Matrix El corresponds to El = Diag(ω−1lj ),
for l = 1, . . . , k and j = 1, . . . , r
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The DO multinomial probit extension described in Section 2.2 involves a straightforward modi-
fication of the MCMC algorithm described above, which now includes additional steps to sample
from the full conditional posterior distributions of the new model parameters. In particular, the
update of the latent factors is modified as described in Step (3b) and three steps (Steps 6-8)
are added to account for the study-type component model parameters:

(3b) Update of ηi: Sample ηi from a multivariate Gaussian full conditional posterior distribu-
tion with mean

E(ηi|−) =
(
Λ>Σ−1Λ + Ik + γγ>

)−1
(Λ>Σ−1θi + β>Zi + γ(χi − α))

and covariance

Cov(ηi|−) =
(
Λ>Σ−1Λ + Ik + γγ>

)−1
,

for i = 1, . . . , n, where γ denotes the k × J matrix γ = [γ1, . . . ,γJ ], χi = [χi1, . . . , χiJ ]>,
and α = [α1, . . . , αJ ]>

(6) Update of γj : Sample γj from the following full conditional posterior distribution

π(γj |−) ∼ N
(

(Σ−1γ + ηη>)−1(Σ−1γ µγ + η(χj −α)), (Σ−1γ + ηη>)−1
)
,

where χj = [χ1,j , . . . , χn,j ]
> and αj is the n × 1 vector of n replicates of αj , α =

[αj , . . . , αj ]
>
n×1, for j = 1, . . . , J

(7) Update of αj : Sample αj from the following full conditional posterior distribution

π(αj |−) ∼ N

(
vα

1 + vαnj
×

(
µα
vα

+

nj∑
i=1

(
χi,j − η>i γj

))
,

vα
1 + vαnj

)

where nj is the number of studies of type j, for j = 1, . . . , J

(8) Update of χij : Sample χij from the following full conditional posterior distribution

π(χij |−) =

{
TN[0,∞)(αj + γ>j ηi, 1) if yi = j

TN(−∞,0)(αj + γ>j ηi, 1) otherwise

for i = 1, . . . , n, where TN[a,b] denotes the truncated normal distribution on the interval
[a, b]
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Web Appendix B
Meta-analysis of emotions (cont.‘d Section 3)

Web Figure 1: The foci reported by the 187 studies of five emotions.
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Web Figure 2: Traceplots of the posterior log intensity function µi(ν) for a variety of randomly selected
studies i and randomly selected voxels ν. The sampler was run for 15,000 iterations, with the first 5,000
samples discarded as a burn-in and collecting every 25th sample to thin the chain. Traceplots show the
post-burn in and thinned samples.

Web Appendix C

Meta-analysis of emotion and executive control studies

In this Section, we demonstrate the application of our algorithm to real-world data by comparing
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studies of emotion and cognitive control, using hand-coded activation coordinates from previous
meta-analyses [3, 4, 5, 9, 8, 11, 13, 12]. Each domain has been studied extensively using
neuroimaging in hundreds of published studies. There is substantial convergence about the
systems broadly involved in each, and though they interact, cognitive control and emotion
are associated with distinct large-scale networks. In addition, there is substantial converging
evidence on the cognitive and emotional functions of homologous systems in invasive animal
studies, further validating the functional roles of the systems identified in human neuroimaging.
We aim to both characterize the patterns of brain activation that are typical to each type, as
well as evaluate the ability of our model to conduct a limited “reverse inference”, that is, to
predict which topic (cognitive control or emotion) a new study investigates.

Our dataset consists of 1199 total studies categorized as either “emotion” (860 studies, 6481
foci; [4]) or “executive control” (339 studies, 4332 foci; [3, 9, 11, 8]). Covariate information is not
available on these studies. We assigned a Gamma(1, 0.3) prior distribution with mean 1/3 to the
diagonal elements of Σ−1. The hyperparametes of the MGPS prior were set to ρ = 3, a1 = 2.1,
a2 = 3.1. In absence of covariate information, we assigned ηi ∼ N(0, I) for i = 1, . . . , n. We
chose p = 352 Gaussian kernels with bandwidth b = 0.002. Kernels were placed on axial slices
roughly 8-12 mm apart, at z = {−38,−22,−14,−2, 6, 18, 28, 44} mm (about 85% of the foci
were located within these axial slices) and, within each slice, were equally spaced by forming a
grid of 6×8 knots along the (x, y) direction. We used a standard brain mask with 2 mm3 voxels
and dimensions 91× 109× 91. Kernels falling outside this mask were discarded. To update the
basis function coefficients via HMC [7], we adopted the leapfrog method for L steps and with
a stepsize of ε. At each iteration of the MCMC sampler, a new value for L was drawn from
Poisson(25) and the stepsize was adapted every 10 iterations during burn-in to benchmark an
average acceptance rate of 0.65 over the previous 100 iterations in the Metropolis-Hastings step.
The sampler was run for 10,000 iterations, with the first 5,000 samples discarded as a burn-in
and collecting every 20th sample to thin the chain. We assessed convergence of the chain by
multiple runs of the algorithm from over-dispersed starting values and visually inspected the
differences in the posterior mean intensity function µi(ν) at a variety of voxels and for different
studies. The sampler appeared to converge rapidly and mix efficiently.

Web Figure 3 displays the posterior mean intensity function at three axial slices for two
randomly chosen studies. Slices are arranged in columns, the top (bottom) row shows an
emotion (executive control) study. The smoothness of the images is due to the choice of the
bandwidth parameter. As opposed to the executive control study, the emotion study shows
strong activation in two regions at slice z = −20 and for y > −26 mm. These regions correspond
to the amygdalae; almond-shaped structures in the brain of known importance in emotion
processing. The executive control study shows stronger activation in more superior slices with
a bilateral pattern. Note how we identify active regions even though a study does not have foci
at a particular slice or, for example, both the right and left amygdala are active for study 232
even though only one focus is reported around the right amygdala. This a by-product of the
borrowing of information across studies in our Bayesian treatment and an essential feature to
adequately estimate the intensities over the whole the brain given the sparsity of foci per study.

The top row in Web Figure 4 shows the posterior mean difference between the estimated
mean group intensity for the emotion and the executive control studies, respectively. The group
intensity at iteration t is obtained by averaging the basis function coefficients for studies that
belong to the group, that is,

µ̂tg(ν) = exp{b(ν)>θ̂
t

g}, with θ̂
t

g =
1

Card(g)

∑
i∈g
θ̂
t

i,

where Card(g) is the cardinality of group g. The darker regions in the top row reveal stronger
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Web Figure 3: Posterior mean intensity estimates for two randomly chosen studies. Top row: an
emotion study; bottom row: an executive control study. Here we only show three axial slices (columns)
of the fully 3D results. Black points denote reported foci at the corresponding axial slices.

activation of emotion studies (the amygdalae at slice z = −20 mm), whereas the bright regions
denote stronger activation of executive control studies. The grey area reveals no difference in
activation. We can also obtain standard deviation maps of the difference map as a measure
of uncertainty around the point estimate and the corresponding standardized posterior mean
difference maps. The clearest of these maps is slice z = −20 mm where one can easily identify
the amygdalae as significant regions.

It is also of interest to examine the elements of the dictionary {φl}kl=1. The posterior
mean number of latent factors is k = 4 with 95% credible interval [3, 6]. Web Figure 5 shows
the first four elements of the dictionary {φl}4l=1 (rows) at axial slices z = −20, 6, 42 mms
(columns). Notice how the magnitude of the learnt bases decreases as k increases, with the
first couple of dictionary elements describing the principal patterns of activation and the later
elements progressively shrunk toward zero. At every axial slice, the first two dictionary elements
combined recover the principal patterns of activation we observed in Web Figures 3-4.

Reverse inference

Our dataset is large enough to split the data into a training set (50%), for which both foci and
study type are retained for the analysis, and a testing set, for which the foci only are retained,
and we test the predictive accuracy of our model. Let yi denote the study type, with

yi =

{
1 if study i is an emotion study
0 if study i is an executive control study.

Because the study type can be represented as a binary response, we build a probit model for
study type and predict the posterior probability that a new point pattern data arose from
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Web Figure 4: Top row: posterior mean of difference map for the emotion studies posterior group in-
tensity vs. executive control studies posterior group intensity; middle row: estimated standard deviation
of difference map; bottom row: standardised mean difference map. Here we only show three axial slices
(columns) of the fully 3D results. The grey color scale for the middle row has been reversed to improve
visibility of the results.

either cognitive process. Specifically, we model pyi = Pr(yi = 1|α,γ,ηi) = Φ(α+ γ>ηi), where
Φ(·) denotes the standard normal distribution function. Parameter α can be interpreted as the
baseline probability that study i is of the emotion type, and γ>ηi accounts for study-specific
random deviations.

The intercept α is given a N(mα, vα) prior, with mα = Φ−1(0.50) assuming emotion and
executive control studies are equally likely a priori, and γ is a vector of unknown regression
coefficients with conjugate prior distribution γ ∼ Nk(µγ ,Σγ). The full conditional posterior
distributions needed for Gibbs sampling are not automatically available, but we can rely on the
data augmentation algorithm of [1] to facilitate the computation. We introduce independent
unobservable latent variables W1, . . . ,Wn and define

yi = 1(Wi > 0), with Wi ∼ N(α+ γ>ηi, 1), (5)

so that Pr(yi = 1|α,γ,ηi) = Φ(α+ γ>ηi) by marginalizing out the latent variable Wi.
We compare our predictive method to previous work that combines MKDA and a näıve

Bayesian classifier (NBC) [14]. Web Figure 6 shows the ROC for predicting the study type
for studies in the test set with the corresponding area under the curve (AUC). We see that
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Web Figure 5: Learnt dictionary elements {φl}4l=1 at three axial slices (columns). The estimated
posterior mean number of factors is k = 4.

our predictive model does a better job that MKDA + NBC at predicting the study type.
This result is robust and we could confirm it through additional chains run for sensitivity
analysis. Therefore, taking into account the spatial information in the data helps achieving
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better predictive accuracy, and our Bayesian model captures more sources of variation and
conveys the uncertainty in the computation of the predictive probabilities for study type.
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Web Figure 6: ROC curve for prediction of study type for studies in the test set. The AUC corresponds
to the area under the curve.
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Web Appendix D

In this Section, we consider a number of simulation examples to illustrate our approach. In part
A, we investigate the sensitivity of our results to different choices for the hyperparameters. In
part B, we investigate the performance of our model when studies are functionally unrelated and
there is no significant effect. By repeating multiple Coordinate-based Meta-analyses (CBMAs),
researchers found there is often little similarity between studies, and some of the published
significant results were inadvertently due to software implementation issues. It is therefore of
crucial importance to validate our approach under the null hypothesis of no true difference
between studies. From the philosophy of CBMA, the result should be null.

Part A: Sensitivity analysis

We examine how posterior inference on the intensity functions varies with different specifications
of the number of bases p and bandwidth b, and hyperparameters aσ, bσ, α, ρ, a1, and a2. In
particular, we consider nine scenarios of possible combinations of p and b (Web Table 1) and,
for one of this scenarios, we also report results on sensitivities to the prior specifications of the
remaining parameters.

Scenarios p b aσ bσ mα a1 a2 ρ

1 25 1/800 1 0.3 Φ−1(0.5) 2.1 3.1 3

2 25 1/512
...

3 25 1/128
...

4 48 1/800
...

5 48 1/512
...

6 48 1/128
...

7 90 1/800
...

8 90 1/512
...

9 90 1/128 1 0.3 Φ−1(0.5) 2.1 3.1 3
10 90 1/128 1 0.25 Φ−1(0.62) 3.1 2.1 2
11 90 1/128 2 2 Φ−1(0.62) 3.1 2.1 2

Web Table 1: Prior specifications of eleven scenarios for sensitivity analysis.

To generate a synthetic dataset, we randomly selected 200 studies from the real data analysis
in Web Appendix C whilst keeping the true proportion of sampled emotion studies equal to that
of the real data analysis (70% emotion studies, hereafter called “type 1”). We then retained
the estimated posterior mean intensity functions at slice z = −20 mm as true intensities for the
2D simulated dataset. Given the true intensities, the foci for each study where generated using
the spatstat library in R. Web Figure 7 shows the true group average intensity functions and
the simulated data points.

To simulate the posterior distribution, we run each chain for 50,000 iterations with a burn-in
of 20,000, and thinned the chain every 20 iterations to reduce the autocorrelation in the posterior
samples. To assess the posterior variability of the intensity functions, Web Figure 8 shows the
posterior histograms of the intensity function evaluated at voxels with highest intensity values
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Web Figure 7: True group average intensity functions with data points for the simulation study.

for four studies under case scenario 6. The true values fall in the range of posterior samples; and
the posterior mean intensities are close to the true values. We examined a variety of different
studies for all scenarios and conclusions were unchanged (Web Figure 9 shows traceplots of
the estimated posterior log intensity functions to the truth for a variety of studies and voxels).
Therefore, the method provides a good accuracy in estimating the intensities.

For a numerical comparison across the eleven scenarios, we computed the integrated mean
square error (IMSE) between the posterior mean intensity function of for each study and the
corresponding true function on axial slice A (z = −20 mm),

IMSE =
1

N

N∑
i=1

∫
A
λi(ν)− λ̂i(ν)dν,

where λ̂i is the posterior mean intensity function for study i and λi is the true function. Also,
we split the data into a training set (50%) and a test set, and computed the AUC to assess
the predictive accuracy. Results under the eleven scenarios are reported in Web Table 2. From
these results, it appears that a larger number of bases with relatively narrower kernels has to
be preferred to be able to capture of large variety of shapes. In general, however, the values for
p and b have to be inferred via sensitivity analysis in that the most appropriate values for these
parameters always depend on the application at hand. We observe that results under cases
9-11 are very similar. This implies that the intensity estimates are stable and not sensitive to
moderate changes of the model hyperparameters.
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Web Figure 8: True intensity function for four randomly chosen studies in the simulated dataset. His-
tograms show the posterior distribution of the intensity function evaluated at voxels of highest intensity
values (red “x”). The dashed line is the marginal posterior mean and the solid line is the true intensity.
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Web Figure 9: Traceplots of the estimated posterior log intensity function for a variety of synthetic
studies and voxels at axial slice z = −20 mm. Dashed lines represent true values of the log intensity
function. Posterior samples are post burn-in.

Part B: Simulation study with coordinates generated at random
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Scenarios rIMSE AUC

1 1.181 0.57
2 1.186 0.58
3 1.312 0.49
4 1.147 0.62
5 1.013 0.60
6 1.004 0.65
7 1.233 0.62
8 1.122 0.65
9 1 0.65
10 1.011 0.65
11 1.061 0.65

Web Table 2: Simulation study results. Comparison of the IMSE and AUC summary measures for our
model under the eleven scenarios in Web Table 1. We report the IMSE relative to the value obtained
for case scenario 9 (rIMSE).

We conclude this Section by investigating the performance of our model under the null hy-
pothesis of no similarity across studies. We run several simulations on synthetic datasets with
coordinates generated at random, and we report here the results of one such simulation in 2D.

For N = 200 synthetic studies, we set a flat intensity function equal to 0.0002 at each and
every 2D pixel of a chosen axial slice (z = −20 mm), for an expected number of points equal
to 4 in the whole region. Given this flat intensity, the spatial point patterns for the N = 200
synthetic studies were generated using the spatstat library in R. The number of points per study
ranged from a minimum of 1 to a maximum of 12, with an average number of points per study
of 4.7 and a total number of points equal to 959. Further, the studies were randomly split
between type 1 and type 0, for a total of 99 “type 1” studies and 101 “type 0” studies (Web
Figure 10).

To simulate the posterior distribution, we run the chain for 50,000 iterations with a burn-
in of 20,000, and thinned the chain every 20 iterations to reduce the autocorrelation in the
posterior samples. To assess the posterior variability of the intensity functions, Web Figure 11
shows traceplots of the estimated posterior log intensity function to the truth (red dashed line)
for a variety of randomly selected pixels and synthetic studies. The true value of log(2e − 04)
falls in the range of posterior samples; and the posterior mean intensities (blue dashed lines)
are close to the true value. We examined a variety of other different studies and conclusions
were unchanged. Therefore, the method provides a good accuracy in estimating the intensities.

The posterior mean number of latent factors is k = 7 with 95% credible interval [5, 8]. There-
fore, the dimensionality reduction seems slightly less efficient when the studies are unrelated as
more elements of the learnt dictionary {φ̃} are needed to describe the intensities. However, the
MGPS prior shrinks progressively the elements of the dictionary (Web Figure 12) and, when
plotted on the same color scale, only basis φ̃1 does not appear to be shrunk to zero. There is a
connection between φ̃1 and the intercept of the model. In fact

φ̃1(ν) = λ11 +

p∑
m=2

λm1bm(ν),

where λ11 is the first element of the first row of the factor loading matrix Λ. The first row of Λ,
λ1·, includes the loadings of θi1, the basis function coefficient of the intercept, and Mean(θi1) =

18



0 50 100 150 200

0
50

10
0

15
0

20
0

x

y

0.00015

0.00020

0.00025

Type 1
Type 2

Web Figure 10: Data points for the simulation study with coordinates generated at random.

λ1· × ηi. By construction, element λ11 is the largest (in magnitude) element of the first row of
Λ. No relevant patterns emerge in the learnt dictionary elements.

The studies were split into a training set (75%) and a test set to assess the predictive
accuracy. Web Figure 13 shows the ROC for predicting the study type for studies in the test set
with the corresponding area under the curve (AUC). The five lines correspond to five replicates
of the experiment, where each replicate has studies randomly assigned to either group 0 or group
1 and coordinates generated at random. In general, prediction performance roughly corresponds
to random chance under the null hypothesis of truly unrelated studies.
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Web Figure 11: Traceplots of the estimated posterior log intensity function to the truth (red dashed
line) for a variety of randomly selected pixels and synthetic studies for the simulation with coordinates
generated at random. The blue dashed line represents the posterior mean intensity.
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Web Figure 12: The first six learnt dictionary elements {φl}6l=1 for the simulation study with coordi-
nates generated at random. The estimated posterior mean number of factors is k = 7.
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