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SUMMARY: In this Web Supplement, we include additional simulation results in Section 1. We include detailed

description of the ADNI data analysis in Section 2. Additional real data results are shown in Section 3. We then

include the discussion of asymptotic theories and conditions in Section 4. We then state all auxiliary lemmas in

Section 5. The proofs of all lemmas are included in Section 6. We include the proofs of Theorems 1 and 2 in

Section 7. Finally, we provide proofs of Corollaries 1 and 2 in Section 8.
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1. Additional simulation results

In this section, we report the finite sample performance of our method by using AIC as rn varies

from 1 to 10. Tables S1-S2 summarize all results when we set n = 200 and censoring rates 0.3 and

0.5. Tables S3-S5 summarize all results when we set n = 500 and censoring rates 0.1, 0.3, and 0.5.

Tables S6-S8 summarize all results when we set n = 1000 and censoring rates 0.1, 0.3 and 0.5.
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[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

[Table 8 about here.]
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We include additional simulation results on the power of our test statistic as the number of

functional principle components varies. We have reported the results for two settings. Table S9

summarizes the case with n = 200, censoring rate 0.1, and C1 = 0.1 ∗ j for j = 0, . . . , 10. Table

S10 summarizes the case with n = 200, censoring rate 0.1, and C2 = 0.1 ∗ j for j = 0, . . . , 10.

Inspecting Tables S9 and S10 that the power of our test statistic is relatively robust to the choice

of PV(rn). There is a little power loss if PV(rn) = 0.95. We also ran additional simulations for

many other settings corresponding to different sample sizes, different censoring rates. Since their

corresponding findings are similar to those presented here, we omit them for simplicity.

[Table 9 about here.]

[Table 10 about here.]

2. Data Description for ADNI Data Analysis

Data used in the preparation of this article were obtained from the ADNI database (adni.loni.usc.edu).

“The ADNI was launched in 2003 by the National Institute on Aging, the National Institute of

Biomedical Imaging and Bioengineering, the Food and Drug Administration, private pharmaceuti-

cal companies and non-profit organizations, as a $60 million, 5-year publicprivate partnership. The

primary goal of ADNI has been to test whether serial magnetic resonance imaging, positron emis-

sion tomography, other biological markers, and clinical and neuropsychological assessment can be

combined to measure the progression of MCI and early Alzheimer’s disease (AD). Determination

of sensitive and specific markers of very early AD progression is intended to aid researchers and

clinicians to develop new treatments and monitor their effectiveness, as well as lessen the time and

cost of clinical trials. The Principal Investigator of this initiative is Michael W. Weiner, MD, VA

Medical Center and University of California, San Francisco. ADNI is the result of efforts of many
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coinvestigators from a broad range of academic institutions and private corporations, and subjects

have been recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI was to

recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-2. To date these three

protocols have recruited over 1500 adults, ages 55 to 90, to participate in the research, consisting of

cognitively normal older individuals, people with early or late MCI, and people with early AD. The

follow up duration of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO.

Subjects originally recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2.

For up-to-date information, see www.adni-info.org.”

2.1 Hippocampus image preprocessing

The MRI data, collected across a variety of 1.5 Tesla MRI scanners with protocols individual-

ized for each scanner, includes standard T1-weighted images obtained by using volumetric 3-

dimensional sagittal MPRAGE or equivalent protocols with varying resolutions. The typical pro-

tocol includes: inversion time (TI) = 1000 ms, flip angle = 8o, repetition time (TR) = 2400 ms,

and field of view (FOV) = 24 cm with a 256 × 256 × 170 acquisition matrix in the x−, y−,

and z−dimensions yielding a voxel size of 1.25 × 1.26 × 1.2 mm3. We adopted a surface fluid

registration based hippocampal subregional analysis package (Shi et al., 2013), which uses isother-

mal coordinates and fluid registration to generate one-to-one hippocampal surface registration.

Given the 3D MRI scans, hippocampal substructures were segmented with FIRST (Patenaude

et al., 2011) and hippocampal surfaces were automatically reconstructed with the marching cube

method (Lorensen and Cline, 1987). We applied an automatic algorithm, topology optimization, to

introduce two cuts on a hippocampal surface to convert it into a genus zero surface with two open

boundaries. The locations of the two cuts were at the front and back of the hippocampal surface,

representing its anterior junction with the amygdala, and its posterior limit as it turns into the white
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matter of the fornix. Then holomorphic 1-form basis functions were computed (Wang et al., 2010).

These induced conformal grids the hippocampal surfaces, which were consistent across subjects.

With this conformal grid, we computed the conformal representation of the surface (Shi et al.,

2013), i.e., the conformal factor and mean curvature, which represent the intrinsic and extrinsic

features of the surface, respectively. The “feature image” of a surface was computed by combining

the conformal factor and mean curvature and linearly scaling the dynamic range into [0, 255].

Next, we registered the feature image of each surface in the dataset to a common template with an

inverse consistent fluid registration algorithm (Shi et al., 2013). With conformal parameterization,

we essentially converted a 3D surface registration problem into a 2D image registration problem.

The flow induced in the parameter domain establishes high-order correspondences between 3D

surfaces. Finally, the radial distance, which retains information on the deformation along the

surface normal direction, was computed on the registered surface.

2.2 Demographic information summary

Among all individuals, 303 were retired and 70 were not; 237 participants were male, and 136 were

female; 342 were right-handed, and 31 were left-handed; 300 were married, 45 were widowed,

24 were divorced, and 4 were never married. The participants had an average of 15.7 years of

education with a standard deviation 3.0 years. The minimum education length was 4 years and the

maximum education length is 20 years. The average age was 75.0 years with a standard deviation

of 7.3 years. The youngest person was 55 years old, while the oldest person was 90 years old. We

also had genetic information on two alleles of APOE4. For the first allele, 26 had genotype 2, 300

had genotype 3, and 47 had genotype 4. For the second allele, 169 had genotype 3, and 204 had

genotype 4. For the ADAS-Cog score, the average score was 11.6 with a standard deviation of

4.5, the lowest score was 2 and the highest score was 27.67. Mild cognitive impairment converters
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did not differ from mild cognitive impairment noncoverters in gender, handedness, marital status,

retirement percentage, and age (p−value> 0.05), but as expected, differed from them in APOE4

status as well as baseline cognition (p−value< 0.05). Mean follow up time was 99 days longer in

converters (p−value= 0.007).

3. Additional Real Data Results

We have plotted the estimated coefficient functions when rn = 17, 18, 19, 21, 22, and 23 in Figure

S1. From the results, we can see that estimated coefficient functions are quite robust to the choice

of rn.

[Figure 1 about here.]

4. Asymptotic Properties

In this section, we systematically investigate the asymptotic properties of the maximum approxi-

mate partial likelihood estimator η̂ as well as the asymptotic null distribution of the score statistic

TS . It is assumed that all curves are fully observed just for notational simplicity. Such an assump-

tion has been used in Hall et al. (2006) and Lei (2014), among others. Technically, when functional

observations are dense in space, using smoothed curves is as good as using true curves under some

smoothness conditions (Hall et al., 2006; Zhang and Chen, 2007).

For simplicity, we shall focus on a finite time interval [0, τ ] with τ < ∞. We consider a re-

parametrization of βj and ξij by defining βjR = λj
1/2βj and ξijR = ξij/λj

1/2 and then we have∫
S
Xi(s)β(s)ds =

∞∑
j=1

ξijRβjR =
rn∑
j=1

ξijRβjR +
∞∑

j=rn+1

ξijβj.

We also define ξ̂ijR = ξ̂ij/λj
1/2 for j = 1, . . . , rn. The reason to do re-parametrization is to

make the FPC scores serving as predictor variables on a common scale of variabilities. Denote
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β0(s) as the true coefficient function. It is assumed that ||β0|| = {
∫
S β0(s)

2ds}1/2 < ∞ and

β0(s) =
∑∞

j=1 βj0φj(s). Recall that the hazard function of FLCRM can be rewritten as

hi(t) = h∗0(t) exp(

p∑
k=1

zikγk +
∞∑
j=1

ξijβj), (4.1)

where h∗0(t) = h0(t) exp{
∫
S µ(s)β(s)ds}, and the log-approximate partial likelihood function

Q(η) is given by

Q(η) =
n∑
i=1

∫ τ

0

ŵT

i ηdNi(t)−
∫ τ

0

log{
n∑
i=1

Yi(t) exp(ŵT

i η)}dN(t), (4.2)

Therefore, the logarithm of approximate partial likelihood functions for (4.1) and (4.2) are,

respectively, given by

l(β(·), γ) =
n∑
i=1

∫ τ

0

(

p∑
k=1

zikγk +
rn∑
j=1

ξijRβjR +
∞∑

j=rn+1

ξijβj)dNi(t)

−
∫ τ

0

log{
n∑
i=1

Yi(t) exp(

p∑
k=1

zikγk +
rn∑
j=1

ξijRβjR +
∞∑

j=rn+1

ξijβj)}dN(t),

Q(ηR) =
n∑
i=1

∫ τ

0

(

p∑
k=1

zikγk +
rn∑
j=1

ξ̂ijRβjR)dNi(t)

−
∫ τ

0

log{
n∑
i=1

Yi(t) exp(

p∑
k=1

zikγk +
rn∑
j=1

ξ̂ijRβjR)}dN(t),

where βrnR = (β1R, · · · , βrnR)T and ηR = (βrnR, γ). The function l(β(·), γ) can also be regarded

as a function of ηR, and we define l(ηR) as

l(ηR) = l(β(·), γ)|{βj=βj0,rn+16j<∞}

.

The key ideas of our theoretical development are
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(i) to characterize the discrepancy between Q(ηR) and l(ηR) as well as their first-order and

second-order derivatives;

(ii) to prove the consistency and convergence rate of β̂(s) =
∑rn

j=1 β̂jφ̂j(s) and γ̂;

(iii) to prove the asymptotic distribution of the score statistic for testing the null effect of a

functional predictor.

We need three sets of conditions in order to achieve these developments. Without loss of generality,

we assume that the predictor X(t) has been centered. Define ei =
∑∞

j=rn+1 ξijβj0. With a little

abuse of notation, we useC to denote terms that are constant, andC may denote different constants

in different places.

The first set of conditions includes the following conditions (A1)-(A5) on the survival data. The

conditions (A1)-(A4) can be regarded as a direct extension of some standard conditions in the

literature (Fan and Li, 2002; Andersen and Gill, 1982; Murphy and Van der Vaart, 2000).

(A1)
∫ τ
0
h0(t)dt <∞.

(A2) Let wiR = (ξi1R, . . . , ξirnR, zi1, . . . , zip)
T. For d = 0, 1, and 2, we define

S(d)(ηR, t) = n−1
n∑
i=1

(wiR)(d)Yi(t) exp(ηT

RwiR + ei),

where (wiR)(0) = 1, (wiR)(1) = wiR, and (wiR)(2) = (wiR)⊗2. Moreover, there exists a neigh-

borhood B of the true value of ηR, denoted as ηR0, and a scalar, a vector and a matrix continuous

function s(d)(ηR, t) = E{S(d)(ηR, t)} defined on B× [0, τ ] such that

sup
t∈[0,τ ],ηR∈B

||S(d)(ηR, t)− s(d)(ηR, t)|| −→p 0 for d = 0, 1, 2.

(A3) The functions s(d) for d = 0, 1, 2 are bounded on B × [0, τ ] and s(d)(·, t) are continuous in

ηR ∈ B uniformly in t ∈ [0, τ ]. Moreover, s(0) is bounded away from 0 on B× [0, τ ].
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(A4) The matrix Σ(ηR0) =
∫ τ
0
v(ηR0, t)s

(0)(ηR0, t)h0(t)dt is positive definite, where v(ηR, t) =

{s(0)}−1s(2) − {s(0)}−2{s(1)}⊗2.

(A5) For any 1 6 k 6 p, zk is subgaussian.

Here, a random variable Z is said to be subgaussian if there exists some M > 0 such that for every

t ∈ R, one has E({exp(tZ)}) 6 exp(M2t2/2). In particular, we call Z as M -subgaussian. (A5*)

For any 1 6 k 6 pn, there exists a constant M > 0 such that zk is M -subgaussian.

The second set of conditions (B1)-(B6) is imposed on the functional predictor, for example the

boundedness of the covariance functionK(s, t) and the regression operators, that is,
∑∞

j=1 λj <∞

and
∑∞

j=1 β
2
j0 < ∞. Conditions (B1) and (B2) are used in Hall and Horowitz (2007). Conditions

(B3) and (B4) are used in Hall and Hosseini-Nasab (2006).

(B1) λj − λj+1 > Cj−a−1 for j > 1 with a > 1.

(B2) |βj0| 6 Cj−b for j > 1.

(B3) For any C > 0, there exists an ε > 0 such that

sup
s∈S
{E|X(s)|C} <∞ and sup

s1,s2∈T
(E[{|s1 − s2|−ε|X(s1)−X(s2)|}C ]) <∞.

(B4) For each integer d > 1, λ−dj E(
∫
T Xi(t)φj(t)dt)

2d is bounded uniformly in j.

(B5) E(exp{C||X||)}) <∞ for any constant C > 0, where ||X|| = {
∫
S X

2(s)ds}1/2.

(B6) We assume that X(·) is in a Donsker class.

The third set of conditions (C1), (C2) and (C3) is needed to delineate the diverging speed of the

truncation number rn as well as the decaying rates of λj’s and βj0’s.

(C1) r4a+4
n n−1 → 0.

(C2) b > a/2 + 1.
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(C3) ra/2+2−2b
n log(n)→ 0.

Condition (C2) is the same as the condition in Hall and Horowitz (2007). Condition (C3) is very

weak since under Condition (C2), we have a/2 + 2 − 2b < −a/2, and r
a/2+2−2b
n log(n) → 0

when rn diverges faster than {log(n)}2/a. Moreover, Condition (C1) gives an upper bound of the

diverging speed of rn, we do not allow rn diverging too fast in order to guarantee the consistency

of our estimates.

Remark: In practice, we use the AIC or percentage of variances to select the rn, but these methods

can not guarantee that the resulting estimates satisfy the multiple conditions imposed (C1)-(C3)

We first focus on the case when p is fixed.

THEOREM 1: Under conditions (A1)-(A5), (B1)-(B5), and (C1)-(C3) in the supplementary, we

have ||β̂ − β0|| = oP (1) and ||γ̂ − γ0|| = OP (αn), where αn = r
−b+1/2
n + r

3a/2+3/2
n n−1/2 +

r
3/2−2b
n log(n) = o(1).

Theorem 1 establishes the consistency and convergence rate of β̂(s) and γ̂.

Remark for Theorem 1: By conditions (C2), we have b > 3/2. Combining the fact that rn →∞

when n→∞, we can show that the first term of αn goes to zero. By condition (C1), since we have

r2a+2
n n−1/2 → 0, combining the facts that a > 0 and rn → ∞ implies that the second term of αn

goes to zero. It follows from a/2 + 2− 2b > 3/2− 2b and condition (C3) that the last term of αn

goes to zero.

THEOREM 2: Under H0, assume that conditions (A1)-(A5), (B1), (B3)-(B6), and (C1) in the

supplementary hold. We have (TS − rn)/(2rn)1/2 →d N(0, 1) as n→∞.

Theorem 2 establishes the null distribution of our score statistic, which is asymptotically χ2
rn .

We write the results strictly as a normal approximation since χ2
rn converges to a Dirac function
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with point mass at∞ when rn → ∞. However, in practice, after we select the truncation number

rn, we can use χ2
rn as the null distribution of TS .

Finally, we consider the situation that p diverges at some polynomial rate of n, denoted by pn. It

can be shown that the asymptotic results in Theorems 1 and 2 are still valid under a set of slightly

different conditions.

We have the following corollaries, which are parallel with Theorems 1 and 2.

COROLLARY 1: Assume pn = o(rn), under conditions (A1)-(A4), (A5*), (B1)-(B5), and (C1)-

(C3) in the supplementary, we have ||β̂ − β0|| = oP (1) and ||γ̂ − γ0|| = OP (αn), where αn =

r
−b+1/2
n + r

3a/2+3/2
n n−1/2 + r

3/2−2b
n log(n).

As r2a+2
n n−1/2 → 0 by Condition (C1), we allow pn = o(n1/(4a+4)).

COROLLARY 2: UnderH0, assume that conditions (A1)-(A4), (A5*), (B1), (B3)-(B6), and (C1)

hold, and pn = o(rn). We have (TS − rn)/(2rn)1/2 →d N(0, 1) as n→∞.

5. Lemmas

We need to introduce some notation before we present lemmas. Denote ||a|| as the l2 norm of

a vector a and ||A||F as the Frobenius norm of a matrix A. For a process X(·), denote ||X|| =

{
∫
S X

2(s)ds}1/2. Also denote ∆̂ = |||K̂−K||| = [
∫ ∫
S2{K̂(s1, s2)−K(s1, s2)}2ds1ds2]1/2, where

K is the covariance function of a processX(·) and K̂ is an estimate ofK. Let δj = min16k6j(λk−

λk+1), the minimum spacing between the eigenvalues up to the (j + 1)-th eigenvalue. Recall that

l(ηR) =
n∑
i=1

∫ τ

0

(

p∑
k=1

zikγk +
rn∑
j=1

ξijRβjR + ei)dNi(t)

−
∫ τ

0

log{
n∑
i=1

Yi(t) exp(

p∑
k=1

zikγk +
rn∑
j=1

ξijRβjR + ei)}dN(t),
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Q(ηR) =
n∑
i=1

∫ τ

0

(

p∑
k=1

zikγk +
rn∑
j=1

ξ̂ijRβjR)dNi(t) (5.1)

−
∫ τ

0

log{
n∑
i=1

Yi(t) exp(

p∑
k=1

zikγk +
rn∑
j=1

ξ̂ijRβjR)}dN(t),

where βrnR = (β1R, · · · , βrnR)T, ηR = (βrnR, γ) and ei =
∑∞

j=rn+1 ξijβj0. We also define

αn = r−b+1/2
n + r3a/2+3/2

n n−1/2 + r3/2−2bn log(n). (5.2)

We first present several lemmas that are used in the proof of the main theoretical results. The

first lemma is the same as Lemma 3.3 of Hall and Hosseini-Nasab (2009).

LEMMA 1: Assume that with probability 1,X is left-continuous at each point (or right-continuous

at each point), and that Conditions (B3) and (B4) holds. Then, for each C > 0,

E(∆̂C) < constant ∗ n−C/2. (5.3)

The second lemma is the same as Theorem 3 of Hall and Hosseini-Nasab (2006).

LEMMA 2: Under Conditions (B3) and (B4), we have

||φ̂j − φj|| 6 81/2δ−1j |||K̂ −K||| for any j. (5.4)

As noted by a referee, the sign of φ̂j actually is not estimable. So here we assume that the signs of

φ̂j and φj have been aligned.

We now restrict ηR in the set V = {ηR : ||ηR − ηR0|| = O(αn)}. Recall the definition of

η = (βT
n , γ

T)T, where βn = (β1, · · · , βrn)T. We have the following lemma:

LEMMA 3: If ||ηR − ηR0|| = O(αn), then there exists a constant C such that ||η|| 6 C.

For the constant C in Lemma 3, we have V ⊆ V∗, where V∗ = {η : ||η|| 6 C}. Then we state the
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following three lemmas 4, 5, and 6, which hold uniformly for all η ∈ V∗, and thus hold uniformly

for all ηR ∈ V.

LEMMA 4: Under Conditions (B1)-(B5), we have

sup
||η||6C

max
16i6n

|ρi| = Op(r
a+3/2
n n−1/2{log(n)}1/2 + r1/2−bn {log(n)}1/2),

where ρi = νi + ei, in which νi = ηR(wiR − ŵiR) =
∑rn

j=1(ξijR − ξ̂ijR)βjR =
∑rn

j=1(ξij − ξ̂ij)βj

and ei =
∑∞

j=rn+1 ξijβj0. Moreover, under additional Conditions (C1) and (C3), we have

sup
||η||6C

max
16i6n

|ρi| = op(1).

LEMMA 5: Let πi = ηT
RŵiR+ρi =

∑p
k=1 zikγk+

∑rn
j=1 ξijRβjR+

∑∞
j=rn+1 ξijβj0. For any fixed

positive integer d, under Conditions (A5) and (B5), we have E[{exp(πi)}2d] = O(1) uniformly for

||η|| 6 C.

Let ŵiR = (ξ̂i1R, . . . , ξ̂irnR, zi1, . . . , zip)
T. For d = 0, 1, and 2, we define

S(d)∗(ηR, t) = n−1
n∑
i=1

(ŵiR)(d)Yi(t) exp(ηT

RŵiR),

where (ŵiR)(0) = 1, (ŵiR)(1) = ŵiR, and (ŵiR)(2) = (ŵiR)⊗2.

LEMMA 6: Under Conditions (A1)-(A5), (B1)-(B5), and (C1)-(C3), we have

|S(0)(ηR, t)− S(0)∗(ηR, t)| = Op(n
−1/2ra+3/2

n + r−bn + r1−2bn log(n)), (5.5)

||S(1)(ηR, t)− S(1)∗(ηR, t)|| = Op(αn), (5.6)

||S(2)(ηR, t)− S(2)∗(ηR, t)||F = Op(rnαn) (5.7)

uniformly for t ∈ [0, τ ] and ||η|| 6 C.
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LEMMA 7: Under Conditions (A1)-(A5), (B1)-(B5), and (C1)-(C3), we have

sup
||η||6C

||∂ηRQ(ηR)− ∂ηRl(ηR)|| = Op(nαn), (5.8)

sup
||η||6C

||∂2ηRQ(ηR)− ∂2ηRl(ηR)||F = Op(nrnαn), (5.9)

where ∂ηR = ∂/∂ηR.

Before we introduce Lemma 8, we define

QT (η) =
n∑
i=1

∫ τ

0

wT

i ηdNi(t)−
∫ τ

0

log{
n∑
i=1

Yi(t) exp(wT

i η)}dN(t),

ST (η) =
∂QT (η)

∂η
=

n∑
i=1

∫ τ

0

widNi(t)−
∫ τ

0

∑n
i=1wiYi(t) exp(wT

i η)∑n
i=1 Yi(t) exp(wT

i η)
dN(t),

IT (η) = −∂ST (η)

∂η
=

∫ τ

0

[∑n
i=1w

⊗2
i Yi(t) exp(wT

i η)∑n
i=1 Yi(t) exp(wT

i η)
−
{∑n

i=1w
T
i Yi(t) exp(wT

i η)∑n
i=1 Yi(t) exp(wT

i η)

}⊗2]
dN(t).

Moreover, we have

Q(η) =
n∑
i=1

∫ τ

0

ŵT

i ηdNi(t)−
∫ τ

0

log{
n∑
i=1

Yi(t) exp(ŵT

i η)}dN(t),

S(η) =
∂Q(η)

∂η
=

n∑
i=1

∫ τ

0

ŵidNi(t)−
∫ τ

0

∑n
i=1 ŵiYi(t) exp(ŵT

i η)∑n
i=1 Yi(t) exp(ŵT

i η)
dN(t),

I(η) = −∂S(η)

∂η
=

∫ τ

0

[∑n
i=1 ŵ

⊗2
i Yi(t) exp(ŵT

i η)∑n
i=1 Yi(t) exp(ŵT

i η)
−
{∑n

i=1 ŵ
T
i Yi(t) exp(ŵT

i η)∑n
i=1 Yi(t) exp(ŵT

i η)

}⊗2]
dN(t).

LEMMA 8: Under Conditions (A1)-(A5), (B1), (B3)-(B6), and (C1), we have

sup
||γ||6C

||ST (0, γ)− S(0, γ)|| = op(n
1/2),

sup
||γ||6C

||IT (0, γ)− I(0, γ)||F = op(n
1/2).

LEMMA 9: Let ai be a rn × 1 random vector with mean E(ai) = 0 and E(aia
T
i ) = Irn , where

Irn is a rn × rn identity matrix. Let ãn = n−1/2
∑n

i=1 ai. It is assumed that E{(aT
i ai)

2} = o(nrn).
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We have

(ãT

nãn − rn)/(2rn)1/2 →d N(0, 1).

6. Proofs of Lemmas

Since Lemmas 1 and 2 are directly copied from Hall and Hosseini-Nasab (2009) and Hall and

Hosseini-Nasab (2006), we refer readers to their proofs for details.

Proof of Lemma 3:

Recall that ηR = (βrnR, γ) and η = (βT
n , γ

T)T, where βn = (β1, · · · , βrn)T and βrnR = (β1R, · · · , βrnR)T.

Since λj =
∑∞

k=j(λk − λk+1) >
∑

k=j k
−a−1 = Cj−a, we have

∑rn
j=1 λ

−1
j 6 C

∑rn
j=1 j

a =

O(ra+1
n ). By using Conditions (C1)-(C3), we have

||η − η0|| 6 ||γ − γ0||+
rn∑
j=1

λ−1j

1/2

||βrnR − βrnR0|| = O(αn) +O(ra/2+1/2
n αn)

= O(r2a+2
n n−1/2 + ra/2−b+1

n + ra/2+2−2b
n log(n)) = o(1).

As ||η0|| <∞, there exists a constant C such that ||η|| 6 C.

Proof of Lemma 4:

Since max16i6n |ρi| 6 max16i6n |νi|+max16i6n |ei|, it is sufficient to control the order of max16i6n |νi|

and max16i6n |ei|. Since (
∑rn

j=1 |βj|2)1/2 6 ||η|| 6 C, it follows from Lemma 2 that

|νi| 6 ||Xi|| ∗
rn∑
j=1

||φ̂j − φj|||βj| 6 ||Xi||
rn∑
j=1

(||φ̂j − φj||2)1/2(
rn∑
j=1

|βj|2)1/2

6 C||Xi||(
rn∑
j=1

δ−2j |||K̂ −K|||2)1/2.

Moreover, it follows from Condition (B1) and Lemma 1 that

rn∑
j=1

δ−2j 6
rn∑
j=1

j2a+2 = O(r2a+3
n ) and |||K̂ −K||| = Op(n

−1/2).
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By condition (B5), we have max16i6n ||Xi|| = Op({log(n)}1/2). Thus, we have

sup
||η||6C

max
16i6n

|νi| = Op(r
a+3/2
n n−1/2(log(n))1/2).

We consider max16i6n |ei| as follows. Since (
∑∞

j=rn+1 β
2
j0)

1/2 6 (
∑∞

j=rn+1 j
−2b)1/2 = O(r

1/2−b
n )

for b > 1/2, we have

|ei|/r1/2−bn = |
∞∑

j=rn+1

ξijβj0|/r1/2−bn 6 {(
∞∑

j=rn+1

ξ2ij)
1/2(

∞∑
j=rn+1

β2
j0)

1/2}/r1/2−bn

6 ||Xi||{(
∞∑

j=rn+1

β2
j0)

1/2}/r1/2−bn = O(||Xi||).

Therefore, it follows from Condition (B5) thatE{exp(|ei|/r1/2−bn )} <∞, which indicates max16i6n |ei|/r1/2−bn =

Op({log(n)}1/2), i.e. max16i6n |ei| = Op(r
1/2−b
n {log(n)}1/2).

Finally, it follows from Conditions (C1) and (C3) that

sup
||η||6C

max
16i6n

|ρi| = Op(r
a+3/2
n n−1/2{log(n)}1/2 + r1/2−bn {log(n)}1/2) = op(1),

which finishes the proof.

Proof of Lemma 5:

For any fixed positive integer d, we have

E[{exp(πi)}2d] = E[exp{2d(

p∑
k=1

zikγk +
rn∑
j=1

ξijRβjR +
∞∑

j=rn+1

ξijβj0)}]

6 E[

p∏
k=1

exp(2dzikγk)× exp{2d(
rn∑
j=1

ξ2ij)
1/2(

rn∑
j=1

β2
j )

1/2}

× exp{2d(
∞∑

j=rn+1

ξ2ij)
1/2(

∞∑
j=rn+1

β2
j0)

1/2}]

6
p∏

k=1

[E{exp(2dzikγk)}]1/2 × exp(2d||Xi|| × ||η||)× exp(2d||Xi|| × ||β0||)
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By condition (A5) and (B5), we have E[{exp(πi)}2d] = O(1) uniformly for ||η|| 6 C.

Proof of Lemma 6:

For the term |S(0)(ηR, t)− S(0)∗(ηR, t)|, we have

|S(0)(ηR, t)− S(0)∗(ηR, t)| = |n−1
n∑
i=1

Yi(t){exp(ηT

RŵiR + ρi)− exp(ηT

R0ŵiR)}|

= |n−1
n∑
i=1

Yi(t)ρi exp(πi)− (2n)−1
n∑
i=1

Yi(t) exp(πi) exp{(ρ∗i )2}ρ2i |,

where ρ∗i is between 0 and ρi. Therefore, we have

|S(0)(ηR, t)− S(0)∗(ηR, t)|

6 |n−1
n∑
i=1

Yi(t) exp(πi)νi|+ |n−1
n∑
i=1

Yi(t) exp(πi)ei|

+C|n−1
n∑
i=1

Yi(t) exp(πi)ν
2
i |+ C|n−1

n∑
i=1

Yi(t) exp(πi)e
2
i |

+Cn−1
n∑
i=1

|Yi(t)| exp(πi)× max
16i6n

[(exp{(ρ∗i )2} − 1)ρ2i ]

= I1 + I2 + CI3 + CI4 + CI5.

We will calculate the order of each term in {Ik}5k=1 respectively.

It follows from Lemma 2 that

I1 = |n−1
n∑
i=1

Yi(t) exp(πi)
rn∑
j=1

∫
S
Xi(s)(φ̂j(s)− φj(s))dsβj|

6 n−1
n∑
i=1

|Yi(t) exp(πi)| × ||Xi||(
rn∑
j=1

||φ̂j − φj||2)1/2(
rn∑
j=1

β2
j )

1/2

6 n−1
n∑
i=1

|Yi(t)| exp(πi)× ||Xi||{81/2(
rn∑
j=1

δ−2j )1/2|||K̂ −K||| × ||η||}.
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According to the definition of Yi(t), we have |Yi(t)| exp(πi)× ||Xi|| 6 exp(πi)× ||Xi|| and

E[{exp(πi)}2]E(||Xi||2) = O(1)

uniformly for t ∈ [0, τ ] and ||η|| 6 C, which indicates that n−1
∑n

i=1 |Yi(t)| exp(πi) × ||Xi|| =

Op(1) uniformly for t ∈ [0, τ ] and ||η|| 6 C. Combining the fact that
∑rn

j=1 δ
−2
j 6

∑rn
j=1(j

2a+2) =

O(r2a+3
n ) and |||K̂ − K||| = Op(n

−1/2) by Lemma 1, we have I1 = Op(n
−1/2r

a+3/2
n ) uniformly

for t ∈ [0, τ ] and ||η|| 6 C.

We note that

|Yi(t) exp(πi)
∞∑

j=rn+1

ξijβj0| 6 | exp(πi)
∞∑

j=rn+1

ξijβj0|,

E(| exp(πi)
∞∑

j=rn+1

ξijβj0|)2 6 E[{exp(πi)}2]
∞∑

j=rn+1

λjβ
2
j0.

Since
∑∞

j=1 λj < ∞, we have
∑∞

j=rn+1 λjβ
2
j0 6 (

∑∞
j=rn+1 λj) maxj>rn+1 β

2
j0 = o(r−2bn ) since∑∞

j=rn+1 λj = o(1) as rn →∞. It follows from Markov’s inequality that

I2 6 n−1
n∑
i=1

|Yi(t) exp(πi)
∞∑

j=rn+1

ξijβj0| = op(r
−b
n )

holds uniformly for all t ∈ [0, τ ]. Since I2 is not related to η, we know that I2 = op(r
−b
n ) holds

uniformly for all t ∈ [0, τ ] and ||η|| 6 C.

Similar to I1, we have

I3 = |n−1
n∑
i=1

Yi(t) exp(πi){
rn∑
j=1

∫
S
Xi(s)(φ̂j(s)− φj(s))dsβj}2|

6 n−1
n∑
i=1

|Yi(t)| ∗ exp(πi)||Xi||2 ∗ (
rn∑
j=1

||φ̂j − φj||2)× (
rn∑
j=1

β2
j )

6 n−1
n∑
i=1

|Yi(t)| ∗ exp(πi)||Xi||2{8(
rn∑
j=1

δ−2j )|||K̂ −K|||2 × ||η||2} = Op(n
−1r2a+3

n ) = op(n
1/2ra+3/2

n ).
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Similar to I2, we have

E{Yi(t) exp(πi)(
∞∑

j=rn+1

ξijβj0)
2} 6 E({exp(πi)}2)E(

∞∑
j=rn+1

ξijβj0)
2

= E({exp(πi)}2)
∞∑

j=rn+1

λjβ
2
j0 = o(r−2bn ).

It follows from Markov’s inequality that I4 = op(r
−2b
n ) = op(r

−b
n ) holds uniformly for all t ∈ [0, τ ]

and ||η|| 6 C as b > 0.

For I5, notice that max16i6n |ρi| = op(1) uniformly for ||η|| 6 C, one has max16i6n{exp(ρ2i )−

1} = op(1) uniformly for ||η|| 6 C. Meanwhile, we have n−1
∑n

i=1 |Yi(t)| exp(πi) = Op(1).

Thus, one has I5 = op(max16i6n |ρi|2) = op(r
2a+3
n n−1 log(n) + r1−2bn log(n)) uniformly for all

t ∈ [0, τ ] and ||η|| 6 C. As
∑∞

j=1 λj <∞, one has a > 1, which indicates that r2a+3
n n−1 log(n) =

o(r
a+3/2
n n−1/2) by condition (C1). Combining the results of all {Ik, 1 6 k 6 5} leads to (5.5).

We prove (5.6) as follows. We note that ||S(1)(ηR, t)− S(1)∗(ηR, t)|| is bounded above by

||S(1)(ηR, t)− S(1)∗(ηR, t)|| 6 ||n−1
n∑
i=1

wiRYi(t){exp(ηT

RŵiR + ρi)− exp(ηT

RŵiR)}||

+||n−1
n∑
i=1

(ŵiR − wiR)Yi(t){exp(ηT

RŵiR + ρi)}||

+||n−1
n∑
i=1

(ŵiR − wiR)Yi(t){exp(ηT

RŵiR + ρi)− exp(ηT

RŵiR)}||

= I6 + I7 + I8.

For I6, we have

I6 = ||n−1
n∑
i=1

wiR exp(πi)Yi(t)ρi − (2n)−1
n∑
i=1

wiR exp(πi)Yi(t) exp{(ρ∗i )2}ρ2i ||

6 ||n−1
n∑
i=1

wiR exp(πi)Yi(t)νi||+ ||n−1
n∑
i=1

wiR exp(πi)Yi(t)ei||

+C||n−1
n∑
i=1

wiR exp(πi)Yi(t)ν
2
i ||+ C||n−1

n∑
i=1

wiR exp(πi)Yi(t)e
2
i ||+
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Cn−1
n∑
i=1

||wiR exp(πi)Yi(t)|| max
i=1,...,n

ρ2i [exp{(ρ∗i )2} − 1]

= I61 + I62 + CI63 + C × I64 + C × I65.

By using conditions (B4) and (A5), we haveE(w4
ikR) = O(1) uniformly for 1 6 k 6 rn. It follows

from Lemma 5 that we have E{exp(Cπi)} = O(1). Thus, we get

E(I261) = n−2E[
rn∑
k=1

{
n∑
i=1

wikR exp(πi)Yi(t)νi}2] 6 n−1E[
rn∑
k=1

n∑
i=1

{wikR exp(πi)Yi(t)νi}2]

6 n−1
rn∑
k=1

n∑
i=1

{E(w4
ikR)}1/2[E{Yi(t))4}]1/2{E(ν4i )}1/2[E{exp(4πi)}]1/2

6 Cn−1nrn[E{
rn∑
j=1

∫
S
Xi(s)(φ̂j(s)− φj(s))dsβj}4]1/2

6 Crn(
rn∑
j=1

δ−2j )||η||2 × {E(||Xi||4)}1/2 × (E|||K̂ −K|||4)1/2

= O(n−1r2a+4
n ),

which yields that I61 = Op(n
−1/2ra+2

n ) holds uniformly for all t ∈ [0, τ ] and ||η|| 6 C. By using

similar techniques, we can show that

I62 = op(r
−b+1/2
n ), I63 = op(n

−1r2a+7/2
n ) = op(n

−1/2ra+2
n ),

I64 = op(r
−2b+1/2
n ) = op(r

−b+1/2
n ), I65 = rnOp( max

i=1,...,n
ρ4i )

hold uniformly for t ∈ [0, τ ] and ||η|| 6 C . By combining the above results for {I6k, 1 6 k 6 5},

by condition (C1)-(C3), we have I6 = Op(n
−1/2ra+2

n + r
−b+1/2
n + r

3/2−2b
n log(n)).

Notice that λj =
∑∞

k=j(λk − λk+1) > C
∑∞

k=j Ck
−a−1 = O(j−a) by Condition (B1), one has∑rn

j=1 δ
−2
j λ−1j 6 C

∑rn
j=1 j

3a+2 = O(r3a+3
n ). Thus, for I7, we have

I7 = ||n−1
n∑
i=1

(ŵiR − wiR)Yi(t) exp(ηT

R0ŵiR + ρi)||
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= n−1[
rn∑
j=1

{
n∑
i=1

(ξ̂ij − ξij)λ−1/2j Yi(t) exp(πi)}2]1/2

6 n−1[
rn∑
j=1

{||Xi|| × ||φ̂j − φj||λ−1/2j |Yi(t)| exp(πi)}2]1/2

6 n−1{
rn∑
j=1

(δ−1j λ
−1/2
j )2}1/2|||K̂ −K|||

n∑
i=1

||Xi|| exp(πi)

= Op(r
3a/2+3/2
n n−1/2)

uniformly for t ∈ [0, τ ] and ||η|| 6 C.

For I8, we have

I8 = ||n−1
n∑
i=1

(ŵiR − wiR)Yi(t){exp(ηT

R0ŵiR + ρi)− exp(ηT

R0ŵiR)}||

= ||n−1
n∑
i=1

(ŵiR − wiR) exp(πi)Yi(t)ρi − (2n)−1
n∑
i=1

(ŵiR − wiR) exp(πi)Yi(t) exp{(ρ∗i )2}ρ2i ||

6 ||n−1
n∑
i=1

(ŵiR − wiR) exp(πi)Yi(t)νi||+ ||n−1
n∑
i=1

(ŵiR − wiR) exp(πi)Yi(t)ei||

+C||n−1
n∑
i=1

(ŵiR − wiR) exp(πi)Yi(t)ν
2
i ||+ C||n−1

n∑
i=1

(ŵiR − wiR) exp(πi)Yi(t)e
2
i ||

+Cn−1
n∑
i=1

||(ŵiR − wiR) exp(πi)Yi(t)|| max
i=1,...,n

ρ2i [exp{(ρ∗i )2} − 1]

= I81 + I82 + CI83 + CI84 + CI85.

For I81, we have

I81 = n−1[
rn∑
k=1

{
n∑
i=1

(ξ̂ik − ξik)λ−1/2k exp(πi)Yi(t)νi}2]1/2

6 n−1[
rn∑
k=1

{
n∑
i=1

||Xi|| ∗ ||φ̂k − φk||λ−1/2k |Yi(t)| ∗ ||Xi||
rn∑
j=1

||φ̂j − φj|| ∗ |βj|}2]1/2

6 n−1C[
rn∑
k=1

{
n∑
i=1

||Xi||2 ∗ δ−1k |||K̂ −K|||λ
−1/2
k

rn∑
j=1

δ−1j |||K̂ −K||| ∗ |βj|}2]1/2

= n−1C{
rn∑
k=1

(δ−1k λ
−1/2
k )2}1/2

n∑
i=1

||Xi||2|||K̂ −K|||2(
rn∑
j=1

δ−2j )1/2||η||
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= Op(r
5a/2+3
n n−1)

uniformly for t ∈ [0, τ ] and ||η|| 6 C. Using similar techniques, we can show that

I82 = op(r
−b+3a/2+3/2
n n−1/2), I83 = Op(r

7a/2+9/2
n n−3/2) = op(r

5a/2+3
n n−1),

I84 = op(r
−2b+3a/2+3/2
n n−1) = op(r

−b+3a/2+3/2
n n−1/2)

I85 = rnop( max
i=1,...,n

ρ4i )

hold uniformly for all t ∈ [0, τ ] and ||η|| 6 C.

By combing the results of {I8k, 1 6 k 6 5}, we have I8 = op(n
−1/2ra+2

n +r
−b+1/2
n +r

3/2−2b
n log(n))

by conditions (C1)-(C3). As
∑∞

j=1 λj < ∞, we have a > 1, which indicates n−1/2ra+2
n =

o(n−1/2r
3a/2+3/2
n ). Finally, combining the above results of I6, I7 and I8 leads to (5.6).

We prove (5.7) as follows. With some calculations, we have

||S(2)(ηR, t)− S(2)∗(ηR, t)||F

6 ||n−1
n∑
i=1

w⊗2iR Yi(t){exp(ηT

RŵiR + ρi)− exp(ηT

RŵiR)}||F

+||n−1
n∑
i=1

{(ŵiR)⊗2 − (wiR)⊗2}Yi(t){exp(ηT

RŵiR + ρi)}||F

+||n−1
n∑
i=1

{(ŵiR)⊗2 − (wiR)⊗2}Yi(t){exp(ηT

RŵiR + ρi)− exp(ηT

RŵiR)}||F

= I9 + I10 + I11.

For I9, we have

I9 = ||n−1
n∑
i=1

w⊗2iR exp(πi)Yi(t)ρi − (2n)−1
n∑
i=1

w⊗2iR exp(πi)Yi(t) exp{(ρ∗i )2}ρ2i ||F

6 ||n−1
n∑
i=1

w⊗2iR exp(πi)Yi(t)νi||F + ||n−1
n∑
i=1

w⊗2iR exp(πi)Yi(t)ei||F
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+C||n−1
n∑
i=1

w⊗2iR exp(πi)Yi(t)ν
2
i ||F + C||n−1

n∑
i=1

w⊗2iR exp(πi)Yi(t)e
2
i ||F

+Cn−1
n∑
i=1

||w⊗2iR exp(πi)Yi(t)|| max
i=1,...,n

ρ2i [exp{(ρ∗i )2} − 1]

= I91 + I92 + C × I93 + C × I94 + C × I95.

Similar as I61, we get

E(I291) = n−2E[
rn∑
k=1

rn∑
k′=1

{
n∑
i=1

wikRwik′R exp(πi)Yi(t)νi}2]

6 n−1E[
rn∑
k=1

rn∑
k′=1

n∑
i=1

{wikRwik′R exp(πi)Yi(t)νi}2]

6 n−1
rn∑
k=1

rn∑
k′=1

n∑
i=1

{E(w4
ikR)}1/2{E(w4

ik′R)}1/2[E{Yi(t))4}]1/2[E{νi)4}]1/2[E{exp(4πi)}]1/2)

6 Cn−1nrn[E{
rn∑
j=1

∫
S
Xi(s)(φ̂j(s)− φj(s))dsβj}4]1/2

6 Cr2n(
rn∑
j=1

δ−2j )||η||2 × {E(||Xi|4)}1/2 × (E||K̂ −K|||4)1/2 = O(n−1r2a+5
n ),

which yields that I91 = Op(n
−1/2r

a+5/2
n ) uniformly for t ∈ [0, τ ] and ||η|| 6 C. Using similar

techniques as we control , we obtain

I92 = op(r
−b+1
n ), I93 = op(n

−1r2a+4
n ) = op(n

−1/2ra+5/2
n ),

I94 = op(r
−2b+1
n ) = op(r

−b+1
n ), I95 = op(r

2a+4
n n−1 log(n) + r3−2bn log(n))

hold uniformly for all t ∈ [0, τ ] and ||η|| 6 C.

For I10, we can write

I10 = ||n−1
n∑
i=1

{(ŵiR)⊗2 − (wiR)⊗2}Yi(t){exp(ηT

R0ŵiR + ρi)}||F

= n−1[
rn∑
j=1

rn∑
k=1

{
n∑
i=1

(ξ̂ij ξ̂ik − ξijξik)λ−1/2j λ
−1/2
k Yi(t) exp(πi)}2]1/2
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6 n−1(
rn∑
j=1

rn∑
k=1

[
n∑
i=1

{(ξ̂ij − ξij)ξik + (ξ̂ik − ξik)ξij + (ξ̂ij − ξij)(ξ̂ik − ξik)}

λ
−1/2
j λ

−1/2
k Yi(t) exp(πi)]

2)1/2

6 n−1[3
rn∑
j=1

rn∑
k=1

{
n∑
i=1

(ξ̂ij − ξij)ξikλ−1/2j λ
−1/2
k Yi(t) exp(πi)}2

+3
rn∑
j=1

rn∑
k=1

{
n∑
i=1

(ξ̂ik − ξik)ξijλ−1/2j λ
−1/2
k Yi(t) exp(πi)}2

+3
rn∑
j=1

rn∑
k=1

{
n∑
i=1

(ξ̂ij − ξij)(ξ̂ik − ξik)λ−1/2j λ
−1/2
k Yi(t) exp(πi)}2]1/2

= n−1(3I10,1 + 3I10,2 + 3I10,3)
1/2.

For I10,1, we can write

I10,1 6
rn∑
j=1

rn∑
k=1

{
n∑
i=1

||Xi|| ∗ ||φ̂j − φj||δ−1j ξikλ
−1/2
j λ

−1/2
k Yi(t) exp(πi)}2

=
rn∑
j=1

(δ−1j λ
−1/2
j )2|||K̂ −K|||2

rn∑
k=1

{
n∑
i=1

||Xi||ξikλ−1/2k Yi(t) exp(πi)}2.

It is easy to see that E[
∑rn

k=1{
∑n

i=1 ||Xi||ξikλ−1/2k Yi(t) exp(
∫
S Xi(s)β0(s)ds+

∑p
k=1 Zikγk)}2] =

O(n2rn), we can easily see I10,1 = Op(r
3a+4
n n) uniformly for t ∈ [0, τ ] and ||η|| 6 C. Similarly,

I10,2 = Op(r
3a+4
n n) and I10,3 = Op(r

6a+6
n ) uniformly for t ∈ [0, τ ] and ||η|| 6 C. Thus, one has

I10 = Op(r
3a/2+2
n n−1/2) uniformly for t ∈ [0, τ ] and ||η|| 6 C by condition (C1).

For I11, one has

I11 = ||n−1
n∑
i=1

{(ŵiR)⊗2 − (wiR)⊗2}Yi(t){exp(ηT

R0ŵiR + ρi)− exp(ηT

R0ŵiR)}||F

= ||n−1
n∑
i=1

{(ŵiR)⊗2 − (wiR)⊗2} exp(πi)Yi(t)ρi

−(2n)−1
n∑
i=1

(ŵiR − wiR) exp(πi)Yi(t) exp{(ρ∗i )2}ρ2i ||F

6 ||n−1
n∑
i=1

{(ŵiR)⊗2 − (wiR)⊗2} exp(πi)Yi(t)νi||F
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+||n−1
n∑
i=1

{(ŵiR)⊗2 − (wiR)⊗2} exp(πi)Yi(t)ei||F

+C||n−1
n∑
i=1

{(ŵiR)⊗2 − (wiR)⊗2} exp(πi)Yi(t)ν
2
i ||F

+C||n−1
n∑
i=1

{(ŵiR)⊗2 − (wiR)⊗2} exp(πi)Yi(t)e
2
i ||F

+C(n−1
n∑
i=1

||(ŵ⊗2iR − w
⊗2
iR ) exp(πi)Yi(t)|| max

i=1,...,n
ρ2i | exp{(ρ∗i )2} − 1|)

= I11,1 + I11,2 + CI11,3 + CI11,4 + CI11,5

By some simple algebra as the previous derivations, we have

I11,1 = Op(r
5a/2+7/2
n n−1), I11,2 = op(r

−b+3a/2+2
n n−1/2),

I11,3 = Op(r
7a/2+5
n n−3/2) = op(r

5a/2+7/2
n n−1),

I11,4 = op(r
−2b+3a/2+2
n n−1) = op(Ir

−b+3a/2+2
n n−1/2)

I11,5 = op(r
7a/2+6
n n−3/2 log(n) + r4−2b+3a/2

n log(n)n−1/2).

uniformly for t ∈ [0, τ ] and ||η|| 6 C.

By combining all the results and Conditions (C1)-(C3), we have

||S(2)(ηR, t)− S(2)∗(ηR, t)||F = Op(rnαn).

Proof of Lemma 7:

With some calculations, we have

||∂ηRQ(ηR0)− ∂ηRl(ηR0)|| 6 ||
n∑
i=1

∫ τ

0

(ŵiR − wiR)dNi(t)||+ ||
∫ τ

0

(
S(1)∗

S(0)∗ −
S(1)

S(0)
)dN(t)||.
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Since E(
∫ τ
0
||Xi||dNi(t)) <∞, we have

||
n∑
i=1

∫ τ

0

(ŵiR − wiR)dNi(t)|| = (
rn∑
j=1

[
n∑
i=1

∫ τ

0

{(ξ̂ij − ξij)λ−1/2j }dNi(t)]
2)1/2

6 {(
n∑
i=1

∫ τ

0

||Xi||dNi(t))
2

rn∑
j=1

(||φ̂j − φj||λ−1/2j )2}1/2

6 {Cn2|||K̂ −K|||2
rn∑
j=1

(δ−1j λ
−1/2
j )2}1/2

= Op(n
1/2r3a/2+3/2

n ) = Op(nαn)

uniformly for t ∈ [0, τ ] and ||η|| 6 C.

Notice N(t) =
∑n

i=1Ni(t), it follows from Lemma 5 that

||
∫ τ

0

(
S(1)∗

S(0)∗ −
S(1)

S(0)

)
dN(t)|| = Op(nαn)

uniformly for t ∈ [0, τ ] and ||η|| 6 C. Combing the above results leads to (5.8).

For the second part of the lemma, ||∂2ηRQ(ηR)− ∂2ηRl(ηR)||F can be written as

||
∫ τ

0

{
S(2)∗

S(0)∗ −
(
S(1)∗

S(0)∗

)⊗2}
dN(t)−

∫ τ

0

{
S(2)

S(0)
−
(
S(1)

S(0)

)⊗2}
dN(t)||F .

It follows from Lemma 5 that ||∂2ηRQ(ηR)−∂2ηRl(ηR)||F = Op(nrnαn) uniformly for t ∈ [0, τ ] and

||η|| 6 C.

Proof of Lemma 8:

Since

ST (0, γ)− S(0, γ) =
n∑
i=1

∫ τ

0

(ŵi − wi)dNi(t)−
∫ τ

0

∑n
i=1(ŵi − wi)Yi(t) exp(ZT

i γ)∑n
i=1 Yi(t) exp(ZT

i γ)
dN(t),

we have

||ST (0, γ)−S(0, γ)|| 6 ||
n∑
i=1

∫ τ

0

(ŵi−wi)dNi(t)||+||
∫ τ

0

n−1
∑n

i=1(ŵi − wi)Yi(t) exp(ZT
i γ)

n−1
∑n

i=1 Yi(t) exp(ZT
i γ)

dN(t)||.
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For the first term, we have

||
n∑
i=1

∫ τ

0

(ŵi − wi)dNi(t)||2 =
rn∑
j=1

[
n∑
i=1

∫ τ

0

{
∫
S
Xi(s)(φ̂j(s)− φj(s))ds}dNi(t)]

2

=
rn∑
j=1

[

∫
S

n∑
i=1

(

∫ τ

0

dNi(t)Xi(s))(φ̂j(s)− φj(s))ds]2

6
rn∑
j=1

[

∫
S
Wn(s)(φ̂j(s)− φj(s))ds]2 6 ||Wn||2 ×

rn∑
j=1

||φ̂j − φj||2,

whereWn(s) =
∑n

i=1(
∫ τ
0
dNi(t)Xi(s)). SinceXi(s) is a centered process, by Condition (B6), one

know that Wn(s) converges weakly to a centered gaussian process with some covariance function

Σ(s, t). Thus, one has sups∈S |Wn(s)| = Op(n
1/2) and ||Wn|| = Op(n

1/2). For the second term, by

Lemma 1 and 2, one has
∑rn

j=1 ||φ̂j − φj||2 6
∑rn

j=1 δ
−2
j |||K̂ −K|||2 = Op(r

2a+3
n n−1). Thus, one

has ||
∑n

i=1

∫ τ
0

(ŵi − wi)dNi(t)|| = Op(r
a+3/2
n ) = op(n

1/2).

For the second term, we have

||n−1
n∑
i=1

(ŵi − wi)Yi(t) exp(ZT

i γ)||2

= ||n−1
n∑
i=1

∫
S
Xi(s)(φ̂j(s)− φj(s))dsYi(t) exp(ZT

i γ)||2

= n−2
rn∑
j=1

[
n∑
i=1

∫
S
Xi(s)Yi(t) exp(ZT

i γ)(φ̂j(s)− φj(s))ds]2

6 n−2{
n∑
i=1

∫
S
|Xi(s)|2 exp(ZT

i γ)]2ds}
rn∑
j=1

||φ̂j − φj||2 = Op(n
−1ra+3/2

n ).

Similarly, we have supt∈[0,τ ] |n−1
∑n

i=1 Yi(t) exp(ZT
i γ)| = Op(1). Finally, we have

||
∫ τ

0

n−1
∑n

i=1(ŵi − wi)Yi(t) exp(ZT
i γ)

n−1
∑n

i=1 Yi(t) exp(ZT
i γ)

dN(t)|| = Op(r
a+3/2
n ) = op(n

1/2).

Thus, sup||γ||6C ||ST (0, γ)−S(0, γ)|| = op(n
1/2). Similarly, we can show that sup||γ||6C ||IT (0, γ)−

I(0, γ)||F = op(n
1/2), which completes the proof.
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Proof of Lemma 9:

This Lemma is just a special case of Corollary 1 of Peng and Schick (2014) by setting Vn = Irn

and µn = 0.

7. Proofs of Theorems

Proof of Theorem 1.

Recall that αn = Op(r
−b+1/2
n +r

3a/2+3/2
n n−1/2 +r

3/2−2b
n log(n)), it is sufficient to show that for any

given ε > 0, there exists a large constant C such that

P{ sup
||u||=C

Q(ηR0 + αnu) < Q(ηR0)} > 1− ε. (7.1)

This implies that there exists a local maximizer such that ||η̂R − ηR0|| = Op(αn).

It follows from Taylor’s expansion that

Q(ηR0 + αnu)−Q(ηR0)

= αnu
T∂ηRQ(ηR0) +

α2
n

2
uT∂2ηRQ(η∗R)u

= αnu
T∂ηRl(ηR0) + αnu

T{∂ηRQ(ηR0)− ∂ηRl(ηR0)}+
α2
n

2
uT∂2ηRQ(η∗R)u

= J1 + J2 + J3,

where ∂2ηR = ∂2

∂ηR∂η
T
R

and η∗R lies between ηR0 and ηR0 + αnu.

It follows from (C2) that ||∂ηRl(ηR)|| = Op(r
1/2
n n1/2) = op(nαn) and

|J1| 6 αn||∂ηRl(ηR0)|| × ||u|| = op(nα
2
n)||u||.

It follows from Lemma 7 that

|J2| 6 αn||∂ηRQ(ηR0)− ∂ηRl(ηR0)|| ∗ ||u|| = Op(nα
2
n||u||).
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For J3, we have

∂2ηRQ(η∗R) = {∂2ηRQ(η∗R)− ∂2ηRl(η
∗
R)}+ {∂2ηRl(η

∗
R)− ∂2ηRl(ηR0)}

For the first term, as ||η∗R − ηR0|| = O(αn), by Lemma 3, Lemma 7 and conditions (C1)-(C3),

||∂2ηRQ(η∗R) − ∂2ηRl(η
∗
R)|| = op(n). For the second term, since ||η∗R − ηR0|| = O(αn) = o(1), we

have {∂2ηRl(η
∗
R)− ∂2ηRl(ηR0)} = op(n).

Similar to Cai, Fan, Li, and Zhou (2005), it follows from the Chebyshev inequality that

P{||n−1∂2ηRQ(ηR0) + Σ(ηR0)||F > r−1n ε} 6 r4n
nε2

= o(1)

as r4n/n→ 0 by condition (C1) combining the fact that a > 1. Thus, we have

||n−1∂2ηRQ(ηR0) + Σ(ηR0)||F = op(r
−1
n ).

Hence, we have

J3 = −nα
2
n

2
u′Σ(ηR0)u(1 + op(1)).

By condition (A4), J3 uniformly dominates both J1 and J2, which leads to (7.1). Thus, it is easy

to see that ||η̂R − ηR0|| = Op(αn).

We prove the convergence rate of ||β̂(s)− β0(s)||L2 as follows:

||β̂(s)− β0(s)||L2 = ||
rn∑
j=1

β̂j0φ̂j(t)−
∞∑
j=1

βj0φj(t)||

6 ||
rn∑
j=1

β̂j0φ̂j(t)−
rn∑
j=1

βj0φ̂j(t)||+ ||
rn∑
j=1

βj0φ̂j(t)−
rn∑
j=1

βj0φj(t)||

+||
∞∑

j=rn+1

βj0φj(t)||

6
rn∑
j=1

λ−1j

1/2

||η̂R − ηR0||+
rn∑
j=1

βj0δ
−1
j |||K̂ −K|||+ (

∞∑
j=rn+1

β2
j0)

1/2

= Op(r
a/2+1/2
n αn) +Op(r

a−b+2
n n−1/2) +Op(r

−b+1/2
n )
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It follows from (C1) and (C2) that ra/2+1/2
n αn = o(1). Since b > 0 and ra+2

n n−1/2 = o(1) by

condition (C1), ra/2−b+1
n = o(1). Furthermore, the third term is op(1) as b > a/2 + 1 > 1/2. Thus,

we have ||β̂(s)− β0(s)||L2 = op(1).

Proof of Theorem 2.

We need to introduce some notation. Under H0, we have β0 = 0. Let γ0 be the true value of γ and

η0 = (0T, γT
0 )T. Define

STE(η) =
n∑
i=1

∫ τ

0

widNi(t)−
∫ τ

0

E{wiYi(t) exp(wT
i η)}

E{Yi(t) exp(wT
i η)}

dN(t) =
n∑
i=1

STE,i(η),

where STE,i(η) =
∫ τ
0
widNi(t)−

∫ τ
0

E{wiYi(t) exp(w
T
i η)}

E{Yi(t) exp(wT
i η)}

dNi(t).

The first step is to prove that as n→∞, we have

[n−1/2STE(η0)
T{E(IT (η0))}−1n−1/2STE(η0)− rn]/(2rn)1/2 →d N(0, 1). (7.2)

By using the standard martingale theory Kalbfleisch and Prentice (2002), we know that STE,i(η0)

are i.i.d random variables with E(STE,i(η0)) = 0 and E{STE,i(η0)STE,i(η0)T} = E{IT (η0)}. Let

ψi = {E(IT (η0))}−1/2STE,i(η0). Thus, ψi’s are i.i.d random variables with mean 0 and covariance

Irn . It follows from (A5) and (B5) that E{(STE,i(η0)TSTE,i(η))2} = O(rn) = o(nrn). Therefore,

it follows from Lemma 9 that (7.2) is valid.

The second step is to prove that as n→∞, we have

[n−1/2ST (η0)
T{E(IT (η0))}−1n−1/2ST (η0)− rn]/(2rn)1/2 →d N(0, 1). (7.3)
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Since {Yi(t) : t ∈ [0, τ ]} is a Donsker class, we have

n−1
n∑
i=1

wiYi(t) exp(wT

i η0)− E{wiYi(t) exp(wT

i η0)} = Op(n
−1/2),

n−1
n∑
i=1

Yi(t) exp(wT

i η0)− E{Yi(t) exp(wT

i η0)} = Op(n
−1/2),

Thus, we have ST (η0)− STE(η0) = Op(n
1/2), which leads to (7.3).

Define ηN = (0T, γT
N)T, and notice that when β = 0,

QT (ηN) = Q(ηN) =
n∑
i=1

∫ τ

0

ZT

i γdNi(t)−
∫ τ

0

log{
n∑
i=1

Yi(t) exp(ZT

i γ)}dN(t)

Also define η̂N = (0T, γ̂T
N)T as the maximum partial likelihood estimate of Q(ηN) under β = 0,

we know that η̂N is also the maximum partial likelihood estimate of QT (ηN) under β = 0.

The third step is to prove that

‖n−1IT (0, γ̂N)− {E(IT (η0))}‖F = Op(rnn
−1/2). (7.4)

Following arguments in Theorem 8.3.2 in Fleming and Harrington (1991), we can show that γ̂N

is a root-n consistent estimator of γ0. We prove (7.4) by using Theorem 8.2.1(2) in Fleming and

Harrington (1991). As rn = o(n1/2), one has ‖n−1IT (0, γ̂N)− {E(IT (η0))}‖F = op(1).

The fourth step is to show

[n−1/2ST

T (0, γ̂N){n−1IT (0, γ̂N)}−1n−1/2ST (0, γ̂N)− rn]/(2rn)1/2 →d N(0, 1). (7.5)

Denote ST (η) = ({∂QTβ(η)}T, {∂Qγ(η)}T)T = (ST
T1(η), ST

T2(η))T. Since γ̂N is the maximum

partial likelihood estimates under β = 0, we have ST
T2(0, γ̂N) = 0. For ST

T1(0, γ̂N), we have

ST1(0, γ̂N) = S1(0, γ0)+∂S
T
1,γ(0, γ

∗)(γ̂N−γ0),where γ∗ is between γ̂N and γ0. Since ∂ST
T1,γ(0, γ̂N) =

∂2QT,β,γ(0, γ̂N) = 0, it follows from Theorem 8.2.1(2) in Fleming and Harrington (1991) that
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‖n−1∂ST
T1,γ(0, γ

∗)‖F = Op(rnn
−1/2). Since n1/2(γ̂N−γ0) = Op(1), we have n−1/2||{∂ST

T1,γ(0, γ̂N)−

∂ST
T1,γ(η0)}|| = Op(rnn

−1/2). Finally, (7.5) follows from rnn
−1/2 = o(1) and Slutsky’s theorem.

Finally, it follows from Lemma 8 and Op(1)/(2rn)1/2 = op(1) that we have

[n−1/2S(0, γ̂N)T{n−1I(0, γ̂N)}−1n−1/2S(0, γ̂N)− rn]/(2rn)1/2 →d N(0, 1).

8. Proofs of Corollaries

We consider the situation when pn is diverging with sample size n. For most of the aforementioned

lemmas and conditions, we only need to change p into pn without changing their proofs. However,

we need to change Lemma 5 into Lemma 10 as follows. We need a slightly stronger condition

(A5*) than (A5) to prove Lemma 10.

LEMMA 10: Let πi = ηT
RŵiR + ρi =

∑pn
k=1 zikγk +

∑rn
j=1 ξijRβjR +

∑∞
j=rn+1 ξijβj0. For

any fixed positive integer d, under Conditions (A5*) and (B5), we have E[{exp(πi)}2d] = O(1)

uniformly for ||η|| 6 C.

Proof of Lemma 10:

For any fixed positive integer d, we have

E[{exp(πi)}2d] = E(exp{2d(

pn∑
k=1

zikγk +
rn∑
j=1

ξijRβjR +
∞∑

j=rn+1

ξijβj0)}

6 E[

pn∏
k=1

exp(2dzikγk)× exp{(2d
rn∑
j=1

ξ2ij)
1/2(

rn∑
j=1

β2
j )

1/2}

× exp{2d(
∞∑

j=rn+1

ξ2ij)
1/2(

∞∑
j=rn+1

β2
j0)

1/2}]

6
pn∏
k=1

{E(exp(2dzikγk))}1/2 × exp(2d||Xi|| × ||η||)× exp(2d||Xi|| × ||β0||)
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By Condition (A5*),

pn∏
k=1

{E(exp(2dzikγk))}1/2 6
pn∏
k=1

exp(2M2d2γ2k) = exp{2M2d2(

pn∑
k=1

γ2k)} 6 exp(2M2d2||η||2)

Combining with condition (B5), we have E[{exp(πi)}2d] = O(1) uniformly for ||η|| 6 C.

After finishing proving Lemma 10, we are able to prove the following corollaries.

Proof of Corollary 1:

We can prove Corollary by repeating the Proof of Theorem 1 except that we use Lemma 10 and

change p into pn.

Proof of Corollary 2:

To prove Corollary 2, we make some additional changes when pn is diverging. We first introduce

some notation. Under H0, we have β0 = 0. Let γ0 be the true value of γ and η0 = (0T, γT
0 )T. Define

STE(η) =
n∑
i=1

∫ τ

0

widNi(t)−
∫ τ

0

E{wiYi(t) exp(wT
i η)}

E{Yi(t) exp(wT
i η)}

dN(t) =
n∑
i=1

STE,i(η),

where STE,i(η) =
∫ τ
0
widNi(t)−

∫ τ
0

E{wiYi(t) exp(w
T
i η)}

E{Yi(t) exp(wT
i η)}

dNi(t).

The first step is to prove that as n→∞, we have

[n−1/2STE(η0)
T{E(IT (η0))}−1n−1/2STE(η0)− rn]/(2rn)1/2 →d N(0, 1). (8.1)

By using the standard martingale theory (Kalbfleisch and Prentice, 2002), we know that STE,i(η0)

are i.i.d random variables with E(STE,i(η0)) = 0 and E{STE,i(η0)STE,i(η0)T} = E{IT (η0)}. Let

ψi = {E(IT (η0))}−1/2STE,i(η0). Thus, ψi’s are i.i.d random variables with mean 0 and covariance

Irn . It follows from (A5*) and (B5) that E{(STE,i(η0)TSTE,i(η))2} = O(rn) = o(nrn). Therefore,

it follows from Lemma 9 that (8.1) is valid.
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The second step is to prove that as n→∞, we have

[n−1/2ST (η0)
T{E(IT (η0))}−1n−1/2ST (η0)− rn]/(2rn)1/2 →d N(0, 1). (8.2)

Since {Yi(t) : t ∈ [0, τ ]} is a Donsker class, we have

n−1
n∑
i=1

wiYi(t) exp(wT

i η0)− E{wiYi(t) exp(wT

i η0)} = Op(n
−1/2),

n−1
n∑
i=1

Yi(t) exp(wT

i η0)− E{Yi(t) exp(wT

i η0)} = Op(n
−1/2),

Thus, we have ST (η0)− STE(η0) = Op(n
1/2), which leads to (8.2).

Define ηN = (0T, γT
N)T, and notice that when β = 0,

QT (ηN) = Q(ηN) =
n∑
i=1

∫ τ

0

ZT

i γdNi(t)−
∫ τ

0

log{
n∑
i=1

Yi(t) exp(ZT

i γ)}dN(t)

Also define η̂N = (0T, γ̂T
N)T as the maximum partial likelihood estimate of Q(ηN) under β = 0,

we know that η̂N is also the maximum partial likelihood estimate of QT (ηN) under β = 0.

The third step is to prove that

‖n−1IT (0, γ̂N)− {E(IT (η0))}‖F = Op(r
3/2
n n−1/2). (8.3)

Following arguments in Theorem 8.3.2 in Fleming and Harrington (1991), we can show that ||γ̂N−

γ0|| = Op(pn/n
1/2) = Op(rn/n

1/2). We prove (8.3) by using Theorem 8.2.1(2) in Fleming and

Harrington (1991). As rn = o(n1/3), one has ‖n−1IT (0, γ̂N)− {E(IT (η0))}‖F = op(1).

The fourth step is to show

[n−1/2ST

T (0, γ̂N){n−1IT (0, γ̂N)}−1n−1/2ST (0, γ̂N)− rn]/(2rn)1/2 →d N(0, 1). (8.4)

Denote ST (η) = ({∂QTβ(η)}T, {∂Qγ(η)}T)T = (ST
T1(η), ST

T2(η))T. Since γ̂N is the maximum

partial likelihood estimates under β = 0, we have ST
T2(0, γ̂N) = 0. For ST

T1(0, γ̂N), we have

ST1(0, γ̂N) = S1(0, γ0)+∂S
T
1,γ(0, γ

∗)(γ̂N−γ0),where γ∗ is between γ̂N and γ0. Since ∂ST
T1,γ(0, γ̂N) =
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∂2QT,β,γ(0, γ̂N) = 0, it follows from Theorem 8.2.1(2) in Fleming and Harrington (1991) that

‖n−1∂ST
T1,γ(0, γ

∗)‖F = Op(rnn
−1/2). Since r−1/2n n1/2(γ̂N−γ0) = Op(1), we have n−1/2||{∂ST

T1,γ(0, γ̂N)−

∂ST
T1,γ(η0)}|| = Op(r

3/2
n n−1/2). Finally, (8.4) follows from r

3/2
n n−1/2 = o(1) and Slutsky’s theo-

rem.

Finally, it follows from Lemma 8 and Op(1)/(2rn)1/2 = op(1) that we have

[n−1/2S(0, γ̂N)T{n−1I(0, γ̂N)}−1n−1/2S(0, γ̂N)− rn]/(2rn)1/2 →d N(0, 1).
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(a) (b)

(c) (d)

(e) (f)

Figure S1: ADNI data analysis results: panels (a)-(f) contain the estimated coefficient functions
β(s) when rn = 17, 18, 19, 21, 22, and 23, respectively.
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Table S1. Simulation results for the means of the estimates of RMSEβ , RMSEγ , r̂n and the
concordance index with their standard errors in the parentheses when n = 200 and censoring rate
is 0.3. We vary rn from 1 to 10, and use AIC to select rn, and we also compare with Gellar et al.

(2015)’s method.
rn RMSEβ RMSEγ Concordance Index r̂n
1 0.22 (0.007) 0.29(0.021) 0.738(0.0004) 1
2 0.16 (0.008) 0.3(0.022) 0.742(0.0005) 2
3 0.13 (0.008) 0.3(0.021) 0.744(0.0005) 3
4 0.11 (0.008) 0.3(0.023) 0.745(0.0004) 4
5 0.17 (0.011) 0.3(0.022) 0.745(0.0004) 5
6 0.30 (0.023) 0.31(0.023) 0.743(0.0005) 6
7 0.56 (0.046) 0.32(0.024) 0.742(0.0005) 7
8 0.85 (0.062) 0.34(0.023) 0.741(0.0006) 8
9 1.34 (0.089) 0.34(0.024) 0.74(0.0006) 9

10 1.89 (0.121) 0.34(0.024) 0.738(0.0007) 10
AIC 0.28(0.055) 0.3(0.023) 0.744(0.0005) 3.35(0.16)

Gellar 0.27(0.055) 0.31(0.022) 0.744(0.0005) NA
Qu 3.70 (0.05) 4.35(0.08) NA NA
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Table S2. Simulation results for the means of the estimates of RMSEβ , RMSEγ , r̂n and the
concordance index with their standard errors in the parentheses when n = 200 and censoring rate
is 0.5. We vary rn from 1 to 10, and use AIC to select rn, and we also compare with Gellar et al.

(2015)’s method.
rn RMSEβ RMSEγ Concordance Index r̂n
1 0.22(0.007) 0.39(0.029) 0.744(0.0005) 1
2 0.17(0.008) 0.4(0.028) 0.747(0.0005) 2
3 0.16(0.01) 0.4(0.028) 0.748(0.0005) 3
4 0.14(0.011) 0.41(0.029) 0.749(0.0005) 4
5 0.26(0.021) 0.42(0.031) 0.748(0.0005) 5
6 0.44(0.036) 0.44(0.033) 0.747(0.0006) 6
7 0.78(0.069) 0.45(0.035) 0.745(0.0006) 7
8 1.23(0.084) 0.49(0.038) 0.743(0.0007) 8
9 1.97(0.115) 0.49(0.039) 0.742(0.0008) 9

10 2.86(0.165) 0.5(0.041) 0.74(0.0008) 10
AIC 0.42(0.079) 0.42(0.032) 0.747(0.0007) 3.24(0.17)

Gellar 0.36(0.059) 0.41(0.03) 0.748(0.0006) NA
Qu 3.74 (0.06) 4.55(0.10) NA NA



41

Table S3. Simulation results for the means of the estimates of RMSEβ , RMSEγ , r̂n and the
concordance index with their standard errors in the parentheses when n = 500 and censoring rate
is 0.1. We vary rn from 1 to 10, and use AIC to select rn, and we also compare with Gellar et al.

(2015)’s method.
rn RMSEβ RMSEγ Concordance Index r̂n
1 0.19(0.004) 0.1(0.009) 0.734(0.0002) 1
2 0.12(0.005) 0.1(0.009) 0.738(0.0003) 2
3 0.07(0.004) 0.1(0.009) 0.741(0.0002) 3
4 0.04(0.002) 0.1(0.009) 0.742(0.0001) 4
5 0.06(0.003) 0.1(0.009) 0.742(0.0001) 5
6 0.09(0.007) 0.1(0.009) 0.742(0.0001) 6
7 0.17(0.012) 0.1(0.009) 0.741(0.0001) 7
8 0.26(0.019) 0.11(0.009) 0.741(0.0001) 8
9 0.39(0.031) 0.11(0.01) 0.74(0.0002) 9
10 0.58(0.04) 0.11(0.01) 0.74(0.0002) 10

AIC 0.11(0.018) 0.1(0.009) 0.742(0.0002) 4.1(0.14)
Gellar 0.15(0.02) 0.1(0.009) 0.742(0.0001) NA

Qu 3.58 (0.02) 4.05(0.04) NA NA
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Table S4. Simulation results for the means of the estimates of RMSEβ , RMSEγ , r̂n and the
concordance index with their standard errors in the parentheses when n = 500 and censoring rate
is 0.3. We vary rn from 1 to 10, and use AIC to select rn, and we also compare with Gellar et al.

(2015)’s method.
rn RMSEβ RMSEγ Concordance Index r̂n
1 0.19(0.004) 0.13(0.01) 0.742(0.0002) 1
2 0.12(0.005) 0.13(0.01) 0.745(0.0003) 2
3 0.07(0.004) 0.13(0.011) 0.748(0.0002) 3
4 0.04(0.002) 0.13(0.011) 0.75(0.0001) 4
5 0.07(0.004) 0.13(0.011) 0.749(0.0001) 5
6 0.12(0.008) 0.13(0.011) 0.749(0.0002) 6
7 0.22(0.015) 0.13(0.011) 0.748(0.0002) 7
8 0.34(0.021) 0.13(0.011) 0.748(0.0002) 8
9 0.5(0.035) 0.14(0.012) 0.747(0.0003) 9
10 0.72(0.044) 0.14(0.012) 0.747(0.0003) 10

AIC 0.13(0.019) 0.13(0.010) 0.749(0.0002) 4.1(0.14)
Gellar 0.12(0.009) 0.13(0.01) 0.749(0.0002) NA

Qu 3.58 (0.03) 4.14(0.04) NA NA



43

Table S5. Simulation results for the means of the estimates of RMSEβ , RMSEγ , r̂n and the
concordance index with their standard errors in the parentheses when n = 500 and censoring rate
is 0.5. We vary rn from 1 to 10, and use AIC to select rn, and we also compare with Gellar et al.

(2015)’s method.
rn RMSEβ RMSEγ Concordance Index r̂n
1 0.19(0.004) 0.17(0.013) 0.748(0.0003) 1
2 0.13(0.005) 0.17(0.014) 0.752(0.0003) 2
3 0.08(0.005) 0.17(0.015) 0.754(0.0003) 3
4 0.06(0.003) 0.18(0.016) 0.755(0.0002) 4
5 0.1(0.006) 0.18(0.016) 0.755(0.0002) 5
6 0.17(0.012) 0.18(0.015) 0.754(0.0002) 6
7 0.31(0.022) 0.18(0.015) 0.753(0.0002) 7
8 0.45(0.031) 0.19(0.015) 0.752(0.0003) 8
9 0.68(0.048) 0.19(0.016) 0.752(0.0003) 9

10 1.02(0.06) 0.19(0.016) 0.751(0.0003) 10
AIC 0.2(0.032) 0.18(0.015) 0.754(0.0003) 3.84(0.16)

Gellar 0.17(0.022) 0.18(0.015) 0.754(0.0002) NA
Qu 3.61 (0.03) 4.23(0.05) NA NA
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Table S6. Simulation results for the means of the estimates of RMSEβ , RMSEγ , r̂n and the
concordance index with their standard errors in the parentheses when n = 1, 000 and censoring
rate is 0.1. We vary rn from 1 to 10, and use AIC to select rn, and we also compare with Gellar

et al. (2015)’s method.
rn RMSEβ RMSEγ Concordance Index r̂n
1 0.19(0.003) 0.05(0.004) 0.735(0.0002) 1
2 0.11(0.005) 0.05(0.004) 0.739(0.0002) 2
3 0.05(0.003) 0.05(0.004) 0.742(0.0002) 3
4 0.03(0.001) 0.05(0.004) 0.743(0.0001) 4
5 0.03(0.002) 0.05(0.004) 0.743(0.0001) 5
6 0.05(0.003) 0.05(0.004) 0.743(0.0001) 6
7 0.08(0.005) 0.05(0.004) 0.743(0.0001) 7
8 0.11(0.007) 0.05(0.004) 0.743(0.0001) 8
9 0.17(0.01) 0.05(0.004) 0.743(0.0001) 9

10 0.24(0.013) 0.05(0.004) 0.742(0.0001) 10
AIC 0.05(0.006) 0.05(0.004) 0.743(0.0001) 4.28(0.14)

Gellar 0.06(0.007) 0.05(0.004) 0.743(0.0001) NA
Qu 3.62 (0.02) 3.95(0.03) NA NA
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Table S7. Simulation results for the means of the estimates of RMSEβ , RMSEγ , r̂n and the
concordance index with their standard errors in the parentheses when n = 1, 000 and censoring
rate is 0.3. We vary rn from 1 to 10, and use AIC to select rn, and we also compare with Gellar

et al. (2015)’s method.
rn RMSEβ RMSEγ Concordance Index r̂n
1 0.19(0.003) 0.07(0.006) 0.742(0.0002) 1
2 0.11(0.005) 0.07(0.005) 0.747(0.0002) 2
3 0.06(0.003) 0.06(0.005) 0.749(0.0002) 3
4 0.03(0.001) 0.06(0.005) 0.751(0.0001) 4
5 0.04(0.002) 0.06(0.005) 0.751(0.0001) 5
6 0.06(0.003) 0.06(0.005) 0.751(0.0001) 6
7 0.1(0.006) 0.07(0.005) 0.75(0.0001) 7
8 0.15(0.009) 0.07(0.005) 0.75(0.0001) 8
9 0.23(0.013) 0.07(0.005) 0.75(0.0001) 9

10 0.32(0.018) 0.07(0.005) 0.75(0.0001) 10
AIC 0.07(0.009) 0.07(0.005) 0.751(0.0001) 4.23(0.15)

Gellar 0.09(0.011) 0.06(0.005) 0.751(0.0001) NA
Qu 3.64 (0.02) 3.98(0.03) NA NA
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Table S8. Simulation results for the means of the estimates of RMSEβ , RMSEγ , r̂n and the
concordance index with their standard errors in the parentheses when n = 1, 000 and censoring
rate is 0.5. We vary rn from 1 to 10, and use AIC to select rn, and we also compare with Gellar

et al. (2015)’s method.
rn RMSEβ RMSEγ Concordance Index r̂n
1 0.19(0.003) 0.1(0.008) 0.749(0.0002) 1
2 0.11(0.005) 0.09(0.007) 0.753(0.0002) 2
3 0.06(0.003) 0.09(0.007) 0.755(0.0002) 3
4 0.03(0.001) 0.09(0.007) 0.757(0.0001) 4
5 0.05(0.004) 0.09(0.007) 0.757(0.0001) 5
6 0.08(0.005) 0.09(0.007) 0.756(0.0001) 6
7 0.14(0.009) 0.09(0.008) 0.756(0.0001) 7
8 0.2(0.012) 0.09(0.008) 0.756(0.0001) 8
9 0.32(0.018) 0.09(0.008) 0.755(0.0002) 9

10 0.43(0.023) 0.1(0.008) 0.755(0.0002) 10
AIC 0.09(0.012) 0.09(0.007) 0.756(0.0001) 4.18(0.14)

Gellar 0.1(0.013) 0.09(0.007) 0.756(0.0001) NA
Qu 3.67 (0.02) 4.05(0.04) NA NA
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Table S9. Simulation results on the power of our test when n = 200, censoring rate is 0.1 and
C1 = 0.1 ∗ j for j = 0, 1, · · · , 10. We vary PV(rn) from 0.70 to 0.95 to select rn. The Type I error

rates corresponding to C1 = 0 were calculated from 5, 000 simulated data sets and the Type II
error rates were calculated from 500 simulated data sets.

PV(rn) C1 = 0 C1 = 0.1 C1 = 0.2 C1 = 0.3 C1 = 0.4 C1 = 0.5 C1 = 0.6 C1 = 0.7 C1 = 0.8 C1 = 0.9 C1 = 1
0.70 0.060 0.080 0.202 0.384 0.624 0.808 0.912 0.976 1.000 0.998 1.000
0.75 0.059 0.082 0.174 0.346 0.622 0.798 0.924 0.984 1.000 1.000 1.000
0.80 0.059 0.082 0.176 0.344 0.620 0.800 0.924 0.984 1.000 1.000 1.000
0.85 0.059 0.082 0.184 0.340 0.616 0.802 0.926 0.982 0.998 1.000 1.000
0.90 0.060 0.088 0.154 0.332 0.548 0.766 0.890 0.954 0.996 0.998 1.000
0.95 0.066 0.082 0.160 0.282 0.490 0.734 0.862 0.942 0.990 0.998 1.000
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Table S10. Simulation results on the power of our test when n = 200, censoring rate is 0..1, and
C2 = 0.1 ∗ j for j = 0, 1, · · · , 10. We vary PV(rn) from 0.70 to 0.95 to select rn. The Type I error

rates corresponding to C2 = 0 were calculated from 5, 000 simulated data sets and the Type II
error rates were calculated from 500 simulated data sets.

rn C2 = 0 C2 = 0.1 C2 = 0.2 C2 = 0.3 C2 = 0.4 C2 = 0.5 C2 = 0.6 C2 = 0.7 C2 = 0.8 C2 = 0.9 C2 = 1
0.70 0.060 0.066 0.138 0.246 0.434 0.602 0.778 0.882 0.978 0.990 0.992
0.75 0.059 0.070 0.120 0.218 0.392 0.564 0.738 0.870 0.968 0.988 0.994
0.80 0.059 0.070 0.120 0.214 0.390 0.564 0.736 0.870 0.968 0.988 0.994
0.85 0.059 0.068 0.128 0.210 0.382 0.562 0.736 0.870 0.960 0.986 0.994
0.90 0.060 0.070 0.102 0.206 0.334 0.520 0.670 0.826 0.938 0.978 0.988
0.95 0.066 0.076 0.102 0.198 0.302 0.482 0.620 0.786 0.920 0.964 0.978


